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and radio frequency regions (chiral photon beams); spin-polarized electron
beams; spin polarized neutrons; and so on. These will result in dichroism
or differential scattering which may be attributed to the non-Newtonian
effects of electroshearing.

6. Magnetic resonance phenomena may be utilized similarly to investi-
gate non-Newtonian electroshearing. The symmetry argument in this in-
stance constructs a chiral medium using a combination of shear and alter-
nating electric field, and uses a chiral probe consisting of a static magnetic
field combined with the same alternating electric field. Both probe and
medium are negative to parity inversion and positive to time reversal,
and both satisfy Barron’s definition®” of chirality. The apparatus can
be imagined to consist of the electroshearing unit with good conducting
electrodes such as brass or silver (nonmagnetic) embedded in a solenoid,
or put between the pole pieces of a powerful magnet. The chiral probe
field is a combination of the static magnetic field and alternating electric
field applied between the (counterspinning) silver electrodes. The same
ac electric field is used for the electric component of electroshearing, that
is, to create the chiral medium. Thus, according to the handedness of the
probe and medium, there will be asymmetric attenuation of the magnetic
field, a kind of dichroism (and therefore birefringence) which could be
detected through magnetic properties such as nuclear magnetic resonance
and its relaxation. The NMR features would depend on the non-Newton-
ian nature of the sample’s response to electroshearing. Conventional NMR
technology could be implemented, the alternating electric field allowing
fine tuning of the chirality of both probe and medium. The expected
magnetic effects will be asymmetric in the handedness of the chiral probe,
or alternatively of the medium, adding extra observables.

IX. NEW PUMP-PROBE LASER SPECTROSCOPIES:
SYMMETRY AND APPLICATION TO ATOMIC AND
MOLECULAR SYSTEMS

A. Basic Symmetry Concepts

We have seen in Sections VII and VIII that symmetry is one of the
cornerstones of the scientific edifice, and in chemical spectroscopy has a
particularly elegant historical facade. By the early 1840s Michael Faraday
had convinced himself that there is an ineluctable link between electric
and magnetic fields and light. In 1846 he proved this to the world™* using
static magnetic flux density (B) to rotate the plane of polarization of light
passing through lead borate glass. In his own words, he had magnetized
and electrified a ray of light. Maxwell’s equations met the challenge of
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Faraday's work, and shed light of their own.****** Much of what we know
still reliesr directly on the work of Faraday and Maxwell, with a little
retrospective wisdom from the intervening years.

Some of this allows us to see now that if Faraday had attempted to
rotate the plane of his ray of light with static electric field strength (E)
he would have seen nothing.*' (A diary entry, reviewed by Bragg“i
suggests that Faraday did indeed try the experiment with a static electric
field, and briefly noted “no effect”.) This has to do with two of the
profound symmetry principles of physics,™** those of reversality and parity
inversion, first proposed in 1927 by Wigner.3*

B. Complete Experiment Symmetry
1. Wigner’s Principle of Reversality (T)

If a cf}mpiete experiment is realizable in the laboratory frame (X, Y, Z)
then it must also be so when all motions are reversed.

2. Wigner's Principle of Parity Inversion (P)

It a complete experiment is realizable in (X, Y, Z), then it must also be
50 1n the frame (- X, — ¥, —Z), with all position coordinates reversed.
These deceptively simple statements contain the key to why B, but not
E, rotates the plane of polarization of electromagnetic radiation in an
atomic or molecular ensemble. They also underline a central theme of
this section, that if we were to find an influence, which we call I1. that
:'las the same T and F symmetry as B, Wigner's Principles would a]]jnw it
. W g e o 11 5 gty e e
| 1 y the conjugate product of
a powerful circularly polarized “pump” laser, such as a neodymium-doped
yttrium aluminium garnet (Nd:YAG) laser, or dye laser, propagating
:’Jﬂral]el to the “probe™ light beam. The latter may be another, tunable,
si:;} D?I:'Ett::‘md-b&nd radiation from a contemporary interferometric

