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(Vixyz=(v+ ® Xr)s (186)
and conversely

(V)iza= (v = @ XT)xyz (187)

These identities show that the linear center of mass velocity, v in frame
(X, Y, Z) is rigorously equivalent to the sum v + @ X r in the rotating
frame (1,2,3). Carrying out this procedure for each molecule of the
ensemble, we note that the axes of the frame (1, 2, 3) are each parallel to
those of (x, v, z), but the origin of one frame is displaced with respect to
the other. For the purposes of constructing ensemble averages the two
frames are interchangeable. We can therefore continue the development
with subscripts (x, y, z) substituted for (1, 2, 3).

The noninertial accelerations are generated in both frames (X, Y, Z)
and (x, y, z) by the equivalences

(Vxyz=(V+20o X v+ @ X1+ X (0 Xr)),: (188)
and conversely
(V)y:=(v-"20Xv—0Xr+wX (o Xr))yyz (189)

which may be written more transparently as**®

Dir=Dy(Dir)=(D,, + ® xX)(D,, + & X r) (190)

and conversely
mr = D, (D,r)=(D;— & X)(D;— @ X r) (191)

These equivalences define the noninertial linear accclerations, which are
real in both frames of reference. They are known as the molecular Coriolis
acceleration —2w X v, the molecular Eulerian acceleration — x r, and
molecular centripetal acceleration @ X (w X r).

It follows that acf and ccf may be constructed involving these acceler-
ations, and also the non inertial linear velocity

¥honinertial = — W X T

which involves the position vector in both frames. The theory of Section
I contains no specific mention of correlations such as these, which clearly
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contain both rotational and translational molecular dynamical quantities.
Some of these correlations were described earlier in this section using
simulation and symmetry.

The process leading to Egs. (188) and (189) may be extended to the
complete set of time derivatives of noninertial linear accelerations by
operating repeatedly in each frame

Dir=(D,, + o x)(D,, + @ x)(D,, + ® X r) (192)
and conversely
Dr=(D;— o x)(D;— o xX)(D;— @ X r) (193)

The number of terms increases rapidly and there is an infinite number
of ccf’s describing simultaneous rotation and translation in molecular
ensembles. The majority of these vanish by symmetry, but this still leaves
an infinite number which does not. All of these, in both frames of refer-
ence, contribute to spectra in some way, but clearly, no spectral obser-
vation can determine them unequivocally. Computer simulation is able to
generate the first few members of the infinite sets in frames (X, Y,Z) and

(X, Vs Z)k
N. Consequences for the Theory of Diffusion

The major consequence for the theory of rotational diffusion is to make the
appropriate Langevin equations intractable. This is easily demonstrated by
considering the diffusion of the asymmetric top in three dimensions. To
consider the simultaneous rotational and translational diffusion means
supplementing the Euler-Langevin structure Egs. (68)—(70) with the
translational Langevin equation written in frame (x, y, z). It becomes the
highly nonlinear stochastic differential equation

|[12'+2:.-1r1*':'w+1:i:|~‘-*'f:r+-:-m:=~‘~:litzau:»:w::r]l+i~,!’:-'i{1|r+m:=~f:r}],,f_,,f={lff.-’w-'r],,r,,z
(194)

There is no known analytical solution of this equation, even if did not
have to be solved simultaneously with the intractable Euler-Langevin
equations (68)-(70).

This is a simple illustration of the limits of usefulness of the analytical
diffusion theory."**"~**% In this situation, limited progress is possible only
by relying on computer simulation and symmetry, and by attempting to
put the rigorous analytical theory in a form suitable for approximate
solution. An example of what is possible is given next.
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Figure 30. Diagonal elements of the laboratory frame ccf (@(r)v'(0)) vy» from a recent
computer simulation of liquid water.

O. A Simple Langevin Theory™*® of ccf’s in Frame (X, Y, Z)

The c.c.f. between v and w vanishes for all ¢ in frame (X, Y, Z). It is
therefore incorrect to write two Langevin equations in this frame directly
linked by cross friction coefficients because this would produce a non-zero
value for the ccf. Cross friction coefficients such as those of eqns (175)
and (176) must vanish with the applied electric field. (For finite E however,

the ccf exists.) _ | 1
We have seen from elementary dynamical considerations that the ccf

between linear and rotational velocity, (v(r)p(0)), exists in frame
(X, Y, Z) directly, (Eq. (49) to (52)). This is supported by Fhe symmetry
rules of this section because the complete D symmetry of this ccf contains

the totally symmetric representation of R,(3). This represents the_: trace
of the ccf, the sum of the diagonal elements. These are illustrated in Fﬁlg.
30 from a recent computer simulation.*® The off-diagonal elements vanish

for all t.
Simulation and symmetry lead to a simple Langevin structure

v+ Byt B =W, (195)
po+ .B.ul-'- + Brrv =W, (196)

where the B’s are friction coefficients. The physical meaning of these
equations becomes clear by addition, giving
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d . . .
E("“'l‘-}“‘ﬁr‘“"‘ﬁgl-'-“‘ﬁrrl'-"'ﬁrﬂ':wx+w1 (197)

which is a Langevin equation written for the linear diffusional velocity in
three dimensions of an atom of the molecule. displaced from the latter’s
center of mass by the vector w. The simultaneous equations (195) and
(196) can be solved'™ for acf’s and cef’s of interest. for example,

2
(v(1) - p(0)) = (c jli)uz Bre "sin((c = b)'?1);  (c>b%) (198)
or
; (v°) B 2 112 2
(v(r) - (0)) = & — )" Br.e "'sinh(b” — ¢)"'%t); (¢ < b) (199)

where b= 2(8, + B;) and ¢ = BrBi — Br.B,r. Furthermore, the friction
coefficients B+ and By can be found from the velocity and rotational
velocity acf’s individually. Therefore, the new ccf’s can be found approxi-
mately in terms of the coupling parameter B.r. An optimum fit to the
computer simulation data at 1 bar and 296 K was found®*® to be with the
three friction coefficients B; = 1.0 THz. Pi=250THz, and B, =
50.0 THz. This very simple theory can therefore provide analytical repre-
sentations of the velocity, rotational velocity, and cross correlation func-
tions in terms of the three friction coefficients. For example, the transla-
tional velocity acf becomes negative at (.04 ps. as found in the molecular
dynamics simulation of water, and the ccf rises to a maximum of about
0.3 at 0.02 ps, as illustrated in Fig. 31. However, the theoretical curves
have the usual severe limitation of an essentially Markovian treatment'®
which can only be remedied with memory functions at the cost of introduc-
ing empiricism when truncating the continued fractions. The linked Lange-
vin equations do produce a negative overshoot, however, in both acf’s,
as observed experimentally and numerically. This is not possible with
decoupled Langevin equations, which produce simple exponential decays.

P. The Role of the Intermolecular Potential

The linked Langevin equations (195) and (196) can be modified®” to
include an effective potential V' (r — p), which is the barrier height to
translation caused by the simultaneous rotational velocity of the diffusing
molecule. The linked Langevin equations then take the form
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Figure 31. Comparison of theoretical (a) and
computer-simulated (b) ccf's.

P+ Br+ Vir—p)=\(1) (200)
B+ Bp—Vi(r—p) = A1) (201)
F+ i+ B(F+ i) = Ni(1) + Aalr) (202)

where r is the position vector in frame (X, Y, Z) of the molecular center
of mass, and v is defined by v=F. In order to solve these Langevin
equations simultaneously it is necessary to assume *'~** that the friction
coefficient appearing in Eq. (200) is the same as that in Eq. (201). In this
context V is a potential energy generated by the mutual constraints in
frame (X, Y, Z) of the molecular rotational velocity on its own center-
of-mass velocity. Equations (200) and (201) are then linked pendulum
equations with the extra friction and stochastic terms of the Langevin
approach. The stochastic terms A, and A, are Wiener processes.' The use
of an equal friction model implies that the rotational velocity acf and the
linear center of mass velocity acf must have the same analytical time
dependence when both are normalized at ¢ = 0. This is implies that Egs.
(200) and (201) are not applicable in the limit of free rotation, a general
restriction on all Langevin equations. In general the dependence of V
on its argument is intricately non linear. and obtainable from ab initio
computation. However, it can be simply assumed that the argument can
be expanded in a Taylor series. The harmonic approximation in this
context is then
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V'(r = ) =2Vo(r — ) (203)

The use of a nonlinear potential would introduce into consideration barrier
crossing processes superimposed on the overall diffusion process, making
the equations insoluble without transformation to the Kramers form,*'
If the nonlinear potential is mimicked with a simple cosine, its derivative
would be a sine, which can be approximated by the angular displacement
itself, the harmonic approximation. This restricts the physical meaning of
the theory to torsional oscillation at the bottom of a steep and deep
potential well.

In the harmonic approximation the equations do have an analytical
solution which is a complicated expression in terms of the friction coef-
ficient and the parameter

w, = (4V, — B14)"? (204)

The solution gives a variety of results for acf’s and ccf’s known to exist
from simulation and symmetry.”’ Some of these were compared with
simulation data in Ref. 257, using simulation data for liquid water over
the complete range of its thermodynamic existence.

The overall behavior of the system of Eqgs. (200) and (201) is similar
to that of the correlation functions from computer simulation, but we
must temper this conclusion with what we know to be the shortcomings
of the Langevin equations themselves. As a rough guide to understanding,
however, these equations are reasonably satisfactory facsimiles of the
numerical data, but become intractable if we attempt a frame transforma-
tion from (X, Y, Z) to (z, y, z). In the laboratory frame (X, Y, Z) in which
solutions are available®” the analytical rotational and linear velocity acf’s
become more oscillatory with increasing V, and the ccf that links them in
frame (X, Y, Z) becomes stronger (Fig. 32). The barrier height V seems
o be directly responsibly in this approximation for the strength of the
cross correlation. The latter is therefore directly dependent on inter-
molecular forces and torques as well as on overall considerations of sym-
metry. The harmonic approximation (203) is a very simple description of
the information available from symmetry and simulation. However, the
theory is severely limited in several ways, because otherwise the solutions.
If obtainable at all, would be overparameterized and difficult to use.

1. The friction coefficient is assumed to be a scalar, whereas it is more
accurately a tensor.

2. It is assumed to be the same in both equations. More generally the
friction coefficents in Egs. (200) and (201) can take different values.
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Q. Patterns of Cross Correlations in Frame (X, Y, Z) and (x, y, 2)
Figure 32. (b).

The set of nonvanishing ccf’s obtainable from these fundamental dynami-
cal considerations can be divided for classification into subsets, or patterns,

which serve as a guide to the nature of the ccf's themselves. These patterns
can be obtained from the operator equations
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R. The Omega Pattern in Frame (x, y, 2)

By inspection of the terms in the laboratory frame and by applicatiﬂn} of
the standard rotation operation into frame (x,y, z) for any dynamical
vector ccf's of the following types exist for + < 0 in frame (x, y, 2)

(@(1) X A(1)AT(0))xye

This is confirmed by point-group theory for all molecular symmetries and
for polar vectors A such as velocity or inertial and noninertial linear
accelerations such as the Coriolis, or centripetal terms in frame (x, y, z).
This conclusion is confirmed by the available computer simulations of
these ccf’s. -

A subset of the omega pattern is (w(r) X D/A(t)w’(0)), all members
of which exist in frame (x, y, z) from inspection of the general operator
equation (206). There also exist patterns of ccf’s in frame (x,y,z) made
up of cross terms of the operator products in Eq. (206). None of these
seems to have been explorcd yet by computer simulation, but are allowed
by point group theory in frame (x,y.z) for all molecular symmetries,
including that of the spherical top.

S. The D, Pattern in Frame (X, Y, Z)

These results are generated from the subset
(A()-A(0) >0, t>0 (207)

for all acfs. In Eq. (20) the ccf has been constructed between a dynamical
quantity and its time derivative. By applying this result to linear but
noninertial velocities and accelerations or to noninertial angular acceler-
ations and higher time derivatives it is possible to see the emergence of
many individual ccf’s which may exist in frame (X, Y, Z) for all molecular
symmetries, including the spherical top. None of these can be described
by the theory of Section I, but can be followed approximately by linked
Langevin equations of the type used in this chapter. These patterns may
be summarized as follows, and emerge from the operator equation (Eq.
205).
The D, pattern is simply

C(1) = (D/B(t)B”(0)) xvz (208)

where in general the vector quantity B is a linear noninertial variable such
as velocity or acceleration. One of the simplest examples of this type is
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(D(v(1) — o(t) x r(1))(v(0) — 0(0) x r(0))")

which shows the possible existence in frame (X, Y, Z) of six component
ccf’s for 1 > 0. Each of these must be individually tested with parity and
time-reversal symmetry before its exact time dependence is simulated
from a model of the pair potential. For ccf’s of this nature, time-reversal
symmetry must be applied with care because it reverses the sign of each
ccf component as it passes through ¢ = 0.

Parity inversion, however, allows the existence of each member of the
set of six in frame (X, Y, Z), irrespective of molecular symmetry. The
first of the group, {¥(r) - v(0)), is the inertial, or Newtonian, ccf. The other
five all contain rotational variables, such as the molecular angular velocity,
and are noninertial in nature. They vanish only when @ vanishes and
therefore distinguish molecular from atomic ensembles.

Repeated application of the above for more complicated vectors B,
with more components, produces many more ccf's in frame (X, Y, Z),
even for spherical top symmetry. An example is the system

(Dy(wa(r) x (v(1) = @(1) X £(1)))(@(0) X (v(0) = w(0) X F(0)))")

T. Other Patterns in Frame (X, Y, Z)

The D pattern just described can be extended to selected cross terms
from Eq. (206) provided that the general symmetry rules apply, and the
overall symmetry of the ccf’s remains that of Eq. (207). These terms can
be obtained easily from Eq. (206) by inspection.

U. Symmetry of Some Cef’s

Although the set of diffusion equations represented by the Euler-Lange-
vin components Eqs.(68) to (70) and Eq. (194) is insoluble, its structure
may be used by inspection to predict the possible existence in frame
(x. v, z) of many ccf’s that are among the clearest signatures of the interre-
lation of the fundamental dynamical variables of molecular diffusion.
These ccf’s in frame (x,y,z) can be constructed™”* by correlating a
particular term on the left-hand side of, say, Eq. (194) with counterparts
on the left-hand sides of Egs. (68)-(70), which together comprise the
simplest diffusional representation of combined rotation and translation
In three dimensions of the asymmetric top molecule.

The rules of parity inversion and time reversal then test the existence
of the resulting ccf’s in frame (X, ¥, Z). These are followed both in frame
(X.Y,Z) and (x,y, z) by the rules of point-group theory (Sections VII
and VIII). A uniaxial electric field applied to the molecular ensemble may
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produce new ccf’s which may be investigated in turn with symmetry and
computer simulation according to the third principle of group theoretical
statistical mechanics of Section VII.

The nature of these ccf’s, both in the presence and absence of an
electric field, is described in more detail in the source papers.”* One of
the effects of the electric field can be summarized as follows:

Ez

00 0 0 + 0
Cow = (V(D)0(M)xyz=[0 0 0|=|+ 0 0 (209)
00 0 0 0 0

whose off-diagonal elements exist in the presence of an electric field. In
frame (x, y, z) the same effect is as follows

0+ 07 [0 + 0
V()o(0)y.=[+ 0 0|=|+ 0 0 (210)
la o ¢l ™la o o

The symmetry effect of different types of field, for example a circularly
polarized field, is described in the next chapter. Different typcs of ccf
have been simulated recently’*** for liquid dichloromethane and water.
A complete diffusion theory of the molecular liquid state of matter would

provide the time dependence of noninertial ccf's such as this consistently

with those of simple acf’s. In this context, computer simulation now plays
a leading role in linking what we know experimentally to what we can
predict on the grounds of symmetry.

In order to illustrate the limits of the analytical theory in the description
of field effects on the dynamics of diffusing molecules this section ends
with a short description of Mori theory applied to this problem.

V. Analytical Theory'*""'** of Field-Induced ccf’s

The following analytical theory is a simple first approximation to the
results available from computer simulation but is capable of anticipating
an experimental method for the indirect determination of laboratory frame
cct’s in the presence of an electric field. The method uses the Kerr effect
and its contemporary technology for the measurement of ccf’s in liquid,
liquid crystals, and other states of matter such as compressed dipolar
gases. Another suggested method is the measurement of electric-field
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induFe:cl phenomena in liquid crystals parallel and perpendicular to an
applied Z-axis electric field.

The theory is based on the Mori equation
C(r) = A(1)C(t) — j @t — 7)C(7) dr (211)
il

for the correlation matrix C in terms of the Mori resonance operator A
and memory function matrix &. It is convenient to write

)= [ O ONv0) ] _

((1)v"(0))(e(t)"(0))

so that the elements of C are themselves matrices, whose elements in turn
are correlation functions. The time evolution of the complete *‘superma-
trix” C is governed by the Mori equation (Eq. 211), which is the Liouville
equation put into a form more suitable for solution.

In order to reduce the problem to the simplest possible form consistent
with describing the appearance of the elements of the ccf between linear

and angular velocity directly in frame (X, Y, Z), the following assumptions
are made:

1. T_he three molecular moments of inertia of the asymmetric top are
approximated by the trace, a scalar average /.

2. Itis assumed that the molecule carries a net dipole moment p which
generates the torque —p < E described by the Mori resonance operator

o (1A B
A=

The scalar frequency in this equation is

o = (£E2)" @

With these assumptions we have the definitions

Co = (v(1)v"(0)) (215)
Cow = (0(1)’(0)) (216)
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0
3
I

(v(1)"(0))
i 0 (vx(Dwy(0)) (x(1)wz(0))

i

| (vz(Dwx(0))  (vz(t)wy(0)) 0

The matrix of memory functions is a supermatrix of the form

_ [l0) dr-m(r]]
i [tbmit} buw(t) e

Using the computer simulation result that the electric field produces the
elements (X, Y) and (Y, X) of C,, for an electric field, E, gives the

simplification

0
Cit)=C0)=Ca)|]1 0 0 (219)
0

The electric field has the dual role of promoting the existence of C,,, in
frame (X,Y,Z) and of making the sample anisotropic and birefringent,

that 1s,

(vy) = (v3) # (v3) (220)

() = (@) # (0Z) (221)

Laplace transformation of the Mori equation gives the linear equation

(p1 + &(p) — iw,1)C(p) = C(0) (222)

whose supermatrices are

C(0) = [C""(ﬂ) ? ] (223)

0 C..(0)

where

(ry(1)wx(0)) 0 (vy(t)wz(0)) (217)
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(v¥) 0 0
C.)=1 0 (v3) 0 (224)
0 0 (v2)
and
_| Culp) C.u(p)
C(p) =
(#) [cw(p) cm..{p)] —
where
(o =Tl @)= [(p —iw)1 + b..(p) ¢.u(p) ]
¢'m-'{p} (P — f"-"l)l I d"ww{.ﬂ)
(226)

Using the symmetry of the computer simulation result, the elements of
the memory matrix are themselves matrices defined by

0 -1 0
b=, =¢dl [1 0 0 (227)

0 0 0

£ g
b..=| 0 W 0 (228)
0 o o=°
and so on,
For an electric field in the Z axis,

b () = dLY(p) # dZZ(p) (229)
Guw(P) = Pon(p) # dZ2(p) (230)

and similar!}r for C,, and C,,, and the linear and angular velocity matrices.
Cﬂmpanr_tg sc_alar elements in Eq. (222) provides the following set of
scalar equations in Laplace space, in terms of the Laplace variable p:
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cxx(p) = 22 E ‘_ﬁﬁii;’”“’ ) (231)
crr(p) =22 ;ﬁzﬂii? (p) (232)
S +{Ezip) S
EXx = “”?jmﬁiigggp ) (234)
cEp)=—— 22 (236)

P = I.-‘Iﬂi T df’ii{P}

The ratios of Egs. (231)-(233) and of (234)-(236) provide the following
approximate but transparent results:

XX

XY (p)CXY (p) = (13) f:zziﬁi — () (237)
XX

~ () %ﬁg — () (238)

and if, in the Markov approximation, we regard the memory function as
a constant, that 1s,

b (p) = b (2253

we obtain the following results, which have a simple physical interpreta-
tion:

wvpv . WEFCEND) (% 548
ClP)= g czzp) ~ 97 =8
_(0x) Caa(p) _ (wx) (241)

XY CEJ{P} d’xr

Equations (240) and (241) show that it is possible to obtain an indication
of the time dependence of the (X, Y) and (Y, X) elements of the ccf by
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ap!:-lying an electric field to a molecular liquid sample and observing the
anisotropy in the angular velocity acf (and also in the linear velocity acf)

with Kerr effect apparatus. Eliminating CX* between E 231
and the further four relations R gs- (231)-(236)

Cla (P)(p + ¢3.5(p)) + $XY (p)CXX(p) =0 (242)

Clw (P)(p + &1 () + XY (p)CLE(0) = 0 (243)

Crw (P)(A = iwy + ¢35 (p)) + XY (P)CXX(p) =0 (244)
Cla(P)p —iwy + $L5(p)) + XX CXY(p) =0 (245)

and eliminating C7," between Egs. (231) and (243) and betw
v . een Eqgs.
(234) and (242) provides the results } i

(r3) = (@) (246)
(vy) = (0y) (247)
(vZ) # (w?) (248)

Solving simultaneously Eqs. (231), (234), (242), and (243) finally gives
the results

AY —atf?
wip €

CXP = _ {ml"ﬁ:’}ﬁb
- (b —a/4)"?

CLr(1) = (vie "7

sin((b — a*/4)'"%1) (249)

X¥
x { cos(b — a*/a) 1) + E:’_ ﬂif;;ﬂ sin((b - azﬁl}’”r]} (250)

CEa(0) = (wh)e " cos((b — a*/4)"r)

(duw — iwy — al2) .
b :;f-‘-i]"g }sm[{b — a’14)""*) (251)

+ (w¥)

il::*.hr the angular, linear, and cross correlations as a function of the electric
¢ld strength E_ in terms of the parameters

a= X + p¥X

TR ';wl (252)
b= s+ ¢N Y — iw ¥¥ (253)

With the test parameters
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XX = XX _ 102 Hz

Fp

the following analytical results emerge:'*"'*

1. The envelope of the oscillations remains constant for constant
w /XY in the ccf CXY. By parity inversion symmetry &rY must
disappear for w, =0 and, therefore, there should be some link
between ¢, and w,.

2. It is possible to observe the function C;, even for values of ¢,
much smaller than ¢ and ¢...

3. The ccf vanishes as t — 0 and r — =. This is also the result obtained

from computer simulation.

The simple theory of Eqgs. (249)-(251) produces both the linear and
angular velocity acf’'s observed by computer simulation consistently with
a ccf, in terms of a small number of parameters. This is a small analytical
step towards explaining the set of nonvanishing ccf’s between rotational

and translational diffusion produced by numerical simulation and allowed

by symmetry. The next section provides examples of such ccf’s from recent
supercomputer simulations.

