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INTRODUCTION

This chapter deals with the impact of contemporary computer simulation
on our understanding of molecular diffusion processes. It argues the case
for the classical equations of motion applied to the minute time scales and
dimensions of molecular dynamics. It is therefore assumed implicitly, as is
the contemporary practice, that classical mechanics is valid in this context,
although there is no rigorous proof of why this should be so. The tra-
ditional approach to the theory of molecular diffusion, developed at the
turn of the century, does not stand up to the data now available. These
are obtained contemporaneously from many spectral sources, and from
computer simulation using increasingly powerful techniques. These data
now show unequivocally that the traditional approach is fundamentally
flawed in at least one respect, the assumption that translational and ro-
tational motion are decorrelated. We now have available a set of nonvan-
ishing time-cross correlation functions with which to define and elaborate
upon the fundamental physical properties of molecules diffusing in three
dimensions.

The chapter is intended to be readily understandable to undergraduates
and also to be useful to specialists in molecular diffusion, computer simul-
ation, and several branches of spectroscopy. It opens with a description
of the traditional theory, whose mathematical complexity is kept sec-
u_ndary to the essentially simple physical concepts that make up the Lange-
vin equation of diffusion. Einstein’s theory of translational Brownian mo-
tion, which was used to prove the existence of molecules, and Debye’s
theory of rotational diffusion, which was used to prove the molecular
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origin of the dispersion of dielectric permittivity at radio frequencies, are
discussed in terms of simple Langevin equations, whose limitations are
clearly defined. These include the failure to describe the far infrared (high
frequency) part of the dispersion of permittivity and dielectric loss in
dipolar molecular liquids, due to a missing inertial term and inadequate
description of the intermolecular potential energy. The relation of the
Langevin to the Liouville equation shows that the former is a first approxi-
mation to the trajectory of a diffusing asymmetric top in a three-dimen-
sional ensemble of similar molecules. The experimental consequences of
this approximation are most visible in the far infrared, but also in other
types of data, discussed in Section II.

This section makes a survey of the available spectral data on molecular
diffusion, and compares the results for consistency from sources such as
combined dielectric and far infrared spectroscopy, the relaxation of nu-
clear magnetic resonance, light scattering, infrared band shape analysis,
Raman scattering, ultra and hyper sound relaxation, and inelastic, incoher-
ent, neutron scattering. Correlation times for one test liquid, dichloro-
methane, are compared from all spectral sources and with their equivalents
from computer simulation. The latter brings some self consistency into
what remains an imperfect experimental understanding due to inadequate
data coverage.

Section III covers the basics of computer simulation with reference
to the numerical integration of the classical rotational and translational
equations of motion of the three dimensional diffusion of the asymmetric
top molecule dichloromethane in the liquid state. This section covers the
approximation of the intermolecular potential with the pairwise additive
method, the computation of thermodynamic properties, and spectral data,
from the individual trajectories of the simulation.

In Section IV some new results from computer simulation are de-
scribed, and limits set on the validity of traditional linear response theory.
These are described in terms of new effects discovered by the simulation
technique, such as fall transient acceleration and field decoupling. The
importance of cross-correlation functions is illustrated with respect to the
effect of external force fields that are shown by simulation to induce
such previously unknown correlations direct in the laboratory frame of
reference (X, Y, Z).

Section V introduces the use of symmetry laws that govern the existence
of cross-correlation functions both in frame (X, ¥, Z) and in frame (x, y, z)
fixed in the molecule as it diffuses. These include parity and time-reversal
symmetry, and group theory in both frames. Tables are provided to guide
the reader as to the use of group theory in the context of time correlation
functions of all orders, and for representative molecular point groups.
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Some theories of the time dependence of members of the set of cross-
correlation functions are described briefly in order to illustrate the limits
of validity of the traditional approach of Section I.

Section VI describes the challenge to diffusion theory of the existence
of many members of this set for all molecular matter. The nature of the
set of cross-correlation functions is illustrated with reference to water
under a broad range of conditions, with respect to correlations involving
simultaneously vibration, rotation, and center of mass translation in a
liquid, with respect to rod-like molecules as models for liquid crystal
behavior, and to highly anisotropic diffusers in the liquid state. Some
indications are given to the meaning of cross-correlation functions in the
context of quantum mechanics, where they become expectation values of
wave functions involving both rotational and translational energy levels.
The conditions are described under which the rototranslational spectral
features corresponding to these energy levels may be observed by spectro-
SCOpY.

Section VII introduces group theoretical statistical mechanics, and gives
the three principles which govern the application of group theory to the
process of molecular diffusion. These principles are illustrated with respect
to both frames (X, Y, Z) and (x,y, z) in molecular liquids and liquid
crystals.

Section VIII extends the scope of group theoretical statistical mechanics
to the effect of fields of various kinds on molecular liquids, and introduces
the study of non-Newtonian rheology with the principles of group theory.
These chapters are filled out with reference tabular material and illus-
trations which should be useful for a broad cross section of chemical and
computational physicists and flow engineers.

Finally, Section IX deals with the symmetry and simulation of new
pump-probe spectroscopies, utilizing the principles outlined in Sections
VII and VIII.

I. THE TRADITIONAL VIEW

The traditional approach to molecular diffusion in liquids is a first approxi-
mation to the problem of dealing with a very large number of moving and
interacting molecules."™* Conventional textbooks®'* tend to overemphas-
ise the applicability of the turn of the century techniques first used to deal
with this problem. Albert Einstein was the first to realize. in a Berne
patent office at the dawning of modern physics, that the restless motion
of pollen particles known as Brownian motion was caused by unending
collisions with much smaller particles, and these he recognised as mol-
ecules. Their dynamical trajectories, he assumed, were governed by classi-
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cal statistical mechanics. In a paper published in 1905, Einstein'® estimated
the Avogadro Number from a diffusion equation developed to explain the
Brownian motion on the basis of molecular collisions with the much
heavier and slower moving pollen particles, whose motion could be studied
directly through a microscope. This paper provided one of the first defini-
tive proofs of the existence of molecules as the fundamental entities of
molecular matter.

Einstein measured his limits, he did not, for example, take into account
the rotational motion of each molecule because this was not needed for
the estimation of the Avogadro Number from the observation of Brownian
motion. He based his theory on well-defined assumptions, and developed
it self-consistently. Now, almost a century later we are privileged to have
available a vast ocean of data from computer simulation® and far infrared
spectroscopy,’ for example, which describe in abundant detail worlds
which the pioneer could but dimly perceive. Our understanding of molecu-
lar diffusion has been transfigured in the last 20 years.

This chapter attempts to review the significant results of the last decade
or so and to reassess critically the early theories of molecular diffu-
sion'®"'” with new data. The chapter argues the case, for the time being,
tor a classical mechanical approach to the dynamics of molecular liquids,
using the Newton and Euler equations, and variations. This is mad:a
possible by contemporary supercomputers. There are fewer approxi-
mations than in the traditional theory of diffusion, and the new methods
are well founded in the laws of classical physics.

A. Einstein’s Theory of Translational Brownian Motion

The explanation for Brownian motion given by Einstein'® makes sevﬁ_'ral
assumptions about the nature of the collision between a pollen particle
and a molecule of the surrounding liquid. The basic idea is that the effect
of collisions produces random jumps in the position of the pollen particle.
The velocity change on collision is assumed to be damped out quickly and
the role of velocity in Einstein’s treatment is ill-defined.”*” The random
walk of the pollen particle in three dimensions is described by a partial
differential equation for the displacement in each dimension. The solution
of this equation showed that the mean-square displacement of a Brownian
particle should increase linearly with time. This prediction was verified
experimentally by Perrin®' in 1908, and from Einstein's formula a value
of Avogadro’s Number was deduced which is in satisfactory agreement
with the accepted value.