Figures 49 and 50 illustrate the application of Wigner’s Principles to
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the Faraday Effect. They contain the variables of the complete experi-
ment: the propagation vector (k) of the probe laser, parallel or antiparallel
to B; the laboratory frame of reference (X, Y, Z): the angle, A#. through
which the plane of polarization of the laser is rotated; and the molecular
structure, which can be achiral or chiral. The former is represented by
water, and the latter by an enantiomer of bromochlorofluoromethane.
Figure 49 deals with the effect of 7, which is motion reversal. Under T,
the ray of light moves in the opposite direction, so that k changes sign.
Static magnetic flux density B is an axial vector which also reverses sign
under T. It is the curl, V x A, of the vector potential®*® A. The angle of
rotation, the frame (X, Y, Z), and the molecular structures are unaffected
by 7, because they are motion-independent. The angle A# depends on
the circular polarity of the light, a plane-polarized probe laser being made
up in equal parts of right- and left-handed components, the mathematical
descriptions of which are given later in this section. If a right-handed
screw is reversed in motion, its pitch, or screw sense, is not changed by
T. However, it is customary to define right circular polarity as clockwise
rotation of the electric field vector as the propagation vector travels
towards an observer. The effect of motion reversal, T, is to change clock-
wise motion to anticlockwise, so that T reverses circular polarity from
right to left or vice versa. T also reverses the propagation vector, but
clearly leaves the product of this with the circular polarity unchanged.
It i1s this product that we have described as the “screw sense” of the
electromagnetic wave. The result of applying T is shown in Fig. 49, the
motion-reversed variables are relatively in the same configuration. For

example, if ¥ had been parallel to B, it remains parallel, and has not

become antiparallel. The vector product k - B has not changed sign. Its
symmetry representation, denoted I'(k - B), has remained the same under
T'. Similarly, the sign of A# is the same, and also (X, Y, Z) and the achiral
and chiral molecular structures. The Faraday effect is an “observable,”
because the motion-reversed experiment is realizable.
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TABLE II1
P and 7 Symmetries of k, B, and E

o T

In Fig. 50 the operator P is applied to the same variables as those of

Fig. 49. P has the following effect on position, q, and momentum, p
(Section V);

(9, p)—(—q, —p) (404)

and leaves the sign of time, ¢, unchanged. The propagation vector, K,
being a photon momentum,** is reversed by P. The magnetic flux density
B is not, essentially because it is generated®® by a cylindrical current flow,
whose sense of rotation is reversed by T but not by P. (In contrast, E is
generated by two electrodes, one positively and the other negatively
charged. Under P the positions of the plates are reversed, but the charges
are not, so that E changes sign. T does not affect the stationary charges,
50 E does not change sign under T. It is invariant. i.e.. positive, to T).
P also makes a right-handed screw into a left-handed screw, and so re-
versed the circular polarity of the probe laser. It reverses the sign there-
fore, of k. It reverses the frame of reference, that is, (X, Y, Z) — (- X,
— Y. —Z), and inverts the positions of all atoms of a molecule. It generates
the opposite enantiomer, therefore, of a chiral molecule. These effects
are summarized in Fig. 50. In the P-inverted experiment, everything has
reversed in sign, but relative to each other, the variables have remained
the same. The Faraday effect is again an “observable.” because the P-in-
verted experiment is realizable.

The P and T symmetries of the variables k. B, and E are summarized
in Table III. We see that k is a “time odd. parity odd™ variable; B is
“time odd, parity even:” and E is “time even. parity odd.™

It is known™* that Faraday attempted to substitute E for B when
¢xamining the lead borate glass and recorded *no effect.” How do these
Symmetry principles explain this? If we examine Figs. 49 and 50, it be-
comes clear that T has the effect

D(xc B) = ~T{-xE) (405)
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on the vector product of k and E, showing immediately that E cannot
rotate the plane of a light ray without violating the Wigner Reversality
Principle. This is because the motion-reversed variables do not have the
same relative sign, that is, k- E is reversed, but the others are not.
Therefore the sratic E equivalent of the Faraday effect is said to violate
T. A A observed under these conditions would be a “nonobservable’’,
that is, a symmetry-violating observable.™*® Similarly P does not reverse
the product x - E (Table III), but reverses all the other variables in Fig. 50.
The E equivalent of the Faraday effect also violates the Wigner Principle of
Parity Inversion. Even if it did not violate T, it could only be observed,
in consequence, in chiral ensembles. The group theory introduced later
makes this point clearer.