VI. TIME-CROSS CORRELATION FUNCTIONS — A MAJOR
CHALLENGE TO DIFFUSION THEORY

The first cef to link statistically the rotational and translational diffusion
of a molecule was computed in the early eighties.*” Prior to that the theory
of diffusion had not been able to supply the time dependence of any
simple but fundamental ccf. In the few years since then the number of
known ccf’s has increased dramatically. The symmetry laws controlling
their existence (Sections VII and VIII) have been identified for all known
molecules. This is clearly a major challenge to the approach of (Section
I) posed at a fundamental level within the overall framework of classical
statistical mechanics. Theories of rotational or translational diffusion can-

not by definition describe the time dependence of the simplest type of
cct involving both motions simultaneously. Contemporary attempts at

extending or adapting the fundamental theory (Section V) are first ap-

proximations which can describe a small fraction of the data available

from computer simulation. A more rigorous approach developed from the
principles of traditional diffusion theory'™* leads to great complexity and

empiricism. The basic dynamical properties of molecular liquids can now

be described more successfully and in greater detail by computer simul-
ation. In this context classical dynamics is being applied to the motion
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of molecules and through the intermediacy of powerful contemporary
computers produces a range of results and depth of insight unobtainable
with traditional diffusion theory. It has become clear that in comparison
with simulation, diffusion theory is restricted severely by its own axioms
to a f_ew model approximations, such as the Debye theory of rotational
diffusion, which are essentially mathematical approximations of the
N-body problem. There are a very few of these that have a closed analyti-
c_a] solution for acf’s and these are successful in describing only a very
limited amount of spectral data, over a limited frequency range. The use
of data from spectral moments soon exposes the limitations of the most
elaborate analytical theory. The most accurate computer simulation is
capable of describing only the first few moments of, for example, com-
bined dielectric and far infrared spectroscopy.

The weaknesses inherent in the original axioms of diffusion theory are
now exposed in several ways, for example, experimentally through the
use of several different data sources under consistent conditions'~* of
investigation, theoretically through the use of projection operators® ap-
plied to the Liouville equation and memory functions, and most starkly,
through the set of fundamental cross-correlation functions now available
fr‘nm many computer simulations. The latter show, for example, that
hitherto unknown ccf’s exist™ " in a liquid of spherical top molecules,
both in the laboratory frame (X, Y, Z) and in the molecule fixed frame
(x, ¥, z). These show unequivocally and in many different ways that the
rotational diffusion of a spherical top is correlated statistically to its own
center-of-mass translation. The fundamental assumption that these mo-
tions are statistically uncorrelatcd is erroneous. Analytical attempts to
remedy this error have so far run into difficulties, particularly in modelling
rc?a:IisticaHy the effective pair potential. These appear even under con-
ditions most favorable to the Debye theory, that is, for spherical tops in
two or three dimensions.

In considering the diffusion through three dimensions of the most com-
monplace of molecules, the asymmetric top, the theory of diffusion has
never been successful without the use of crude approximation. Even within
the restricted confines of rotational diffusion. the Euler-Langevin equa-
tions (58)-(60) have no closed solution, and its approximation involves
three unknowns, introduced 50 years ago but never determined exper-
imentally. Their independent determination involves the use of three data
sources which can be considered as mutually independent. These short-
comings are compounded greatly when account is taken of the new results
briefly introduced in Section V. Modern off-shoots of the Debye theory,
such as the various itinerant oscillators, have appeared' ™ throughout the
last twenty five years, but carry the same inherent flaws as the original
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model. There is no itinerant oscillator theory that can describe the set of
nonvanishing ccf’s in frames (X, Y, Z) and (x,y,z) without excessive
complexity and empiricism. There is no itinerant oscillator which is trac-
table and rigorous in three dimensions. These theories have achieved very
little compared with computer simulation, and are empirically descriptive
in nature. Even the rotational versions do not address the nonlinearities
of Euler’s equations, for example, and even were this to be possible the
model representation of the effective pair potential is less realistic by far
than those used routinely in computer simulation, sometimes taken di-
rectly from ab initio quantum mechanics. When the analytical theory of
diffusion appears in the contemporary literature as a description, for
example, of spectral data, that description must be tempered with the
realization that the comparison of data with theory is inevitably limited
to that particular context. For example, the traditional range of data from
dielectric relaxation does not extend into the far infrared. The fitting of
low-frequency data with a simple rotational Debye theory produces a
number, the Debye relaxation time, which is no more than the result of
a physically flawed curve-fitting technique.

One of the most convincing illustrations of the extent to which computer
simulation has out-paced the analytical methods can be derived from a
consideration of intramolecular vibration'*® in a rotating and simulta-
neously translating diffuser, such as a water molecule. It is now possible
to construct an effectivc pair potential for the water molecule that takes
into account the internal vibrations of the H,O framework, and this is
adapted for use in a molecular dynamics computer simulation.

A. Ccf’s Involving Molecular Vibration

The potential energy between two flexible water molecules can be written
as the sum of two contributions arising from inter- and intramolecular

motions
V(rag, l],} = Vinter T Vinura (254)

where r.z are the intermolecular atomic distances, and q; the internal
coordinates. The potential is built up™® from a consideration of the rigid
MCY ab initio potential,”>" which is itself built up from first principles.
The flexibility of the water molecule is modelled with a further ab initio
term for the intramolecular motions taken from a high-quality compu-
tation by Bartlett, Shavitt, and Purvis.> The original rigid MCY poten-
tial'*' contains a negative charge which does not coincide with any atom
of the molecule, and its extension to flexible geometry assumes that the
charge always resides on the line bisecting the H-O-H angle within the
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molecular framework. This reduces to the rigid MCY potential when there
is no framework distortion. The new flexible potential is known as the
MCYL potential, which can be used'*® in a computer simulation.

B. Computer Simulation of Flexible Water

The system used for the computation'® of ccf’s in flexible water consisted
of 343 water molecules subject to periodic boundary conditions (Chapter
3) and a cut-off radius of 10.87 A. Coded into the algorithm was a numeri-
cal method for the evaluation of reaction fields, using a method developed
by van Gunsteren et al.*® The forces due to the complete inter- and
intramolecular potential energies and the reaction energy were then evalu-
ated using a sixth-order Gear algorithm. To start the run, the atoms of
the ensemble were given random velocities with a Maxwell-Boltzmann
distribution, the initial spatial configuration being taken from a previous
Monte Carlo simulation. The time step was 0.15 fs for all data evaluation
and collection. This allowed the simulation of vibrational features such as
infrared and Raman fundamentals with frequencies of up to 100 THz.
With this time-step the energy was conserved to 0.0033% in 1000 steps.
Trajectories were saved every 10 time steps and the total number of
mnﬁgurations collected was 7600, corresponding to a total simulation time
of 11.4 ps.

This method is independent of the simulation of rigid water*”-2
carried out by the present author with a 5 x 5 site-site model potential.
This used no reaction fields, and integrated the equations of motion with
an entirely different method. The simulation of flexible water, on the
other hand, takes each atom as a separate diffuser, the translational
motion of which is constrained by potential bond terms linking it to
mhelr atoms of the molecule. This method uses no rotational equations of
motion. In order to build up correlation functions of molecular dynamical
quantities such as angular velocity, and in order to define orientational
and rotational velocity acf’s, the data must be refined, allowing direct
comparison with the simulation of rigid water’* and with experimental
dataI. Comparison of results from the two algorithms also allows the esti-
mation of the effect of flexibility on the overall molecular dynamics.

C. The Effect of Internal Vibrations on Correlation Functions

Tht? two methods are capable of producing a set of acf’s and ccf’s whose
ndividual members contain information on the diffusion in three dimen-
sions _nf a rigid and flexible model of water. Comparison of the rotational
j-fe!ncuy_ acf from both sources (i.e., the Fourier transform of the far
mfi."are:d spectrum) exposes the effect of vibration on an essentially ro-
tational and translational motion. In this context the minimum in the
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available.

E. Vibration-Translation

The ccf between vibration and center-of-mass translation in the water
mnle_.cule can be defined as follows. The vibration is described through
the linear velocity vy, in frame (x, v, z) of the hydrogen atom, and transla-
tion as the linear velocity of the complete molecule, defined as that of the
center of mass (v) in the same frame (x, y, z). The latter is fixed by the

axes of the molecular principal moments of inertia, which are vibration
dependent. The nine elements of the tensor

{I-"'H>”2(IJ'2}”2

provide the details of this cross correlation. The overall symmetry of this
tensor was found to be

0
Ci = 0 (256)
_|.

AT
o + +

> XYz

and the time dependence of the nonvanishing elements is illustrated in
Figs. 33 and 34. Both the diagonal and off-diagonal elements are very
anisotropic, and it is clear that the translational diffusion of the molecular
center of mass is correlated statistically to the individual H-atom transla-
tion in several different ways. The coupling in the (yy) component (Fig.
33b1_i5 oscillatory at the frequency of the H-atom vibration, because the
Y axis is the one that approximately bisects the molecule through the
Oxygen atom and the centre of mass. The xx component (Fig. 34a) shows
the fa:z.t oscillations superimposed on slower oscillations of the O-atom
vibration. The zz component (Fig,. 33c) 1s free of vibrational oscillations
because the z axis is perpendicular to the plane of the molecule. This
element is nearly identical with the off-diagonal xz element of the ccf.
i between the center-of-mass linear velocity and the molecular angular
velocity w in frame (x, y, z). Only the off-diagonal elements (Figs. 34a
and b) ut:' C.. not involving the z axis exist. There is no correlation of
the atomic and center-of-mass linear velocity components parallel and
perpendicular to the plane of the molecule, but only for those vector
Components that are both either in or normal to the plane of the molecule.
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Figure 33. Elements of the ccf C,,: (a) xx. (b) vy, (¢) zz.

The effect of vibration on rotation can be looked at with the tensor

Canlt) =1

(Vi (1)@(0)) }
{ﬁ}}”?{ml}uz L

(257)
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Figure 34. As for Fig, 34, (a) yx, (B) xy.

Figure 35 shows four off-diagonal elements of this ccf. The diagonal and

remaming two off-diagonal elements vanish in the noise of the simulation,
50 that the overall symmetry of the matrix is

(258)

0

B

E
+ © O
=+ -
o + +

= —xyz

T!ns IS opposite to the symmetry of the vibration—translation matrix.
Figure 35 shows that the zx and 7y components of the ccf are essentially
perfect mirror images, while there is some residual asymmetry in the yz
and xz components. Since the molecule can only vibrate in the molecular
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plane, we see the effect of vibrations in the xz and yz components as
small ripples.

Figures 36a and b confirm the symmetry of Fig. 35 for the equivalent
ccf matrix between the molecular angular velocity in frame (x, y, z) and
the linear velocity in this frame, v, of the oxygen atom. In this case the
whole matrix is dominated by the zx element (Fig. 36a). Due to the fact
that the amplitude of the oxygen vibration is much smaller than that of
the hydrogen, no ripples are present here. The xz element (Fig. 36b)
seems to be signal, but with a very small amplitude. All the other seven
elements vanish in the background noise of the simulation, so that the

overall symmetry is

Cf}m = {‘2 Sg}
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time dependence of the zz component of the vibration—translation matrix
and the zx component of the oxygen linear translation to molecular angu-
lar velf::-cit:,r cct matrices respectively. The time dependence of these ele-
ments 1s essentially the same, with slightly different maxima. Furthermore,
Fig. 36¢ shows that the xz component of the cef for molecular angular
velocity to center-of-mass linear velocity in frame (x, y, z) is identical with
the component in Fig. 36a. This can be explained by the proximity of the
Uxygen atom to the molecular center of mass. Thus, there is a clear
Inten:elatinn between the ccf tensors of vibration—-translation, vibration-
fotation, and in Fig. (36¢), rotation—translation. None of these ccf’s is
clearly and unambiguously available in traditional diffusion theory, which

would regard the diffusing water molecule as a “rigid sphere with embed-
ded dipole.™

F. Rotation-Translation

The relevant 1:natri:-c is the usual tensor product C,,, between the molecular
le'lgulgr velocity and the linear centre-of-mass velocity in the flexible and
iffusing frame of reference (x,y,z). In this case Figs. 36¢c and d show
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that the matrix is dominated, as in the rigid model of water simulated by
the present author, by the xz element. However, there is the trace of a

signal in the zx element, as allowed by group theory for the point group
C,,. The results of Fig. 36¢, obtained by simulation from thc flexible

MCYL potential, is almost identical with the equivalent from the rigid
model of water, which is evidence for the reality of the ccf as obtained
independently from both simulations. The pattern of the cct matrix is

(260)

]
§

Il
+ o o
o
o o +

Xy

and this corroborates the simulation of rigid water, together with the
predictions of group theory. There is little or no effect on the rotation—
translation matrix of vibration, that is, of using a flexible ab initio model
potential. This means that the data archive generated® from rigid models
of several different molecular point groups for the rotation—translation
matrix in rigid molecular frameworks is essentially valid as it stands for
their flexible counterparts. The theory of Section I is not supported by
this finding, however, because of the fundamental decorrelation of ro-
tational and translational diffusion. Computer simulation should be used
to interpret data from as wide a variety of sources as possible for the same
molecular liquid in terms of an effective pair potential derived ab initio,
and analytical theory wherever possible to cement our understanding, as
illustrated in Section V. For three rank tensor ccf’s, containing the
noninertial linear accelerations, the symmetry of the relevant ccf’s in
frame (x, y, z) is different. For example, nonvanishing diagonal elements

exist in frame (x, y, z) of the ccf,

| () % e(r)v(0))

Fo= {{(v X mf>”%ﬁ}'”}m G

between the molecular Coriolis acceleration in frame (x,y,z) and the
linear center-of-mass velocity of the molecule in this frame. In this case
also the rigid and flexible models of the water molecule give similar, if
not quite identical, results, the time dependence of the flexible potential
being slightly more oscillatory.

The overall conclusions from these simulations include the following:
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1. Some fundamental characteristics of molecular diffusion are well
described with a rigid model of water, for example, the ccf C, ...

2. The mutual statistical correlation between vibration and translation
or rotation can be described accurately in terms of ccf’s simulated
from a flexible ab initio model of the water pair potential.

3. Very few of these ccf’s are amenable to analytical description with
traditional diffusion theory.

4. Algorithms for water dynamics that are based on the rigid model

with no reaction field corrections are adequate for a range of proper-
ties.

G. Simulation Results for Water from 10 to 1273 K

Water is a well-studied liquid, and the most prevalent. It is of interest to
simulate its diffusional dynamics over the complete range of existence,
and this has been initiated recently*®' using high-quality runs over 6000
time steps of the rigid model. The thermodynamic properties of liquid
and amorphous solid water are known experimentally**>*** from about
5 K to about 250 kbar at 1043 K, and the critical temperature and pressure
are known very accurately. It is particularly interesting to compute time-
correlation functions at constant molar volume over a range of state points,
data being available experimentally at a constant density of 1 gm/cm®
from 293K, 1bar to 1273 K, 15 kbar in the liquid state. Additionally,
experimental data are available from shock wave experiments at a constant
inverse density of 0.47 cm*/gm at two state points: (1) 773 K. 230 kbar
and (2) 1043 K, 250 kbar, and these provide further opportunity for simula-
tions at very high pressure and constant molar volume with which to
investigate the nature of the molecular dynamics of liquid water through
a wide variety of time correlation functions. At the critical point of water
(647.02 K, 220.91 bar) the experimentally measured critical molar volume
is 56.8 cm*/mole, and simulations at the critical point are supported in this
section from the recent supercomputer runs. To complete the range of
conditions available there are experimental data at 10 and 77 K., both at
I bar and well below the normal melting point of 273.16 K. These low-
lemperature conditions are obtained experimentally by suddenly quench-
ing, and are mimicked in computer simulation runs by instantaneously
Fimpping the temperature from about 293 K. This is equivalent to remov-
Ing kinetic energy instantaneously from the system. and is known as slam
or splat quenching. This does not result in a phase change, and the
configuration in which the system finally equilibrates at low temperature
in the computer simulation is amorphous, in the sense that it has no
regular ice-like structure. If the rate of cooling is very rapid, as in the
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computer simulation, the structure of the configuration before the quench-
ing is retained approximately at the much lower temperature, that is, the
potential energy is about the same but the kinetic energy greatly dimin-
ished. The ensemble is frozen in a vitreous condition that is not a fluid,
known as amorphous solid water.

Across this range the simulation algorithm TETRA provides the correct
thermodynamic results within the relatively large uncertainty in the com-
puted pressure. The computed pressure at input molar volume tends to
increase more rapidly than the experimental pressures, but this is satisfac-
tory in view of the fact that an ab initio potential such as the MCYL
produces a pressure which is 6000 times greater than that observed at
room temperature and pressure.

H. The cef’s from 10 to 1273 K

The technical difficulties of observing the spectral and dynamical proper-
ties of water over this range are such that few reliable data are available.
On the other hand, computer simulations are possible over the complete
range of existence of liquid and amorphous solid water, providing a range
of acf’s and cef's. The same trajectories can be used to provide structural
data such as pair distribution functions bctween the atoms of individual
water molecules. Some of the acf’s can be linked to spectra by Fourier
transformation, but the ccf’s in this range are especially significant in
marking the limits of applicability of classical diffusion theory in both
frames of reference. For example, Fig. 37 illustrates a direct cross corre-
lation between the linear and rotational velocities of the diffusing water
molecule in frame (X, Y, Z) of the laboratory. The intensity of the cross
correlation increases with liquid density, that is, molar volume decreases,
and is approximately constant at constant molar volume. It is therefore
impossible for the water molecule to diffuse according to the rules of
Section 1. The language of cross correlation as illustrated in Fig. 38 seems
simpler than the equivalent description in terms of hydrogen bonds,”

and the large number of cross correlations now known seems capable of

providing a more consistent and clearer description of the molecular dif-
fusion process in water.
In the moving frame, for example, the ccf C,,, between the molecular

linear and angular velocities has a time dependence and amplitude which

is a sensitive function of density, pressure and temperature over the com-
plete range of existence of liquid and amorphous solid water. At a constant
molar volume of 18.0 cm*/mole the symmetry allowed elements of this ccf
remain relatively constant in time dependence and intensity. They are not
mirror images because of the lack of symmetry in the water molecule

itself. The ccf in frame (x, y, z) is driven primarily by changes in molar
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Figure 37. Diagonal elements of the lab frame cef ({¢)¥(0)) for liguid water and steam:

(@) 1800 cm*/mole, 293K (steam); (b) 18.0cm’/
; ; : mole, 293 K: 18.0em”
1273K: (d) 8.5 cm*/mole, 250 kbar. 1043 K BT e

i

Tlume, muc?: more so than changes in temperature. At constant density
the 'I:::Cf remains constant, but if density is for example doubled by the
application of 250 kbar of pressure at 1043 K. the intensity of each element

of the ccf is increased by roughly four times. All the other elements of

the matrix remain zero for all ¢ at all state points, in agreement with point-
group theory (Section V).

I. Higher-Order ccf’s

In th , ,
ek zsframe (x,y, z) the diagonal elements of such higher order ccf’s

& = (r(t) x w(t)r(0))

{(l‘ W mlﬂ}lﬂ(r:}”z

(262)

iﬂnd Cﬁ_(.r_J exlsthat all state points. The intensity of the former is greatest
at the,f:nncal point, the zz element reaching an intensity of 0.45 (Fig. 39)
_The time dnt.:pendence at the other state points is broadly similar ﬂ'IE.
intensity falling to 0.2 at 1 bar and 293 K and rising to (.35 at 15 kha;' and
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Figure 38, xz and zx elements of the moving frame ccf C,,, for water and stean} at (a)
1800 cm*/mole, 1 bar, 293 K (steam): (b) 18.0 cm’/mole, 1.0 kbar, 373 K: (c) 18.0 cm’*/mole,
9.5 kbar, 773 K; (d) 18.0 cm™/mole, 15.0 kbar, 1273 K: (¢) 8.5 cm’/mole, 250.0 kbar, 1043 K;
(f) 18.0cm’mole, 1.0kbar, 10K: (g) 56.8cm¥/mole, 647K (critical point); (h)
1800 cm*/mole, 20.0 bar, 293 K (steam).
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Figure 39. Example of the diagonal elements of Ce. in frame (x, y, z) for liquid water
at 221 bar and 647 K (critical point).

1273 K. At 250 kbar and 1043 K it falls to 0.12 with a much shorter time
decay. The pattern over all state points is broadly opposite to the simple
cef C...(1) and the intensity is a minimum at high pressures for the higher
order ccf, a maximum for the simple ccf’'s.

Again, these results are entirely consistent with the symmetry consider-
ations for the C,, point group.

In the frame (X. Y, Z) the higher order ccf’s

_(¥(1) X (1)¥(0) X w(0))

{(";’ % m:ﬁ}”l(v % m}z}nz (263)

AT

and

C. = W) X a()v(0) x e(0))
3vw {(" X l'.;.lz}”:!{{v % m)1>112

(264)

also exist over the range of state points as diagonal matrices. The off-
diagonal elements vanish by symmetry. In frame (X, Y, Z) the intensity
behavior is constant up to the kbar range, and there is no sign of a
maximum or minimum at the critical point. These laboratory frame ccf’s
are illustrated in Figs. 40 and 41. The maximum intensity of Cs,,, remains

constant at about 0.5 across the complete range of state points and is
illustrated in Fig. 41 at 1.0 bar and 293 K.
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Figure 40. Diagonal elements of C,,,, in the lab frame at 15 kbar and 1273 K,

J. Solutions of Water in Carbon Tetrachloride

The molecular dynamics of water free from hydrogen bonding is known
experimentally to be very different from that of pure water.”****” There
is a dramatic shortening of the correlation time of orientation in free water
diffusing in an organic solvent such as carbon tetrachloride, cyclohexane,
or benzene. The far infrared peak frequency shifts from about 700 cm ™'
in pure water to about 200cm ™" in dilute solution, clearly showing the
effect of H bonding on the far infrared spectrum and on the molecular
dynamics of water freed from hydrogen bonds.

The memory function analysis of Ref. 267 can be supplemented _b}f
contemporary computer simulation of the various acf’s and ccf’s which
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Figure 41. Diagonal elements of Cj,,, in the lab frame at 1 bar, 293 K.
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can be used to characterize the molecular dynamics. A solution of water
in carbon tetrachloride has been simulated®®® using site—site pair poten-
tials. The most characteristic results were obtained by directly comparing
correlation functions for the pure liquids and solutions to isolate the effects
of disrupting the H bonds.

The potential energy of the mixture was assumed to be built up of
effective molecule to molecule pair potentials obtained from individual
atom to atom terms.***** Lorentz-Berthelot combining rules were used
to account for cross terms. The algorithm TETRA was adopted to deal
with the water—carbon tetrachloride mixtures. and ccf’s computed over
the water molecules of the mixture. These were used to monitor the
dynamical behavior of the system in several ways. For example, in an
equimolecular mixture of 54 water and 54 carbon tetrachloride diffusers
the H-bonding network appeared already severely disrupted, and the
water molecular dynamics evolved differently. In the tail of the angular
velocity acf in frame (X, Y, Z), the oscillations are damped out in the
equimolecular microemulsion, H bonding thus appears to be the underly-
ing cause of the oscillations in pure water. The effect of microemuls-
ification on the rotational velocity acf is similar in the 0.5-0.15 ps range,
implying that the far infrared spectrum shifts to low frequencies, broaden-
ing in the process. This is approximately what is observed experimen-
tally.”*® The simulation and observation are not, however, directly com-
patible because the solutions used experimentally*® were necessarily very
dilute (less than 0.1% mole fraction) and were thermodynamically equilib-
rated solutions. In the computer simulation the mixture was not equilib-
ratcd because the total time span was restricted to 5.0 ps. It takes many
hours for the water and carbon tetrachloride layers to separate in the
laboratory.

The effect of removing H bonds appears least in the center-of-mass
velocity acf and most in the ccf between linear and angular velocitics in
frame (x, y, z) (Fig. 42). Here, curve I shows the ccf in pure liquid water,
and curve 2 is the same for the water molecules in the equimolecular
microemulsion. The element zx of the ccf has been greatly reduced in
amplitude and its sign reversed in the mixture. The T, symmetry of the
carbon tetrachloride molecules does not allow this to exist in a liquid
composed only of these molecules, the element in pure carbon tetrachlor-
ide must vanish for all r. The much reduced amplitude in the 50/50 mixture
indicates the strong effect on this type of ccf of H bonding in pure water,
where H bonding and cross correlation appear to be synonymous. The
big amplitude decrease occurs even though the ccf is computed over the
water molecules of the mixture. This result comes essentially from the
fact that the 54 water molecules in the mixture have a ccf symmetry:
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Figure 42. The xz element of C,,, in frame (x, v, z) in a micro-
emulsion of water in carbon tetrachloride. (1) Pure water: (2) 50/50
mixture.