A contemporary description of the methods used by Einstein to derive
the formula for the mean-square displacement of the pollen particle is
given by W. T. Coffey in Ref. 4, A straightforward description of the
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reasoning behind the theory was established by Langevin'” in 1908. This
is more transparent to the student of Brownian motion, and also reveals
more clearly the limitations of the methods involved in calculating both
the mean-square displacement and the Avogadro Number.'*

B. The Langevin Equation for Translational Brownian Motion

Langevin’s treatment is limited to the motion of large pollen particles in
suspension in a molecular environment. The equation has often been
applied uncritically, however, to the motion of a molecule in solution in
others. There are fundamental differences in the nature of a collision
between two molecules and between a molecule and pollen particle. The
transfer of momentum in the former case is roughly equally shared, and
the assumption that the change in velocity can be ignored does not hold.
This was realized fully as late as 1964, following a computer simulation
by Rahman® of 864 diffusing argon atoms. In this simulation. the velocity
auto correlation function of the ensemble of argon atoms was found to
be markedly different in time dependence from the simple exponential of
early diffusion theory, based on the Einstein theory of translational
Brownian motion.
Langevin wrote the equation of translational Brownian motion as

’ dx
o+ mpr ) (1)

m

assuming that the forces on the pollen particle could be divided into a
systematic part —mf,x(r), representing a friction on the pollen particle
generated by its molecular collisions, and a random force F (t) generated
by a random walk of the position of the pollen particle relative to the
surrounding molecules. The frictional force opposes the motion and is
therefore given a negative sign, and the random force generates the unend-
ing motion of the pollen by collision with molecules which are in constant
thermal motion and have constant kinetic energy at constant temperature.
Langevin assumed that the frictional term was governed by Stokes’s law
of macroscopic hydrodynamics, which applies to a spherical particle in a
viscous fluid. In contrast, the random force F(t) was assumed to be inde-
pendent of x and to vary very rapidly compared with any variation in x(t).
There is no statistical correlation between F(t) and F (t + Ar). The picture
is therefore a mixture of hydrodynamic and statistical concepts. It has
fundamental mathematical limits as described by Doob.?® Its physical
shortcomings were not easily found until the computer simulation by
Rahman, using the much older Newton equations of motion. The Lange-
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vin equation is really an ad hoc mixture of concepts. In the same way,
Einstein’s estimate of the Avogadro Number was based on a combination
of his result for the mean square displacement

Qs T @)

3mna

with Stokes’s Law for the friction coefficient

Br = 6mna (3)

Here a is the effective radius of the pollen particle, assumed spherical, 7
is the effective viscosity of the molecular surroundings, and r is the timc
after an arbitrary initial instant for which the particle has been under the
influence of the Brownian random walk. There was no rigorous justifi-
cation for the mixture of concepts, except that it seemed to work at first,
providing a good approximation to the Avogadro Number.

This early work was, however, pivotal, becausc it was the first to use
the concept of molecular dynamics in explaining Brownian motion. It
provided evidence for the existence of molecules when such evidence was
needed. The role of contemporary computer simulation is very different.

C. Contemporary Criticisms of the Traditional Approach

One of the most powerful arguments against the indiscriminate use of
the Langevin equation is that it cannot be derived rigorously from the
fundamental equations of motion used in statistical mechanics, for exam-
ple the Liouville equation. This was demonstrated clearly by Mori® in
1965, using projection operators. Mori started from the Liouville equation

I'=iLT (4)

where L is the Liouville operator and T is the phase space of positions
and momenta. Mori showed that a dynamical quantity A or A (i.e., scalar
or vector) which obeys the Liouville equation

A=iLA (5)

also obeys the equation

A= i AL — f DAt — 7)A(T)dT + Fo(r) (6)

——————

T —
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which is the same equation as (5). Here (), is the resonance operator,
and ¢, is the memory function. F, is a vector of random quantities.
Equation (6) reduces to the Langevin equation only when the resonance
operator vanishes and when the memory function is a delta function of
time. If A represents linear velocity, v for example, the original Langevin
equation (1) is recovered only with these drastic approximations. The
memory function can never be a delta function for any meaningful molecu-
lar dynamical process. Mori showed that repeated application of projection
operators to the Liouville equation produces a string of interrelated equa-
tions of the type (6), but never a simple Langevin equation of type
(1). Laplace transformation of the string of equations produces the Mori
continued fraction' ™ for the statistical correlation between the variable A
at time ¢ and its value at ¢t = 0, the velocity autocorrelation function. The
equivalent result from the simple Langevin equation is an exponential
in time, an oversimplification of the rigorous Mori continued fraction.
Rahman's computer simulation of 1964* showed conclusively that the
velocity autocorrelation function was far from being a simple exponential
in 864 argon atoms interacting with a realistic (Lennard Jones) model for
the interatomic potential.

D. Molecular Translation and Rotation

By restricting consideration to spherical particles the treatment so far has
not begun to account for rotation, and for simultaneous rotation and
translation in an irregular body, or “asymmetric top,” diffusing in three
dimensional space (X, Y, Z). The dispersion of the dielectric permittivity
at radio frequencies was known in the first decade of this century to be a
rotational phenomenon involving the molecular antenna, the permanent
molecular dipole moment, p. In general this rotation occurs on top of the
translation in three dimensions. There is a statistical spread of angular
velocities which causes the dielectric permittivity of a molecular liquid to
be frequency dependent.' ™ The dipole moment is the result of an asym-
metric distribution of charge, due to the distribution of atoms within a
molecule. The dispersion of permittivity is always accompanied by a di-
electric loss as the frequency of the measuring field is increased. This is
governed by a relatively slow motion, the rotation of the whole molecule,
and can be observed using conductance/capacitance changes, or by the
direct attenuation of radiation, at far infrared frequencies.'*** The interac-
tion of molecular (and other) matter with electromagnetic radiation is
governed by electromagnetic field theory, based classically on Maxwell’s
equations.
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E. Dielectric Relaxation and the Debye Theory of Rotational Diffusion

Essentially speaking, dielectric relaxation involves the partial polariz-
ation”"* of the molecules of a liquid with an electric field. If this alternates
in frequency, the periodic change in direction produces a change in
direction of the molecular dipole moments as the molecules attempt to
rotate and follow the field direction. The electric field produces only a
very slight alignment of the molecules, because the thermal motion is
relatively so much more energetic at room temperatures and available
clectric field strengths. The degree of alignment is governed essentially by
the ratio

wkE
b=— 7
o (7)

where E is the electric field, k the Boltzmann constant, and T the tempera-
ture in absolute units. The ratio b is the argument of the Langevin func-
tion, measuring the degree of alignment produced by the external field,
the result of competition between the aligning energy and the thermal
energy, kT.

F. Loss of Polarization

The simplest kind of dielectric relaxation occurs when a static electric field
is applied initially to a liquid of diffusing molecules, allowing enough time
for alignment to occur, and is then switched off instantaneously. The
degree of molecular alignment produced by the external electric field is
lost, but not immediately. The natural thermal motion that makes align-
ment a difficult process also prevents its instantaneous loss. The length of
time needed to align the sample as fully as possible by an applied static
electric field, and conversely, the time needed for loss of alignment,
both depend on the nature of molecular diffusion. This fact can be used
experimentally'” to investigate the nature of diffusion. In the alignment
process, the degree of orientation of the molecules as a function of time
1s known as the rise transient, and the loss of alignment as the fall transi-
ent. These can only be calculated theoretically by a full consideration of
the molecular dynamics. In particular, the rotational dynamics of each
molecule in its molecular environment must be known in detail, because
the rise and fall transients are both products of the rotational torque
generated by the vector product of the electric field and the molecular
dipole moment. No progress at all can be made, therefore, with theories
of translational diffusion.
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G. The Concept of Rotational Diffusion

Debye was the first to develop a theory' of rotational diffusion. This was
first applied to explain a form of dielectric relaxation which led to a
decrease in relative permittivity with the increasing frequency of an ap-
plied, alternating, electric field. This had been observed to occur in dipolar
molecules whose charge distribution was not symmetrical. The phenome-
non could therefore be used to investigate the structure of molecules.
Debye reduced the problem” to considering the two dimensional Brownian
motion of a dipole in an external, time-varying electric field. The original
approach”'” is summarised in Ref. 4 and involved the use of a Smoluchow-
ski equation'® with the x coordinate of translational diffusion replaced
by the angular coordinate #. The Langevin equation for Debye’s two
dimensional rotational diffusion theory is

Brb(t) + ﬂ%—’L A(t) (8)

where A is the random torque from the Brownian movement of the sur-
roundings, and By is the rotational friction coefficient. The potential en-
ergy due to the aligning field is

V=—-uEcosf=—n-E (9)

We can see immediately from a comparison of the rotational Langevin
equation (8) used by Debye” and the translational Langevin equation (1)
that there is a term missing in the former, that is, I6(¢), the inertial
term. The rotational equation ignores from the outset the finite rotational
acceleration of each diffusing molecule. Einstein also effectively ignored
the inertial term in arriving at his value of the diffusion coefficient, (Ref.
4, pp- 86 to 87).

H. Rise Transient

The solution of the Langevin equation (8) for the alignment of the molecu-
lar dipole moments by an applied static electric field is the mirror image
of its solution (the fall transient) after the instantaneous removal of the
field. To compute the nise transient we merely solve the Langevin equation
for the fall transient, which is Eqn. (8) with

V=0 (10)
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r 1
‘ 1-rise| fall

Figure 1. Log of rise and fall transients in Debye's
theory of rotational diffusion. One is an exponential
increase in molecular orientation and the other a mirror
image decrease (schematic),

I. The Fall Transient

This is obtained from the Langevin equation as

{cos @) = %fqmﬂ (11)

where 7, is the Debye relaxation time. The fall and rise transients in the
Debye theory of rotational diffusion are therefore both exponentials in
time, one the mirror image of the other as sketched in Fig. 1.