It appears that A# has never been observed with E substituted for B in
this context. If it were, unequivocally, it would signal the presence of a
I-violating phenomenon (i.e., nonconservation of reversality), something
which has been observed only once, and indirectly, in nuclear physics.*’
In contrast, the Wigner Principles allow the Faraday effect both in achiral
and chiral ensembles, and this is what is observed experimentally.?®
P-violating phenomena were first predicted and observed in nuclear
physics in the mid-1950s,** leading to the unification of the electromag-
netic and weak forces,™” the well-known CERN Experiment,**” and to
the expectation that P-violating phenomena pervade the whole of atomic
and molecular spectroscopy,™' one of the foremost achievements of sci-
ence in this century. It is part of the purpose of this section to try to
prepare theoretically for experiments to observe these P-violating phe-
nomena spectroscopically.

C. The Symmetry of Cause and Effect: Group Theoretical
Statistical Mechanics®*

If an experiment conserves the Wigner P and T Principles, we can proceed
with an investigation of the symmetries of cause and effect. These are
subtle concepts, needing for clarity the language of group theory, as
described in Sections VII and VIII. The Neumann-Curie, or first, prin-
ciple, as we have seen, holds for thermodynamic equilibrium when entropy
is not changing systematically. In the rise transient condition®* just after
a field has been applied, for fall transients just after an applied field has
been removed,” or in the steady state in the presence of an external
field,™ it is supplemented by a cause—effect principle which we have
called the third principle of group theoretical statistical mechanics
(gtsm).* The second principle is the equivalent of principle one applied®*’
to a molecule-fixed frame of reference. The point groups of relevance
refer, as we have seen, to the ensemble rather than the molecule itself,
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the group R,(3) for achiral ensembles, and the group R(3) for ensembles
of chiral molecules. The former is the group®? of all rotations and “reflec-
tions™ (more accurately parity inversions) about an origin (or “point™) in
frame (X, Y, Z); and the latter is the group of all rotations only, because
reflection in R(3) would result in the opposite enantiomer, a different
physical entity. In consequence, “reflection” (i.e., parity inversion) is not
a valid group theoretical operation of R(3).

The irreducible representations of R,(3) are the D symbols,** which
are subscripted u or g, respectively, negative and positive to parity inver-
sion. They are superscripted by a number ranging from 0 to n, indicating
tensor order. The D symbols can be used to denote the symmetry of an
ensemble average in R,(3) (Section VII). For example, the symmetry of
(mE; where m is a scalar quantity (zero rank tensor) such as mass, is
ﬂg. '(+). This is the totally symmetric irreducible representation (tsr), and
prmcip!e one indicates that (m) is a finite quantity in frame (X, Y, Z). The
plus sign in brackets denotes positive to T. The average (v), where v is
molecular center of mass velocity, vanishes in (X, Y, Z) by principle one,
because its symmetry in R,(3) is D{(-), denoting an odd parity polar
vector (a tensor of rank 1), which is negative to T. The average (w),
where ® is molecular angular velocity, has the symmetry D{"(—), and
also vanishes by principle one because it does not contain the tsr of R,(3).

In the point R(3) of chiral ensembles. the irreducible representations
are D symbols without subscripts, because parity inversion in R(3) is not
a valid group theoretical operation, as we have seen. The symmetry of
{m) in R(3) is therefore D”(+), which is the tsr. The symmetries of (v)
and of (w) are the same in R(3): D" (-). This does not contain the tsr
of R(3), and in consequence. both (v) and (w) vanish in a chiral ensemble
at field-free equilibrium.