(265)

o B e T
o O 4+

and 54 an equivalent in which all elements vanish.

Other types of ccf whose elements are allowed by symmetry both for
water and carbon tetrachloride do not show such a significant amplitude
decrease under the same conditions. These are exemplified by the generic
(A(r) % @(r)A(0)) where A is linear velocity or linear noninertial velocity,
for example, in frame (x, y, z). This is shown in Fig. 43. In this t:,r_pe_. the
diagonal elements exist both for T, and C,, symmetries, but with different
strengths of correlation. The 50/50 mixture therefore produces an average
of the amplitude for carbon tetrachloride and water, despite the fan::t_ that
the averaging is carried out over the water molecules only. This is an
indication that the dynamics of the water molecules are affected by their
environment in such a way as to reduce the statistical cross correlation
computed in the pure liquid water. Cross correlations on this evidence
appear to be more sensitive to environment than autocorrelations, and

Uﬂ 005 ﬂilﬂ ps
T

(1.1

-0.05

Figure 43. The xx element of the ccf Ce,, for (1) pure
water; (2) for water in carbon tetrachloride.
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this is useful in computations of spectra of liquid mixtures, suspensions,
and solutions.

K. Liquids of Spherical Top Molecules

Recent computer simulations® of T, and O, spherical tops have shown
that their molecular dynamics are cross correlated in many different ways.
These simulations were supported in detail by group theory for both
symmetry types. In addition to non-vanishing elements of (v(r) X w(1)v(0))
in frame (x,y,z), ccf’s such as (v(1)(0)) appear directly in frame
(X, Y, Z). The elements of thc simplc ccf between linear and angular
velocities vanish in both frames, but the diagonal elcments of
(A(r) X @(r)A(0)) are equal in time dependence in frame (x, v, z) for both
symmetrics.

L. The Effect of External Fields in Liquid Water

Various types of applied field (Section V) have appropriate symmetry
effects in frames (X, ¥, Z) and (x,v,z). In the former the Hamiltonian
in the presence of the field may no longer be positive to parity inversion,
and will develop a directional property. According to the third principle
of group theoretical statistical mechanics (Section VII), new ccf’s may
appear in the molecular ensemble as a result of applying the field. In
frame (x, y,z) the point group theory still applies with the molecular
symmeltry as reference, but the applied field may change the time depen-
dence of ccf’s in this same. Some of the consequences for birefringence
theory have been dealt with in Section IV but the following describes
changes in symmetry patterns in both frames for several different ccf’s,

M. Circularly Polarized Laser Field

A circularly polarized external field has an electric component which
rotates in space about an axis of frame (X.Y,Z). The effect of this type
of field can be studied by constructing symmetry pattens of correlation
functions. The field produces a birefringence effect, as described in Section
IV, which is experimentally observable. The ccf’s which are available in
this context from computer simulation are not describable with the tra-
ditional approach of Section I, for example, the effect on thc orientational
correlation tensor that of the permanent dipole moment) is
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so that the overall effect in all three cases is antisymmetric, marked by

the plus and minus entries which denote mirror images in time depen-

dence. The extent of induced antisymmetry varies from dynamical variable

to variable, and most off-diagonals appear in the correlation tensor of

molecular angular velocity, where the complete effect is
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The correlation tensor of the molecular Coriolis acceleration in frame

(X, Y, Z) is affected as follows:
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and other, higher-order, acf’s in frame (X, Y, Z) are similarly affected.
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(Y.Z) and (Z, Y) elements appear in response to a static electric field in
the X axis.

The complete set of results summarized briefly in this section must be
used in general to characterize the effect of the external circularly polar-
1zed field on the molecular dynamics of water.

N. Chiral Liquids

The equivalent effect of the external laser field on the acf’s and ccf’s of
a chiral liquid such as bromochlorofluoromethane introduces an extra
element of symmetry. There are two enantiomorphs (mirror-image pairs)
which are physically distinct liquids. These are composed of the R and §
enantiomer molecules. If these liquids are mixed in equal proportion, the
racemic mixture is formed. The physical properties of each enantiomorph,
such as melting point, boiling point, density, refractive index, infrared
spectrum, and so on are identical in frame (X, Y, Z). However, the two
enantiomers rotate the plane of polarized light in equal but opposite
directions, and the well-known phenomenon of circular dichroism results
from the interaction of circularly polarized radiation with optically active
liquids.

These are all well-known properties of optically active liquids (Section
IX) but the use of computer simulation has produced a new and fundamen-
tal property of thc optically active molecular liquid state discovered by
the present author™ in 1983. This involves the nature of statistical cross
correlation in frame (x, y, z) between v and w in the enantiomorphs and
racemic mixture of an optically active (chiral) liquid. It was shown that
the ccf in frame (x, y, z) was different in the enantiomorphs. In general
all nine elements of the ccf exist (Sections VII and VIII) and all change
sign from one enantiomorph to the mirror image

o s e (274)

+ + +
+ + +
+ 4+ +

= - - = {x, v, 2}

The time dependencies of the elements are equal and opposite in
general, and the ccf’s cancel in the racemic mixture. The signs of the
elements can change from positive to negative or vice versa. In optically
active liquids with molecules containing more than one optically active
center, it is likely that permutations and combinations of sign changes will
become possible. In the simplest type of chiral molecule there is only one
optically active center and the switching properties in general depend on
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the molecular symmetry. In the lowest chiral molecular point group (C,),
the ccf symmetries are in general

4 A ] 0 0 07 W
+ + +|=]0 0 0f|=|- - - (275)
..+ + +.| ﬂ I:'} ﬂ- o & 3 T T

This 1s a fundamental physical property of all chiral liquids and occurs
only in frame (x, y, z). It is another substantial challenge to the approach
of Section I.

Dichroism (Section IX) can be computer simulated by applying an
external circularly polarized laser field to both the R and S enantiomers
of, for example, bromochloroflucromethane. The results** in frames
(X,Y,Z) and (x,y, z) can be measured through the appropriate set of
acl’s and ccf’s as for water. In this case, however, additional information
is provided by the fact that there are three types of liquid available,
denoted by (R), (S). and (RS). In the orientational ccf tensor the off-
diagonal structure induced by the field in frame (X, Y, Z) is dominated
tor all three liquids by the (Z, Y), and (Y, Z) elements for a circularly
polanized laser applied in the X axis. There is no discernible symmetry
change between enantiomers and mixtures and the result can be summar-
1zed as

T 2 ¢ A [+ 0 07
6 + Ol ==|0D + =+ (276)
LA ke LBk = F)

R(X.Y.,Z)

and similarly for the § enantiomorph and the racemic mixture. However,
for the rotational velocity correlation tensor a difference develops between
the off-diagonal elements of the enantiomers and racemic mixture. a
laboratory frame difference between the response of the enantiomers and
the racemic mixture. Part of the explanation for the dynamics of circular
dichroism lies in this observation, which can be summarized as
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There is a different symmetry in the field-on ccf's for the enantiomer and
the racemic mixture attributable to the different response of the liquids

to the circularly polarized laser field. The symmetry pattern reverses in a
left and right circularly polarized field and signals a dichroism in the far
infrared and lower frequency adjuncts of the zero to THz range. The
birefringence associated with the dichroism manifests itself in the ani-
sotropy of the diagonal element of the rotational velocity and orientational
correlation tensors. There is also an interesting indirect effect on the
elements of the linear velocity correlation tensor in frame (X, Y, Z). The
pattern of field induced cross correlation is further exemplified in the
molecular angular velocity correlation tensor in frame (X, Y, Z), but in
this case the effect is opposite in the off-diagonals:

g = —

+ 0 B R |
0 + 0| =+ + + (279)
0 8wl Lt = Fluseows
and on the racemic mixture
k8 97 "+ 0 07
0 + 0 |0 + + (280)
_D ﬂ' +-.qs -ﬂ ok +-HH{X. Y. )

There is a direct laboratory frame difference in the off-diagonal elements
for enantiomers and racemic mixture related to the fundamental dynamics

of linear and nonlinear circular dichroism.
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Figure 44. Simple ccf under the influence of a circularly polarized electromagnetic field
applied to liguid water, zx and xz elements.

There appears to be no such change, however, in the symmetry of the
center of mass linear velocity correlation tensors in frame (X, Y, Z)

"+ 0 07 T+ 0 07
0 + 0|—=|0 + - (281)
L B ) LAy =

(X.Y.Z)

both for the enantiomers and the racemic mixture. It is noteworthy that
the field induces no new elements of (v(f)w(0)) either in the enantiomers
or the racemic mixture. The reason for this is that the rotating electric
field component of the circularly polarized laser has gerade symmetry,
and the ccf has ungerade symmetry to parity inversion.

In the frame (x, y, z) the following symmetry changes were observed
when the three liquids are treated in turn with a circularly polarized laser
field. The simple ccf just described for frame (X, Y, Z) exists for r > 0 and
1s different in time dependence in frame (x,y,z) for enantiomer and
racemic mixture. In the presence of a right circularly polarized field the
zv and yz elements in each case are not symmetric in time dependence,
but are otherwise similar both for the enantiomer and mixture. Substantial
differences begin to appear in the xz and zx elements, the former attaining
twice its normalized maximum value for the enantiomer compared with
the mixture. The main overall effect of the field on these (x, y, z) frame
elements is to remove symmetry difference at field off equilibrium between
enantiomer and racemic mixture. These effects are illustrated in Fig. 44.

The circularly polarized field has no effect on thc overall symmetry of
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the ccf’s in frame (x, y, z), and this is again a consequence of point group
theory described in (Sections VII and VIII). It is an advantage to work
directly in the laboratory frame (X, Y, Z) when simulating the effect of
external fields, allowing direct comparisons to be made with the available
experimental data.

O. Circular Flow in Liguid Water

The conditions for simulating circular flow in liquid water were defined in
Section IV, where mention was made of birefringence induced by this
effect in frame (X, Y, Z). In this section we examine the effect of the flow
on correlation matrices of type (A(7)B(0)) where A and B are dynamical
quantities in either frame. Circular now effects on the molecular level can
be studied through the symmetry changes induced in matrices of this type,
which is a key to detecting cross mode couplings in macroscopic flows
such as vortices and eddies. There is an infinite number of molecular ccf
matrices which may be utilized to explore flow effects, utilizing noninertial
and inertial molecular dynamical quantities. Symmetry tests exist to prede-
termine which members of the set of nonvanishing ccf’s may exist for
t=>0.

In the laboratory frame (X, Y, Z) ccf's of the general type (A(¢)A(0))
are affected by the applied flow field. An example is

i{v(r] X w()v() X w(0))
= (v(1) X @(1)v(0) X w(0)) + (v(t) % e(r)v(0) x w(0)) (282)

Both the components on the right-hand side exist in frame (X,Y,Z) and
the effect of the flow field is to induce off-diagonal elements with D&
symmetry (Sections VII and VIII)

[+ 0 0 + + 0
0 + 0l=|+* % DO (283)
-{J n +- -n ﬂ +-|[J:'.'I-".E:I

The rotational flow changes considerably the time dependence of the
diagonal elements, inducing a nonzero value at r=0 for each. In the
absence of flow each element vanishes at + =0, and the properties of
this ccf alone give ample scope for linking rotational flow to molecular
dynamics.
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In frame (x,y, z) rotational flow also has an effect on the overall
symmetry of the simple ccf between molecular linear and angular veloci-
ties, the yz element, for example, is amplified to twice its field-free maxi-
mum, and the zy element reaches a minimum of —0.12. In contrast, the
effect on

Chu= [ beke) ¢ on{)e (D)) ] (284)
{x.v.z)

{{r e m}E}IFE{r2>IJ"1

is to decrease the amplitude of the diagonal elements, and different again
1s the behavior of the matrix

(285)

Cim [<mffl X ((t) X r(H)e(0) X r(0)) J
(x.y.z)

(@ X (0 X 1)) " (e x r)?)"
where there is little change in amplitude or time dependence as a result

of applying the field.
Another pattern of symmetry changes is produced in the cef matrix

e [ (() X ¥(1)¥(0)) ] i

(@ X v))2(2)1"

(x.v.2)

between the molecular Coriolis acceleration and linear velocity in frame
(x, ¥, z). The overall symmetry effect appears to be

(287)
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The amplitude of the diagonal elements is increased to about twice the
value in the field-free sample, and there appear to be extra off-diagonal
elements, which however may be noise, because they are symmetry-
disallowed.

Off-diagonal elements are produced by the field of acf’s in the labora-
lory frame (X, Y, Z). whose symmetry is D{”. These off-diagonal ele-
ments vanish in the field-free isotropic liquid and in consequence there is
scope for analysing external flow in terms of field-induced ccf’s of this
lype, using the laboratory frame directly.
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P. Other Types of Applied External Field

The examples so far have shown how the application of external, symme-
try-breaking, force fields produces new ccf’s in frame (X, Y, Z). The
discussion has been restricted to a few examples, and in general there are
many types of field which can be considered:

I. A magnetic field has the symmetry breaking properties of an applied
axial vector, such as the circularly polarized electromagnetic field, rotating

electric field, or rotational flow, and would be expected to induce similar |
dynamical effects in both frames of reference. In this case there is an

interaction via the magnetic field-dipole torque and the Lorentz force on
each dipole charge. Linear and nonlinear magnetic field effects can be
investigated by molecular dynamics computer simulation of a liquid sub-
jected to a magnetic field.

2. Nonlinear effects may be coded by considering the torque generated

by an induced dipole moment and terms to higher order in the electric
field strength E and magnetic field strength B of the electromagnetic field.
The same equations may be used within the context of classical physics

to investigate the effect of neutron radiation, provided that account is
taken of the greater transfer of momentum between neutron and molecule.
These considerations would, however, involve tensor traces such as that

of the molecular polarizability, hyperpolarizability, and so forth, which

arc usually unknown experimentally to any precision, except for some

limited number of small molecules. The anisotropy of the molecular polar-
izability appears in the conventional theory of the Kerr effect, and this
can also be investigated by computer simulation provided some way is

found of mimicking the anisotropy with pair potentials. This is not, how- |

ever, a straightforward procedure because polarizability is not pairwise
additive.

3. Gravitational fields are already used successfully in computer simula-

tions of flow past a disk in two dimensions or a cylinder in three. These

produce all the characteristics of macroscopic flow phenomena as derived
from continuum hydrodynamics, effects which are always accompanied by
new symmetries in ccf tensors at the fundamental molecular level, Two

major branches of physics are related in this way, hydrodynamics and
classical molecular dynamics.

4. There is a large and growing area of physics devoted to the molecular
dynamics simulation of transport phenomena using new types of algo-

rithm.
5. In chiral media the effects discussed above are supplemented by the

SIMULATION AND SYMMETRY IN SPECTROSCOPY 535

possibility of investigating the three symmetries represented by (R), (5),
and (RS).

Q. Removal of H-Bonding, the Computer Simulation®” of
Hydrogen Selenide

The dynamics of hydrogen selenide can be investigated in the liquid state
using ccf tensors. The dynamics of hydrogen bonding can be described in
liquid water in this way, using an approach which is intrinsically much
simpler than conventional theories of hydrogen bonding. A complete
picture of an H-bonded entity such as water can be built up using a few
members of the complete set of ccf’s, each one of which is an individual
signature of the complete dynamical process. The available analytical
theory can be made to attempt to follow the wealth of data from a
single computer simulation, but at the price of over-parameterization and
overwhelming mathematical complexity. The greatest single drawback of
the analytical theory is that it is not predictive, whereas the computer
simulation can produce the time dependence of correlation functions from
4 model of the pair potential that is much more realistic than its equivalent
in diffusion theory. As an illustration of the use of computer simulation
to investigate the effective removal of H-bonding from the dynamical
environment of a water-like asymmetric top, we describe results from the
recent computer simulation®”” of hydrogen selenide, a C,, asymmetric
top, H,Se.

Hydrogen selenide has one moment of inertia much smaller than the
other two, and the subsequent anisotropy of the molecular diffusion is
greater than that in water. Diffusion theory therefore requires the solution
of the Euler-Langevin equations and three rotational friction coefficients,
together with the translational Langevin equations in frame (x,y, z). This
is mathematically intractable and no further progress can be made without
dpproximation. From basic considerations, however, we know that the
selenium atom is almost two orders of magnitude more massive than the
two hydrogen atoms, causing pronounced anisotropy of both rotational
and translational dynamics. Computer simulation can be used to investi-
gate this in great detail, and also to follow the diffusional dynamics from
liquid to compressed gas. This can be achieved by use of the atom-atom
Lennard-Jones potential, 2’ from which several cef's are obtainable using
good-quality runs over 6000 time steps. The molecular dynamics were
Simulated in Ref. 270 at several state points and Fig. 45 illustrates a direct
!abnratnry frame ccf, (v(1)j(0)), as a function of molar volume. As this
IS decreased from 180 em*/mole in the compressed gas to 40 cm’/mole in
the liquid, the amplitude increases by a factor of about 10. The amplitude
Is plotted against molar volume in Fig. 46, and it is clear that at high
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number densities there is considerable cross correlation. Figure 46 is a

plot of the height of the first peak against molar volume and the transition
from compressed gas to liquid is marked with a dashed line. As the line
1s crossed there 1s a discontinuity in the dependence of the height of the
first peak on the molar volume, that is, there is a pronounced change of
slope. The phase transition is measurable through the fact that the total

energy of the system changes from positive (compressed gas) to negative
(liquid). At constant temperature the change of slope becomes apparent

at a molar volume of 150 cm®/mole, which is the point at which the total
energy of the system becomes negative. In the compressed gas the total

(e}

Figure 45. Ccf between linear and rotational velocity in hydrogen selenide in frame (X

Y. Z) as a function of molar volume at 206 K: 3
40 em’/mole; () 20 em¥mole. (@) 180 cm'fmole, compressed gas; (b)

energy is positive, and in the liquid, negative until about 20 cm’/mole is
reached, when it once more becomes positive due to the high external
pressures (up to 250 kbar) needed to sustain the sample at 20.0 cm®/mole
at 243 K. In this state a further phase change has occurred fn;m liquid to
an*_mr]'::huus solid. Cross correlation between the linear and rntatim?al vel-
ocity is therefure sensitive to molar volume, and to the mean intermolecu-
Iglr Scparation. At the phase change between the compressed gas and
liquid there is a discontinuity in the height of the first peak as a function
of molar volume which coincides with the point at which the total ener
becomes positive from negative. -
. ":"hr:: nvera}t pattern ig similar for the ccf between orientation (the dipole
gfi. :S}sir::hnear velocity. The intensity once more increases as a function
Elef-: the frame (x, Yy z) the simple ccf (v(1)w(0)) has two nonvanishing
ents whose amplitude depends on the molar volume. The fundamen-
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tal molecular dynamics of hydrogen selenide are heavily influenced by
cross correlation, which becomes stronger with decreasing molar volume.

The lack of hydrogen bonding in hydrogen selenide is revealed most
clearly by higher-order ccf’s in frame (x, y, z), whose diagonal elements
are anisotropic because the diffusional characteristics are primarily deter-
mined by the mass distribution within the molecule itself, and not from
intermolecular hydrogen bonding as in water. An extreme example of
such anisotropy is methanol,”’* where one diagonal ccf is a thousand times
greater in amplitude than the other two.

R. Some Consequences for Quantum Mechanics

For matrix-isolated small molecules such as HD, the rotational spectra
generated from the Schrodinger equation are perturbed by mixing with

quantized translational lines which appear from the periodicity imposed
by the solvent cage. Quantized rotation-translation features occur in the

final spectrum. There are shifts in rotational levels, broadening, and dis-
turbance of the rotational selection rules. The existence of the set of
classical ccf’s in frames (X, Y, Z) and (x, y, z) implies new types of fine
and hyperfine structure in the electromagnetic absorption, dispersion, and

scattering spectra of liquids and gases, or lattices such as HD in solvents

such as argon. These new features could lead to specific and observable

information on the nature of rotation to translation to vibration coupling

in the liquid state of matter.
The set of nonvanishing ccf’s also exists in the compressed and dilute
gas states. As dilution proceeds the classical broad-band features typical

of a moderately compressed gas give way to quantum absorptions. Under

certain conditions, solutions of dipolar molecules in rare gas matrices at
low temperatures, the infrared and Raman spectra are quantized. The
existence of classical ccf’s means that in the dilute gas the translational

and rotational wave functions will be mutually perturbed and split the

energy levels. Usually, the eigenvalues of linear momentum from Schrod-
inger’s equation form a continuous spectrum from minus infinity to infin-
ity, but in rare gas lattices translational energy levels may become observ=
able at intervals of about 100 ecm™'. The levels have been reproduced
using a particle in the box model due to Friedmann et al.*”* and the
rotational diffusion is linked to the translational. This means that the
corresponding wave functions and inner products must also exist in frames
(X, Y, Z) and (x, y, z). Usually this kind of perturbation in a compressed
gas is thought to result merely in broadening, but under favorable circum-
stances translational energy levels may be observed.
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S. Analogies between Quantum and Classical Mechanics

Consider a linearly independent set {Ai0)}, j=1,...,n of real-time de-
pendent variables of a given n particle system. The set of all possible
dynamical variables is a Hilbert space. The ensemble thermodynamic
average in this space, ( ), is an inner product, so that

(A, B) = (A(0)B(r)) (288)

wherf: A and B are separate dynamical variables. The equilibrium canoni-
cal distribution function is '

exp(—H(Iw)/kT)

L) =
J{Fo) [ exp(—HIKT)dT,

(289)

wherf:_l"u is the phase space variable and H is the Hamiltonian. With this
definition the inner product becomes

(A%, B) = f dT'f(T) B(F) A™(T) (290)

The state variable A obeys the Liouville equation
A=ilA (291)
which has a formal solution
A(T, 1) = exp(iLt)A(T, 0) (292)
providing a definition of the time acf
C(1) = (¢“'A, A™) (293)

The scalar product used in quantum mechanics and the time-correlation

functions are formally equivalent. More generally, two variables A and B
can be used to construct the time ccf

C(1) = j:ﬂ‘f{[*];-l “(D)e'™ B(T) (294)

In analogy with quantum mechanics the two variables 4 and B are ortho-
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£

gonal if (A", B) = 0. The propagator ™' is an orthogonal operator, and

by analogy
f1 = ga(I) (295)

is a wavefunction. The time correlation function C(¢) is the expectation
value of the propagator in the state defined by the wavefunction. The set
of nonvanishing ccf’s in classical mechanics implies the existence of wave
functions in quantum mechanics.*™

Friedmann and Kimel*” have considered the far infrared spectrum of
HD in an argon lattice, and have accounted for the quantum mechanical
mixing of rotational and translational wave functions in great detail. The
effect of the correlation between wave functions is to give zero-point
translational energy to the rotational quantum states and to raise the
rotational energy levels. The cross correlation doubles the rotational band
widths of HD with respect to those of pure hydrogen or deuterium in argon
lattices, where the spectrum is Raman active. The rotational selection rules
are changed considerably as a result of perturbation from the translational
motion. Similar effects are also observed in other small molecules such as
water trapped in clathrate cages.

There are quantum mechanical equivalents of the noninertial linear
velocities and accelerations, and the resulting spectral effects should be
observable directly under the right conditions. In analogy with the well-
known Stark and Zeeman effects this fine structure would be split into
substructure, signalling the appearance of new wave functions due to loss
of isotropy in frame (X Y, Z). Extra information would also be available
for chiral molecules.