J. Polarization and Frequency Spectrum

The polarization decay after the instantaneous removal of the aligning
electric field is therefore a simple exponential in this approximation. If
we reinstate the missing inertial term, however, the polarization decay
becomes™

(cos 8) = f':? exp{— ﬁﬂ(ﬁ_ﬂ -1+ e““ﬂ”’")} (12)

Bi \ I

where [ is the molecular moment of inertia. Equation (12) reduces to Eq.
(11) only at very long times, that is, as t goes to infinity. This immediately
shows that the Debye rotational diffusion theory, and the model upon
which it is based, Eq. (1) with its inertial term missing, work only over
relatively long time scales or low frequencies. They are “coarse grained”
theories of molecular diffusion and dynamical evolution. Something goes
wrong in both theories as the time scale of events becomes shorter and
shorter.

To realize these shortcomings is a necessary step towards progress in
the theory of molecular diffusion. Short time scales mean high frequencies,
long time scales low frequencies conversely. In mathematical terms there
is always a rigorous and general relation between a given function of time
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which is continuous and differentiable in the range of interest and its
counterpart in frequency, known as the frequency spectrum. This is the
Fourier Integral Theorem, which may be written as

=

C(w) = El_ C(t)e " dt (13)

W) —ae

C(t) = J'x Clw)e'™™ dw (14)

Here w is the angular frequency in radians per second, and if C(w) is an
angular frequency spectrum, then C(¢) is a correlation function.' There
are many types of correlation function available from modern spectro-
scopy ™ and so there are many types of time correlation. In statistics,
“correlation” is the interdependence of quantitative data. The time corre-
lation function is in general the product of two dynamical variables aver-
aged in a special way. It is the internal correlation between two obser-
vations in time. The normalized autocorrelation function can be defined
in general as

C(t) = him

y

Jo (UT)A(A(t + 7) dt
7 B

The numerator is the autocovariance, the denominator is the variance,
and this type of average is called the running time average. By a basic
theorem of statistics' it is rigorously equivalent to the Maxwell-Boltzmann
ensemble average for a stationary ensemble at reversible thermodynamic
equilibrium. The autocorrelation function (acf) of the molecular dipole
moment p i the Fourier transform of the complex dielectric permittivity.
The power absorption coefficient of the high frequency far infrared is the
Fourier transform' of the autocorrelation function of the second time
derivative of (u(r)p(0)).

This 1s known as the rotational velocity acf. Furthermore, the power
absorption coefficient of the far infrared, « (#), in neper per cm., is related
fundamentally to the dimensionless dielectric loss [e(w)] through
Maxwell's equations

(16)
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X
o
<
| Figure 2. A plot of dielectric loss against the logar-
ithm of frequency. In Debye’s theory, this is the well-
— known bell-shaped curve of dielectric relaxation theory
Y (schematic).

where n(w) 1s the refractive index of the liquid at far infrared frequencies
and c¢ is the velocity of light.

There is a chain of relations between the frequency-dependent complex
dielectric permittivity

e=¢€'(w) — ie"(w)

the far infrared power absorption coefficient and the acf.’s of the molecular
dipole moment and its derivative.

K. Dielectric and Far Infrared Spectrum

Dielectric spectra, the frequency dependence of the dielectric loss,'>2*
and far infrared spectra, that of the power absorption coefficient, are
obtained at low frequencies and high, respectively. Although they are
_uhsewed with entirely different experimental methods, they are always
interrelated by Eq. (16). It is obvious that the theory of rotational diffusion
of Debye must produce a self-consistent picture of both spectra, which
can stretch over a vast frequency range."*'* This is clear in hindsight,
but for over half a century the definitive experimental test of fundamental
molecular diffusion theory was delayed by lack of high-frequency data
and misunderstandings due to the missing inertial term. The Debye theory
seemed to produce results in excellent agreement'* with the observed
angular frequency dependence of complex permittivity at low frequencies,
Where the well-known bell shaped curve'*'*** appears to be the single
dominant feature (Fig. 2). This is the Fourier transform of an exponential
function of time. According to a theorem of linear response theory,'™
known as the fluctuation—dissipation theorem, the fall transient of Eq.

(11) has the same time dependence as the acf of the molecular dipole
moment

((t) - p(0)) _ (cos 6)
(1) (cos 6(0))

(17)
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when both are normalized to the value of 1 at ¢t = (. The Debye theory
of rotational diffusion therefore produces an exponential normalized

orientational acf
C“{IJ Sl “"’(I) ‘:l([]):l i E"”""n [18)
(")

where 7, 1s the Debye relaxation time. The contemporary theory of
statistical mechanics shows that the frequency dependence of the dielectric
loss®” and dispersion is obtained by Fourier transformation of the orien-
tational acf. The well-known bell-shaped curve obtained by Debye is the
result of an exponential fall transient, whose time dependence has been
taken to be the same as that of the orientational acf at equilibrium. By a
comparison of the results of the original Debye theory (Eq. 11) and the
same theory corrected for its missing inertial term (Eq. 12) we have seen
that the original theory can be valid only at low frequencies. At the time
the Debye theory was developed, and for 50 years thereafter, only low-
frequency data were available to test the theory. Its apparent success in
explaining these data masked its inherent flaws. The theory became ac-
cepted uncritically.”

L. The Debye Plateau

If we neglect the complications of the internal field effect, that is, the
difference between the applied electric field and that actually felt by a
diffusing molecule at an instant in time, the relation between dielectric
loss and the normalized orientational acf C,(f) can be shown' to be the
following, which are valid in dilute solutions of dipolar molecules in other,
symmetrical, (nondipolar) molecules such as carbon tetrachloride or sul-

phur hexafluoride:

2 =
€'(w) = :;HT: J’.] Cy(t) cos wt dt (19)
a(w) = Npw J' C (1) cos wt d (20)
3kTE¢_|-C 0 = ‘
C.(t) = = 3”ch “{‘;’) cos wt dw (21)
m Nu* Jvy w

Here ¢, is the dielectric permittivity at static frequencies, N is the molecu-
lar number density (the number of molecules per unit volume), and a(w)
is the far infrared power absorption coefficient in neper em™'. From Eqgs.
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(18) and (19) the result is obtaincd that the dielectric loss corresponding
to an exponential dipole acf is, in dilute solution

Nuy? WT
3kTey 1 + 017,

€'(w) = (22)

Combining this equation with (16) it can be seen that the infrared power
absoption coefficient from Debye’s rotational diffusion theory is

2 2
i Nu @ TED 2
JkTepn(w)c 1 + w'tp

(23)

This is well behaved at low frequencies and vanishes with the angular
frequency, but at high frequency leads to the Debye plateau'?

N 2
a(w) — = (24)
w— = 3k Ten(w)Tpe

In Debye’s diffusion theory all molecular dipolar liquids must be opaque
at all frequencies from the far infrared upwards, including the visible, an
absurd result.

M. Far Infrared Interferometry

The development of computers gave great impetus'***? to the exploration

of the far infrared region by Fourier transformation of interferograms
obtained by Michelson interferometry. This optical technique produces
patterns of light intensity from two interfering beams of far infrared radi-
ation as a function of distance travelled by a mirror in one arm of a
Michelson interferometer. The radiation reaching a heat-sensitive Golay
detector is recorded as the mirror travels and is known as an interfero-
gram. Fourier transformation of the interferogram (a type of correlation
function in distance) produces the far infrared spectrum. Fourier transform
Spectroscopy now dominates infrared and NMR spectroscopy.

[n the late 1960s, about 60 years after Debye proposed his theory of
rotational diffusion, it became possible to explore the behavior of molecu-
lar liquids at frequencies in the far infrared, which stretches from the
upper end of the gigahertz range (microwave) and beyond into the infra-
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Figure 3. Far infrared power absorption coef- |

ficient of liquid dichloromethane at room tempera- ! '
ture (solid line) compared with the theoretical predic- i)
tion of Debye type rotational diffusion (dashed line). U/om

red. Figure 3 illustrates that the far infrared absorption of a dipolar
molecular liquid such as dichloromethane' in the range from about 2 cm ™'
to about 250 cm ' greatly exceeds in intensity of power absorption the
Debye plateau computed for that liquid. At very high frequencies the
power absorption coefficient once more reaches zero, that is, drops away
from the Debye plateau. There is little or no resemblance at these fre-
quencies between theory and experiment.

If however, we compare the same set of data and the same theory in
terms of dielectric loss, over the same frequency range, using Eq. (16) to
convert the power absorption coefficient to dielectric loss, the result is a
deceptively good fit of theory and data, Fig. 4. The theory of rotational
diffusion seems to perform well at low frequencies when expressed in
terms of dielectric loss, but fails completely at high frequencies when
expressed in terms of the far infrared power absorption coefficient in
neper per centimeter.