D. The D Symmetries of Natural and Magnetic Optical Activity

The rotation of plane-polarized electromagnetic radiation by B, the
Faraday effect, is often referred to as “magnetic optical activity.”>%¢ [y
occurs both in R(3) and R(3), and its symmetry is that of B itself > that
is, p;‘*(— ) in R,(3) and D'V (—) in R(3). It is therefore “time odd” and
vaqlshﬁs in the absence of an external influence which is also time odd.
This may be B, but, using principle three, may also be the conjugate
product IT of a pump laser,362 4 simple statement with many
consequences, some of which are described later in this review.

| Rotation of plane-polarized radiation is observed in a chiral ensemble
Without B or II, and is called “natural optical activity.” It is therefore a
property of R(3) only, and must also pass the test**® of Wigner's Principles
at field-free equilibrium. If we remove B from Fig. 49 it becomes clear
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TABLE IV
Some Combined Field Symmetries
Tenor P T Ry (3) R(3)
E _ + ﬂ':‘“ ﬂl]l
EH. + - D;”’ " .D:.”* DSEE.I D“”“l‘ D“'-!- D:::
HH L 3 D:‘” + ﬂ_rzli‘_l'_ E;E-EI DH”+ D{IF_" th:
B + = @ D!
EE + + D:!U‘J'_._ D;l.+ D;E} D"“"" D”."‘" Dlﬂ
BR i n D;m+ D:,“ + DH::} P 4 pth 4 pi2
EB = pi DE” +D:£” i DFE:] ﬂtlﬁl 1L D-I'H* ﬂl.’_‘]
EBx - + DO +3pM+202+ p DY +3pM + 2D + DB

that in the motion-reversed experiment, all variables for natural optical
activity are reversed, that is, are relatively unchanged, and Wigner rever-
sality is satisfied. In Fig. 50 with B missing, P has changed the sign of k,
has produced the opposite enantiomer of bromochlorofluoromethane, and
has changed the sign of the angle of rotation. In a chiral ensemble, the
P-inverted complete experiment is possible, because the relevant variables
are relatively unchanged. In an achiral ensemble, however, P results in a
water structure (Fig. 50) which is indistinguishable from the original. The
molecular structure is plus to P, while all others are minus. In conse-
quence, Wigner's P principle is not obeyed, and natural optical activity is
not observable in an achiral ensemble at field-free equilibrium in the
absence of parity violation™® due to electroweak interactions.

The symmetry of natural optical activity is therefore that of a pseudo-
scalar in R(3), denoted by D'"’(+), the tsr. By principle one its ensemble
average is nonzero, and changes sign between enantiomers. It exists at
equilibrium and is positive to 7. It has no equivalent in the point group
R,(3) in the absence of parity violation. In consequence, the symmetries
of natural and magnetic optical activity are given different signatures.>®

E. Application of gtsm — Combined Field Symmetries

The basic symmetries of Table III allow the definition of combined field
symmetries.** Define the combined D symmetry of a tensor product™

such as E;B, as the complete product of their individual symmetry repre-

sentations in the appropriate point group of the ensemble. This gives the
results of Table IV where « is the laser propagation vector, which is
negative to P and T.** This may be the propagation vector of a probe or

pump laser.
In classical electromagnetic field theory, rank zero natural optical ro-
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TABLE V
Summary of Field-Induced Optical Activity

Occurrence of Signature

Tensor Do D! 1) pio pto
(+) {—) (+) (=)
E No No No No
i No Yes No Yes
Br Yes No Yes No
B No Yes No Yes
EE No No Yes No
BB No No Yes No
EB No No No Yes
EBx No No Yes No

tation is p“”{ﬂ in R(3) and Di”(+) in R,(3). The equivalents for mag-
netic optical activity are D'V(—) and D{"(-), respectively, the quantities
in brackets denoting positive or negative to motion reversal 7. Table V
15 a summary of effects.