T. Rod-like Molecules and Liquid Crystals

Liquid crystals can be made anisotropic' by the application of relatively
weak external electric and magnetic fields, and these effects are always
accompanied by the induction of a new set of nonvanishing ccf’s. Several
long-rod diffusion theories are available,”””*"® which have recently been
tested against new simulation data for the long rod methyl hexa tri yne®”’
using 6000 configurations and a site-site pair potential. The Doi-Edwards

theory”™ is relevant for dilute gas long rod ensembles, and was tested

against a simulation””” in the gas phase at 150 cm*/mole. The computed
pressure in this condition was 100 = 200 bar. The usual range of acf’s and

ccf’s was supplemented by the type
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used by Frenkel and Maguire® in their theory of hard-rod diffusion.
Hcre_e. Is the initial orientation vector of each molecule in axis I of
the djppie moment. A closed solution for this acf is available for direct
comparison with simulation.

A second state point was used in the liquid at 50 K and 130 cm*/mole.
Some alignment was observed in the liquid which appears to foreshadow
the develqpment of a nematogen. With a small sample of 108 molecules,
howemiﬁr. It Is not meaningful to see the alignment as characteristic of the
Nematic phase because swarms in the latter are greater by far than the
bn:-_: Size used in the simulation. These swarms define the director axis
whu::h i1s aligned by an external electric or magnetic field. 1

Figure 47 is a comparison of C,4 from the simulation and the equivalent
from the Frenkel-Maguire theory for different x in

Croa = 1/cosh(xr) (297)

;ﬂie theory fails to reprgduceh the major features of the simulation. for
Xample, t?}E long negative tail and superimposed oscillations. The root
:-:ﬂ;se of this seems to hE: that thf; approach seems to rely on approximation
ar too early a stage in the hierarchy of memory functions.
tat'The Dp:—l?dwards theory _is basic_all_*,r a conventional Debye type ro-
lonal diffusion approach with the inertial term missing. It is unable to
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Figure 47. (a) Comparison of C,,, from the computer simulation with two results from
the Frenkel Maguire theory of hard rod diffusion for different x (see text). Compressed gas.
(k) Individual computer simulations of elements of C,.; in frame (X, ¥, Z). Compressed

gas.

describe the set of nonvanishing ccf’s in frames (x, v, z) and (X, Y, Z) and
has no means of giving even a qualitative description of the statistical
correlation between rotation and translation.

U. Survey of Results and Future Progress

Progress away from the empirical and descriptive approach to the phenom-
enon of molecular diffusion can be made with an appreciation of the set
of nonvanishing ccf’s. We have attempted to show in the first six sections
of this chapter that the traditional approach is limited in comparison with
simulation and data now available. In developing the theory further,
symmetry is a fundamental consideration, and the principles of group
theoretical statistical mechanics are developed and applied in the next two

sections.

VII. GROUP THEORY AND STATISTICAL MECHANICS

At the end of the 19th century, Neumann,*”® in a treatise on the luminifer-
ous ether, recognized that there is a link between the symmetry of proper-
ties on the the macroscopic scale and the fundamental. The latter was not
accepted universally at that time to be molecular in nature. This link is
sometimes known®” as Neumann's Principle, but more often as Curie’s
Principle.*® These principles were recognized well before the emergence
of Einstein’s molecular explanation for Brownian motion, and preceded
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the development of correlation functions by more than thirty years. In
this section they are extended and applied to molecular dynamics.

We have seen that computer simulation produces a pattern of statistical
cross-correlation which is outside the scope of the customary theoretical
approach of Section I. Simulation has produced results that the analytical
theory had not been able to anticipate. A simple static electric field, for
example, induces a statistical cross correlation between the linear and
angular velocities of a diffusing molecule. Does the symmetry of the
clectric field vector in the laboratory frame (X,Y,Z) tell us anything
about why this particular ccf should appear out of the infinite number
possible? We have introduced the frame (x, y, z) fixed in the diffusing
n?ulecule, and have seen that the pattern of statistical crosscorrelation is
dlfferent from that in frame (X, Y, Z). What use can be made of molecular
point group theory in this context? What form does the Neumann-Curie
Principle take in frame (x, y, z)? Can we devise a form of the principle as
a guide to the effect of external force fields in both frames?

‘Given affirmative answers to these questions we would have constructed
guidelines to the symmetry properties®® > of molecular diffusion in en-
sembles, guidelines which can lead to unprecedented experimental insight,
new ways of explaining well-established observation, and new experi-
mental techniques.

A. Point-Group Theory in Frame (X, Y, Z)

In the majority of circumstances use is made of point-group theory®®'~2%5
because the ensemble lacks translational symmetry. (In the molecular
trj,fslalline condition we would have to deal with space groups because
unit cells repeat themselves periodically.) Molecular liquids at field-free,
revelrsihle* thermodynamic equilibrium can be considered as spatially iso-
{ropic, properties measured in each axis of frame (X, Y, Z) turn out to
be the same. There is no translational symmetry in an isotropic atomic or
molecular ensemble, whose symmetry is therefore that of a point group,
the three-dimensional rotation-reflection group R;(3). This realization is
the_ key to the well-developed mathematical theory of point groups and
their irreducible symmetry representations.?***5 In this language, the
N?umann-d{?urie Principle can be written as follows, and becomes the first
principle®** of group theoretical statistical mechanics (gtsm).

B. The First Principle (Neumann-Curie Principle)

The thermodynamic ensemble average (ABC . . .) exists in the laboratory
fram_e (X,Y,Z) if the product of symmetry representations
F(A)L(B)I'(C). .. of the molecular quantities A, B, C, ... contains at
least once the totally symmetric irreducible representation DY of R,(3).
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Note that this statement links implicitly concepts on the macroscopic
scale, characterized by the thermodynamic average ( ), with equivalents
on the fundamental atomic or molecular level, characterized by the ir-
reducible representations I'. Both Neumann and Curie achieved this with-
out the help of point-group theory, but for the same reason their ideas
could not be built upon very easily in terms of D representations (Section
V).

C. D Representation in Frame (X, ¥, Z)

The point group R,(3) is the symmetry group of isotropic three-dimen-

sional space. Its irreducible representations are D.”,..., DY" and
DY, ..., D", respectively. These are even (g) and odd (u) to the parity

reversal (X, Y, Z)— (—X, Y, —Z). A scalar in this notation has symme-
try DY”, a pseudo-scalar is DY, a polar vector such as v, the center-of-
mass velocity, is D}’ and an axial vector such as angular velocity (w) is
D}". The Neumann-Curie Principle implies that in isotropic environments
such as those of atomic or molecular ensembles, the symmetry of the
ensemble average (A) over the physical property A will be that of A itself,
either in the laboratory or molecule fixed frames. The symmetry of the
ensemble average (AB) is given by the product of representations
['(A)I'(B), where I' denotes the symmetry representation in the point
group of interest. The latter 1s R,(3) in frame (X, Y, Z) and the molecular
point group in frame (x, y, z). Thus, the average (AB) over the product
of molecular physical properties AB exists in an isotropic molecular ensem-
ble if I'(A)I'(B) contains the totally symmetric representation (tsr) at least
once.

In R,(3) the tsr is DY, and ensemble averages over scalars of this
symmetry exist in field-free isotropic equilibrium. Ensemble averages over

pseudo-scalars exist in chiral media, and have opposite sign for each

enantiomorph. Ensemble averages over both polar and axial vectors van-
ish at isotropic equilibrium because the symmetry representations of these
quantities do not contain the tsr. These considerations can be extended
to higher-order tensors and also to products, such as time-correlation
functions. Thus, the generic autocorrelation function (A(0) - A(1)) exists in
frame (X, Y, Z) because the product of representations

F(A)I(A) = DY” + DY + DY (2968

contains the tsr once, representing the trace of the matrix product
(A(0)A(r)). In Eq. (298) we have used the Clebsch—Gordan theorem

D{H}D{m.‘r = pDnrm ...+ ﬂ“”“’”“ (299)

and
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to expand H?E: product of symmetry representations on the left-hand side.
The expansion on the right-hand side of this equation contains three
terms, the scalar, vector, and tensor products, respectively, DS”, D{"

(2) : :
I:;m:l D,,d - The vector product of two vectors is another vector, and can be
enote

Vector product part of (A()A(0)) = (A(r) x A(0))

i i k
=(|Ax() Ay() Az)]|) (300)
Ax(0) Ay(0) A(0)

The overall symmetry of this vector is D;’. Here i, j, and k are unit
vectors in the axes X, Y, and Z, respectively. If we examine an individual

component of the determinant on the right-hand side of Eq. (300), for
cxample the j-component, we find |

{{A(r) x A0)); = {Az()Ax(0))— (Ax(1AZ(0)}] (301)

with similar results for the other components,

The overall symmetry is however D", and does not contain the tsr.
ﬁuccurd:pg to ]JTEFIEIP]E 1 these averages all vanish, therefore, at field-free
(1sotropic) equilibrium, but by principle 3, developed later, may exist

In frame (X, Y, Z) in the presence of an external field of the correct
symmetry,

Similarly, the tensor product of two vectors is a tensor, a 3 X 3 matrix
the dyadic product |

Tensor part of (A(1)A(0))

Ax (A (0ii" A.t'“)a‘h'{{}}ijr Ax(AZ(0)ki" T
={ | AvDAx(0)ji" Ay (DA, (0)jj7 Ay (DAZ(0)kj" (302)
AZ(DAx(0)ki"  AL(1)A,(0)kj” A(NAZ(0)kk™

where

._0ifi=j;

as T
1
J Lif i

(303)

50 on. The overall symmetry in Eq. (302) is the symmetric second
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rank D{” and does not contain the tsr, so that these ensemble averages
all vanish at field-free equilibrium. The matrix is symmetric (D rank 2) so

that there is index symmetry in the off-diagonal elements.

D. Point-Group Theory in Frame (x, y, z)

In this frame the molecular point group is the starting point for the
symmetry analysis. Principle 1 can be adapted for use in frame (x, v, z)

and becomes the second principle of gtsm.
1. Principle 2

The thermodynamic ensemble average (ABC . . .) exists in frame (x, y, z)
of the molecular point group if the product of symmetry representations
I'(A)I'(B)I’(C) . .. in this point group contains at least once the totally
symmetric irreducible representation of the molecular point group itself.
The second principle links quantities on a macroscopic scale to those
on the fundamental, but unlike principle 1, the averaging is carried out
over properties projected onto frame (x, y, z). In order to use molecular
point group theory, the D representations of frame (X,Y,Z) are
mapped®”'~* from R,(3) on to the molecular point group. For each D
representation there is an equivalent in the molecular point group. For
example, the totally symmetric irreducible representation Dy’ maps on to
the representation of a scalar quantity in frame (x, y, z). A collection of
such representations is given in Table II for scalars, pseudoscalars, and
axial vectors, and for products of vector representations. This table is

further explained later in this chapter.
E. The Effect of Fields—Principle 3

The symmetry effect of external fields may be embodied in the third
principle, which is as follows.

1. Principle 3

If an external field of force is applied to an atomic or molecule ensemble
which subsequently reaches a steady state in the presence of that field,
new ensemble averages may be created whose symmetry is that of an
applied field.

An applied field of force has its own symmetry signature in a given
point group, and in frame (X, Y, Z) this is a D representation. By principle
3 ensemble averages with the same D representation may appear in the
N-particle ensemble at the field-on steady state. An electric field, E, for
example, is a polar vector of D’ symmetry; a magnetic field B is an axial
vector of D" symmetry, and a shearing rate of the type dvx/dZ has the
symmetrymi WD & DU DS,
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In addition to the ensemble averages that may exist at field-free equilib-
rium, applied fields set up new ensemble averages in frame (XY, Z)
whose symmetry, by principle 3, is that of the field. For example, an
electric field sets up averages of the type (@(r) % v(0)) similar to those of
Eq. (300), but whose symmetry is D’. These have been detected by
computer simulation in the form of component ensemble averages which

have the property

E}r induces {Wx{f]l'-’z[u;]} = _{Wz{f}l-'x (GJ} (3{}4}

and similarly for the X and Z components of the applied field. These are
antisymmetric time ccf’s which vanish at field free equilibrium, and have
overall symmetry D{". They were found by computer simulation and are
not considered in the conventional theory of diffusion.

Similarly, the response of an ensemble of atoms to shear is described
by a combination of D (vector) symmetry and a tensor symmetry D&,
For a strain rate dvy/dZ, which is traceless (i.e., in which the D" compo-
nent is zero) the induced ensemble average is a weighted combination.

F. Symmetries in Frame (x, y, )

The D symmetry of any quantity in the laboratory frame (X, Y, Z) may
be expressed in the molecule fixed frame (x, y, z) by mapping irreducible
representations from the R,(3) point group on to the molecular point
group. Table II gives a selection of symmetry mappings on to 36 of the
molecular point groups, ranging from lowest symmetry (C,) to the high-
symmetry molecular point groups such as Oy. The significance of such
mappings is summarized in principle 2.

Table II describes the symmetry of a scalar, pseudo-scalar, polar, and
axial vector, and the product AA of two vectors in each molecular point
group. The latter may be a product either of two polar or of two axial
vectors, and includes the scalar, vector, and tensor components as de-
scribed in the heading to column six of the table. Column 2 of the table
gives the tsr of each point group, and the other columns record the number
of times the tsr occurs in the quantity being described in each column.
Using principle 2 we can see, for example, that the existence or otherwise
of ensemble averages in frame (x, y, z) of each point group is also deter-
mined by the number of occurrences of the tsr. Taking the C;, point
group of water as an example the table, used with principle 2, shows that
the ensemble average (V). may exist in frame (x,y,z) because the
molecular linear acceleration is a polar vector whose symmetry representa-
tion in the point group Ca, is given in column 5. This includes the tsr
once, and by principle 2, one scalar component of the ensemble average
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of linear acceleration may exist in frame (x, y, z). To find which compo-
nent, we refer to the character table®'*** for C,, and find that A, refers
tu1th~:: Z a:-ri‘:;, We conclude that the ensemble average (7. ) may exist by
pf'mcl_ple 2 in frame (x, y, z). This finding is overlooked by conventional
5:1|ffusmn theory, and it is important to note that the same average vanishes
in frame (X, Y, Z) by principle 1. For a complete picture of statistical
processes we need both frames of reference. This can be achieved with
combined and systematic use of computer simulation and gtsm.

In other molecular symmetries more than one scalar component of this
type may exist in frame (x, y, z), depending on the number of occurrences
of the tsr. In the chiral group C,, for example, there are three occurrences
of the tsr both for axial and polar vectors (columns 4 and 5 respectively)
and this means that the x, y, and z scalar ensemble averages over both
types of vector may exist in frame (x, y, z). In each case each average is
mr;l;pendent, and each has a different magnitude. By principle 1 they all
vanish, however, in frame (X, Y, Z). In a high-symmetry point group such
:as Ty, for example that of methane, there are no occurrences of the tsr
in columns 4 and 5, and in consequence there can be no surviving scalar
components of ensemble averages over vector quantities in frame (x, y, z).
In (:".4,, ‘the point group’s tsr appears once in column 4, but not in column
5, signifying one component ensemble average over an axial vector such
as the angular acceleration in frame (x, y, z). Note that in the chiral point
groups C,, and D, there are always occurrences of the tsr in both columns
4 and 3.

The number of occurrences of the tsr of column 2 in column 6 signifies
the number of independent scalar elements that may exist in frame (x, v, z)
of the ensemble average (AA)..,.-). In the molecular point group of lowest
symmetry, C1, nine scalar components of this ensemble average may exist
in frame (x, y, z). For the correlation function (A(f)A(0))., ., each may
have a different time dependence, even at field-free equilibr.i‘u.;n‘ In frame
(X, Y Z) in contrast, principle 1 implies that only the autocorrelation
function may exist, with one independent time dependence. There is only
one occurrence of the tsr in frame (X, Y, Z), but no less than nine in
frame‘ (x, y, z) for the same diffusion process. These are the three diagonal
and six off-diagonal elements, all with different time dependencies. All
may change sign from one enantiomorph to the other.

In point groups of higher symmetry, such as Cs,, there are fewer
occurrences of the tsr in column 6, indicating the existence of fewer
independent elements of the ensemble average. In C,, there are three
Occurrences of the group’s tsr in column 6, and a little group theory is
needed to interpret their meaning. The result in column 6 for this point
group, as for all point groups, is obtained using products of irreducible
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representations.”'** The product of representations for two polar vec-
tors, for example, is

(A, + B, +B)(A, + B, + B;))=AA, + AB, + AiB,+ BlA, + B\B,
+ BB>; + BA, + BB, + B;B, (305)

from which
AA, =A; BB, =A,: B;B, = A, (306)

using the rules®'* for products of irreducible representations. The
character table for C;, finally shows that the products in (306) represent
the three ensemble averages

(A0AL0)); (A (0A0));  (A.()A(0)) (307)

each with a different time dependence in frame (x, y, z). This is verified
precisely by computer simulation.'™ In the laboratory frame there is only
one ensemble average, the autocorrelation function with the symmetry of
the tsr D",

Similarly, we may interpret the significance of the tsr occurrences in
the other point groups of Table II as they appear in column 6. In some
high-symmetry groups such as T, there is only one occurrence, signifying
the one independent element

(A1) A(0)) = (A (1) A,(0)) = (A.(1) A.(0)) (308)
In other point groups such as (s, there are two occurrences, signifying
(A:(1)A:(0)) # (A,(1)A,(0)) = (A.()A(0)) (309)

that is, two independent elements. In some of the low-symmetry point
groups off-diagonal elements may also exist in addition.

G. External Fields: Symmetry

The effect of external fields on averages such as these is to change their
individual time dependencies. The overall symmetry, in contrast to frame
(X,Y,Z), remains the same, and is given by Table II. It is essential
therefore to investigate the overall N-particle ensemble dynamics in both
frames for a complete understanding of the diffusional process.

At field-on equilibrium in the presence of shear, for example, we have
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asymmetric averages induced in frame (X, Y, Z) (Section VIII) which are
part of the overall ensemble average (vv). The latter’s symmetry in frame
(x,¥,z), however, remains the same. and is given in column 6 of Table
2. For each molecular symmetry, therefore, the signature of shear in frame
(x,y, z) is different. In frame (X, Y, Z) its symmetry signature is always
the same, and is the sum of D symmetries at the head of column 6. We
EﬂnFIUdE that there is a rich variety of behavior in molecular liquids
subjected to couette flow. As usual, symmetry patterns should be investi-
gated in both frames of reference.

Similar considerations apply in frame (x,y, z) for molecular liquids
under the effect of an electric or magnetic field. The external field changes
the time dependencies of the individual ensemble averages in frame
(x, y. z), but leaves the symmetry patterns of Table II unchanged. In frame
(X, Y, Z), however, the fields induce new ensemble averages according to
principle 3.

H. The Weissenberg Effect

The Weissenberg effect is observed experimentally*®*% as the pressure
(and therefore flow) imparted to a sheared liquid in an axis perpendicular
to that of the applied shear plane. It is important in industrial contexts,
because the perpendicular flow is caused by a pressure great enough to
cause damage, for example, to rollers in the print industry.

The first explanation for the effect has been reported fully elsewhere®
and is due to new cross correlation functions between elements of the
pressure tensor (or stress tensor) in a sheared N-particle ensemble. These
can have asymmetry properties described in Section VIII. The existence
of these new elements was anticipated by gtsm and confirmed by simul-
ation.™™ They are apparently unknown to conventional rheology and were
ﬁmt characterised by computer simulation. Their description in conven-
umjna] terms probably requires new constitutive equations and phenomeno-
lnglcal parameters. However, it is clear that the underlying cross-corre-
I{tt:ﬂn functions can be observed experimentally by using computer
simulation to match experimental data on Weissenberg flow.

I. Chirality*”

In a chiral medium (Section VI), pseudoscalar quantities change sign
between enantiomorphs. Barron®” has recently provided a new definition
cff a chiral influence, which must be odd to parity inversion and even to
time reversal. In magnetochiral dichroism,**>" (which we consider in
more .depth later in this section), the chiral influence is a combination of
a static magnetic field B, D", and the propagation vector k (D) of
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unpolarized or linearly polarized electromagnetic radiation. The symmetry
signature of this chiral field is therefore

I'(B)'(k) = DY + DIV + D& (310)

being again a sum of scalar, vector, and tensor components of the type
discussed already. These components are all negative to parity inversion
and even to time reversal. If the applied chiral influence is made up of
colinear vectors, only the D};” component is expected, otherwise principle
3 mmplies the appearance of averages of all three types in general in
response to a chiral external force field.

J. Nonequilibrium: New Fluctuation—Dissipation Theorems

The three principles imply the existence of new fluctuation—dissipation
theorems, an ideal vehicle for the development of which is the recent
theory of Morriss and Evans,’'” valid for arbitrary applied field strength.
We refer to this as Morriss—Evans theory. It is an important step forward
in our understanding of nonequilibrium molecular dynamics and provides
many new insights to the way in which molecular and atomic ensembles
respond to applied force fields of arbitrary strength.

The three principles are generalized in turn by this theory to nonlinear
and transient (nonequilibrium) processes.

The main result of the theory is the relation

(B) = (BO) ~ 1= [ (B(s)J(0)) ds 311)

k

where B(r) is an arbitrary time-dependent phase variable of the molecular
(or atomic) ensemble, and where F, and J are, respectively, the applied
force field and dissipative flux, defined by

GiD JF, (312)
dt
Here H, is the Hamiltonian. The integrand on the right-hand side of Eq.
(311) is a transient time-correlation function, which plays a major role for
nonlinear, nonequilibrium statistical mechanics analogous to the partition
function in thermodynamics and equilibrium statistical mechanics. Equa-
tion (311) generalizes the Green—Kubo relations’'" and links the nonequil-
ibrium value of a phase variable (the left-hand side) to the integral over
a time-correlation function between the dissipative flux J(0) in the equilib-
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rium state and B at a time s after the external field F, has been turned
on. One example of the theorem at work (Section VIII) is the relation

r

__$Py(n) _V
n(r) = — ; - T ) (Poy(5) Poy(0)) ds (313)
fnr the }fis_cnsim which reduces to the well-known Green-Kubo relation
in the limit y— 0. Here ¥ is the strain rate and P,y i1s the off-diagonal
component _n:}f the pressure tensor. Equation (313) iﬁvﬁ[ves a time-corre-
lation function between P,(0) from the equilibrium system and P, (s)
fmm_rhf perturbed system, and is valid for arbitrary strain rate Vv ?11&
Morriss — Evans theorem thus deals indiscriminately and {:ﬂnsistentI}: with

linear and nonlinear resp '
onse, thus removing the need for linear r
ind n es
dpproximation. o

K. Application of the Theorem to Dielectric Relaxation and
the Dynamic Kerr Effect

We consider a static electric force field E applied to a dipolar molecular
ensemble. It is well known that the field interacts with each molecule
through the latter’s multipole moments, that is, the dipole quadrupole
ﬂctl}pﬂ[:&, and so on. Without loss of generality we can cuns,ider that arE
of the interaction between field and molecular dipole moment, Th]I: is
characterized by the torque —i X E, where p is the molecular dipni;:

moment. The energy p+E supplements the system Hamiltonian. Thus
Eq. (311) reads ,

E g
(B) = (B() - 2 f (B6)inA0) d (314)

whc:rft: f.j.-:g is the‘time derivative of u,, and is known as the “‘rotational
velocity”. Equation (311) thus reads, for example,

. E o .
Gzt = - 2 f (i) (0)) d (315)

In Eq. (314), B(1) is in general any phase variable of the N-molecule

gr;s_emb]e: and this equation allows us to take account of the set of nonvan-
ishing cef’s induced by E, of arbitrary strength, £, # 0. The following are

examp{es of the new fluctuation-dissipation theorems governing dielectric
relaxation and the dynamic Kerr effect.