N. The Effect of Including the Inertial Term in Eq. (8)

The procedure of including the inertial term in the rotational Langevin
equation used by Debye, Eq. (8), is known as the “inertial correction”

._: data
S
g
=) thenr}-—\ﬁ%
\,
Figure 4. The comparison illustrated in Fig. 3
made in terms of the dielectric loss at lower fre- \
quencies than the far infrared (schematic). logw)
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to the Debye theory of rotational diffusion. The spectrum in the dielectric
and far infrared frequency regions obtained from the inertia-corrected
Debye theory is the Fourier transform of the correlation function

() - 1(0)) { KTI [ Brt i
e — Brtlf
C.(1) () = exp B (__I —-1+e )} (25)

This can be expressed in terms of the continued fraction

a,(w) w/
w0 " . @
7 iwlB + Y
1+ iw/B + 2 '
2+ iwlB+3y...

where a,(w)/a,(0) is the normalized polarizability. This expression was
first obtained by Sack® from the probability diffusion equation corre-
sponding to the Langevin equation

T6(t) + BrB(r) = A(1) (27)
Here vy is kT/1B°; with
= Eﬂi— == i&. —
Tp kT .ICT, ﬁ ﬁﬁ.""Illlr (28}

The nrigim_:l Debye rotational diffusion theory is equivalent to the first
convergent” of this continued fraction, that is,

a,(w) = 1 (29)
a,(0) 1+iwTy
with
Br
D ="—"2
° kT
The second convergent gives Rocard’s equation
ay(w) _ 1 (30)

@/ (0) 1+ iwrp— wirplp
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Figure 5. The effect of correcting Debye’s the-
ory for the missing inertial term. B9/cm’

which was the earliest attempt (1933) to correct the Debye theory for the
missing inertial term. Rocard produced Eq. (30) from a Smoluchowski
diffusion equation in which he replaced the term left out by Debye in
1913.

However, the only effect on the theoretical power absorption coefficient
in the far infrared of taking any convergent of Sack’s continued fraction
is to produce a high-frequency return to transparency from the Debye
plateau. The inertia-corrected Debye theory fails®**® to describe the ob-
served far infrared power absorption coefficient, as illustrated in Fig. 5.

0. Rotational Diffusion in a Potential Well: The Itinerant Oscillator

There is something more fundamental lacking in the simple theory of
rotational diffusion than a missing inertial term. The unrealistic nature of
the rotational Langevin equation (8) when used to describe data from
molecular diffusion is exposed starkly by a result such as that of Fig. 5.
Several approaches have been devised® to meet this fundamental diffi-
culty, sharing the common feature that the diffusion of an individual
molecule was for the first time described theoretically as a process involv-
ing torsional oscillation or libration'**” with an ever-changing cage of
nearest-neighboring molecules. Essentially, the featureless environment
of the friction term in Langevin's own treatment was given some shape.
It was recognized that a diffusing molecule must simultaneously undergo
oscillatory motion of the diffusing center of mass, combined with torsional
oscillation about this point in the laboratory frame (X, Y, Z). The influ-
ence of Langevin and his contemporaries was so overwhelming, however,
that the new approach to diffusion theory which slowly emerged during
these years tied itself to the pioneering concept of the Langevin equation,
and the equivalent equations for the evolution of probability density de-
veloped'™ by Smoluchowski, Fokker, Planck, Klein, and Kramers. The
new approach still stuck to the concept of rotational diffusion, and left
translation out of consideration.
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As we shall see, this turns out to be the only tractable way of extending
the validity of rotational diffusion, the only way which avoids a morass
of mathematical complexity dealing with too many unknown (empirical)
parameters. We perceive for the first time very general and profound
limitations on the concepts devised at the turn of the century.

One of the most obvious ways of attempting to deal with the failure of
the Langevin equation (8) when faced with accurate data from the far
infrared was to add a term on the left-hand side to mimick the effect of
an extra torque generated by the immediate surroundings of a diffusing
molecule. These surroundings are, of course, other diffusing molecules,
which form a cage which itself diffuses with time. To put these ideas in
simple mathematical form several assumptions were made which can only
be justified by working out their consequences mathematically and com-
paring with experimental data in the complete range of available frequenc-
ies, not just in the dielectric range where every model gives closely similar
results, difficult to distinguish from the bell-shaped curve, giving an illusion
of explanation. The complete range extends from static (zero frequency)
to the THz, as much as 14 frequency decades.

P. The Harmonic Approximation

The extra torque on the left-hand side of the Langevin equation is assumed
to take the form

%
— = Vpsin 6 31
TR (31)

If the angle @ is below about five degrees, then the sine can be replaced
by the angle itself, so that the rotational Langevin equation becomes

The extra torque comes from assuming that the potential energy generated
by torsional oscillation of a diffusing molecule in a cage of neighbors is a
simple cosine. Differentiation of the cosinal potential energy with respect
to angular displacement gives the torque. For small angles the sine is
approximated by its argument, so that torsional oscillation occurs at the
bottom of a potential “well”". Implicit in the whole exercise are at least two
further hidden assumptions, that the rotational diffusion of the molecule is
statistically uncorrelated to its own translation, and that the torsional
oscillation takes place in a plane, so that the nonlinearities of the Euler
€quations do not complicate the mathematics. Given all these assump-
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Figure 6. An attempt at reproducing the far
infrared power absorption of a dipolar liquid with a
harmonic approximation or with the planar itinerant
oscillator of Calderwood and Coffey (schematic).

tions, the Langevin equation (32) may be solved by Laplace transforma-
tion for the far infrared power absorption coefficient and the dielectric
complex permittivity. The mathematical expressions for these optical coef-
ficients as a function of frequency (the spectra) are very complicated'*
functions of the friction coefficient 8 and the barrier height or well depth
Viy. These two parameters cannot, however, be expressed in terms of the
fundamental physical constants and are therefore empirical.

We arrive at the conclusion that the theory of rotational diffusion must
be supplemented by an extra torque in order to provide even a qualitative
theoretical explanation for experimental data in the electromagnetic fre-
quency range from static to far infrared. This 1s necessarily an empirical
procedure, because there are two parameters which must be varied for
best fit of experiment and theory. A typical result of such an approach is
illustrated in Fig. 6. The low-frequency part of the data range is matched
satisfactorily, as is the case for many models of this type, but in the far
infrared the harmonic approximation typically gives much too sharp a
result. It provides limited progress from the Debye plateau, and approxim-
ants of the Sack continued fraction, the various “inertial corrections™ of
Debye’s theory.

Q. The Itinerant Oscillator

This was developed initially by Hill*® and Wyllie.?' In the early 1970s,
versions of the theory were first tested against far infrared data.'*”* A
later and simpler planar version was developed™ which provided a clear
explanation of its fundamental principles. All of the various models rely
heavily on the theory of rotational diffusion, and decorrelate molecular
rotation from molecular translation. The planar version® was developed
to avoid the mathematical complexities of three-dimensional rotational

diffusion.
The itinerant oscillator considers diffusion to be superimposed on oscil-
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lation. For rotational motion the latter is torsional oscillation (“libration™)
in a cage of nearest neighbouring molecules which is assumed to diffuse
throughout the medium as a rigid entity. A molecule simultaneously dif-
fuses and librates within the cage. It is assumed that a Langevin equation
can be used to describe the diffusion of the outer cage. The theory™ of
Calderwood and Coffey also assumes that the rotational diffusion of both
cage and molecule can be approximately planar, and that there is no
friction between the cage and inner molecule.
With these assumptions, the Langevin equation of the cage is

Lip+ 1B — Lwi(0 — ¢) = LW (33)
linked to the oscillatory diffusion of the inner molecule
LG+ Loj(8— ) =0 (34)

Here [, is the effective moment of the cage (the “‘annulus” in two dimen-
sions); /> is the moment of inertia of the inner molecule (the “disk” in
two dimensions); # and ¢ are angular variables of the motion defined as
follows. # is the time-dependent angular displacement between the inner
molecule’s dipole moment and the applied electric field which measures
the polarization in the technique of dielectric spectroscopy. i is the dis-
placement between a point on the rim of the annulus and this electric
field direction. The torque on the outer annulus due to Langevin friction
1s [;B¢ and the random force on the annulus is /,W. Note that the
equations of this, the simple planar itinerant oscillator, can be written as

Lo+ 1B+ L= LW (35)

which is a simple Langevin equation with an added inertial term /6 on
the left-hand side.

The mathematical solution of Eq. (35) is elaborate and incomplete,
despite its physical simplicity. Full descriptions are given in the specialist
literature.'~** Solutions are available, however, for the acf of the angular
velocity, @, of the encaged molecule; for the orientational acf, essentially
the Fourier transform of the dielectric loss; and for the rotational velocity
acf from the model, the Fourier transform of the far infrared spectrum.
Using these results, the combined dielectric and far infrared spectra can
be modelled with two parameters: 8, the friction coefficient on the cage,

and the harmonic torsional oscillation frequency, w,, of the itinerant
oscillator, the encaged molecule.
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R. Experimental Testing of the Itinerant Oscillator

The model has been tested thoroughly with far infrared and dielectric data
(see Sections 2-4). These were the first tests carried out on a theory of
rotational diffusion qualitatively able to account for new spectral features
in the far infrared. The theory contains 8 and w3 as parameters, and also
the ratio /,/I>, which are emipical. This reflects the somewhat superficial
nature of the original Debye approach of 1913, the ad hoc mixture of
concepts of the traditional approach to molecular dynamics. The problem
of comparing the theory with far infrared data was tackled®*~* in several
ways, using the necessary broad sweep of data over the microwave and
far infrared regions in sample liquids such as dichloromethane, of C,,,
point-group symmetry. In one method the three parameters were optim-
ized freely with least-mean-squares simultaneous minimization. This force
fit to the complete frequency sweep of available data exposed a fundamen-
tal flaw in the Calderwood Coffey variation of Debye’s original theory, in
that the moment of inertia of the annulus had to be about eight times
smaller than that of the disk for most samples of molecular liquid. This
ratio i1s the wrong way around, because the cage is more massive than the
encaged molecule. For reasonable values of the paramcters 8 and wj the
physically expected ratio /,/1; = 10 always produced a very sharp theoreti-
cal peak in the far infrared reminiscent of the simple harmonic librator,
Eq. (32). This was much sharper than the experimentally observed absorp-
tion. This problem defines the severe limitations of the original theory.*
Other methods of comparison provided the same result, for example the
friction coefficient, 8, was estimated numerically by making sure that the
theory produced peaks at the right far infrared and microwave frequencies.
This method again produced the unphysical ratio of moments of inertia.

