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A field applied molecular dynamics (FMD) computer simulation of the optical Kerr effect in liquid water has produced
femtosecond rise transients, the final levels of which accurately reproduce a new theoretical treatment based on generalised
Langevin—Kielich functions for the asymmetric top. The transients and associated field applied correlation functions prove
to be sensitive to the anisotropy of polarisability (8) in water, showing that femtosecond transient spectroscopy is
potentially 2 much more accurate method of measurement of the anisotropy of polarisability than hitherto available.
Generalised Ldngevm Kielich functions arc presented as a function of both the anisotropies of polarisability (y and &) of
the asymmetric top in a form suitable for use in other contexts, such as light scattering in the presence of a strong electric
field. For three literature estimates of v, the laser-on steady state molecular dynamics of water are investigated in tcrms of
a range of time correlation functions, the results being significantly different for each estimate.

1. Introduction

The optical Kerr effect is well known to be observable as the rotation of the plane of polarisation of
a linearly polarised.probe laser due to a pulse of powerful pump laser radiation, linearly polarised in the
X-axis of the laboratory frame. It is a phenomenon of four wave mixing, and provides information on
the anisotropy of molecular polarisability. The optical Kerr effect (OKE) was first investigated in time
averaged pump laser applied states, and rapid developments in the last decade now allow observation of
transient phenomena associated with the OKE with a femtosecond time resolution. The transient
observable is usually a change in power absorption coefficient due to a pump laser pulse, which is
related through the Kramers—-Kronig equation to a transient birefringence.

In this paper we report the first computer simulation of the optical Kerr effect, using field applied
molecular dynamics (FMD). FMD is a simple variation on standard molecular dynamics computer
simulation in which the torque generated between the molecules of an ensemble and an external field is
coded into the forces loop. FMD provides rise and fall transients, thermodynamic and structural data,
and field on or field free statistical mechanical data, for example time correlation functions of many
different kinds [1], some of which arc Fourier transforms of directly observable spectra. FMD was
devised originally for strong electric fields, and accurately reproduced known Langevin and Kielich
functions [2—4] from the final levels of rise transicnts. Additionally, it gave details of the time resolution
of the transient$ themselves on the femto/picosecond scale, information which is now becoming directly
accessible experimentally [5] in the transient optical Kerr effect. FMD also gives a wealth of
information from the same trajectories on the dynamics of the laser-applied steady state in the optical
Kerr effect, on fall transients [6-8], and on pair distribution functions [9]. The method was later
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extended for use with circularly polarised laser fields {10, 11], and for non-linear optical phenomena
where in general [12-14], a laser ficld or ficld gradient forms a torque with an induced electric or
magnetic dipole or multipole. FMD also revealed basic statistical mechanical laws such as fall transient
acceleration [15], field decoupling [15], and rise transient oscillations on the femtosecond scale [16, 17};
its generality springs from the fact that the integral of the torque with respect to orientation is potential
energy, a term which is added to the Hamiltonian as the starting point of analytical theory. The
interaction of any type of field and any type of ensemble is therefore described at a fundamental level,
as in semi-classical theory [18], but FMD provides additionally much more information from the same
set of molecular trajectories.

The particular type of torque relevant to the optical Kerr effect 1s descnbed in section 2 Thc
essentials of FMD in this context are recounted briefly in section 3, followed-in section 4 by a
description of second order rise transients and a comparison with ge.nf;ra]lsed n.order Langevin—Kielich
functions for the asymmetric top molecule. The latter from both simulation and theory are shown in
two cases to change direction (i.e. fall rather than rise from an initial value of ), with change of sign of
the anisotropy of polarisability (), thus providing a potentially accurate method of measurement of
this quantity in water from the transient optical Kerr effect [S]. Detailed agreement is demonstrated
between simulation and theory concerning this useful change of direction and other transient properties
of the optical Kerr effect. Section 5 details the time resolution of the rise transients from FMD for three
different literature estimates of the second anisotropy of polarisability y of the water molecule. Section
6 presents a set of generalised Langevin-Kielich functions for the asymmetric top molecule in terms of
the anisotropy ratio //q. These curves are generally useful for a range of phenomena, and are given in
terms of ¢, R and K functions, the former being two components of the birefringence, which is
proportional to K. The anisotropy ratio h/q varies from 0.25 to 20, giving a wide variety of analytical
behaviour pertinent to the optical Kerr effect and several other phenomena. Finally section 7 presents a
statistical dynamics analysis of time correlation functions from the FMD simulation in the pump laser
applied steady state for the three literature estimates of anisotropy of polarisability; revealing significant
differences. There is a‘need therefore to define much more precisely the amsotrOpy of polarisability of
water and asymmetric tops in general.