Setting B(r) to uz, we recover a generalization of the fluctuation dissip-
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ation of linear response theory as customarily applied to dielectric relax-
ation,

()} = - f—T (pAs)iz(0)) ds (316)

relating the orientational transient (uz(f)) to the nonequilibril..lm time-
correlation function which is the integrand on the right-hand side. Tra-
ditional experimental methods use uE < kT, but Eq. (316) shows cle:farly
that for any applied electric field strength the orientational fall transient
is dependent on the field strength. Linear response l'h'Eﬂt‘}' equates the
time dependence of the fall transient and the equilibrium orientational
autocorrelation function. The traditional approach also has no method of
explaining why time ccf’s, such as that between linear and angular l"[‘l{llE:Cl..l-
lar velocity exist for E # 0 and vanish if and only if E = 0. However, this
is easily accommodated by the new theorem using, for example, B(t) =
v(1)|w(r), giving the relations

@) = - fﬂ (v(s) - ju(0)) dis (317)
and
E - ; ;
(e =22 f (02(s) - f(0)) ds (318)
kT Jo

The fluctuation—dissipation theorem of type (317) shows the presence of
a nonvanishing velocity transient due to the fact that the time ccf
(v(r) - ;,(0)) exists in frame (X, Y, Z), both for E # 0 and E = 0 from Fhe
first principle of group theoretical statistical mechanics. The ﬂuclqalfun
dissipation theorem of Eq. (318) shows the existence of a nonvanishing
angular velocity transient due to the fact that the time ccf {m(r)-;‘u,lgﬂ))
exists in frame (X, Y, Z) for E # 0 (third principle of group thenremf:ai
statistical mechanics), but vanishes in this frame when E = 0 (first prin-
ciple). The transient ccf’s exist for 0 < s <t in both cases. We can u!:tam
a third expression merely by multiplying Egs. (317) and (318), that is,
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E 2 t
{v{r}}{m(r}>=(k—z) I <v(s)-ﬁ(ﬂj}dsf{m{s}-.i(U}}ds (319)
i/ Y 0

which involves the product of translational and rotational transients.

L. Experimental Observations

The new fluctuation-dissipation theorems can be investigated by computer
simulation for all £, but also provide an opportunity for the experimental
observation of transient averages caused by cross-correlation functions.
An interesting example is (v(¢)). This vanishes both at field-off thermodyn-
amic equilibrium and field-on equilibrium (the steady state) because of
time-reversal symmetry. However, it may exist as a transient, and should
be observable using conventional apparatus to pulse the molecular ensem-
ble with an applied E,. A small net translation should be transiently
observable, akin to the well-known phenomenon of dielectrophoresis®
usually attributed to nonuniformities in the applied electric field, that is, to
field gradients. Similarly, Eq. (318) shows the existence of a nonvanishing
transient angular velocity, which may be observable by techniques sensi-
tive to molecular angular motion, such as far infrared absorption or nu-
clear magnetic resonance relaxation. The transient angular velocity is
intuitively understandable in terms of a removal of external torque.

M. New Dichroic Effects and Absolute Asymmetric Synthesis

The definition of chirality recently provided by Barron®”® and alluded to
already in this section implies that the basic requirement for a combination
of two vector force fields to be chiral is that one transform as a polar
vector and the other as an axial vector and that both be time even or time
odd. Thus, at reversible thermodynamic equilibrium.*'? no combination
of a static magnetic and static electric field can be chiral, (Note that such
a combination can be chiral if one field is made time-dependent, however.)
At thermodynamic equilibrium, no combination of static B and E can be
effective in absolute asymmetric synthesis, >34 the preferential produc-
tion of an enantiomer from a prochiral reaction mixture in what would
otherwise be a racemic product.

True chiral influences cause dichroism, an example being magnetochiral
dichroism*™ and spin-chiral dichroism.*'® The former is independent of
the direction of polarization of the electromagnetic field vector x, but
reverses if the latter reverses with respect to B. Principle 3 suggests that
there is a molecular dynamical mechanism which always accompanies both
effects, and which can be observed conversely by the measurement of
shifts in the power-absorption coefficient caused by dichroism, or by the
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associated birefrigerence. This has the same D symmetry at the depicted
on the rnight-hand side of Eq. (310), a symmetry which is also generated
by the ccf (v(1)@(0)). This sum of D representations includes pseudoscalar
D, which is invariant to proper rotation in the space of hte complete
sample,”” but which has no directional properties. The pseudoscalar is
negative to parity inversion, however, and is the scalar product of an axial
and polar vector. Natural optical rotation®” is a time-even pseudoscalar.
The symmetry in frame (X, Y, Z) of the ccf (v(r)@(0)) is the sum of the
pseudoscalar, a polar vector, negative to parity inversion, and an ungerade
second-rank tensor. By principle 3 of gtsm these are all generated by
magnetochiral dichroism, which is therefore accompanied by molecular
rotation—translation coupling, and is a means of its experimental measure-
ment in the laboratory frame.

Note that the Faraday effect (optical rotation caused by a static mag-
netic field), does not induce the ccf between linear and angular molecular
velocity because the magnetic field has D! symmetry and cannot, by
principle 3, induce effects with ungerade parity-reversal symmetry.

N. Spin-Chiral and Other Dichroic Effects from Principle 3

A true chiral influence is capable of absolute asymmetric synthesis, and
it 1s interesting in consquence to look for other types of true chirality by
examining appropriate products of D representations in frame (X, Y, Z).

One of these is spin-chiral dichroism, caused by a combination of k
with angular velocity .*"” The angular velocity may be obtained by
spinning an electric field around the direction of the unpolarized laser,
for example, with the resulting dichroism detected with a Rayleigh refrac-
tometer as suggested by Barron and Vrbancich,’'® the laser beam being
sent down the arms of this instrument in opposite directions relative to
spinning electric fields in each arm. Another experimental alternative is
to send circularly polarized laser radiation in opposite directions in each
arm.

By Principle 3, a true chiral influence is accompanied in general by all
nine elements of the ccf between linear and angular velocity, the **propel-
ler” function. An estimate of the magnitude of magnetochiral dichroism
has been given by Barron and Vrbancich®'® who gave a conservative value
of about 107", A similar effect is expected for spin-chiral dichroism, and
can also be investigated by computer simulation in principle.

O. Symmetry Effects in Liquid Crystals

The principles of group theoretical statistical mechanics can be applied®'’
to the molecular dynamics of nematogens and cholesterics with point

groups
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C:ﬂuq D:ﬂh‘ C:l:'q and D‘.l'_

and the effect of alignment with an external static electric field can be
treated in terms of new ensemble averages that take the symmetry of the
applied field and make swarm averages directly visible in the laboratory
frame (X, Y, Z). The symmetry arguments lead to experimentally observ-
able effects and to characteristic ensemble averages of swarm dynamics
which should be reproducible numerically by computer simulation.

In a shearing field (Section VIII) which causes a shear strain of the
type dux/dZ, for example, where vy is the strain velocity, new time
asymmetric cross-correlation functions are observed>™ with the (traceless)
D symmetry

(1) (2)
Bt ¥ B

The shea_ring field makes visible directly in the laboratory frame (X, Y, Z)
time antisymmetric ensemble averages of D{" symmetry and time-sym-

metric ensemble averages of D symmetry. Examples are the velocity
cross-correlation functions

(Wwx (Mvr)) = —(ux (r)vz(0)) ':ﬂ;”]
(x (Dvz(n)) = {vy (v z(0)) {ﬂ.f })

(320a)

The new cross-correlation function between orthogonal atomic velocity
components seen in the computer simulation®® of an atomic ensemble
subjected to this type of shear is a weighted sum of the equations above,
giving the new and unexpected result

(Wx (Mvz(1)) # (vx (1 Juz(0)) (3206)

T!'IE _cffect of this type of shear stress on nematogens and cholesterics is
of widespread interest and is explored in this section, which is intended
to extend the application of gtsm to the molecular dynamics in liquid
E”!'SE?,!S' In the unaligned nematogenic phase, for example, the director
axis”' " *! forms a frame of reference (Xp, Yp, 2p) with two axes of the
frame, say xp,, and y,,, mutually perpendicular to the director axis z,.
The swarm axes form a right-handed frame for consistency of definition
when dealing with chiral molecules. The extra time cross correlations set
up by the presence of molecular alignment along the director vector are
calculated with symmetry arguments, both for electrically dipolar and
nondipolar liquid crystal molecules. Both in dipolar and nondipolar nema-
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togens, the number of extra cross correlations help to synchronize the
molecular dynamics. In the presence of an aligning field, such as E or E*,
the director frame becomes virtually coincidental with the laboratory
frame (X, Y, Z) and the complete aligned liquid crystal specimen ceases
to have the isotropic three-dimensional symmetry R,(3), taking on C.,
symmetry, for example, for dipolar molecules in a field E. The extra
correlation functions and pair-distribution functions that previously existed
only in frame (xp, vp, Zp), but vanished in the overall isotropic, unaligned,
nematogenic sample, now survive ensemble averaging, and accompany
the appearance of macroscopic birefringence.

Similar considerations are developed for cholesterics, where the rel-
evant point groups are chiral. They isolate the set of nonvanishing time
cross-correlation functions and radial distribution functions which occur
exclusively in cholesterics.

A shearing field makes possible the existence in the laboratory frame
of new time asymmetric ensemble averages. Shearing would tend to align
the director, as with electric fields, but this time would also allow averages
of types D' (antisymmetric in the indices X and Z, and related to shear-
induced vorticity) and D% (symmetric in the indices X and Z, and related
to shear-induced deformation) to exist in frame (X, Y, Z). Here we make
the simple ansatz that averages equivalent to these D symmetries in the
field-free liquid crystal that exist in the absence of the field only in frame
(xp, Vb, Zp) become visible in frame (X, Y, Z) when the liquid crystal is
sheared.

P. Basic Symmetry Arguments in Nematogens and Cholesterics

In the unaligned nematogen, or cholesteric phase,' group theoretical argu-
ments can be used in the three frames (X.Y,Z), (xp,¥p.2p), and
(x, y, z), respectively the laboratory, director, and molecule fixed frames
of reference. In the frame of reference (X, Y, Z) of the unaligned sample,

the relevant point group is R,(3) of isotropic three-dimensional space.

The irreducible representations are D{” (scalar); DY’ (pseudoscalar);

D" (polar vector), and D}" (pseudo or axial vector). Higher-order tensors

are designated D, D, and so on. The point group of the director

frame is C.., for a dipolar nematogen and D..,, for a nondipolar nematogen.

The irreducible representations are those of these point groups, whichever
is appropriate. The director slowly meanders through the laboratory frame
but has these point-group symmetries over a well-defined region of three-

dimensional space which is large' in comparison with molecular dimen- |

sions but small in comparison with the volume occupied by the macro-
scopic sample. In theory, the director point group may have any symmetry,
but in nematogens there is alignment in one axis only (zp). This feature
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1S a!::senl in isotropic molecular liquids such as water, and in nematogens
vamshﬁfs at the nematic-isotropic transition temperature. Thus, a nematic
phase is distinguished by extra ensemble averages (e.g., dynamic time-
cm;:rre[atlnn functions and static, radial pair-distribution functions) in the
director frame of reference. Finally, in the molecule fixed frame (x,y,z)of
the point group character tables, the relevant point group and irrédlilﬂihlf:
representations are those of the molecular symmetry itself.

The molecular structure and dynamics of the unaligned nematogen are

determined by principle 1 in combination with computer si :
mulat
the theory of diffusion. P ion and

The director defines a region of three-dimensional space which is de-
scribed by the point groups C., and D.,, respectively, depending on
:.vhether the individual molecules are dipolar or nondipolar. This region
is referred to conveniently as the “swarm.” Thermodynamic ensemble

averages may be constructed inside the swarm, bringing principle 2 into
operation, but in frame (xp, yp, zp).

l. The C.., Swarm

This aPpligjs_ ggse[ectrically dipolar nematogen molecules, the vast majority.
Mapping’ the irreducible representations of a scalar, vector, and so

on from R,(3) to C.., gives
D3 DO s
DV -3~ +1II: 3 il ), SN
DP >3:*+M+4A; DP o3 +I+A
DY >3 +N+A+®; DO LSS *+1+A+d

(321)

The totally symmetric irreducible representation in the C.., swarm is 3 *.
Us_mg. principle 2 it can be shown that extra cross-correlation functions
exist inside the swarm that vanish in (X, Y, Z). For example, one indepen-

!.']EI.‘.II‘. clement of (v(1)w(0)) exists because the product of representations
inside the C.., point group

(VM @)=C"+ME " +M=3"+25" 421+ A (322)

contains the tsr £ once. Using this point group’s character table??'-2%5
shows that this is

(Wep(Dwy,(0)) = —(v,, (e, (0)) (323)
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This type of ccf vanishes in frame (X, Y, Z). This is one member of the
set of nonvanishing ccf’s inside the swarm whose members all vanish in
(X,Y,Z). Thus any attempt to describe molecular dynamics inside a
swarm with computer simulation must produce the result shown in Eq.
(323). The swarm volume is bigger than the molecular dynamics “‘cube”
itself, and spontaneous swarm formation under the right conditions can
be measured through the spontaneous appearance of the result.”*’ This
ccf element will vanish for all ¢ if the swarm disappears for some reason,
for example, at the nematic (or cholesteric) to isotropic phase change.
This gives a simple test for the occurrence of a liquid crystal in computer

simulation.
There are many other differences between swarm dynamics and those
in (X, Y, Z). For example, time-autocorrelation functions (acf’s) become

anisotropic

{ .u-'.'. ,r.'-{ ” P": .r_:r(r‘}}} * { Il".".'l'j__l{ I} ”.t'ﬂ(ﬂ}} o {H’Jr'ﬂ{ { } #‘_'I-'ﬂ{{}}} (324)
(@:5(0)@:5(0)) # (@up(D @i, (0)) = {0y ,(H)@,(0)) (325)

Under some circumstances, thermodynamic averages may exist in the
swarm over polar vectors such as v or L which have positive time-reversal
symmetry. This again can be picked up by computer simulation, and
signifies that the swarm can have a net linear acceleration inside the
macroscopic unaligned nematogen, measured with respect to the frame
(Xps ¥ps 2p). These net accelerations vanish in frame (X, Y, Z).

2. The D., Swarm

This refers to electrically nondipolar molecules which form a nematic
phase. An example is hexaphenyl (linear end-to-end arrangement of
phenyl groups). In this case the irreducible representations of R,(3) map
on to D., as follows:

DP® 53, DPSE,
DP 3 +M,; DP -3} +1I,
DP -3+, +4,; DP -3, +11,+ A,
DP 3, +M,+A,+d,; DO -Z;+1L,+A,+@,
There are fewer new ensemble averages specific to the D., swarm. For

example, there can be no ccf’s between v and w because the product of
symmetry representations

SIMULATION AND SYMMETRY IN SPECTROSCOPY 561
F'(vI'(w) = (}:3‘ + Hg}(E; +1II,)=2, +23, + 211, + A, (326)

does not contain the group’s tsr ;. It is more difficult therefore for the
molecular dynamics to be synchronised in a D., swarm, which helps to
explain why there are far fewer observed to date. However, the results
of Eqs. (324) and (325) are retained in this type of swarm, the relevant
products of representations containing in each case two occurrences of
the tsr. Computer simulation must be able to pick up this result when
attempting to describe the molecular dynamics within a nondipolar swarm,
for example, one made up of long rods. In the D.., swarm the mean
molecular angular acceleration vanishes, but the mean molecular linear
center-of-mass acceleration exists. In general, the set of nonvanishing
ensemble averages in frame (xp, yp, zp) of this swarm contains fewer
members than in the C.., swarm.

3. The C., Swarm

This is found in an unaligned cholesteric phase' made up of chiral dipolar
molecules. The D representations map onto the following in the point
group C.

ﬂ:,m and DY - 3,

D" and D" -3 + 11

DY and DP -3 + 1+ A

DP? and DP? >3+ +A+d
These mappings show that the cholesteric C.. swarm has more intrinsic

nonvanishing ensemble averages in the frame (xp, yp, zp) than the ne-
matic C.., swarm. For example, the product of representations

TVNw)=C+ME+M)=35+201+A (327)

shows that there are three independent elements in the swarm frame of

a ccf such as (v(1)w(0)). Reference to the C.. point group character table
shows these to be

(V25 (0) 0z, (1) # (1,5(0) 0, (1)) = (14, (0) @, (1)) (328)
(Vep(0) @y, (D) = = (1,,(0) W, (1))

This cholesteric swarm also allows the existence of off-diagonal elements
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of time acf’s, the overall symmetry being the same pattern as Eq. (328),
two independent diagonal elements and one independent off-diagonal. All
ccf elements change sign from one enantiomorph to the other. A computer
simulation of a cholesteric swarm would be expected to reproduce these
results. At the cholesteric to isotropic phase transition, the set of ccf
elements of Eq. (328) all disappear with the director and the swarm frame,
and this is another test for computer simulation.

4. The D. Swarm

This is a cholesteric swarm with overall nondipolar symmetry. The relevant
mappings are as follows:

D and DY - =*
D{’and D’ -2 +1I
D and DP = + 11+ A
DY’and D) -3 +IM+A+

again providing the opportunity for several new time ccf patterns to de-
velop in the swarm.

Extra time cross correlations are set up in frame (x,y, z) which are
governed by principle 2 and the point-group symmetry of the molecule
itself. The molecules making up nematogens and cholesterics are often of
quite low symmetry, thus allowing many more thermodynamic ensemble
averages to become visible at the molecular level which are different from
those at the intermediate swarm level and which vanish at the macroscopic
level. A computer simulation must be able to produce numerical results
which reproduce self-consistently all the symmetry-predicted thermodyn-
amic averages in all three frames. Thermodynamically and statistically
therefore, the existence of unaligned nematogens and cholesterics is ac-
companied by the appearance of extra time cross correlations at the swarm
and molecular level. Properties specific to such liquid crystals can be
traced to these cross correlations, which can therefore be related to these
observable properties with computer simulation.

5. The Electrically Aligned Nematogen

In the aligned nematogen, the director axis no longer meanders in three
dimensions, but is locked in one axis, say Z, of the laboratory frame
(X, Y, Z) by the torque generated between the molecular dipole moment
p and the electric' field E,. On the basis of principle 3, the first-order
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applied electric field of symmetry D{" sets up new ensemble averages of
the same symmetry at field-on equilibrium. One example is the time ccf

{Fx{f}{ﬂr(ﬂ}} — L {1-"}: (f} lﬂt.l'x{ﬂ)} (329)

which becomes directly visible in the laboratory. This was first demon-
strated, as we have seen in earlier chapters, for molecular liquids using
computer simulation, but has yet to be explored in aligned nematogens
and other liquid crystals. The ccf (Eq. 329) represents the D" part of the
tensor (v(t) @(0)) which has

D + DY) + DP

symmetry. The D{ is the vector part (v(f) X w(0)).

The effect of the static electric field E. on a nematogen made up of
molecules each with the electric dipole moment w is to make the frames
(*py¥p,2p) and (X, Y, Z) indistinguishable as reference frames for mole-
cular dynamics. This is because the director axis z,, is the laboratory axis
Z. The extra ensemble averages that have been shown to exist in, for
example, a C.., swarm now exist in (X, Y, Z) itself. If the nematogen is
only partially aligned, the ensemble averages lose some amplitude but are
still visible in (X, Y, Z). Similar conclusions are valid for a second-order
field EZ, but in this case the field interacts with the polarizability tensor
of the molecule, producing orientation, but not alignment. This means
that half the aligned molecules have dipoles in one direction, on average,
and half in the other. This is described in D language as a sum of DY-
and D;”-type ensemble averages in frame (X, Y, Z). Mappings of both
these D representations on to the C.., point group contain the latter’s tsr,
as is also the case for the other swarm point groups. Thus a field E2
makes D¢’ averages of the swarms directly observable in frame (X, Y..Z).
(The D};ﬁ represents scalars which are frame invariant, i.e., their thermo-
dynamic averages exist in any frame of reference.) In the aligned or
oriented state we denote, for convenience, “C.., nematogens,”” constructed
from swarms of the same symmetry, and so on.

6. The C., Nematogen

The mappings given already for this swarm can be utilized directly to find
the nonvanishing ensemble averages in frame (X,Y,Z) in the C.,
nematic. For example, whenever a D representation of group R;(3) maps
onto a C.., representation of the aligned nematic that contains the latter
group’s tsr, extra ensemble averages will appear in frame (X, Y, Z) itself.
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Thus for example, the averages previously confined to the swarm and
described earlier now exist directly in (X, Y, Z):

(vx(r) wy(0)) = — (vy (1) wx(0)) (330)
(rz (1) pz(0)) # (px (1) ux (0)) = (y (1) py (0)) (331)
(wz (1) @z(0)) # (wx(t) wx (0)) = (wy (1) wy(0)) (332)

Equation (330) signals the existence of direct rotation translation coupling
in the aligned nematic which has a considerable effect on the molecular
dynamics because of the large degree of alignment possible experimen-
tally, even with a weak electric field, of equivalent energy wE_ much
smaller than the thermal energy k7. So far in computer simulations,
alignment has been achieved, and ccf’s such as Eq. (330) observed, but
only through the use of field energies wE > about the same as k7. This is
because the simulations dealt with isotropic molecular liquids such as
water. No complete computer simulation of an aligned nematogen is vet
available.

Equations (331) and (332) show that the sample is anisotropic in the
laboratory frame under the influence of an aligning first-order electric field
E.. It is therefore birefringent. Our symmetry arguments have therefore
consistently reproduced a well-known feature of nemotogenic behavior,
especially noticeable in dielectric loss and dispersion. The dielectric com-
plex permittivity is essentially' the Fourier transform of Eq. (331) and is
by symmetry and gtsm measurably different in Z, being identical in X and
Y. The complex permittivity is the square of the complex refractive index,
implying birefringence as observed experimentally. We have shown that
this is describable in terms of the point group C., and its irreducible
representation.

One interesting implication of symmetry is that the ensemble averages
over time-even polar vectors, such as (v) or (gi) include the tsr of C.,
and must have the possibility of existence in the aligned nematogen of
this symmetry. In this case the D}’ representation implies a nonvanishing
=7, that is, a nonvanishing linear acceleration or force in the Z axis of
the aligned nematogen. The applied E cannot generate the mean acceler-
ation directly, but only through a torque —u X E; on each dipolar mol-
ecule. The net linear acceleration must come from correlation between
molecular rotation and translation, and is an experimental measure of this
phenomenon. The net linear acceleration of the aligned sample would
result in such effects as a meniscus at the surface of the nematogen as the
sample is forced against the electric-field-generating apparatus, normally
an electrode. This meniscus should be measurable with a microscope.
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Simi]ari}r, gtsm predicts the possibility of nonvanishing rotational acceler-
ation, the second time derivative of the dipole moment, implying

(Hz (1) fiz(0)) - (i) t— (333)
(z()pz(0)) = (uz)*; 1= (334)

Equation (334) implies the existence of a zero-frequency (infinite time)
component of the dielectric spectrum, as observed' experimentally in the
Z axis of the aligned nematogen. This is the static permittivity component
in axis Z, which becomes different from those in X and Y. A similar
cffect is expected on the fourth spectral moment,' which is the Fourier
transform, essentially speaking, of Eq. (333).

1. The D., Nematogen

In this case the molecules of the swarm are nondipolar, but if they are
polarizable new thermodynamic averages of total symmetry I'(E?) appear
in frame (X, Y, Z) by principle 3. The sample is oriented along the axis
of the applied field, for example the Z axis. In D language,

I'(E*) = DY + Dy (335)
More generally
['(EE) = D” + DV + D@ (336)

but the notation E* implies E parallel to itself, so that E x E vanishes and
by principle 3 no Dy averages appear in (X, Y, Z). This leaves the other
two D terms on the right-hand side of Eq. (336), representing averages
of the second Legendre polynomial type

3 (3(A() - B(0))?) — 1 (337)

and even-order Langevin functions.' In Eq. (336) A and B must have the
same parity-reversal symmetry.