This defect was remedied®' ™ in 1987 by removing the assumption that
the interaction between molecule and cage is harmonic and frictionless.
Unfortunately, the remedy introduces a new parameter, the friction coef-
ficient between the cage and the encaged molecule. However, the use of
four parameters finally manages to provide a fit to observed data over the
complete frequency range with physically acceptable moment of inertia
ratios. The new Langevin equations are

I+ 11 Bui — pFsin(0 — o) = A, (36)
[0 + L,B,60 + uFsin(8 — ) = A, (37)
where B, is the new friction coefficient. These are simple linked Langevin

equations, still closely based on rotational diffusion theory, carrying with
them all its original flaws,
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L There_are too many empirical parameters for the data available from
the microwave and far infrared. It would require the simultaneous
use of four independent data sources to define the four parameters,
and this exercise has never been attempted.

2. There is a loss of physical realism in an effort to retain mathematical

tractability, that is, the equations are written down so that they can
be solved.

3. The fundamental dynamics neglect the Euler cross terms, because
these are mathematically intractable.

4. These equations retain the drastic assumptions made at the turn of
the century that rotation and translation are decorrelated. Contem-
porary computer simulation has exposed this as an erroneous as-
sumption which produces an illusory understanding of diffusion.

5. _Euen w_ith these assumptions, Eqgs. (36) and (37) can be solved only
In restricted special cases, and then only by recourse to the equiva-
if:nt iquitiuns of probability diffusion, the Klein/Kramers equa-
tions."~* Solutions are available for equal friction coefficients only.

6. With the free use of four parameters, even if a solution could be
found for unequal friction coefficients, the equations fail if exposed
to a sufficiently broad range of viscosity. In supercooled molecular
liquids, for example, they cannot produce the observed split in the
dielectric loss known'™* as the a and 8 processes, whose far infrared
adjunct is the y process. These three processes cover a very broad
f}'equcncy range and exhibit a complexity of behaviour which no
simple diffusion theory could describe.,

7. The itinerant oscillator cannot follow phase changes, and neither
can any theory based on Debye rotational diffusion.

8. The €quations of the itinerant oscillator bear no direct or reasonable
re]a‘tmn to the fundamental equations of classical mechanics, or
statistical mechanics (the Liouville equation). This is so in any theory
of rotational diffusion which does not use the memory function

approach developed by Mori in 1965 and described in the specialist
literature.'

The1 itim:rfmt oscillator theory is an empirical description of N body
dynamics which can “force-fit"” data over a restricted range of viscosity.

!F Is not tenable as a fundamental theory, and for this we need computer
simulation,
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S. Relationship of the Itinerant Oscillator with the Liouville Equation

We consider the Mori equation (6), a form of the Liouville equation. This
describes the conditional probability density function for all positions and
momenta of the molecules in the ensemble under consideration. It can be
written specifically for molecules in a molecular environment, rather than
for Brownian motion. In principle, the Langevin equation is less useful to
molecular dynamics than the rigorous Liouville equation. However, the
latter is more suitable for use in the Mori form than in the form originally
devised by Liouville in 1838.

Mori used projection operators to develop equation (6), which 1s for-
mally the same as the Liouville equation. To illustrate the connection
between the Mori equation and the itinerant oscillator of Eq. (35) consider
the molecular angular velocity constrained to planar rotational dynamics
as implemented by Debye. Assume that the Mor column vector A can
be replaced by the single scalar entry 6, the time derivative of the two-
dimensional angular displacement. This implies that the Mor resonance
operator vanishes, which means physically that the relation between single
molecule diffusion and cooperative effects generated by this diffusion is
lost. With these assumptions the Mori equation reduces to

B(t) = —J’ Gt — 7)0(7) dr + Fy(t) (38)

where ¢ is the memory function for two-dimensional Debye-type ro-
tational diffusion. Inspection of this equation reveals that it reduces to
the inertia-corrected Debye equation (27) when the memory function is a

delta function in time
dt—7)=8(t—7) (39)

More generally, however, Mori showed tbat the integro-differential equa-
tion (38) is the fit in a chain of similar equations, whose first members

dl'e

~I

&(t) = — | &t = 7)d(7)d7 + Fi(1) (40a)

=

i~

di(t) = —| ot — T)u(7) d7 + Fa(t) (40b)

0

The memory function is itself governed by a like equation, and so on for
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more indices. The Laplace transformation (L) of the chain of equations

(40) produces the well known Mori continued fraction expansion of the
angular velocity acf

) = C(p) = 1 (41)

e Ko
K,

ﬁ"‘Kgi..

(6()6(0))
Ha ( (6%

p+

where K, K,, and K., are constants.

| Tl_mre is a relation between this second approximant of this continued
tra-‘::tmn and the Calderwood—-Coffey itinerant oscillator, which was first
derived in 1976.* The second approximant of the continued fraction (41)
and the equivalent expression from the itinerant oscillator equations™ for
the same acf are formally identical. The itinerant oscillator equations (35)
are theyefnre approximations at an early stage to the Mori equation (38),
truncating the continued fraction after only two approximants. In the same
way, the 1987 version of the itinerant oscillator is equivalent to a trunc-
ation procedure at the same approximant of a matrix continued fraction.

T. The Grigolini Continued Fraction

We Ilmve seen that the Debye theory of rotational diffusion, and its close
l'ﬁ]fltl"n’ﬂ.. the itinerant oscillator, are special cases of the Liouville equation
written in terms of a continued fraction. Grigolini'™ has shown that
the continued fraction has a deeper significance in classical and wave
mechanics.

_ Grigolini developed the continued fraction from the “Heisenberg equa-
tion™

dA
— =174
o (42a)

whmh.is equivalent to the Mori equation in statistical mechanics. Equation
(42a) is fjlsu a Liouville equation for the general dynamical variable A. a
itm:hz?sn_c or random variable, not purely deterministic. The equivalr:,nt

Schmdmger equation” in this analogy is the Liouville equation applied
directly to the probability density p(a, b, t)
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BB it ol 5 65 (42b)
dt

The operator L is the effective Liouvillian
Li=La+ Lan+ Ly (43)

made up of three parts, operating on the stochastic variables “ and h1 of
the equation (42b). The third part, L,, represents the statistical interaction
between the two sets of variables denoted by a and b.

The starting point for the Grigolini continued fraction is Eq. (42b),
which is obtained by working directly with a variable A of the set a, and
then building its time correlation function

(AO)AWD)) )
(A)eq

P(t) =

where
A(t)y=e"A(0); TI'=L"
( eg= [ dAdD(.. Do, D
Here p,, is the equilibrium probability distribution. Analogously with

Heisenberg quantum mechanics, the time-correlation function is the scalar
product, a running time, or ensemble, average

(A|A(1)) (45)

0 =4 4)

In analogy with quantum mechanics the Mori continued fraction if
obtained by choosing the basis set for the expansion of the operator L
of Eq. (42a). The basis set is built up of repeated prnject}nns on to
subspaces of the complete Hilbert space. Grigolini ggnerahses‘hr‘lnn’s
treatment of the same problem with a biorthogonal basis set. This leads

to the integrodifferential equation
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%d:-(:] = Ao — :ﬁj O(7)Py(t — 7) dr (46)
for ®(¢). Here
$ 90 = 200) = 8% [ Ou(r)Be (e 7 (@7)
0

and to the continued fraction in Laplace space

®(p) = L (48)

p—Agt

p— At =

Ai_
= IIPLﬂ' -1 ;2 li{bn(p)

This has the same form as the Mori and Sack continued fractions, but is
more general in applicability.” In Egs. (46)—(48) A is the equivalent of the
Mori resonance operator, ®,, the Grigolini memory function, and A2 can
be related to spectral moments and determined unequivocally in some
cases. There is therefore a well-understood relation between the funda-
mental equation of motion and the less general diffusion equations, which
they approximate. The itinerant oscillator is an approximant of the Grigol-
ini continued fraction.