2. Torque of the optical Kerr effect

Since its first experimental demonstration by Mayer and Gires [19] the optical Kerr effect has been
incisive in the investigation of the optical properties of molecular systems [20-24]. The effect is due to
two fundamental mechanisms: (i) the charge distribution in the molecule is modified by the external
optical pump beam, thus affecting the hyperpolarisability [25], and (ii) the molecules are reoriented by
the field. The latter mechanism dominates for anisotropic molecules [21].

The clectric field E of the pump laser beam induces in a molecule an electric dipole moment

p=a-E, | (1)

and a time independent torque

=—uXE*=—(a-E)XE*, 2)

where « is the complex, second rank, electronic polarxsablhty tensor, defined through electric dipole
transitions. We consider the field E linearly polarised in the X-axis of the laboratory frame (X, Y, Z).
In the most gencral case, there arc threc different componcnts of the molecular polarisability
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a(a,, # @, # ay,), and we have the following expression for the torque (2) in the frame (1, 2, 3) of the
principal molecular moments of inertia

T, = eyxesx(asz = ap) Eq,
T, = e ger(a, = ay)Eq, (3)
Ty= e xex(ay — an)Eq
where E; = EE* and the quantities e,y, €,5, and e, are X components of the unit vectors in axes 1, 2,
and 3. Here 1 is the dipole axis, and 2 and 3 are mutually orthogonal in a right-hand frame.
It is assumed that the polarisability is diagonalised in the same frame (1, 2, 3), giving the diagonal

components @, ,, &,,, and a,; of the molecular polarisability of water. It is convenient in this context to
define the two anisotropies of polarisability of the asymmetric top water molecule

}’:au‘%(azz'*'a.n)’ (4)
&= %(azz —ay,) - _ (5)

The torque,components (3) can be coded, in general, into the forces loop of any MD algorithm, and
back transformed [14] into the laboratory frame (X, Y, Z) using a rotation matrix

Ty e x Cx x| T, _
T,|=|€y €y €y||T,|. (6)
T, €z €z €z]| Ty .

The MD algorithm essentially works out the influence of the torque on various molecular dynamical
variables and integrates the torque over configuration space to give potential energy, i.e. an additional
term in the Hamiltonian.

3. FMD method

The FMD method was implemented with a sample of 108 water molecules interacting through a
modified ST2 potential using Lennard-Jones and partial charge interactions

by(rinry) = 4e[<%> ’ - (%)6] + charge-charge ,
b= 2 2 ¢, (site) ,

elk(H-H)=21.1K, &(H-H) =2.25A
elk(0-0)=58.4K, o(0-0)=2.804,

g, =0.23|e|,  q(lone pair) = —0.23|e| ,

g0 =0.00le],  o(O-H)=i[c(0-0)+ ¢(H-H)],
e/k(O-H) = [e/k(0O-0O)e/k(H-H)]"*.

This potential has been compared in the literature [26] with the ab initio MCYL, and with experimental
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data [27] over a wide range of conditions. We stress that FMD can be used with any type of model or ab
initio water potential, and any type of MD algorithm. With a time step of 0.5fs, transients were
evaluated for different E;, over a number of time steps sufficient for attainment of the final level, which
was measured and used (with uncertainty bars) to construct generalised Langevin—Kielich functions
(section 4) by FMD. The latter were also evaluated analytically [28~ 32] The transient generating stage
was followed by FMD evaluation of statistical dynamical properties in the pump laser applied steady

state, using running time averaging over a minimum of 6000 steps. A data bank of many different

examples was collected and used to characterise the field-on dynamics (section 7).
Simulations were carried out at 296 K, 1.0 bar in the liquid state of water.