Averages of this kind that had previously been visible only in the swarm
framt_: become visible under the effect of the field in the laboratory frame.
In this case they must all be even to parity reversal symmetry. This time
there is no net linear acceleration, therefore. and no net dipole (uz).

Note that the sum (Eq. 335) maps on to

2 +1I, +A,
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of D.,. This implies two independent occurrences of this point group’s
tsr, and two independent types of thermodynamic average in the sample
oriented by E*. This means that the time dependence of the ZZ compo-
nent of averages such as Eq. (337) is different from those of the YY and
XX components, which are the same. In other words, the sample is
anisotropic and birefringent, and supports even-order Langevin functions.

8. The C. Cholesteric

In this cholesteric symmetry, alignment with a first-order electric field
produces a unidirectional spiral symmetry along the axis of the applied
field, say Z. Ensemble averages that map on to symmetry representations
in the C.. point group that contain the group’s tsr at least once now survive
in the frame (X, Y, Z). In this point group the tsr appears in the symmetry
representations both of polar and axial vectors. If a vector quantity is also
even to time-reversal symmetry, its thermodynamic ensemble average
might not vanish. The average switches sign from one enantiomer to the
other, and must vanish by symmetry only in the racemic mixture. This
produces the possibility of observing in the electrically aligned cholesteric
net molecular linear acceleration, molecular angular acceleration, and a
net molecular rotational acceleration which vanish in the racemic mixture.

9. The D.. Cholesteric

In this case similar considerations apply to orientation by an E? field, as
in the case of D.,. The second-order field induces averages of type in Eq.
(337), but this time the vectors A and B can have different parity-reversal

symmetry.
Q. The Effect of a Shearing Field

The symmetry of a shearing field (Section VIII) consists of a vector
component D{" and a tensor component D). A shear of the type dv/0Z

produces by computer simulation® velocity ccf’s between orthogonal

molecular cartesian components X and Z.

These D symmetries of the laboratory frame map differently on to the |

four swarm point groups considered in this Chapter

27+ET+2M+A(C.,)
2 TE+2 + A (D)
23+ 211+ A (C.)
2T+ZT+21+A(D.)

DY + D@

and there are two independent occurrences in the C.. group, one in each
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of the others. This distinguishes the symmetry effect of shear on a dipolar
cholesteric from the other types considered here. Only in the dipolar
cholesteric is the shear-induced vorticity transferred to the point group of
the swarm. In the other point groups the tsr does not occur in the relevant
representation of D.". This will help decide whether shearing an isotropic

phase of a liquid crystal induces a phase transition into the nematic or
cholesteric phase.

R. Computer Simulation — A Specific Application

One specific application of the symmetry theory is to test for the appear-
ance n_f predicted averages in a computer simulation of long rods, or
E”]].}EGIE]S.,‘Uf D..,, symmetry or C.., symmetry. The predicted averages will
be 1n?m§dtately useful in deciding whether a transition from an 1sotropic
to a liquid crystal phase has indeed occurred. Long rods are D..,, symmetry
but the addition of a dipolar term in the potential, with charges and
asymmetric mass distribution, produces C,,, symmetry. Liquid crystals and
long-rod polymers are known to be highly non-Newtonian in response to
5hearr and work is in progress to simulate linear molecules with applied
shearing fields with SLLOD and PUT*® (Section VIII) and arbitrary

applied field strength. This will be a stringent test of the -
tations. : e,

S. Symmetry in Smectic Liquid Crystals

Group theoretical statistical mechanics can be applied to determine the
numb?r of nonvanishing ensemble averages in the point groups of the
smectic liquid crystals, modelled on the 32 possible crystallographic point
groups supplemented by the four linear symmetries (Table II). Assuming
that the thermodynamic average exists according to the number of irreduc-
ible reépresentations in each point group that are totally symmetric, it is
p:‘:rs::::!:mte to conclude whether or not that average exists at thennnd}'r;amic
equilibrium. The conclusion is valid within the point-group symmetry of
the smectic ]_iquid crystal. The number of ensemble averages supported
by the smectic point group, exemplified by the time-correlation functions

decreases from triclinic to monoclinic to orthorhombic to trigonal to tetrai
gonal to hexagonal to cubic. Within each of these major classifications the
pattern of nonvanishing correlation functions and other ensemble averages
has its own distinctive signature, based on point-group theory. By choosing
the correlation functions that are known Fourier transforms of spectra

this type of analysis leads to a convenient method of determining hmw.:
Spectrg are affected by the type of smectic point-group symmetry. The
analysis leads to an appreciation of the differences in allowed ense-smhle
averages between the various smectic point groups and molecular and
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other types of liquid. The treatment can be extended straightforwardly to
consider the effects of external fields.

1. Local Smectic Point Groups

In the smectic liquid crystals, the relevant point-group symmetries are
similar to those of the 32 point groups of solid molecular crystals, described
by the following seven major classifications: triclinic, monoclinic, orthor-
hombic, trigonal, tetragonal, hexagonal, and cubic. Each of these major
classifications supports a number of point-group symmetries which cover
all known crystal symmetries. Molecules crystalize within these point
groups, forming an underlying structure classified by 230 space groups.
However, the external symmetry and physical appearance of a molecular
crystal falls into one of the point groups. Similarly, the physical properties
of a smectic liquid crystal may be explored with a point-group description
of the local structure which distinguishes it from an isotropic molecular
liquid. In principle the point-group symmetry within the smectic phase
may be any symmetry, but in order to construct a systematic approach to
the problem of smectic local ordering, it is assumed that the smectic
symmetry can be described by the 32 crystallographic point groups supple-
mented by the four point groups of the nematic and cholesteric liquid
crystals. We therefore provide symmetry data for the 36 point groups of
Table II, any one of which may provide a framework for the application
of gtsm and the determination of nonvanishing ensemble averages of the
molecular dynamics within the local smectic point-group symmetry. Many
such averages exist at the local level, but disappear if the smectic sample
is isotropic on the macroscopic scale of a laboratory sample. If the smectic
liquid crystal maintains the point-group anisotropy at this level, and is
anisotropic overall, then the ensemble averages survive averaging in the
laboratory frame (X, Y, Z) as well as in the local frame of the point group,
which we denote (xp, ¥p, 2p) as for the nematics and cholesterics.

The differences between solid molecular crystals and liquid crystals |

with three-dimensional anisotropy is not easy to define. De Vries*** has
pointed out that the most significant difference is that in the solid crystal
any alkyl chains at the ends of the molecule have very little disorder,
or none at all, whereas in a liquid crystal, which has three-dimensional
anisotropy, these chains are slightly disordered. The difference in local
point-group symmetry seems to be minimal. For example, the smectic H

phase of BBEA (4-n-butyloxybenzal-4-ethylaniline) is a liquid and not a

solid molecular crystal because there is no transmission of phonon modes

through the smectic liquid crystal, which is capable of flow. Translational

coupling is much weaker than rotational coupling. When the two compete,
as in structures with optically active molecules, the translational corre-
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lation is destroyed so as to achieve a more favorable rotational arrange-
ment. A molecular crystal structure of an optically active compound has
a single three-dimensional lattice, but that of a three-dimensional smectic
phase he::crmes twisted if the molecules are optically active, similar to a
i:h.ﬂIE:St::‘:l'lC phase.' Three-dimensional anisotropic liquid cr:,:stals may be
mixed in all proportions, in contrast to molecular crystals. If translational
order dls_appears, there is no three-dimensional order at all.

Smf-:-:t:c liquid crystals and solid molecular crystals therefore differ
r:ssen_tlaliy in jrrans]atinna] order. In the smectic liquid crystals there is still
a residual point-group symmetry, however. although translational space-
group symmetry may have been partially or completely destroyed.

The .t:hfference between a smectic liquid crystal and an isotropic molecu-
lar liquid can be expressed in terms of €xtra ensemble averages supported
by the former within definable local point-group symmetries. In the iso-

tropic molecular liquid these are absent. its po; i -
. . » 115 pomnt group in t 3
sions is R,(3). point group in three dimen

2. Mapping from R,.(3) to the Smectic Point Groups

Table II may be used to summarize these mappings. Thus, for cubic (0,,)
symmetry, the principles of gtsm state that thermodynamic averages exi;t
in frame (xp, yp, 2p), governed by this local cubic symmetry, provided
that the symmetry representations of the ensemble averages 'r:nntain at
least once ic tsr of this cubic point group. This is the A,, irreducible
tepresentation. This result is independent of the mnieculér symmetry
:;im the EDTI group. [Analogously, gtsm states that the ensemble aver-

>IN an 1sotropic environment exist i ' '
contain the tsr D}ﬁ} of the point groﬂup R;f{;?E;:rzg’;ﬁ?i};ﬂifﬁﬁﬂ;E!lﬂl'ﬂﬂ
symmetry. ] ! SRR

.I" general Wwe must define the irreducible representation of the quantity
Eemglaverﬁged in the R,(3) point group and then in the relevant local
2mectic point group. If, for example, the latter is the tetragonal D,, (or
4 2@ In the_Hermann—Mauguin international notation), the relevant ‘tsr is
the irreducible representation Ai. However, gtsm implies the powerful
rt:srult that any thermodynamic ensemble average within the local smectic
ﬂt;::jtu firl;gpreﬂid of the=T frame [{rm Yo, zn} may exist in this frame if its
o ‘pPresentation contains A,. This is a powerful result because
;mi;h]t?lly‘ Jndependent of any residual space group structure in the
i symn:E:“ c;ysta]. Proceeding on these_ grf:mnds, it is possible to link
e 1'};1::- _ ensem_ble averages in Fhe liquid and smectic liquid crystal
i t[;;1]:.:3 ngt r:: irreducible representation of the quantities being averaged
il poin gmu_pdﬂ;.{j} t:}FII}H._ For ease of development it is con-

ient as usual to divide quantities into scalars, pseudoscalars, polar and
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axial vectors, and higher-order tensors. A scalar is characterised by the
tsr in any point group. The irreducible representation of the pseudoscalar
in R,(3) is, as we have seen in other contexts, D, which is odd to parity
reversal, but still a zeroth order quantity with no directional property.
This representation maps on to B, of the point group D,,. In chiral point
groups: C,, D,, T, O the irreducible representations of both the scalar
and pseudoscalar map on to the tsr of the point group, so that ensemble
averages over both scalars and pseudoscalars can exist in chiral point
groups at the local level in smectic liquid crystals. There are two distinct
liquid crystal enantiomorphs.

The polar vector (e.g., velocity) is represented in R,(3) by D!, mean-
ing that it is odd to parity reversal and has first-order directional proper-
ties. The axial vector, on the other hand, is D", which is even to parity
reversal. An example of a polar vector is molecular linear velocity, v.
Molecular angular velocity is an axial vector. The irreducible representa-
tions D' and D;”, respectively, map on to B, + E and A, + E of the
point group D,,;. These do not contain the point group’s tsr, and in
consequence no ensemble average over a polar or axial vector can exist
in the frame (xp, yp. 2p) of the local smectic point group D-,.

In local smectic point groups where the tsr appears as part of the
irreducible representation in the point group of a polar or axial vector
quantity, the thermodynamic average in the local frame of reference
(xp, ¥p, 2p) may exist, provided that it is positive to time-reversal symme-
try. Examples are listed in Table II.

Second rank tensor quantities are characterized in R,(3) by D! or
D'? and are second-order directional quantities which are even or odd to
parity reversal.

Relations between D products are given as usual by the Clebsch-
Gordan theorem, which is also applicable in the point groups of the
smectic liquid crystals because the sum of D representations maps on to
the same sum in the smectic point group. Thus, if we extend our consider-
ation of ensemble averages to time-correlation functions which are aver-

ages over products of vectors, we have, for example,

I'(v)I(w) = D’ DEY = DY + D’ + DP  (Rx(3)) (338)
= (B +E)A;+E)=A, + A, + 2B, + B, + 2E (D»4) (339)

This shows that the D representations of the time-correlation tensor gen-

erated by the tensor product of molecular linear and angular velocity is a
sum of three ungerade D representations in the molecular liquid point
group R,(3). The time-correlation function vanishes for all ¢ in the iso-
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"ﬂ;ﬁ"c liquid because its complete D representation does not include
i In the D4 smectic point group, however, this is not the case, becaus
the irreducible representation of the cof v(Nw(0)) s ghe sur:
A+ {42 +. 2B, + B, + 2E, which includes the tsr A, once. Therefore
gtsm implies that one element of (v()o(0)) may exist in the D Incai
point group of the smectic liquid crystal. This result may be cheéied I
principle with molecular dynamics computer simulation. B}

T. Time-Reversal Symmetry

Time-reversal Symmetry is defined as in other contexts as the operation
(q. P} — (q, —p), which leaves positions unchanged but reverses momenta
Parity reversal is the operation (q, p) — (—q, —p). When dealing wil!;
scalars and pseudoscalars, the ensemble average over these quantities
must be unchanged (i.e., positive) to time reversal. When dealing with
vectors, hmw:?'.ter, Some are positive to time reversal, like the electri%: field
(E), therpﬂsun:.}n vector (r), the linear acceleration, (v), the angula
accelgratmn, ‘{m], and the acceleration due to gravity {g1} DthE]‘Eg arr:
negative to time reversal, such as the magnetic ﬁe]d1 (Bj the linear
v-::l-_:-clt}r (v), the angular velocity, (@), and the electrnmaénetic‘ﬁeld ropa-
gation vector (k). A thermodynamic ensemble average over a vecmrpth h
5 hegative to time reversal vanishes, but one which Is positive ma e::;t
if the vector is also positive to parity reversal in the 1Isotropic “quid}’ oint
group R,(3). rIn the local smectic phase point groups, however, the lF;tter

regmremenf IS not necessary, and the thermodynamic ensembie avera
:::::lﬁff;, provided 'Et is carried out over a vector which is positive to tin%:
tr;:ntl;sra:}?r;g provided the irreducible representation of that vector includes
e erpmn(t:gmup. Th_us, the average (r), for example, may exist
represepmang oup h_;,, of _!he: tnguna!i class, because the vector’s irreducible
» o an in the pc}!nt group 1s A, + E. The latter includes the tsr,
vel i m gtsm one independent ensemble average exists over a polar
ctor w:ti!1 positive time-reversal Symmetry. An example is (r). Other
;;:ﬁplfim lF‘l{E local smectic point group are (v) and (@w). This may
il nvestigated with computer simulation. In the tetragonal local

-I€ pont group D,,;, however, all these ensemble avera h

vanish by gtsm, N
me:i:?ugfing wllt_hdum.ﬁ-mrrelatinn fuqctinns, the time-reversal argu-
o app :: .w"h care to f.:ach individual case. The pitfalls of
e s ﬁmenlg fe :[ustrated, as In other contexts, with reference to
SO s Iheﬂ t ; type FA(:}A{U)}. If A‘I‘EPI‘ESEMS linear velocity,
b s timé s Pml uct within thi_z averaging brackets (), is overall
i ersal. However, thls_type of time-correlation function
Y does not vanish for all r because it is simply the time derivative of
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(A(r)A(0)). It exists according to the elementary theory of correlation
functions in reversible thermodynamic equilibrium. It is itself a function
which is a time derivative, and is intrinsically negative to time reversal.
More generally, the class of time correlation functions which are time
derivatives of other correlation functions have an existence for 0 <t < =
despite the fact that the product of the two quantities inside the averaging
brackets may in itself appear negative to time reversal.

Bearing in mind these considerations of time reversal, mappings of
some D representations from the point group R,(3) are given in Table II
for 36 local smectic point groups. Column 1 of the table contains the name
of the point group in Schonflies and Hermann-Mauguin notation (the
latter in brackets). Column 2 is the representation of the scalar in the
point group, (i.e. the tsr), column 3 contains the symmetry representation
of the pseudoscalar, column 4 that of the axial vector, column 5 that of
the polar vector. Columns 6 and 7 map products of D representations on
to each point group. Columns 8 and 9 give the number of independent
ensemble averages expected in the local smectic point group for repre-
sentative time-correlation functions, column 8 for the rotational velocity
correlation tensor, and column 9 for the angular linear velocity cross-
correlation tensor. Both tensors are defined in frame (xp, vp, zp) of the
local smectic point group. Finally, column 10 records the crystal class of
the point group if it were being used to describe solid molecular crystals.

Note that in the isotropic molecular liquid environment only one inde-
pendent ensemble average (the trace) is expected in column 8, and none
in column 9, thus evidencing by gtsm a considerable difference between
the local molecular dynamics, of smectic liquid crystals and isotropic mol-
ecular liquids.

Some examples of the symmetry of the correlation functions in columns
8 and 9 are given as follows:

EXAMPLE 1: MONOCLINIC C,;(m)
1. Rotational Velocity Correlation Tensor

The irreducible representation of this tensor in the point group C,,, is

F(R(OT(1(0)) = 24" + A (24" + A"
=4A'A' +24'A" + 24" A" + AVA =541 +44" (340)

showing five occurrences of the tsr in the product of representations of
the correlation tensor. Thus five independent ensemble averages may
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exist in the local smectic frame of reference (Xp, ¥y 2p). The individual
products that give A' in Eq. (340) are (1) 44'A" and (2) AVA". The
others give A''. Referring to the point group character table for C,, we
find t].mt A' represents the cartesian components x, and y,, of the local
smectic frame of reference. The A'' entry represents z,,. The product

1 41 :
4A A therefnre‘ represents four independent components of the rotational
velocity correlation tensor:

I:.J[".l.'l.'i'.: (I} .Ir"i'A'{J (U)}‘ {.I[i'y;;.n [I] I!-'i-'_l-‘n [n)}- (rd'.r,.r;u (f] .""’i'_‘l'n [UJ>1 {I";."_'l-'f} {t} ﬂ.ﬂrn (ﬂ)}

The fifth component (4., 4i. . (0)) comes from A A", The complete sym-

metry of the correlation tensor in the local smectic frame of reference is
therefore

ad 0]
() p0)=e pol, Cin(m)
J M1 ]

and _thte five independent elements are recorded in the table.

~ Similar arguments applied to the generic acf (A(1)A(0)) show these five
independent elements, with the same symmeltry pattern. In a molecular
crystal this result is related to the number of lattice modes, but in the
smectic liquid crystal there are no phonon modes.

2. The Cross Correlation Function (v(H)w(0))

The irreducible representation is now

(Wl (@) = (24" + A")(A" + 24"
=2A'A"+ AYA' +44'AM + 241141 = 44! + 541 (341)

fﬁhDWing four occurrences of A'. Thus. the crystal class supports four
lmic]?f:ndcnt ensemble averages which are scalar elements of (v(Daw(0)).
Bearing in mind that the linear velocity v is referred to by the cartesian
tomponents X, Y, and Z of the C,,, point-group character table, and the

angular velocity component by Ry, Ry. and Rz, we arrive at the
symmetry
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0 0 @
Vw0 =10 0 b, (342)
Cidy'0 |

Thus four independent elements exist which all vanish in the equivalent
molecular liquid.

EXAMPLE 2: ORTHORHOMBIC D, (232)
1. Rotational Velocity acf
The relevant irreducible representation of the time acf is

F(p)(f) = (B, + By + Bs) (B, + By + Bs) = 3A, + 2B, + 2B, + 2B,
(343)

which contains the totally symmetric component three times. From the
axioms of gtsm we can expect three independent ensembles in the local
smectic point group D, (232), a chiral class. From the point group charac-
ter table for D,, and using the rules for forming the products of irreducible
representations, we have the symmetry

(a 00
(OO0 =10b0| (D)
00c¢

In this case all the off-diagonal elements vanish, leaving three indepen-

dent diagonal elements. The far infra-red spectrum in the local smectic

frame is different for each element.
2. The cef (v(1)e(0))
The irreducible representation is

['(v)['(w) = (B, + B> + B;)(B, + B, + B;) =3A, + 2B, + 2B, + 2B,
(344)

which again contains A,, three times and is the same as Eq. (343). This
is because the D, point group is chiral, and D{"” and D!’ of R,(3) map
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on to the same representation in D,, (i.e., B, + B, + Bs). Using Eq. (344)
and the cartesian and R representations in the point-group character table
for D, leads to the symmetry

4 0D 0
VOw(@)==%[0 b, 0
0 0 L

Thus, the three diagonal elements of (v(1)w(0)) exist in the class D, (232).
These elements change sign in the opposite enantiomer,

EXAMPLE 3: ORTHORHOMBIC C,, (2 mm)

1. Rotational Velocity a.c.f.
In this achiral orthorhombic crystal class the irreducible representation is

F(p)C(p) = (A, + B, + B,)(A, + B, + B;) = 3A, + 2A, + 2B, + 2B,
(345)

leading to the symmetry recorded in Table II. Three independent diagonal
¢lements exist as in the orthorhombic D,.

2. The ccf (v(t) w(0))
Here the irreducible representation is

I"[?)F{m) = f.rq.l + Bj + Bg}(r‘qz T E| =+ Bz) = 2:"{1 = 3A2 + ZB] + 252
(346)

which contains A, twice. Reference to the point-group character tables

reveals that the two independent elements are off-diagonals, so that the
complete matrix symmetry is

(v(H(0)) = by 0 0| Cs, (347)

This contrasts with the orthorhombic D, (232) crystal class where only
the diagonals of the ccf are visible.
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EXAMPLE 4: TRIGONAL C;, (3m)
1. Rotational Velocity
The irreducible representation in this case is
() I'(w) =(A, + E)Y(A,+ E)=2A,+ A, + 3E (348)

which contains the tsr twice. One comes from the product A;4, and the
other from EE, which signifies the product (xp, yp)(xp, yp) in the Car-
tesian representation of the point group character table. It is well known
that this notation implies the equivalence of xp and y,. The product
implies four rotational velocity-correlation function elements according to
gtsm. These four elements are not independent, and are grouped together,
being equivalent to one A,, generated by the product rule

EE=A,+A;+ E (349)

However, from the elementary theory of time correlation functions, we
know that

(Fy () Fiegy (0)) # (i () iy (0)) (350)
because one is an autocorrelation function, with finite value at t = 0, and
the other a ccf, which vanishes at r = 0. This, together with the indepen-
dent appearance of (4., (1) tt.,(0)) from A,;A,, leads to the final symme-
try

(R (1) ey (0)) = (py (1) fhy, (0)) # (e, (1) iz ,(0)) (351)
The two independent nonvanishing elements are thus

(Hep (1) Py, (0)) = (fhy, (1) By, (0)) (352)

and (gi., () gi-,(0). The further result

(K (1) Py (0)) # (phyp (1) iy, (0)) (353)

follows from the fact that the irreducible representation (Eq. 348) allows

two and only two independent nonvanishing elements. The symmetry of

the complete acf matrix is thus
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() pm(0))=10q0|: C3,(3m) S
100 b,
and is recorded in the table.
2. The cef (v(r) w(0))
The relevant irreducible representation is
F(v)['(w) = (A, + E)(A, + E)=A,+2A, + 3E (355)

allowing one occurrence of A, and by gtsm, one independent non-
vanishing ccf element. This comes from the product EE= A, + A, + E.
The non-vanishing element must therefore be from the four possibilities
generated from (xp, vp)(xp, vp). There is no independent occurrence of
the diagonal element (v.,(f)v,,(0)) from (Eq. 355), and therefore the
single independent element is

(Vep (D) w,,(0))= - (Vyi(t) @, (0)) (356)

The minus sign comes from the fact that the overall matrix symmetry is
odd to parity reversal; the result (Eq. 356) represents the vector cross
product symmetry, denoted D{" in the R,(3) point group. The overall
matrix symmetry is thus

0 a 07
VO w(0)=|-q, 0 0| G5 (3m) (357)
00 0]

as in Table I1.
EXAMPLE 5: THE CUBIC CRYSTAL CLASSES

There are five cubic crystal classes of high symmetry. Two of these (T
and O) are chiral. Applying the same methods as in Examples 1-4 results
In the classification in Table II, which shows that the diagonal elements
are supported for the rotational velocity and other time auto-correlation
functions. Cross correlation functions are supported only in the chiral
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classes T and O. No more than one independent element appears in each
class, that is, no more than one occurrence of the relevant totally sym-
metric irreducible representation in each local nematic point group. The
far infrared spectrum remains the same along the xp, yp, and z,, axes of
the cubic point group.