| Ross etjﬂi : hav_e given an equivalent analysis in terms of photon selec-
tEmnBrl.;lI.le;H Their results can be obtained by this application of gtsm to
| Table V shows, for example, that the application of a static electric
he]d_ strength E produces neither natural nor magnetic optical activity
leading to no effect, as first noted by Faraday.™* The magnetic flux densit}:
B prﬂdgﬁes magnetic optical activity; the product Bk has been used by
Barron™" and the present author™” to define the Wagniére-Meier effect
(forward-backward birefringence®** " due to B coaxial with x of an
unpolarized probe laser). By reference to Table V this product contains
the symmetry of natural optical activity. An interesting example™®® is the
combined EB symmetry, which produces magnetic optical activity in chiral
e¢nsembles only, implying that a type of “‘Faraday effect™ can be obtained
in E‘hl!’i?.l ensembles with a combination of electric field strength and
magnetic flux density. This is discussed in detail in Refs. 368 and 369.

F. Application of gtsm to Nonlinear Optical Activity

NUI‘I]II‘!E:'ET Optics is an important part of chemical physics, and in classical
ierms, involves quantities nonlinear in the complex conjugates®®’=" of
the electric and magnetic field components of the classical electromagnetic
field from Maxwell's equations. In general, these have plus (+) and minus
(=) complex conjugates, and are right or left circularly polarized:**”: 37
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E; = Eo(i +ij)e ®;  Ef = Ey(i — ij)e’s
Ex = Eo (i—ijle™;  Eg = Eo(i + ij)e
BL = Bo(j —ii)e ",  Bg = Bo(j +ii)e " (406)
Bi = Bo(j + ii)e": Br = Bo(j — ii)e'r

0, =wt—K,'T; g =wt—Kg"T J

In a laser propagating in Z of the laboratory frame (X, Y, Z), i and j
here are unit vectors in X and Y, w is the frequency of the field, and k

its wave vector. The position vector is denoted r.
With these definitions,*””* *”" the electric dipole moment of a molecule

in a strong laser field can be expressed as the double Taylor expansion®"'

1
pi = poi t ayEj + agyB; + 2
X (BrijwEiEx + Boiju EiBr + BaiaBiEx + BaijnBiBu)
1
* ; (YigiEEn By + - + 'J"'E-r'jkajBka}

+ oo (407)

in which all quantities are in general complex.””' Similarly, the molecular
magnetic dipole moment can be double Taylor expanded as

1
nt; = Mo, -+ ﬂ]jJiBj + HLIE; + 5

X (brijaBiBx + bayju B,Ey + b3y E;Bi + baxE Ey)
1
+ E{EI#MB}BHBJ + -+ grpaEEEY)

o (408)

For example, the dynamic molecular property tensor a;; 1s the complex

polarizability, a»; is the Rosenfeld tensor, and so on. The quantity ug; 15

the permanent molecular dipole moment in the absence of the laser field.
The accepted definition of rotational strength in linear optics is the
Rosenfeld tensor a,;, which contains a tensor product of the molecular
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TABLE VI
D Symmetries of Molecular Properties and Field Tensors for Optical Rotation: Point Group
Ru(3)°
Molecular Property Field Part of D.!" Order
Dipole

Moment
= }Df.‘” + DY + DY-) B B(-) " ! !
o E DY +) m 1 1
B: EE DY+ D"+ D(+) m 1 2
ﬂ'l D‘[rm 1 31}:,“ + 3.{}::'1: + ﬂ:.”‘f"'} BB ﬂ";l;. + ﬂ;l! 4 ﬂfj':-"'} | 1 2
b BE D+ D"+ D) m 1 2
b, EB DU+ D+ DYY-) m 1 2
¥z EEB | m 3 3
¥a EBE iy ] a5 pyld b 130 l" 3 3
ve 3D™ + 6D 4 gD BEE (P #0205 D) m 3 3
o F3DEN+DEY=) BBB B 3 3
B BBE m L
2, BEB ;D" + 3D + 2D + DM +) m 3
B4 EBB m 3

“For R(3) remove g or u subscripts.

electric and magnetic dipole moments.*”* This can be seen at first order
multiplying B; in the expansion (407) of the electric dipole moment.