U. The Statistical Correlation between Rotation and Translation

The development so far has been restricted to separate consideration of
translational and rotational diffusion. From first principles it is clear,
however, that one form of motion occurs simultaneously with the other
in molecular dynamics. Computer simulations of the last 10 years have
shown conclusively that there is statistical correlation of many forms be-
tween one type of motion and the other in molecular ensembles. There
are important hydrodynamic effects caused by the interaction between
rotation and translation in fluid materials. On the molecular level none of
these effects had been considered in the traditional approach prior to the
use of computer simulation. The precise statistical interrelation between
the linear and angular velocity of an asymmetric top molecule diffusing
in three dimensions is a major unsolved problem of diffusion theory.
There have been several attempts at extending the theory of diffusion
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to describe the “roto-translation™ of molecules rather than separated ro-
tational and translational diffusion of pollen particles. These have to deal
with elementary considerations such as the following. Let u be a unit
vector joining the center of mass of a molecule to one of its atoms. Let
the centre of mass velocity of the diffusing particle be v and the linear
velocity of the atom v,. If @ is the angular velocity of the complete
molecule, assumed rigid, then

v,=v+3mXu (49)

The acf of v, therefore contains information on both linear and angular
velocities simultaneously, and the acf can be extended as follows

(Valt)  ¥a(0)) = ((¥(1) + 30(t) X u(1)) - (v(0) + 3(0) x u(0))) (50)

Using the fundamental kinematic relation® between the rotational velocity
u and the orientational unit vector u

i=mXu (51)

T'he expansion of the acf in Eq. (50) contains the cross-correlation function
(ccf)

Cyp = (u(r) - v(0)) (52)

between the rotational and linear velocities of the diffusing molecule. This
ccf exists directly in the laboratory frame (X, Y, Z). An example, from a
recent computer simulation of liquid water, is shown in Fig. 7.

Computer simulations have shown™ that there are many ccf’s such as
this, involving rotational and translational dynamics simultaneously at the
molecular level. These are governed by powerful symmetry laws' 57 of
time reversal, parity reversal, and point group theory in frames (X, Y, Z)
and (x, y, z). These laws will be developed later in this chapter into group
theoretical statistical mechanics (gtsm). They allow the existence of some
ccf’s but forbid that of others in both frames of reference. One of the
cef’s disallowed by parity reversal symmetry in frame (X, Y, Z) is

Cov = (o(t)-v(0)) =0 (33)
However, if we switch in to the frame (x, y, z) which is fixed in the

molecule, and moves with it, this type of ccf becomes visible, and other
types of ccf appear®’~* which we cannot see in frame (X, Y, Z). These
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Figure 7. Illustration of the laboratory frame cross-correlation function (ccf) C,;, ob-
tained from a recent super-computer simulation of liquid water by Evans, Lie and Clementi,
IBM. Kingston,

have all been traced in the last few years with the help of computer
simulation.*™*">* If the frame (x, y, z) is defined as that of the principal
molecular moments of inertia, it is simultaneously rotating and translating
with respect to frame (X, Y, Z). (Fig. 8). Every molecule has its frame
(x. y, 2). For each molecule, one frame can be matched with the other by
a series of rotations, which define the Euler angles, for example. Any
scalar, vector, or tensor quantity can be defined with respect to either
frame.

The linear velocity, v, for example, has the components vy, vy, and
vz in frame (X, Y, Z) which can be rotated into frame (x, y, z) with the
use of the three unit vectors u,, u,, and u, defined in the axes x, v, and
z of the frame (x, y, z) through the rotation equations

Vy = Pxlipyxy + vyl y + vzu, (54)

= -
) / Figure 8. Illustration of frames (X, ¥, Z) and (x.
‘f ¥, z) for a molecule diffusing in three dimensions.
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Fy = VPxlyx 3+ l"}’“_p}’ T !"'2“_1.43 {55]
V. = Uxl.x + Vyli.y + Yzl (56)

In matrix notation these equations are

T‘"'.t' u.l‘..’f H.:.' Y Uz Fx
v | = | yx Uy Uz || vy (37)
V. Uy Uyy Uz ]| Vz

so that v in one frame is related to v in the other by a transformation
matrix. Any vector can be transformed from one frame into the other in
a similar way. There are major advantages of considering both frames.
For example,

1. Group theory can be applied in both frames, revealing a great deal
in frame (x,y, z) that is hidden in frame (X, Y, Z). Point-group theory
has been highly developed in other branches of chemistry and spectro-
scopy, and the complete range of results can be used directly to study
molecular diffusion, culminating in the three principles of gtsm (Sections
VII and VIII).

2. The ccf’s allowed by symmetry in either frame can be investigated
for their time dependence by computer simulation, and increasingly, by
experimental methods. These produce the details of the time dependence
of each ccf for any molecular symmetry. The simulation can also be
extended to vibrating and flexible molecules. It is generally applicable in
all molecular point-group symmetries.

Steps 1 and 2, taken in the past 5 years or so, lead to advances in our
understanding of molecular diffusion processes.

V. The Challenge to Traditional Diffusion Theory

The traditional approach has been overtaken by computer simulation and
group theory. There has been a sudden increase in understanding based
on group theoretical statistical mechanics. The traditional approach is
challenged with describing the data now available from computer simul-
ation, and also obtainable experimentally, through processes described in
Sections VII and VIII. These are challenges posed by the much older
classical equations of motion devised by Newton and Euler:

1. There are many different types of cross correlation that can be used
to describe the diffusion of molecules in a molecular environment. These
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exist in frames (X, Y, Z) and (x, y, z) and in the latter are governed by
the molecular point-group symmetry. They always accompany a range of
acf’s in both frames which the theory must describe consistently. Some of
the acf’s and cef’s are experimentally observable. The theory of diffusion
must be capable of describing the complete set of correlation functions
from simple starting assumptions.

2. The Langevin equation is incapable of more than a general qualita-
tive description, and must be modified to deal with new data from spectra
and computer simulation.

3. The traditional rotational and translational diffusion theories are
mutually exclusive. The original treatment of Debye left out the inertial
term, causing a drastic failure in the far infrared. Reinstating this does
not produce the observed far infrared spectrum. There is no rigorous
Justification for the use of simple rotational diffusion theory in the descrip-
tion of molecular diffusion processes.

4. The various itinerant oscillator theories attempt to extend the valid-
ity of rotational diffusion by ad hoc addition of torque terms to the
rotational Langevin equation. This is essentially an empirical procedure
which runs into difficulties caused by unknown parameters and great
mathematical complexity. Some versions are further restricted by deliber-
ate neglect of the nonlinear components of the Euler equations of motion.

5. The Langevin equation, and the diffusion equations in general, are
not fundamental equations of motion such as the Liouville equation, and
cannot be obtained from the latter without crude approximation.

6. Doob*” showed as early as 1942 that there are inherent inconsistenc-
ies in the simple Langevin equation. The velocity may have no proper time
derivatives. The velocity acf from the Langevin equation is an exponential
decay, which is not differentiable at t = (. The time expansion of these
acf’s violates the rules of classical statistical mechanics,' which imply that
a classical acf must be time-even. Significantly, Doob showed that the
Langevin equation is self-consistent only if expressed in the integral form

Ab) — Wa) = —B, j A1) dt + B(b) (58)

where

B(b) ~ B(a) = 2 (B(t) ~ B(t-1))
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This is reminiscent of the Mori equation (6). Doob anticipated this equa-
tion with its memory function replaced by a constant friction coefficient.
The random force B in Eq. (58) must be a Wiener process.' The ramifica-
tions of this are described in the specialist literature,” but the mathema-
tical niceties do not affect the drastic failure of the equation in the far

infrared.

7. Most challenging is the failure of contemporary diffusion theory
to describe the simultaneous translational and rotational dynamics of a
molecule diffusing in three dimensions. This limitation is built in at the
most fundamental stage of the theory, and has been exposed to view
by computer simulation. Molecular rotation and translation are always
correlated, even in spherical tops,”™*’ and the cross-correlation is gov-
erned in general by point-group theory,™ and fundamental symmetry laws
of physics. All known generalizations of the Langevin equation run into
considerable difficulty when attempts are made to account consistently for
the sets of nonvanishing ccf’s and acf's generated by the simple fact that
a molecule simultaneously rotates and translates. One can question the
usefulness of the concept of diffusion at the most basic level. There is no
known solution from diffusion theory at the time of writing which is
able to describe the data from spectra and computer simulation without
approximation, complexity, and overparameterization caused by empiri-
cism. Computer simulation has advanced well beyond the tight boundaries
of these theories. Computer simulation is a simpler and more consistent
approach, because it relies on fundamental equations of motion. It has
advanced to the stage where description of spectra is possible using these
equations. Some of these spectra are described in the next section,

II. KEY EXPERIMENTS

A century ago, the Michelson-Morley experiment proved the fallacy of
the luminiferous ether (lichtither), leading to the great advances in the
theory of relativity made by Lorentz, Fitzgerald, and Einstein. Einstein’s
scientific contemporaries based their theories of diffusion on his work of
1905, reviewed in Chapter 1, explaining Brownian motion in molecular
terms. The probability diffusion equations from their work foreshadowed
the emergence of wave and quantum mechanics in the 1920s.