4. Rise transients and anisotropy of polarisability

There have been numerous reports [33-39] of the anisotropy function y of water. Khanarian and
Kent [34] have made a tabular comparison of experimental and ab initio estimates from various sources,
six of whose entries were positive, and four negative. In this section we use three literature estimates of
the diagonalised polarisability components of water and compare for each generalised Langevin-Kielich
functions and time resolved rise transients from FMD and the available theory. The literature estimates
used for the analysis are given in table 1. We note that the experimental estimates in this table give a
negative anisotropy y [33],.and what is apparently a conflicting positive anisotropy y [34]. We also use
one ab initio result [35]. _ ' R

For each of these three data sets transients and generalised Langevin-Kielich functions (GLKs)
were simulated for (e}, ), (e3x), and (e5y), where n =2, 4, 6. GLKs were also evaluated analytically
[28-32] from the following theory of the Langevin-Kielich functions. The time mdependent potential
energy of a molecule in the presence of the electric field E of the pump laser

—%aijEiE?“ %aTjETEj’ ' (7)

can be expressed through the anisotropies (4) and (5) and the mean value of the po arlsablhty @
(a = 3(ay + ay + ay,)):

U=~(a+ 5(32/\' - egx) + ‘)’(‘-’?x - %))E(z) - . L (8)

Denoting by 6 the angle between axis 1 of the molecular frame (1, 2, 3) and the axis X of the laboratory

Table 1

Literature estimates of the polarisability tensor of water oo
diagonalised in (1, 2, 3).

Note carefully that the frame definitions of a,, and a,, in ref.

[34] appear to be opposite to those of refs. [33] and [35]. The

numbers below were used throughout in our simulation and

analysis, and also as a convenient demonstration of how

changing from negative to positive anisotropy alfects the

nature of GLKs, both in the simulation and in the analytical

theory, the integrals (9)-(11) of the text.

Ref. a, - @y JRER!
[33,37] 9.62 9.26 1001 . (aw) . : !
(34] 1.69 1.9 1.3 (S1 units)

[35] 8.15 7.12 9.03 (a.u.)
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frame (X, Y, Z), the axis of the electric field E of the lmearly polarised laser beam, we have, for

Euler’s azimuth angle ¢:

2w

f (cos 0 exp(q cos’6) f exp(—h sin’g cos 2¢) dqi)) sin ¢ d6
<elX - 2w (_]_ _ ) ELH(Q’ h) ’
j (exp(eq cos’6) f exp(—h sin’6 cos 2¢) d(b) sin 6 df
Ly .

0

[ (sin”@ exp(g cos’0) j sin"¢ exp(—/ sin’6 cos 2¢) dq&_) sin 6 d@

<e;x> =1 = ()zﬂ = Lf.l)(q, hy,

f (exp(q cos’6) f exp(—ﬁ sin’6 cos 2¢) d_qS) sing de
0 ‘ 0 . .

2w

sin"g exp(q cos’0) | cos"¢ exp(—h sin’6 cos2¢) de | sin 6§ do
p(q p i¢ | sin

<e3X = p T 0211 = LEIZ)(‘]a h),

j (exp(q cos’6) J exp(—h sin’d cos 2¢) dd)) sin 6 d6
0

0

,(9)

(10)

(11)

where L, (q, h), L"(q, k), and L (q, h) may appropnately be named the generalised Langevin—

Kielich (GLK) functions. Here
g=vyEMKT, h=8EL/KT.
If the anisotropy & =0, we have
L(q, h=0)=L,(q),
being the well-known Langevin—-Kielich functions (2, 28-32] and
L.P(g)= Li(q) = ((1 —cos’9)""*){cos"s) ,

with [41]
(2t — 1!

<COS"¢) —_ <51n"¢> — 2'[! b
0, n=2t+1,

n=72t,

and the even order Langevin—Kiclich functions L,, = (cos*@). In particular,
Li(q) =L (q) = 3(1 - Ly(q)),
Li(g)=LiP(9) = 3(1-2Ly(q) + L (q))

L$(q) = L (q) = 36(1=3Ly(q) +3L.(q) — L(q)) ,

(12)

(13)

(14)

(15)
(16)

(17)
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and so on, and
L2:+1(Q):L(2111(Q)= Lgl](‘])zo-

The double integrals (9) to (11) were evaluated numerically using IBM software [40] based on accurate
fine grid double Gauss Legendre quadrature on the IBM 3090 supercomputer of ETH Zurich. In
addition to the special case of water, a set of generalised Langevin-Kielich functions was evaluated
numerically in terms of ‘the ratio #/q of the two asymmetric top anisotropies of polarisability, and
presented as functions of |g|. Each curve of this set required the computation of some eight hundred
double integrals. Three curves were usually completed in about 5 min of CPU time.