Applying gtsm we arrive at the classification scheme of Table VI.

From Table VI it can be deduced’”" that natural optical rotation to a
given order in E and/or B occurs if the mediating property tensor contains
the signature D" (%), with either a negative or positive T signature. The
qu':i?railant signature in R(3) is D™(£). The possible nonlinear optical
activities are summarized in Table VII.

; 1& similar symmetry analysis can be made for “‘magnetic” optical ac-
IVIty.

F_lging Tables VI and VII, different classifications for the natural optical
activity induced at different field orders become superfluous. We need
only look to see if the relevant molecular property tensor contains D
with a plus or minus T signature coming from the opposite T signatures*®
of its real and imaginary parts. (The I’ signature, for example, of the real
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TABLE VII
Known and New Optical Rotation Effects to Third Order with Suggested Nomenclature
Effect Origin Accompanies Reference  Status
Rosenfeld optical rotation a: B part  Polanzation 372 Known
{First-order B rotation) of p
First-order E rotation a.E m Magnetization - Mew
Second-order EE rotation B,EE p Polanzation - MNew
Magnetochiral birefringence B:.BB p Polanzatuon 30k Known
{Second-order BB rotation)
Inverse magnetochiral birefringence b.BE —_———
{Second-order BE and EB rotations) bEB ™ MEtEnetizaton L Rngam
Third-order EEB rotation v:EEB @ Polarization
Third-order EBE rotation v:EBE p Polanzation
Third-order BEE rotation v<sBEE @ Polarization
Third-order BBB rotation v<BBB p Polarization
Third-order BBE rotation g-BBE m Magnetization - NEw
Third-order BEB rotation g:BEB m Magnetization
Third-order EBB rotation gEBB m Magnetization
Third-order EEE rotation g:EEE m Magnetization

part of dynamic polarizability is plus and that of the imaginary part is
minus. The P signature of both parts®® is plus.)

Equations (407) and (408) and Tables VI and VII provide a summary
for the unified treatment of the various linear and nonlinear optical effects.
Within this framework, the magnetochiral effect™ for example, is treated
through the complex molecular property tensor B;, which contains D"
(+). The effect is an electric dipole moment induced through B, by the
tensor product BB (or B;B; in Einstein notation) of the electromagnetic
field. It can be thought of as the “second-order equivalent™ of Rosenfeld
rotation, characterized by ay;B;, The third-order equivalent in this
sequence is yg;x/B,B: B, whose v tensor contains D" three times, sign-
ifying three independent third-order optical rotation effects. This analysis
can be repeated for other sequences of optical rotatory effects, involving,
for example, the inverse magnetochiral effect, recently proposed by
Wagniére.”""

G. Optical Activity Induced by a Pump Laser

A particularly useful nonlinear property of an intense pump laser is optical
rectification, defined through vector cross products of the complex conju-
gate solutions to Maxwell's equations. These are referred to as conjugate
products, and have been defined by Ward®™ in terms of Feynman diagrams
of quantum perturbation theory. In this subsection the P and T symmetries
of the conjugate product
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N=E; XE; = —-E} x Ex = 2E2ik (409)

are -::Ii:?cussed* and shown to be the same as that of magnetic flux density
B. This leads to the important conclusion that IT of 2 pump laser can
produce, theoretically, all the effects of B.

The conjugate product defined in Eq. (409) is nonzero only in a circu-
!::'.-r!y polarized laser, and changes sign if the polarization is switched from
right to left. It is a purely imaginary quantity, which is proportional to
the laser_ electric field strength amplitude squared, Ej. Its interaction
energy with an atom or molecule is therefore

(410)

whf:re ¥ 1 E.S the axial vector (rank one tensor) representation of the
antisymmetric, imaginary part, of the rank two dynamic polarizability
lensor. The latter is T-negative from semiclassical theory,?* and to obtain
a T-positive scalar interaction energy, Il must be T-negative. This expec-
tation is reinforced from first principles as follows.