Table II provides a classification scheme for nonvanishing thermo-
dynamic ensemble averages in the given point group classification scheme.
Each point group may accommodate molecules of independent symmetry,
but the overall thermodynamic average is determined by the point group
symmetry alone. We have shown only a few representative thermodynamic
ensemble averages in Table 1I, but in general all such averages may be
accommodated. For example, if we wish to consider polarizability of a
volume element in the isotropic environment, we take the R,(3) point
group and represent the polarizability with the D symmetry D{” + D",
a symmetric second rank tensor even to parity reversal. The overall macro-
scopic polarizability of a point group representation of local smectic sym-
metry may then be investigated according to how many occurrences there
are of the tsr in the local point group. The latter’s character table may
then be used to find out in more detail the nature of the polarizability
tensor in the local smectic point group, that is, which ensemble averages
over the polarizability vanish and which exist. If we are investigating
pyroelectric symmetry, on the other hand, we note that pyroelectricity
has D! symmetry in R,(3) and then we map this on to the smectic point
group representing local symmetry in the liquid crystal as in Table 2. This
shows that in some local smectic point groups pyroelectric properties are
supported in principle while in others they are not, according to whether
the totally symmetric representation occurs in the point group. In some
cases the pyroelectricity is different along each smectic axis (three occur-
rences of the tsr). For a given point group symmetry, care must be taken
to examine the time reversal symmetry of the guantity being averaged

thermodynamically.
Some D symmetries of physical quantities are listed below.

1. The magnetic dipole is an axial (or pseudo) vector of DS symmetry.

2. Electric polarizability, thermal and electric conductivity, thermo-
electricity, thermal expansion, and magnetic susceptibility each have

DY + DS symmetry in R,(3).
3. The quadrupole moment has D{” symmetry.
4. The gyration tensor of optical activity has DY + D symmetry.
5. The first hyperpolarizability has D{" + D{’ symmetry.
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6. Piezoelectricity and th :
e electrooptic
2DV + D@ § p® symmetry. p Kerr effect have

7. Elasticity is a symmetric fourth rank tensor of 2D + 2D + D&
symmetry. ’ ) :

_Thermc?d}fnar_nic ensemble averages over all these quantities vanish in the
Isotropic [1qu:d{ environment except for polarizability and elasticity, which
contain the Dg” representation. In the local smectic point gmugsl how-
EVEr, new tl}ermudynamic averages may exist which vanish in the !;bura-
tory frame if the l_c-cai (crystal-like) smectic symmetry is not maintained
to the macroscopic level. (A key difference between a smectic liquid
crystal andra molecular solid crystal is that the same (crystal) point Euu
symmetry is maintained in the latter from the local to the macmsg::u iI:::}P
level.) 1Local ensemble averages may exist in the smectic liquid crysl:ai
dﬁ:pe_nd!ng on the number of occurrences of the appropriate totally sym-
metric 1n§ducible representation and on the time reversal symmgt Fc-f
the quantity being averaged. The molecular electric pﬂlarizabﬂityrj;nd
quadrupole moment are both positive to time reversal symmetry, and
extra ensemt.:rle averages over these quantities might appear in Sl}[';lﬂ of
thl.e_, local point groups. For example, in the orthorhombic class of C
point group symmetry the representation D + D@ of the electric pulaif
!Eabllll}" maps on to 34, + A, + B, + B,, showing that there are three
1ndep.endnl=::{u non-vanishing thermodynamic averages over the molecular
PDIET!EElhl[lI}' in this local point group. These correspond in the cartesian
notation of the point group character table to X2, Y2, and Z2. the three
dlagnqal elements of the polarizability tensor average. All :hr::e become
equal in tl}e Isotropic molecular liquid. Again, this result is independent
of the :lndwiduai molecular symmetry within the Cs, point group. In th
monoclinic, Cy crystal class DS + D maps on to 441 + 24" ]::r.leaninﬂ
thfit four independent thermodynamic averages over pularizahili;:y exist ir%
this class. These are denoted X2,¥2,Z2. and XV in the point-group charac-
ter table nppnsi!e to the A" entry, signifying the existence of three inde-
:P:;?iima?:ai};ﬂl thermodynamic averages and one off-diagonal sym-
4% tm; nE < ; YX. In the mu]ecule'lr liquid, only one average exists,
i e 1agﬂ_na] averages, which are the same in the three iso-
P]l-.c athnratnr?' axes in the molecular liquid. Group theoretical statistical
;ec anics provides a unifying picture of the properties of these ensemble
crages together with those of the set of non-vanishing time correlati
functions for each local point group. -
En;‘l:slee r;i::ts pr{:_mde a coherent system of predicting the existence of
3o ages in the point groups of the table. The numerical value
€se averages and the time dependence of the correlation functions
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must be obtained with additional complementary methods, such as band-
shape analysis and molecular dynamics computer simulation. Not only
would this provide a needed and detailed check on the predictions of gtsm
applied to smectic liquid crystals, but it would also be a new era of fruitful
investigation of liquid crystal molecular dynamics, extending the range of
liquid state computer simulations.

These methods can also be extended to deal with the effect of external
fields on smectic liquid crystals, using the third principle. This states that
the symmetry of ensemble averages set up in a molecular environment
subjected to an externally applied macroscopic force field is the symmetry
of the applied field itself. In an ensemble of atoms subjected to a strain
rate of overall symmetry D{” + D" + D¥| recent computer simulation®”
has indeed revealed the existence of new types of ensemble average set
up by the field and taking its overall symmetry. These ccf’s explain the
fundamental origin of the well known Weissenberg effect of rheology
(Section VIII). Similarly, an electric field of symmetry D, sets up ensem-
ble averages of this symmetry in the R,(3) point group, and thus also in
the local smectic point groups. The symmetry of the electric-field-induced
ensemble average in a given point group is D}, mapped on to its equiva-
lent irreducible representation in the local point group. Similar predictions
can be made for other applied macroscopic fields, such as a magnetic field,
an electromagnetic field, and strain rate, applied to the smectic liquid
crystal in the laboratory axes X, Y, and Z. These methods, used with
computer simulation and experimental spectroscopy, for example, will
reveal a great deal about fundamental and unknown areas of chemical
physics. They can also be extended to deal with n-time correlation func-
tions*** and higher order angularly resolved pair distribution functions.***

VIII. SIMULATION AND SYMMETRY IN NON-NEWTONIAN
FLUID DYNAMICS

The past few years have seen the rapid evolution of nonequilibrium mole-
cular dynamics computer simulation®*>*** for the numerical investigation
of fluid dynamics, including couette flow, shear. extrusion, turbulence,

and the phenomena of non-Newtonian rheology. It is now possible to
investigate directly the linear relation between stress and strain, first pro-

posed by Newton, in terms of his fundamental equations of motion. This

allows an understanding of the rheology of “simple” liquids with computer
simulation, and thereby a better understanding of the flow engineering

of colloidal dispersions, flocs, gells, suspensions, polymer shearing and
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eéxtrusion, new materials such as 1qui
on, : polymer liquid crystals, the transportati
of ;'emdue suis,pensmns, and other practical problems e
n = . e - :
reiatigieE::; ;;h;ared hq';uds are “non-Newtonian™ in that the linear
ress and strain does not hold in I '
of non-Newtonian rheolo S
: gy tackles such phenomena he thinni
thickening of a liquid i st ot b
N response to shear, and the
Nonequilibrium molec ' ’ sl
ular dynamics (nemd) com ' '
. uter simulation has ad-
vanced to the point where these ! sl
phenomena can be described '
It has been shown that sh inni ' s 4
ear thinning and thickenin (dil ‘
t tency), viscoelas-
ticity, and related phenomena ca i -
eit) n all be reproduced in sj o ic”
liquids, using sufficient] e
S, y scaled shear rates to corres ' '
: €l pond with the pico-
:ﬁ;ir::!u ::;et ca':]]:n_ab:hty of most contemporary computers Heyesphas
. al sedimentation during stora ' qui
S e ge, the levelling of liquids, lubri
ation, gell stability, and processabili i Newwioe.
. : sability are all areas in which
lan effects are important but I ‘ Sealional e
ut largely intractable t '
TG e e e UL O conventional rheology.
: phases™ In the development of non-N '
. 1 ] -INewtoma -
sponse which Heyes has classified with the Deborah Number o

D=wi (358)

: ul l "' i uslng ne CD
] man

atomic ensembles. For lamj
- nar flow :
of motion®®* are . for example, the SLLOD equations

r=p/m+ yry X (359)
P=F-?Fy.f'-mﬁ (3&{}}

wh : ; ; o
ere X is a unit vector in the X direction, F is the force on the particle
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r is the position, p the momentum, y the sﬂtrain rate, P thﬁ appl;zg
pressure, and a a constant. These are Newton's equations §u[::ip Em?; :
by extra terms due to laminar shear. They were first devise h_yh .a.
Evans and co-workers’® and use thermc;szgamng procedures w Ic dm y
be Gaussian isokinetic or profile unbiased.”® The former has the disadvan

tage of rigidly fixing the total kinetic energy.
A. D Representation of Simple Couette Flow

In couette flow in an incompressible ensemble’™ a shear is applied with
a given stress and strain rate. Newton’s relation between the two is

_ . Oy (361)
[Iyz ﬂﬂZ

. . 0
where n is the viscosity, a scalar quantity wul:n D symmetry. The:hNewmn
relation applies in the limit of vanishing strain rate. Otherwise n becomes

a function of the strain rate itself
In=2n(y)y (362)

In both equations, gtsm (Section VII) applies in the shear-on steady state,

through principle 3.
In ianperal. the complete tensor symmetry t::f_ the_- shear may be found
by considering that of the strain rate tensor, which 1s

= - (1) (2)
I'($) =) =DPDYP = DY + D’ + Dy (363)
The shear stress tensor and pressure tensor have the same D symmetry

(P = —1II), which is made up of scalar, vector, and tensqr compﬂnenti
positive to parity inversion. In simple couette flow there is no diagona

part to the strain rate, and the scalar part of the D representation vanishes. -

This leaves an antisymmetric component (Section VII) of D" symmetry

. (2) . e
and a symmetric traceless component with D symmetry D;”. This symme

try signature applies whatever the complexity of the mathematical treat-

ment, and irrespective of the molecular symmetry in the ensemble, and

simplifies the rheological approach to Stl'u(:ll{l'-ﬂd 3ﬂ1‘f,id5* where there are
five conservation and eight constitutive equations.

According to principle 3 of Section VII, extr?}ense?;::ﬂe averages may
appear in frame (X, Y, Z) with the symmetry D’ + D;”. This D 5;,'11';1_113;
try is a combination of the vector and tensor parts of the generic hun
correlation function (A(t)A(0)), which may therefore appear under shear
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in frame (X, Y, Z). When there is only one component of the strain rate,
that is, dvy/6Z, then only one off-diagonal element of the correlation
function is expected to be observable, and is the microscopic characteristic
of the macroscopic stress.

In the special case of couette flow in an atomic ensemble®® a funda-
mentally new type of cef is anticipated to exist by gtsm which is a weighted
combination of antisymmetric (vector), and symmetric (tensor) compo-
nents, and which has been described by Eqgs. (320a) of Section VII. The
weighted combination, Eq. (320b), is in general dissymmetric in time, and
this is precisely as observed by nemd computer simulation, 30! using
both Gaussian isokinetic and profile unbiased thermostatting.

B. Consequences for Langevin Theory

We can attempt to analyze this observation by computer simulation of
shear-induced dissymmetric cross correlation functions with linked Lange-
vin equations in the linear, Markovian approximation of Section 1. The
difference between the analytical results and computer simulation are
interpreted in terms of the fact that the simulated cross-correlation func-
tions are nonlinear and non-Markovian, and also seem to be nonstation-
ary, that is, dissymmetric to time displacement or index reversal. In this
condition, the Onsager reciprocal relations,**® which pertain to equilib-
rium, reversible, linear, and stationary processes, no longer hold, and the
simple Langevin equation is no longer able to describe the results of
computer simulation with any accuracy.

In order to obtain a qualitative Langevin description, use has to be
made of cross friction coefficients which are either symmetric or antisym-
metric in the indices X and Z of the laboratory frame (X, Y, Z). However,
this Emducﬂs results which are distinctly different from the simula-

tions*™+3°! in the sense that the simulated ccf’s are finite at r = 0, but the

analytical counterparts vanish at ¢ = 0.

C. Derivation and Solution of the Langevin Equations

The starting point of the derivation of the Langevin equations is Eq.

(3.48) of Ref. (325), the Dolls tensor adaptation of Newton’s equation of
motion

mv=F—-VYu-my (364)

where F is the force and v is the velocity of a particle externally subjected
to shear. The latter is represented by the tensor Vu with nine components
in general. It is assumed that the shear causes a strain rate response in
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the N-particle ensemble consisting of D}'-type vorticity and D{-type
deformation. The former is represented from Eq. (364) as

: ou
F}=nwx+nraguz (365a)
F,=mp>—m olz v (365b)
o — Prop = 1
2 g Y

and the latter by the same equations but with a positive sign on the right
hand side of Eq. (365b). We assume that these equations can be written

with

XE= R e

aZ a.X
The deterministic equations (Eq. 365) are developed now into Langevin
equations which are solved in the linear Markovian approximation for the
dissymmetric cross correlation function, whose components are symmetric
and antisymmetric. The Langevin equations corresponding to (Eq. 365)
are

-F,t' stochastic — MVy + m.ﬂl"ﬁf‘ + mﬁxz Vz {3663)

Fz stochastic = Mz + mpBv; — mPBzx vy (366b)

These equations have been written for D{"-type vorticity. For DP-type
deformation the minus sign on the right-hand side of Eq. (366b) is replaced
by a plus sign. In Eq. (366) the beta’s are friction coefficients in the linear,
Markovian approximation. It has been assumed that

ﬁ'ux d =
L T 367
Piz dZ Pax d.X (20%)

that is, that the components of the strain rate response can be identified
with cross-friction coefficients in the linear, Markovian approximation.
More generally, the friction coefficients are non-Markovian memory func-
tions, as we have seen in earlier sections and the Langevin equation is
nonlinear.” However, in the linear, Markovian approximation (366) the
Langevin equations may be solved for the cross-correlation functions of

interest:
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Oxt0nzO) = DD g ebsini(c 4y e (aeta)

(vx(t) v2(0)) = {:‘;ﬂiﬁ({?} Bxze " sinh{(b* - &) b’ > ¢

(368b)

where

b =4p, ¢ = 132 — BxzBzx

with a similar expression for (vz(t) vx(0)) with By, replaced by 82y. For
shear-induced vorticity

Bxz = — Bzx (369a)

and for shear-induced deformation

Bxz = Bzx (369b)

The final dissymmetric cross-correlation function assumed to be a weighted
sum of both types

(x(t) v2(0)) = A{vx (1) V(D hvoricity + B{wx(t) Vz(0))def ormation (370a)

and
{F}:’{IJ i’,ﬂ[’{ﬂ)} My A{I"E(” l"}[’(”]}m}rticir}f T B{pzlrr) pﬁ{ﬂ)}dcfnrmutinn (3'?{:.[}}

where A and B are weighting constants. If A < B. for example, the cross-
correlation functions from Eq. (370) will be slightly dissymmetric, and the
same for A > B. There will be intermediate cases of varying dissymmetry.
However, despite being able to explain quantitively the major feature of
the simulation, that is, that the cross-correlation functions are dissym-
metric, Eq. (370) is not able to show why the simulated ccf’s*®**' remain
finite at 1 = 0. Equation (370) produces ccf’s which vanish at ¢ = 0.

" The simple linear, Markovian approach thus fails qualitatively at short
imes.

The failure of the Langevin equations (Eq. 366) to describe the results
from computer simulation is an important indication of the fact that non-
Newtonian sheared N- particle ensembles have several features which are
fundamentally different from their equilibrium counterparts:
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1. The sheared ensemble supports cross correlation functions which
are dissymmetric in time displacement and in the indices X, Z of the shear

plane. These ccf’s have the property”™-*"!
(vx(0)vz(0)) # 0 (371)

which is not reproduced by the linear Markovian approximation repre-
sented in Eq. (366). This is unlikely to be remedied by developing the
friction coefficients into memory functions, thus making the system non-
Markovian, and we are led to consider

2. that the system is nonlinear. In one sense it is nonlinear because the
stress and the strain rate are not linearly related, as in Newton’s law of
sheared fluids. In this sense the system is nonlinear because it is non-
Newtonian. If we are to attempt an approach to the new ccf’s with
Langevin equations, we are led to the conclusion that the friction coef-
ficients are no longer simple linear multiples of velocity, as in Eq. (366),
because this approach fails qualitatively at r — 0 both for Markovian and
non-Markovian approximations to the rigorous Eq. (365). More generally,
the Langevin equation can be nonlinear, containing friction coefficients
that multiply powers of velocity on the right-hand side. In general the
equation would contain a sum of such terms, with interesting analytical
implications.

3. The new cross correlation functions are observed by numerical simul-
ation to be dissymmetric in time displacement. They are not therefore
stationary' ™ in the conventional sense, because they are neither symmetric
in time displacement nor antisymmetric.

4. This leads directly to the conclusion that in the presence of shear,
the N-particle ensemble no longer obeys the Onsager reciprocal relations,
which are laws applicable to N-particle ensembles at thermodynamic equil-
ibrium, where the system is reversible.

5. The ccf’s are therefore indicative of a dynamical process under shear
which is irreversible, in the sense that they are not governed by Onsager’s
reciprocal relation.

An N particle ensemble in the steady state under shear which is non-
Newtonian produces dissymmetric time cross-correlation functions which
indicate a statistical process which is non-linear, irreversible, non-Marko-
vian and dissymmetric in time displacement, being in this sense nonstation-
ary. In consequence, a simple linear Markovian description fails qualita-
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tively as t—0. This leads to an entirely new appreciation of non-
Newtonian N-particle dynamics.

D. Shear Induced Structural Effects and GTSM

Angular resolution™® of the pair-radial distribution function in computer
simulations of shear induced thickening in atomic (Lennard-Jones) liquids
has revealed the presence of anisotropic local structure, which can be
ex_plamed on the basis of group theoretical statistical mechanics using
principle 3, that the symmetry of allowed ensemble averages in the steady
state in the presence of shear is the same as that of the applied strain
rate. The computer simulation results*®® can be reproduced from group
theory by assuming that the crystal-like lattice arrangement of atoms which
appear in the simulations under shear can be described by some of the 32
crystallographic point groups in Table II. hexagonal, trigonal, and triclinic.
The hexagonal lattice symmetries Cs, and Cen, the trigonal symmetry S,
and the triclinic symmetry C,(S,) are found to support the crystal-like
structures necessary to explain the observed®® angular resolution of the
pair-radial distribution function.

The nemd computer simulations of Heyes and co-workers®®® have re-
vealed a number of significant new phenomena of non-Newtonian rhe-
ology in atomic liquids using a battery of new numerical techniques.
Among the most interesting of these is in the context of shear thinning
and thickening. Simulations have shown™ that as the shear rate is in.
creased the atoms of the liquid ensemble form structurally arrested states
with crystal-like symmetries. The point group of the ensemble is therefore
changed from R, (3) to that of the shear induced lattice. Gtsm can be used
to to explain the observed symmetry of angularly resolved pair radial
dlstri!:rution functions (rdf’s) in non-equilibrium simulations of these
atomic ensembles. Only a small number of lattice symmetries support the
observed anisotropy under shear, and gtsm is used to explain why shear
's able to produce this anisotropy.

We have seen that principle 3 is a statement of how externally applied
fnrcg fields of given symmetry set up extra ensemble averages at field-
applied equilibrium. It is also valid in transient. nonequilibrium regimes.
In both cases the overall symmetry of the new ensemble averages is that
f}f tt:g applied field. The complete D symmetry of the strain rate tensor
s D" + DEV + DP, which by principle 3 sets up new ensemble averages,
such as pair distribution functions or time correlation functions in frame
(X,Y,Z) at the field on steady state. State of the art nonequilibrium
computer simulation**"' shows the presence of new time ccf’s with the
overall symmetry of the strain rate., Principle 3 produces similar entirely
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novel results® for the time ccf’s of pressure tensor components, revealing
the fundamental origin of the Weissenberg effect of macroscopic non-
Newtonian rheology, and explaining through ccf’s the pressure set up in
a sheared liquid in a direction perpendicular to the plane of shear. The
new ccf’s are also sensitive to the typical macroscopic phenomena of non-
Newtonian rheology, including the appearance of shear induced thickening
and thinning,”*® the appearance of string phases,”’ and structurally ar-
rested states. These all involve time ccf’s in frame (X, Y, Z) for an atomic
liquid, and also in frame (x, y, z) for a molecular liquid. Conventional
methods of macroscopic rheology have failed to recognize this, in the
same way that conventional diffusion theory has failed to recognize the
role of ccf’s at equilibrium. In both cases they are governed by principle

3.

E. Crystal-Like Arrested States at High Shear Rates— An Excess of
Symmetry

Principle 3 may be applied to angularly resolved pair distribution func-
tions, defined™” by

fap(r) = (g %(Rm-,ﬂﬂ;mi; ) / N (372)

iy

8ap(r) = 15V ap(r)/(V(r)N) (373)

The angular component f,; measures the anisotropic dispositions of mole-
ecules or atoms, and involves the ensemble average (R,;Rg;). Peaks in
£.p supply information on shear-induced structurally arrested states. In
Eq. (373), V is the volume of the shell bounded by r + &r/2

V(r) = d4mrrér (374)

for a shear resulting in a strain-rate response of type dvy/dZ. Principle 3
predicts the existence of the ensemble average (Rx;Rz;), but no other
off-diagonal elements such as (R x;;Ry;;) or (Ry;R ;). This is simulated by
Heyes™' and is in satisfactory agreement with numerically derived data
for low shear rates, but as the latter increase, off-diagonal elements of
the angularly resolved pair rdf appear which are disallowed by principle
3 1n R, (3). Heyes has explained this in terms of slow structural relaxation,
outside the time window of the simulation. The applied shear has clearly
led to lower symmetry in frame (X, Y, Z), a crystal-like environment has
been generated from a shear-induced phase change, taking the ensemble
from R,(3) to some other crystal-like point group of lower symmetry. The
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problem is how to apply group theoretical methods within this new group
Eﬁxplain the results actually observed by Heyes (Figs. 7 and 8 of Ref.

In order to explain Fig. 8 of Ref. 331 it is necessary to assume that the
overall point group of at least some part of the ensemble is no longer
Rxu(3) of the isotropic liquid, distorted by shear, but is that of a shear-
induced crystal-like structure. From the “snapshots™ of the simulation
provided by Heyes,™" this appears to be hexagonal, trigonal, or triclinic.
an overall triangular lattice which produces

f..ii‘,.t'#'-f}"}’ifEE#fXE‘*fX?*f}'E*ﬂ {3?5]

To find the symmetry of the applied shear within each of these crystal-
like point groups it is necessary to map D{” + D{" + D onto the appro-
priate irreducible representation within that crystal-like point group.
Tl}ese representations appear in Table II. The following are examples of
this procedure for shear-induced crystal-like point groups.