Figure 1, for the special case of water, illustrates the fact that two of these GLK functions change
direction with anisotropy of polarisability &, in the sense that they increase or decrease from an initial
value. Points on these analytical GLKs show simulated data from FMD under the same conditions, with
potential energy corresponding to the torque (3) computed over a minimum of 6000 time steps at each
point: In matching the analytical curves (obtained by numerical quadrature) with the FMD points, one
FMD point, corresponding to a given laser intensity, was matched precisely with the curve, and others
added from simulations with different equivalent laser intensities incorporated via the torque. The
FMD method successfully simulates the change of direction in {e5,) and (e},) given analytically from
(10) and (11) and 26 is changed from positive to negative for a given y. The function (e}, ) changes
sign analytically as &/y increases in eq. (9), except for a very small “blip” at the beginning of its range,

WATER, GLX FUNCTIONS, VECTOR 1 (DIPOLE YECTOR), ORDERS 24,6
ALPHATI » 9.62, ALPHA22 = 926, ALPRA33 = 10,01 AUS.

o a’l

T - T T T T T 7
-10 08 -08 -07 0B 05 04 -03 02 -0! 00
Q

Fig. 1. Generalised Langevin-Kielich functions L (q. h); L' (q, k), and L'™*(q. h) from analytical theory (curves) and field
applied computer simulation (points) for liquid water at 293K, 1.0 bar. (a) Using the data (table 1) of ref. [33], (b) ref. [34], (&)
ref. [35]. The functions initiate at § (n =2),  (n =4), and } (n =6). Note that in two cases the GLKs change sign between data
sets (a) and (b), respectively representing negative and positive y. L N=2 e p=4;--—~n=6; §, FMD, n=2.
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and again this is reproduced successfully by FMD. For |8/v| =1 this blip disappears, and the function
(e%) is monotonically decreasing.

These results show that:

(1) The sign of the anisotropy of polarisability of the water molecule can be determined from an
accurate experimental measurement of the three GLKs described already, possibly with contemporary
femtosecond transient optical Kerr effect apparatus [5].

(2) FMD is in detailed agreement with the analytical theory on GLKs.

5. Time resolution of optical Kerr effect rise transients

The time resolution on the femtosecond level of the optical Kerr effect has been achieved [5] in a
range of molecular liquids by Kenney-Wallace and co-workers. The data are in the form of rise
transients of probe optical absorption as a pump pulse is passed through the ensemble. These data can
be related to our GLKs through the birefringence of the optical Kerr effect, which is in turn related to
the observable changes in power absorption coefficient [5] through the Kramers—Kronig equations. The
birefringence function is given analytically in terms of generalised Langevin—Kielich functions and
generalised O’Konski functions, &, as described in section 6.

It is possible therefore, using a numerical iterative scheme, for example, to determine the anisotropy
of polarisability from the rise transient experimental data [S]. Furthermore, FMD gives the time
resolution of the rise transient as illustrated in fig. 4 using the apparently conflicting literature data sets
of table 1. Figure 4 shows that the time resolved transients are markedly different for each data set at
fixed pump laser equivalent potential energy, obtained by intergrating the torque over configuration
space in the FMD algorithm. For the Zeiss/Meath estimate [33] there are no rise transient oscillations
[16, 17] known from diffusion theory [17] to be due to specific non-linearities in- the molecular
dynamics. The presence of these oscillations is observed clearly (fig. 4), however, using the data given
by Khanarian and Ken [34] and the ab initio computation of Van Hemert and Blom [35] for constant
applied pump laser intensity in the simulation for all three cases. This shows clearly the dependence of
the rise transient on the precise details of the anisotropy of polarisability for given pump laser intensity.

It is concluded that the details of the time dependence of the optical Kerr effect rise transient are
intricate functions of the anisotropy of polarisability at a given pump laser intensity. It would be of
interest to attempt to observe such oscillations experimentally [5].