We wish to prove that

ns-mn (411)

Fhat is, that the conjugate product is negative to motion reversal. Consider-
ing the four electric field strengths in Eq. (406) we expand E; as

Re(E.) = Ey(icos 6, + j sin ﬂ.r_JJ 412

II'H.I:EL_] = IEﬂ{j COSs lﬂ'_r__ = iﬂin Ef,] { ]
and apply T term by term as follows:

Re(E;) -5 Eqy(icos fg — jsin ﬂR}J 413

Im(E;) % (Eo(j cos B + isin k) )

These follow because
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Figure 51. Basic elements of an electrom- \
agnetic wave. E and B are mutually perpendic-
ular to the propagation vector, which is paral-
lel to the conjugate product.
t5 -t w5 w; K. > —Kg; r5r (414)
using the basic properties
cos 6; -5 cos Og; sin 8, - — sin g (415)

under T. These in turn follow because @ is a scalar angular frequency (a
number of radians per unit time unaffected by motion reversal) and r, the
position vector, is invariant to T by definition. The time ¢ itself reverses
by definition of T as motion reversal, because time is position r divided
by velocity v, and the latter is reversed by the definition of motion reversal.
Finally, x the wave vector, is reversed in direction because the laser beam
reverses direction with motion reversal. We have seen that T reverses the
circular polarity of the laser (right to left or vice versa). Thus k, becomes

—ky under T. Finally, Eq. (415) follows from the mathematical properties

of the cosine and sine. Overall, therefore, T has the effect
E; 5 Ex; EELE;}_ ] (416)
(E"XE"), 5 —(E" xE )

and reverses the sign of the conjugate product when the laser is switched
from left to right or vice versa. The conjugate product is therefore negative
to T, as the Hamiltonian (Eq. 410) indicated.

The conjugate products I, and Il of a left and right circularly polar-
ized pump laser, such as a Nd:YAG, have opposite signs. The quantity
I1 derives from the helical motion of conjugate electric field components
of the pump laser and is given mathematically by the vector product of
orthogonal conjugates. Figure 51 is an illustration of the fact that Il is an
axial vector with the same T and P symmetries as B: minus to T and plus
to P. Its forward direction is along the axis of the helix, and is therefore
the direction of the propagation vector k of the pump laser. The effect of
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T is to reverse the direction of the laser beam, thus reversing both Il,
and I1,. However, II is not reversed by P because it is the vector product
of two P-negative electric field vectors.

From principle three, we expect I to produce spectroscopic phenomena
akin to B, because it has the same P and T symmetries. In the first
instance, we expect an equivalent of the Faraday effect, that is, optical
activity with D" (=) symmetry in R,(3) and D" (—) symmetry in R(3).
By substituting II for B in Figs. (49) and (50) we can illustrate the conser-
vation of Wigner reversality and parity inversion in achiral and chiral
ensembles. Furthermore, wherever B appears in atomic and molecular
spectroscopy, our five symmetry principles allow us to substitute Il, im-
mediately yielding a variety of possible new phenomena, for example: I1-
induced Zeeman splitting; Il-induced nuclear resonance; and Il-induced
parity violating spectral features of profound interest. In the same way
that B couples to orbital and spin-angular atomic and molecular properties,
we expect Il to couple to fundamental properties of the same symmetry,
both electronic and nuclear in nature. Our task is now to evaluate these
possibilities theoretically, and, most importantly, to examine the theories
experimentally. In this context we have the added advantage that Il of a
pump laser which is focused and Q-switched can be enormous, allowing
a great deal of latitude in the experimental investigation. Additionally,
the frequencies of both pump and probe can be tuned to the frequency
of the spectral feature under investigation, allowing resonances due to (1)
the probe, (2) the pump, and (3) double resonance with consequent
amplification of low-intensity spectral features such as P violating trans-
itions which do not obey Laporte’s Rule.””* The symmetry allows IT to
couple in the interaction Hamiltonian to a quantity akin to nuclear spin.
This must be a nuclear “spin polarizability” because II is proportional to
pump-laser electric field strength (EJ) squared. This would be a funda-
mentally new nuclear quantity akin to the nuclear magnetic dipole moment
which links it to B. It would mediate the phenomenon of “nuclear electro-
magnetic resonance,” a “symmetry clone” of NMR, opening up a multi-
tude of new possibilities, theoretical and experimental.