F. Hexagonal C;, (Hermann Mauguin 6)

In this crystal point group, one of the hexagonal crystal symmetries, the
symmetry of shear is

D+ D"+ DP = AMA" + E'AY + AVE' + E'E'  (376)
which allows ensemble averages of the type

(RxiiRxi;) # (R viiRvi) F (Rz;Rzi); (377a)
<R.-"."ij‘.l-’if} % <R;"['4’fRHij} ?‘: {R ‘.i"t'jRE'ij} [3?‘?!‘}}

using principle 3 with the G, point group rather than the R,(3) point
group. ‘Equatinn (377) predicts angularly resolved pair-distribution func-
tions with the property Eq. (375). Thus both the diagonal and off-diagonal
elements have a different r dependence if the structurally arrested state
has the crystal symmetry Cs;, or 6. Comparison of this result with available
computer simulations by Heyes can be made by examining the numerical
data in Figs. 7 and 8 of Ref. (331). These show that at strain rates n =
110 and 9= 30 in normalized units the diagonal elements g, and g,
are almost equal but discernably different, the third. &xx. being distinctly
different from the other two. In Fig. 8 of Ref. 331 the amplitudes of the

off-diagonal elements Bxy and gy are greater than the third element Exz,
all three being distinctly different.
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Our calculations, based on principle 3 applied to the various point
groups, show that the hexagonal point group Ce,(6/m) also gives this
result, along with the trigonal §¢ and the triclinic §,. Other hexagonal or
in general triangular-type lattices are either disqualified on the basis of
being chiral, or produce degeneracies, in the sense that one or more
angularly resolved pair rdf elements are equal.

We are able to conclude that shear thickening i1s accompanied by the
appearance of structurally arrested states in which the crystal-like symme-
try supports six different angularly resolved radial pair distribution func-
tions. These are rationalized with group theoretical statistical mechanics.

G. Shear-Induced Depolarized Light Scattering

The existence by gtsm and nemd computer simulation™*"! of new dissym-

metric ccf's implies that there exists theoretically a hitherto unmeasured
depolarized component of light scattered from a sheared N-particle ensem-
ble. In atomic ensembles, and in ensembles of molecules of symmetry

higher than T,, this is the only component, neglecting weak collision-

induced effects.
The third principle of gtsm allows the existence of the new current

correlation function™>**
Crz = (wa0)22(0) explia - (£(0) = (1) (378)

in an N particle ensemble subjected to the shear strain dvy/dZ. This
has the same dissymmetry properties as the velocity and pressure tensor
ccf’s.”™%! Here q is the scattering vector and

£

r(1) —r(0) = Ar(r) = [ v(r)dt (379)

0

where v is the center-of-mass velocity of the diffusing particle (atom or
molecule). We have

{L'trz('r)} = JT r{l’f{f;}ﬂg(fﬁ}}d‘;dﬁ (380a)
=2 j (1 = D) v2(1)d (380b)
i}

The current ccf (Eq. 378) is related to a self-dynamic structure factor’>*
334
by
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F¥2(q, 1) = (exp(ig - (r(0) - r(1)))) (381)
which upon double differentiation provides

2

72 FX2(9, 1) = = ¢°Cxz(7) (382)

Equation (382) gives the result
(5) W’
Ix2(q, w) = ;;Sﬂ?z{q, w) (383)

where J is the temporal Fourier transform of Cy», and S that of Eq
(381). rTh»:e latter is the intermediate scattering function in the ideal self:
dynam?c !unit for the sheared N-particle ensemble. Equations (383) shows
that this is related to the new current ccf defined by Eq. (378).

H. Light-Scattering Geometry
Integrating Eq. (382) gives the result

; d -
nmf,qu(‘; F(a, r)f.a..f,) s qﬁf O va(t)de  (384)
()

wherf: 7 is the correlation time. This shows that the intermediate scattering
function § is related to the new dissymmetric cross correlation functions
generated by shear.”™™ ! The function § is observable by light scattering
where the initial polarization vector is in the X axis of the laboratory
frqme (X,Y,Z) and where the scattered polarization vector is in the Z
axis of this frame. The plane XZ is that of the shear strain dvyloZ.
~ The existence of shear induced ccf’s means that there will be depolarized
light scaugred from a sheared N-particle ensemble with intensity S. This
g;;rum is related to the temporal Fourier transform of Eq. (378) by Eg.
In ammil_: ensembles, or in ensembles of molecules of symmetry greater
l_han T4, this will be the sole contribution to the new type shear-induced
light scattering apart from small contributions®*>* from collision induced
pulanzauun_ anisotropies. At equilibrium in the absence of shear this
Spectrum will disappear, because the shear-induced dissymmetric’ccf’s
disappear.

In order to observe the Spectrum experimentally, the incident laser
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Figure 48. Shear-induced depolarized light-scattering geometry.

beam, polarized in the X axis, is scattered conveniently from an arrange-

ment of coaxial cylinders, and scattered radiation is observed polarized in

the axis Z for a given scattering angle, angular frequency and scattering

vector. This is the spectrum S which gives J by Eq. (383), and thus the
temporal Fourier transform of Eq. (378). The inner cylinder (a stirring
rod) rotates rapidly and the outer cylinder is the wall of a round light-
scattering cuvette. This arrangement creates a shear on a liquid held
between the cylinders. The geometry is illustrated in Fig. 48.

The high frequency wing of the spectrum S is amplified by the multipli-
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cation by the square of the angular frequency in Eq. (383) to give the
second spectral moment J. The latter is related directly to the new ccf
(Eq. 378) and this ccf is in turn a direct measure of non-Newtonian effects
in a sheared fluid.

The new depolarized spectrum 1 is therefore a direct measure of the
non-Newtonian nature of sheared N particle ensembles.

Depolarized scattering depends solely on the optical anisotropy of the
scattering center, and this may be thought of as a scattering element of
polarizability tensor . The scattered electric field vector of the electro-
magnetic radiation is then

Ex=2 o/xzexp(iq - r,(1)) (385)

where a'y» the XZ component of the polarizability tensor a of the jth
scattering element, and q the scattering vector. Let us situate the center
of mass on an atom of our sheared ensemble. On average, we have, for
atomic ensembles

' R+R
ol {—;i} (386)

where the vector R is defined with respect to the center of mass of the
polarizability element in frame (X, Y, Z ), and where the averaged quantity
on the rhs of Eq. (386) is proportional to the angularly resolved radial
distribution function introduced by Heyes and Szczepanski.**® The latter.
denoted by py~, is dependent on the positions of nearest neighbours, next
nearest neighbors, and so on, around the center of mass atom. and is
assumed here to be approximately the time independent equilibrium aver-
age. Therefore, we have

&xz = aopxz(R) (387)

where “R™ is the argument of the angularly resolved pair-radial distribu-
tion function. Without loss of generality, we can assume that

Pxz(R) = Pxz(Ro) {383}

where R, is the position of the first peak of the pair-radial distribution
function. Finally, we have
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axz(1) = a'xz(0) = opxz(Ro) (389) It is argued that this can be isolated and observed experimentally and
directly with crossed wire grid polarizers, providing another direct probe

so that the depolarized light scattering spectrum is given by of non-Newtonian rheology.

K. Shear Symmetry in the Dielectri ared
Svr(q.t) * pxz(Ro)S¥2(q. 1) (390) Using the | ' ; ey
sing the language of irreducible D representations the symmetry of strain

‘ , ‘ rate of t ' i
In order to provide an idea of the frequency and scattering vector depen- ype (1) is again assumed to be

dence of the spectrum J this can be computed for an ensemble of atoms
subjected to shear strain by PUT computer simulation.*™"' The new
current correlation function of type in Eq. (378) is computed directly and
its temporal Fourier transform gives J.

C(¥) = D" + DY (392)

a traceless, -di '
dsssiyrs:’ EL;F'IE TEE Eﬁﬂ-ﬁﬂ;iﬁcﬁi?;w with a vector part D" and a
_ parts this symmetry to ensemble
averages at the shear-applied steady state, giving rise to dissymmetric
cef’s at the atomic (or molecular) level. Conventional rheology does not
postulate the existence of atoms and molecules and in conse ‘
unable to explain this fundamental result. ‘ e
In atomic ensembles, the dissymmetric ccf’s are exemplified by velocity

cef’s (Section VII) and also b '
_ y related types with th
such as the mixed velocity—position ccf ’53“%?3‘” i e

I. Polarimetry

The plane of polarization of electromagnetic radiation is expected to be
changed a little by shearing on the basis of the argument given above,
and this could be detected with a simple polarimeter, providing a direct
method of observing the effect of shear on polarized electromagnetic
radiation.

J. Shear Induced Dipole Relaxation

#(r
In a dipolar molecular ensemble the existence of shear induced dissym- (z()rx(0)) # (vx (1)72(0)) (393)

metric ccf’s*™ " implies that of shear-induced polarizability and polariz-
ation and direct dissymetric cross correlation between orthogonal compo-
nents of the permanent molecular dipole moment whose Fourier
transform'™ is a complex frequency-dependent permittivity. The relax-
ation of the shear induced permittivity provides a direct method of in-
vestigating non-Newtonian phenomena such as shear thinning, thickening,
and turbulence in dipolar media. At far infrared frequencies' the direct
shear-induced cross correlation between orthogonal components of the
molecular rotational velocity can be isolated and observed experimentally
in principle as a power absorption spectrum with crossed wire grid polari-

and the position-position ccf s

(rz()rx(0)) # (rx(t)r2(0)) (394)

In ensem_bles of dipolar molecules, the permanent molecular dipole mo-
ment o Is always expressible as the vector sum of the position vectors of
the atoms of the molecule in frame (X, Y, Z). This immediately implies
t!le existence of the shear induced dissymmetric ccf’s of pg, and nI; it

time derivative,' the rotational velocity jio. We have the resl;lts 5

ZETS.
The shear-induced permittivity spectrum can cover the frequency re- {Hoz (1) kox(0)) # (pox () koz(0)) (395)
gions of experimentally obtainable strain rates (up to MHz) and may and
be used to investigate non-Newtonian effects experimentally. The high-
frequency adjunct of this shear induced frequency process, a far infrared (Hoz(t) iox(0)) # (fig,x (1) fio(0)) i

power absorption'™ likewise has a sheared induced component which is
the Fourier transform of the shear induced dissymmetric ccf of the mole-

The Fourier t . ; : ,
cular rotational velocity ranstorm of Eq. (395) is a dissymmetric, shear-induced

;ﬂﬂziexhpermytivity. That Pf Eq. (396) is a dissymmetric far infrared
absorption accompanied by a dispersion in the referactive index.

(pz() px(0)) # (px(1) z(0)) (391) Thus, the results of Refs. 300 and 301 immediately give new types of
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observable, shear-induced spectra, which are direct probes of non-New-
tonian phenomena.

L. Shear-Induced Molecular Polarizability and Polarization

The terms “polarizability” and “‘polarization™ are usually applied to the
response of a dielectric to an applied electric field. However, the exis-

tence™™*"! of dissymmetric ccf’s of the molecular dipole moment implies
that of a shear-induced molecular polarizabiliry which is given in the shear

applied steady state by

oz pox) (397)
*":" Eshtar

(axz) =

where AE,.., has the units of energy (J), and the polarizability has the
units of C*m?J ~'. More conventionally, the polarizability is given in units
of volume (the “volume definition™) by dividing the right-hand side of
Eq. (397) by 4me,, where g, is the permittivity of free space. The shear
induced molecular polarizability then has units of m”.

The results of Ref. 300 show that at t = 0 (the “equilibrium value™).

(z(0)vx (0)) = (i (0)v(0)) (398)

so that the shear-on equilibrium value of the polarizability, given by Eq.
(397), is not dissymmetric in X and Z. The equilibrium value of the energy
in the denominator of Eq. (397) is then the energy of formation of the
numerator, the ¢ = 0 value of the cross-correlation function of the perma-
nent molecular dipole moment in the shear-on steady.

The existence of the shear induced molecular polarizability implies
that the sample is polarized by shear. This is formally analogous to the
polarization caused by an electric field, which is the basis of dielectric
spectroscopy, but is due to the field of force caused by shear, the **shearing
field.” We refer to this as shear-induced polarization. In the same way
that dielectric polarization may be expressed as a power series in the
applied electric field, shear induced polarization is a power series in the
applied shearing field. The coefficients of the series in electric-field-in-
duced polarization are: the molecular polarizability (multiplied by the
electric field); the molecular hyperpolarizability (multiplied by the electric
field squared) and so on. Those in shear-induced polarization are the
shear-induced molecular polarizability; shear induced molecular hyper-

polarizability, and so on.
The shear-induced polarization may be expressed through a total mole-
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cular dipole moment with components X and Z. These are sums of the
equivalents for the permanent molecular dipole moment and those in-
duced by shear. (This is again formally analogous to the total dipole
moment produced by electric polarization, which is a sum of the perma-
nent dipole, that induced by the product of polarizability and the electric

field, and so on.) At shear-on equilibrium the total molecular dipole
components are

Mx ot = Mox + pyx + poy + - - (399a)

and

Hziotal = Moz + iz + poz + - - - (399b)

We now express the shear-induced dipole components w,> and so on in
terms Df Integrals over dissymmetric ccf’s of type in Eq. (395). This is
accomplished using the Morriss—Evans theorem described in Section VII.

M. Adaptation of the Morris—Evans Theorem

Th:‘i’: Mgriss—Evans theorem is a generalisation of the Green—Kubo re-
lations ™ and a fusion of linear and nonlinear response theory, providing

?J new framework for fluctuation—dissipation theorems in general (Section
IT).

Taking the first induced term in Eq. (399), we have. by definition

shear

‘ibﬁhtar

(H1x) = (Hox (0)poz(0)) = (1 2) (400)

where F ... 15 the shearing field. The structure of the Morriss—Evans
theorem allows this to be written as

Fu ear :
(H1z) = — ‘“h—' (pox (1) fioz(0) dt (401)

shear 0

with a similar expression for (g, v (1)).

~ In Eq. (401) we have taken the ¢ — = limit of the Morriss—Evans
Integral, which implies that the nonequilibrium average ({ )) becomes the
she‘ar-m} steady-state average ( ), because the external field is applied for
an infinite time, allowing the system to reach a steady state.

We note finally that the factor before the integral in Eq. (401) can be
cxpressed in the form
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Pt _ Constant dv (402)
Al hissr {F-[Lit'} dZ

where the ““constant™ is the shear-induced polarization constant.

N. Shear Induced Dipole Relaxation and Far Infrared Power Absorption

These are three of the many areas of observation affected by the phenome-
non implied by Ref. 300, and specifically by the existence of dissymmetric
ccf’s of the permanent molecular dipole moment and its time derivative
in frame (X, Y, Z).

Shear-induced dipole relaxation, a relatively low-frequency process
which can cover several frequency decades, is expressed in spectral terms
through the Fourier transformation of the shear-induced dipole ccf. In the
shear-on steady state it causes polarization, which is the result of statistical
correlation between orthogonal X and Z components of the permanent
molecular dipole moment. The polarization may be isolated and detected

experimentally by a special arrangement of electrodes, one in the XY

plane and the other in the ZY plane, one electrode being perpendicular
to the other and both being perpendicular to the plane of shear, XZ. In
the Hz to kHz frequency region, the relaxation of the shear-induced
polarization may be detected with a Wayne—Kerr bridge, and with other
types of bridge technique and sweep frequency apparatus up to the MHz

range. Direct measurements with orthogonal electrodes of shear induced

polarization seem never to have been made, but would isolate the cross-
correlation between the X and Z components of the permanent molecular

dipole moment.

Analogously, the high-frequency adjunct of the shear induced dipole

relaxation process is a far infrared power absorption and accompanying

refractive index dispersion. The power absorption spectrum in the far
infrared can be isolated in principle by the use of wire grid polarizers.
One polarizer is oriented in the Z axis between the exit port of a far

infrared interferometer and the sheared sample, the spectrum taken, and
the experiment repeated with a polarizer in the X direction between the
sample and the detector. The polarizers selectively block out radiation in
the presence and absence of shear.

Careful choice of sample and conditions, with accessible laboratory

strain rates, leads to this far infrared spectrum, which is a direct measure-
ment of the non-Newtonian molecular rotational velocity ccf. The funda-
mental reason for this is that the far infrared power absorption is always

the high frequency adjunct of a dipole relaxation process which occurs at

much lower frequencies, and the high- and low-frequency parts of the
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overall dynamical process are never independent. This has been demon-
strated experimentally by Evans and Reid'™ using supercooled liquids
apd glasses, work which isolated the far infrared gamma process as the
high frequency, ever present, adjunct of much lower frequency alpha and
beta processes in supercooled liquids and glasses. The gamma process may
be separated from the other two by a dozen frequency decades, but is
always observable. Similarly, the accessible laboratory strain rate may be
only a few kHz at most, but the molecular response extends from Hz to
T1Hz f_requencies in general. This is simply due to the fact that a molecular
diffusion process evolves temporally from the picosecond scale onwards.

l;n contrast to the absorption processes above, light scattering involves
an {nduced dipole moment, equivalent to our i1. Conventionally, this is
attributed to the molecular polarizability. However, in the shear applied
steady state, the shear induced molecular polarizability can also cause
dept}fflrf.zfﬂf light scattering, as discussed already. Light-scattering appar-
atus 1s implemented analogously at high or low frequencies (Rayleigh
Brioullin and photon correlation spectroscopy respectively).

O. The D Symmetries of Shear in the Presence of Fields

The important industrial technique of electrorheology is based on shear in
the presence of an electric field, static or time dependent. The simulta-
neous application of shear and an electric field. through the use of rotating
electrodes for example (Sections IV-VI), leads to the possibility of new
ensen?hie averages whose D symmetries are governed by principle 3. An
electric field is a polar vector (Section VII) of D" symmetry. The com-
bined D symmetry of electrorheology (electric field plus shear) is therefore

F(EY(v) = D°D"DE” = DY + 3D + 2DP + D®  (403)

usir{g the Clebsch-Gordan theorem. The overall parity inversion symme-
try 1S negative (ungerade), so that by principle (3) the ensemble averages
specific to electrorheology must also be negative to parity inversion. The
overall time reversal symmetry of the D combination depends on whether
the electric field is static or alternating. The former is positive to time
reversal and the latter is negative. The time-reversal symmetry of shear
'S a product of that of position and linear velocity, and is therefore negative
;s::- time reversal. The time-reversal symmetry of electroshearing is there-
Eﬁ}:zr?:'g;:;negalwe In a static and overall positive in an alternating

The various possible field combinations in electroshearing can be ex-
Pressed as subsets of the general triple vector product vrE with 27 ele-
ments. In couette flow, there are no scalar v r components, so that the
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field combinations with E all involve v X r or vr’. From the signature
(Eq. 403) the possible combinations allowed by symmetry are as follows:
1. The symmetry product D{”D{"” gives the three possible combi-
nations E-vxr,ExXvxr,andE x vr’.

2. The product DD gives the three further possible combinations

E x vr’, E(vr")", and Evr.

Thus, depending on the relative geometry of the applied fields, different
D symmetries are generated. If electroshearing i1s carried out with an
electric field between rotating electrodes, which also serve as shearing
plates, then E is parallel to r X v, so that only fewer D signatures are
possible than in the general Eq. (403).

The application of principle 3 in this context produces the following,

for example.

1. The rotation of plane-polarized light is one possible consequence of
applying the field combination E-v X r to the sheared liquid using an
alternating electric field. This particular field combination has positive
time-reversal symmetry and negative parity-inversion symmetry and in-
cludes the pseudoscalar D{”. These satisfy the requirements for the field
combination to be chiral.*”” There is the possibility, therefore, from prin-
ciple 3, of a new kind of effect which which resembles the Faraday effect.
The magnetic field which induces optical rotation in the latter is not

however a true chiral influence in the definition given by Barron®”” because
the magnetic field is a D} axial vector. A chiral influence must be negative

to parity inversion and also positive to time reversal®” (Section VII). In

the new effect the magnetic field of Faraday’s experiment is replaced by

a truly chiral combination of time-dependent electric field and shear. In

order to observe the expected optical rotation (signature D'™) the electric

field vector must be parallel to the vector generated by the cross product
v X r. In a liquid being sheared by rotating plates, the latter is perpendicu-

lar to the plane of shear, and thus parallel to an alternating (or otherwise

time-dependent) electric field applied using the rotating plates as elec-

trodes. Principle 3 means that the combined influence of shear and electric

field introduces in frame (X, Y, Z) new ccf’s as well as the ensemble

average of signature D{” of optical rotation angle. If the sample also

absorbs, the combination of shear and electric field produces dichroism.
As we have seen in Section VII, the chiral nature of the shear and

time-dependent electric field combination also induces the appropriate

elements of the ccf (v(r)w(0)) between the molecular linear and angular
velocities. Ccef’s of this type ought to be observable in a computer simu-
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lation of clectroshearing, together with several other effects anticipated

by the D si il :
fj;lﬂWﬁ. ignature on the right-hand side of Eq. (403). Another example

& EI_er:tric field and shear can also result in the generation of thermal
conductivity, defined as the Green-Kubo integral™® over the heat flux
tensor .] of Irving and Kirkwood. The tensor J has the same D symmetry
as thf:‘ ngrht-h:f}nd side of Eq. (403), and in consequence all possible field
::nmb_matmns In electroshearing may contribute in principle to its appear-
ance in _the ggme (X, Y, Z). This has recently been confirmed by computer
simulation.”™’ However, in this case it is necessary to use a static electric
ﬁj:[d, so that the overall time reversal symmetry is negative. Then, prin-
ciple _3 shows that the application of a static electric field acm‘sspthe
shearing plates will result in measurable changes in the sample’s thermal

conductivity, a property which ma '
vity, v be used as an analytical to -
Newtonian electrorheology. d Saorim

3. In echt_mrheniﬂg}r the electrodes, which are also the shearing plates
may be+ built into a circuit to measure the dielectric complex permittivit a;
a function of frequency over a several decade range. The thennndyna}rrnivz
average over the molecular permanent dipole moment, (), is positive to
time reversal and negative to parity inversion with the D :signature D
of a polar vector. This means that the dielectric frequency spectrum ”is
aff:z:::ted by shear, and can be used to measure its non-Newtonian manifes-
tations, reinforcing the conclusions arrived at earlier in this chapter.

_ _4. If a static electric field is used and the overall time reversal symmet

'> In consequence negative, principle 3 means that it is possible to iimw:iuu;;r
cnsemble averages over quantities such as molecular linear velocity, creat-
Ing a .clnft in the sample. This may be used®” to separate physica;lly the
cnantiomers of a racemic mixture by applying the electric field to shearin

platesf immersed in a sample of the racemic mixture. The drift in Iinea%
velocity creates a propeller action®™ which is in a different sense for the

wo enantiomers which drift a i
. part and which can be con '
different ends of the vessel, BN

; |ij A-s-. we haw:: seen, a c:nmbinatipn of shear and an alternating electric
-1d 1s a true chiral influence negative to parity inversion and positive to
lim;:_ reversal. In this sense, the material being electrosheared is a chiral
Efalltun;;;_ve? T:rugh the in-.:]ividua! l’[_lD]EELﬂEE in the liquid may be struc-
- d‘% : dlra1 |.| beam of chiral Fradtam:m incident upon the chiral medium
L ; _wt:t hbe ;ttl;:nuated dlffereqtly according to whether the beam
e radi;iggn; aFj} ed, ]{e.g., left or right c:ir_cu]arly polarized electromag-
P - Examples _ﬂf such chn:al radiation are circularly polarized

ers in the ultraviolet, visible. and infrared, including the far infrared
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