The opening up of the far infrared by Michelson interferometry had a
similar effect on the theory of diffusion. The Michelson interferometer,
and the precision it brings to the measurement of the speed of light,

destroyed the theory of the luminiferous ether, forcing the great advances
in relativity theory. In the late 1960s the same interferometric technique
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was used to show up severe shortcomings in the received wisdom per-
taining to molecular diffusion. In this chapter, the key late twentieth
century observations and techniques are described which led to this turning
point. Signs of the old theory’s limitations showed up rapidly and almost
contemporaneously in several different spectroscopic observations. Each
of these is described with a view to explaining the need for computer
simulation as a guide to further progress in this field.

A. Interferometric Spectroscopy of Molecular Liquids

From its inception in 1913 to the mid-1950s, the data available to test the
theory of rotational diffusion were confined to spot frequencies in the
range from static to the microwave (GHz). The experimental techniques
for obtaining the dielectric loss of a molecular liquid as a function of
frequency varied according to the frequency range of interest. A labora-
tory would be equipped for a total frequency sweep of several decades on
the logarithmic scale. This would be accomplished with radio frequency
bridges for the Hz to kHz range, Wayne Kerr bridges and so on to the
MHz range, microwave apparatus in the GHz range. Microwave measure-
ments were laborious and costly, needing waveguides, klystrons, gen-
erators, and other specialized apparatus. Measurements were typically
possible at 2, 4, and 8 mm, using frequency doubling. Sweep-frequency
apparatus™ is a recent innovation which allows a spectrum to be measured
in the MHz range of frequencies. Before that, spot frequencies only were
available. A plot of dielectric loss or permittivity against the logarithm of
frequency consisted of isolated points, widely separated on the frequency
scale by regions about which nothing was known. Spectra were taken at
very low resolution, in other words, in the hope of finding enough infor-
mation to test a theory of diffusion. The overall objective was the study
of molecular dynamics at low frequencies.

These data could not distinguish between different theories of diffusion
without information at high frequency and better spectral resolution, ob-
tainable in the GHz to THz (far infrared) frequency range. Spot frequenc-
ies in the kHz to MHz range, however accurate, cannot tell the difference
between a flawed theory such as rotational diffusion (Section I) and more
rigorous descriptions based on the fundamental equations of motion, for
example Mori and Grigolini continued fractions and computer simulation.
The reasons for this were discussed in Section | and can be traced to the
tendency of the orientational acf to become exponential as r— = or at
low frequencies. A complete description of the molecular diffusion process
in liquids needs the far infrared frequency region as a guideline.

Some of the first indications of the way that molecular liquids absorb
in the far infrared (about 2-250 cm ', where it overlaps with the infrared),
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were obtained by Poley in 1955.%° Using spot frequency measurements he
found that the effective dielectric loss of dipolar liquids in the very high-
frequency end of the GHz range was consistently above the value expected
from the Debye rotational diffusion theory, despite the fact that the latter
seemed to produce good agreement with dielectric loss and permittivity
data at lower frequencies. Poley’s measurements were however laborious
to repeat in other laboratories and were viewed with uncertainty. The
true significance of his data was realized fully after the passage of a
decade,'* which saw the rapid development'*** of far infrared Michelson
interferometry. Computers were harnessed to arrive numerically at the
far infrared power absorption spectrum from the interferogram produced
by moving a mirror in one arm of the Michelson interferometer. The
process of obtaining the spectrum from the interferogram is Fourier trans-
formation (Section I), and for this reason the technique is often known
as Fourier transform spectroscopy.

B. The Basic Principles of Fourier Transform Spul:trﬂsmpf' in the Far
Infrared

The Michelson interferometer is a simple optical device driven essentially
by a light source which produces broad band radiation according to
Planck’s Law, This is black-body radiation,*® the intensity of which de-
creases rapidly with increasing wavelength. The relation between wave-

length (A) and wavenumber (7) is a simple inverse
rvA=1 (59)

s0 that in the far infrared, the intensity of black-body radiation is minute
in comparison with, for example, the visible. This simple consequence of
Planck’s Law means that conventional prism or grating-based spec-
trometers, of utility in the conventional infrared range just below the
visible, become difficult to use with accuracy as the far infrared range is
approached. The two important frequency decades from 1to 10cm ™' and
from 10 to 100cm ™' are particularly difficult for grating spectrometers.
The great advantage of the Michelson interferometer in the far infrared
is that it utilizes the whole of the available radiation from the light source.
This radiation is guided after collimation on to a beam splitter which
produces two beams at right angles, one by refraction through the beam
splitter, and the other by reflection. By positioning the beam splitter at
45° to the incoming radiation from the light source, the refracted and
reflected beams travel at right angles to the two mirrors of the Michelson
interferometer.**** The two beams are reflected back along their paths,
which recombine at the beam divider and optically interfere constructively
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or destructively according to phase difference. The resultant electromag-
netic radiation is either refracted through the beam splitter into an optical
detector or reflected back into the source.

C. The Interferogram

The interferogram is the intensity of electromagnetic radiation reaching
the detector as the function of the distance of one mirror from that point
at which both are equidistant from the beam divider. To build up an
interferogram, one mirror is therefore displaced in the interferometer,
either by stepping it mechanically or electrically, or moving it continu-
ously. If the two mirrors are equidistant from the beam splitter, the two
beams from each arm of the interferometer are exactly in phase and
interfere constructively. If the mirror to beam divider distance in one arm
1s displaced by only half a wavelength then destructive interference occurs.
With monochromatic radiation entering the interferometer the interferog-
ram is a simple cosine. With polychromatic radiation it is a complicated
pattern of maxima and minima, whose Fourier transform gives the spec-
trum. The power absorption coefficient of the molecular liquid under
study is obtained by placing a carefully measured thickness of the liquid
just before the detector, measuring its interferogram, and repeating the
process with a slightly thicker specimen of liquid. The instrument function
of the interferometer is compensated for by taking a ratio of the Fourier
transform of the thick to the thinner liquid samples. The far infrared
power absorption coefficient is then defined as

g Iy
s ps M
a(v) : ugfir (60)

where d is the increment in liquid thickness, and 7,// the ratio of radiation
intensity at the detector for each frequency.

The technique is now well documented'**?%%! and Fourier transform
spectrometers dominate the market.®* The interested reader is referred to
this literature for further details. Some technical steps are necessary to go
from the prototype optical set-up to a powerful instrument such as the
Bruker IFS 113v** or those marketed by Nicolet or Grubb Parsons and
several other companies. These steps include the following:

L. The inbuilt computers and software of the contemporary Fourier
transform spectrometer are designed to include numerical compensation
for discrete sampling of the interferogram, and finite distance travelled by
the mirror. These artifacts are treated respectively with the apodisation
(sampling) function and the window function. The former is a series of
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delta functions and the latter a specially designed mathematical function
which compensates for spurious oscillations caused by the unavoidable

truncation of the interferogram.

2. The resolution of the spectrometer is determined by the maximum
amount (Ad) by which the mirror can be displaced, and is given by

Av=—
2Ad

Fourier transform spectrometers provide very high resolution across a
wide frequency range of four decades.

3. The spectral range of the Fourier transform spectrometer is deter-
mined essentially by the stepping distance, and to maximize the range and
minimize the problem known as ““folding™ the mirror stepping distance is
minimized. Different spectral ranges require different sources, optical
materials, and beam splitters, and spectrometers are automized for differ-
ent ranges. Most instruments cover the very far infrared to the visible,
including the whole of the infrared range.

4. Another major advantage is that the whole range is covered at
constant, high-resolution, unlike grating spectrometers.

5. With the use of sensitive liquid helium cooled detectors the upper
end of the microwave range can be reached (about 2 cm ™ '). This is 5 mm
in terms of wavelength, or 60 GHz in frequency. Conventional waveguides
reach § mm typically. The present author has obtained comfortable over-
lap™ * in several different systems using the accurate designs pioneered
at the National Physical Laboratory in the U.K. and marketed by Grubb-
Parsons and Specac. The overlap was accurate both in terms of frequency
and power absorption coefficient (the spectral ordinate in neper cm™").

D. Key Spectral Data: The Challenge to Diffuion Theory

The challenge is exemplified by the data available for the simple asymmet-
ric top, dichloromethane.'”* The complete electromagnetic spectrum'™*
of this asymmetric top can stretch over many frequency decades, the more
the greater the viscosity. This signals diffusion processes that evolve over
an immense span of time, from picoseconds to years. In the dilute gaseous
condition the far infrared spectrum of dichloromethane is a series of
rotational lines® "' generated by the Schrodinger equation for a freely
rotating molecule in an ensemble. The intensity distribution of these lines
1s governed by the laws of statistical mechanics. The full extent of the
challenge to molecular diffusion theory can be gauged when we consider
carefully what happens as the gas is condensed into a liquid, and this is
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cooled and then superooled below its normal freezing point at a given
pressure.