6. Generalised Langevin-Kielich, &, R, and K functions

In this section we evaluate the optically induced orientational anisotropy leading to the optical Kerr
effect for molecules with arbitrary symmetry. Applying the molecular theory {2] to an isotropic medium
acted on by an intense, linearly polarised, optical beam with electric field strength £ we have the
birefringence due to pure reorientational processes in the form

2 2
=2 (Y 38 pgm)
M= e ey ) TP B g L RGa.h)

2 2
_np (n +2)
- 260 ( 3n YK(Qa h) > (18)

where ny and 7, are the refractive indices for a probe beam with electric ficld vibrating parallel and
perpendicular to E, respectively, n is the refractive index with the external field, p the molecular
number density, and the orientational functions
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®(q, h)=4(3Ly,(q, h)—1) (19)
R(q,h)= L (g, h)~ LY (q, h) (20)

are given by GLK functions (9)-(11). The function @ is appropriately referred to as the generalised
Langevin~O’Konski function, because for # =0, it reduces to the O’Konski function ®(q) [28-32, 42].
These sets of curves are presented in figs. 2 and 3, which are reference curves for the general
asymmetric top for the optical Kerr effect and related phenomena {2, 31]. These curves are sensitive to
hiq, and form a rich variety of potentially observable behaviour under the right conditions, for example
in macromolecules with the techniques [2, 38] of non-linear dielectric spectroscopy as well as with those
of the optical and electric Kerr effects. In the isotropic phases of liquid crystals of asymmetric top
molecules, the birefringence function can also be saturated [24].

In the particular case of water, using the data sets of table 1, large differences in the birefringence
functions K(gq, h) versus |g| are easily seen in fig. 5. These differences originate in insufficient state of
the art experimental precision and somewhat conflicting frame definitions in the literature data,
amounting to the uncertainty even in the sign of the anisotropy & of the water molecule. We note that
Khanarian and Kent [34] appear to have defined the polarisability components in axes 2 and 3
oppositely to Zeiss and Meath [33] and Van Hemert and Blom [35]. For the simulation and theory of
this paper, the data of table 1 were used throughout. A simulation of the rise transients of the
birefringence function (18) is given in fig. 6 under the same conditions as illustrated in fig. 5, showing
large differences in details oftime resolution as a function of anisotropy of polarisability on the
femtosecond time scale now accessible experimentally.

FUNCTION ETX SOUARED.
0, 1,2 KX M AND Q POSITIVE. H - 0, 2104, Q NEGATIVE, H POSITIVE.

FUNCTION
0

0.2 \

0.0
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012345878 91011217 MISIIBEIIBNN
ABSLOY

Fig. 2. GLK functions from eq. (9) for vector {¢;,). Presented as master curves as a function of tql. —— hig=0;---, hig=1;

===, hlg=2. (a) h and q positive; or g positive. h ncgative; (b) g negative, h positive; or ¢ and h negative.
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7. Laser-on time correlation functions

Finally, we report that in the laser field applied steady state reached by the rise transient at a given
pump laser intensity, a data bank of time correlation functions was.accumulated to investigate in detail
the field-on statistical dynamics by FMD. The correlation functions were also observed to be markedly
dependent on which data set of table 1 was used, and this is exemplified in figs. 7-12 for the
orientational correlation functions

_ <eli(’)eli(0)> |

o= (aymay T en
th; :r?tationalz velocity correlation functions [3]

= TS 22)
and the angular momentum correlation fﬁnctions :

€0l = (J:(1)4,(0)) 23)

<]?>1/2(J?>l/2 .

Off diagonal components (cross-correlation functions) were found (figs. 8, 10, 12), to change sign with
the anisotropy of polarisability 8. Patterns of laser induced oscillations for the autocorrelation functions,
and the extent of anisotropy in their time development, are all greatly affected by which data set of
table 1 is accepted as the most accurate.

The Fourier transform of the rotational velocity autocorrelation function [1] is the far infra-
red power absorption coefficient, and were it possible tc observe this spectrum in the presence of a
pump laser pulse, FMD as used in this paper shows that it would give information on the molecular
dynamics of the optical Kerr'effect in the laser on steady state, and specifically on the anisotropy of
polarisability. '
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