E. Condensation of Gas to Liquid

As a dilute gas of dichloromethane is compressed, the rotational lines
broaden and merge.” 7 The wave functions of the free molecular rotators
are affected by the fields of force of other molecules. The energy associ-
ated with a particular quantum state of the free rotator is no longer defined
sharply at one frequency (energy value) only. The disturbance produced
by the fields of neighbouring molecules produces a spread of frequencies
around each quantum line of the free rotor. The spectrum begins to merge
into a broad band, and there is a transition from quantum mechanical
descriptions to those based on statistical mechanics.

One of the problems with the theory of diffusion becomes apparent
when the spectrum has merged into a broad band in the far infrared. The
original quantum structure has disappeared. The statistical description of
the broad band rests on building up an acf (Chapter 1) from the kinematic
equation’

u') = ' % u'? = Ay (61}

written separately for each particle i=1,...,N, where N is the total
number of molecules in the liquid. The orientational acf is the running
time average

(u(e) - u(0)) = %, 2 (u”(0)7 exp(A“1))u(0) (62)

=]

When N is of the order of Avogadro’s Number (6.023 x 10**) we can
rcp!acc the sum by an integral involving two types of averaging, over the
Initial orientations of the dipoles and the second over the angular velocity
probability distribution, which by classical statistical mechanics’® " is a
Maxwell-Boltzmann distribution

Plw)=Z Exp{'" E:}(Irmﬁ + f‘.mﬁ + I:wﬁ}} (63)

Here the I's are the three principal moments of inertia and the w's are
the three components of the molecular angular velocity in the principal
moment of inertia frame (x, y, z) fixed in the molecule (Chapter 1). Z is
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a constant. For the asymmetric top the orientational acf of the classical
free rotor follows as'

(e) - u(0) = [ FoP(@)(1+ & + =) (64)

If the three moments of inertia of the molecule are equal (the spherical
top), this expression reduces to

1 2 kTt? kTt?
{u(t]-u{ﬂ}}—§+§(l— : )ﬁxp(— 21) (65)

Now this expression, derived from the purely kinematic equation (61), is
completely unlike the one derived from the three dimensional diffusion
of the spherical top from the rotational Langevin equation (8) after the
Debye theory” has been corrected?® for the missing inertial term. Diffusion
theory of this kind does not lead to the correct description of the free
rotor when the liquid evaporates into a dilute gas,

F. The Molecular Liquid at Room Temperature and Pressure

A combination of many careful measurements'*7*"® on liquid dichloro-

methane at room temperature and pressure, using microwave spectroscopy
at spot frequencies and Fourier transform spectroscopy for the far infrared
region produces the result of Fig. 9. This spectrum stretches over about
three frequency decades and is much broader than the envelope of the free
rotor absorption, the Fourier transform of Eq. (64). Figure 9 expresses the
result both in terms of the far infrared power absorption coefficient and
the dielectric loss, using the link provided by Eq. (6). Not only must a
complete theory of diffusion describe both the microwave and far infrared
data consistently in terms of the fundamental constants but it should also
be able to describe all further spectral moments.**~°" The latter are related’
in classical statistical mechanics to the classical acf’s describing the molecu-
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lar diffusion processes. Among the most prominent of these are the orien-
tational acf, essentially the Fourier transform of the dielectric loss (zero-
order spectral moment); and the rotational velocity acf which is the Four-
ier transform of the second moment, the power absorption coefficient.
The next moment is the fourth, which is not observed directly, but which
can be obtained™™ through the product w’a(w). Similarly the sixth
spectral moment is w'a(w) and so on. Odd spectral moments can be
constructed, but are of less interest, basically because the time expansion
of a classical correlation function contains only even terms. '

The self-consistent description of zero and second spectral moments is
difficult for contemporary diffusion theory. It is impossible for the original
and corrected (Section I) theories of diffusion, and difficult for the itiner-
ant oscillators, even with four parameters. The Mori and Grigolini con-
tinued fractions must be truncated at some stage, which introduce empiri-
cism. Contemporary diffusion theory cannot come to grips at all with the
many new ccf’s from computer simulation®’ " which indirectly affect the
spectra. The fragility of the theoretical approach is exposed by the fourth
spectral moment. Approximate analytical expressions for the far infrared
power absorption can be obtaincd’ from the 1977 itinerant oscillator, an
approximant of the Mori continued fraction, and from the improved 1987
version.”' " However, if these complicated expressions are simply multi-
plied by «° to form the fourth spectral moment, they result in plateau
absorption which persists indefinitely at high frequencies, an obviously
unacceptable result. The fourth moment plateau is the same kind of
disaster as the Debye plateau in the second moment."'> The Debye theory
fails for the second moment and the itinerant oscillator for the fourth
moment. Any force fitting of the itinerant oscillator is bound to unravel at
the fourth moment. Similarly, higher approximants of the Mori continued
fraction will fail at higher moments, according to the level of truncation.

The only theory discussed so far that maintains integrity for all spectral
moments is that of the free rotor ensemble leading to Eq. (64). This is
limited to the case where there is no molecular interaction.

G. Molecular Dynamics Simulation

This is a technique™ that now pervades about 40% of all the literature in
physical chemistry and related disciplines. Some of its powerful results
have been discussed in Section I. More details of the method will be
discussed in Section 3. When faced with spectral moments, however, even
this technique runs into well-defined limitations, even though it has left
the traditional approach on the blocks. It is as well to describe these
limitations here, and to emphasize the fundamental importance of experi-
mental data, accurate and wide ranging, for simple molecular liquids. No
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theory or numerical technique, however powerful. is the last word in
natural philosophy.

Contemporary computer simulation methods rely heavily on the
numerical approximation of the classical equations of motion. These ap-
proximations involve expansions of fundamental dynamical variables, for
example

91-94

A 42
r(t + Ar)=r(t) + F(r)Ar + % Fliite + O(ArY) (66)
m
_ 1 At? "
r(t— Ay =r(t) — FAr + EF(;);— O(Ar”) (67)

illustrating the leapfrog algorithm®' for translational motion. Here r is the
position of the molecular center of mass, F(¢) the net force on the mol-
ecule, and m its mass. In a digital computer, with a finite storage capacity
and speed, these expansions must be truncated at some order. From this
it can be shown that only some of the complete set of ccf’s (Section I)
can be obtained numerically, depending on the order of the truncation of
a series expansion such as Egs. (66) and (67).

Figure 10 is an illustration of the match between simulation"* and far
infrared absorption for dichloromethane liquid at 293 K and 1bar. The
simulated power absorption has been obtained by Fourier transforming
the rotational velocity acf obtained from the dynamical trajectories gen-
erated by the 108 molecules used. The orientational acf, related to the
dielectric spectrum at the lower end of the far infrared, can be obtained
from the same trajectories. The close match between simulation and spec-
tra, which can now be obtained with model or ab initio potentials, must be
tempered with the realization that the simulation involves approximations.
These typically include the following:

1. The success of the simulation is limited by its inherent confinement”'
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to the intermediate frequency range covered by the second spectral mo-
ment. Accurate definition of the frequency dependence of the fourth
moment,™ ™ and of higher moments, would require simulated time-corre-
lation functions of higher derivatives of the molecular dipole moment,
and because of the approximations illustrated earlier for the leapfrog
algorithm, for example, these are rarely if ever available or are not defined
accurately. In exceptional cases, higher-order algorithms have been used”
to generate the required acf’s for higher spectral moments, but little is
known in general. Similarly, at long times, conventional computer simul-
ation is limited by several different factors, and does not extend much
further than the nanosecond range. Production of the low frequency region
of the spectrum of Fig. 10 by simulation is therefore more difficult than
the far infrared range.

2. The spectrum of liquid dichloromethane over the three-decade span
of Fig. 9 stems from cooperative molecular dynamical processes involving
cef’s between different molecules. The dielectric permittivity cannot be
built up properly without sufficient consideration”” """ of these multimole-
cular effects.

Despite these limitations, computer simulation is able to build up an
acceptable representation of the second momeru spectrum of liquid dichlo-
romethane without the degree of empiricism of conventional diffusion
theory. Increasingly, it is possible to solve the equations of motion of a
larger and larger number of moving and interacting molecules interacting
with potentials modelled or computed ab initio. An analytical representa-
tion of the potential energy between two molecules as a function of
intermolecular separation and relative orientation in frame, (X, Y, Z) is
known'"""'" a5 the *“pair potential”” and will be described in more detail
in Chapter 3. Progress is being made rapidly towards constructing the pair
potential from fundamental quantum mechanical principles, and towards
replacing' ™' the older model representation of the pair potential based
on atom to atom Lennard-Jones parameters.

H. From Liquid to Glass at Constant Pressure

Solutions of dichloromethane in solvents such as decalin can be super-
cooled"™ well below the normal melting point at room pressure. This has
the ef_fe::t' of increasing the viscosity of the solution by several orders of
magnitude. In the supercooled liquid solution of dichloromethane in deca-
lin this has the effect''%”'% of spreading the dielectric—far infrared spec-
trum over a vast frequency range. Not only is the peak of the zero moment
spectrum (the dielectric loss) split into two and broadened considerably
over the simple Debye result, but it is also removed from the peak of the
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