Part of the purpose of this section is to try to estimate the likely order
of magnitude of some of these new induced effects, in order to prepare
the way for the all-important experimental investigation of the theory.

H. Some Expected Il-Induced Spectroscopic Effects

In this subsection we mention briefly some expected effects of II, using
as a guideline the historical development of one or two of the spectro-

scopies which rely on B. This sets the theme for the variations that follow
in other subsections.
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I. II-Induced Zeeman Splitting

A good account of conventional Zeeman splitting due to B is given by
Barron®™® (p. 12 ff.). It was first observed by Zeeman®” as the broadening
of the two lines of the first principal doublet from a sodium flame placed
between the poles of an electromagnet. The main features of the conven-
tional (magnetic) Zeeman effect are described in contemporary theory in
the A term of the electronic Faraday effect owing to B,*® and therefore
we will be able in this section to develop an analogous semiclassical theory
of the A term of optical activity due to IL. The latter is expected therefore
both in atomic and molecular ensembles, and later in this section an
estimate is given of the magnitude of the splitting in terms of Il of the
pump laser,

The hyperfine (nuclear) part of the optical Zeeman effect gives the
exciting prospect of optical nuclear resonance in analogy with NMR. This
analogy is developed quantum mechanically and classically later in this
section.

J. Rayleigh-Raman Optical Activity Induced by I1

Radiation scattered from a chiral molecular ensemble is optically active,
the Rayleigh and Raman spectral features of which provide specific infor-
mation about fundamental molecular property tensors.>” This is analo-
gous with natural optical activity. Similarly, radiation scattered from a
chiral or achiral ensemble to which B is applied shows magnetic optical
activity. This leads to the expectation that radiation scattered from a probe
laser will become optically active if Il from a pump laser is applied to the
molecular ensemble which is the source of the scattered radiation. The
semiclassical theory of this effect is developed in this section in terms of
new molecular properties.

K. Forward-Backward Birefringence due to Il

In 1982, Wagniére and Meier’™ proposed another fundamental effect
of B in the spectroscopy of chiral ensembles: forward-backward (FB)
birefringence, the semiclassical theory of which was given later by Barron
and Vrbancich™® in terms of new molecular property tensors. FB birefrin-
gence due to B is measured with a probe laser whose propagation vector
k is parallel or antiparallel to B, as in the Faraday effect. However,
Wagniére—Meier birefringence is a forward-backward asymmetry,?”” not
a circular asymmetry as in the Faraday effect, and is measured with
unpolarized probe radiation. We can apply the Wigner Principles to B-
induced FB birefringence with reference, as usual, to Figs. 49 and 50, and
replacing the observable of the Faraday effect (the angle of rotation) by
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that of the Wagniére-Meier effect. The latter’*”® is (n" — n'), where n'
denotes the real part of the refractive index with B || x; and n" de-
notesB || k. Clearly, since T leaves the dot product B - k unchanged, it has
no effect on (n" — n"). The Wagniere—Meier effect therefore conserves
Wigner Reversality. The Wigner P operation reverses the sign of the
product k * B, and in consequence

(n'=n") 5 — (0t = n') (417)

that is, P reverses the sign of the variable in B-induced axial birefringence,
which is observable in consequence in chiral ensembles only. Because of
the forward-backward asymmetry of the effect, Barron®™ has suggested
that it has the symmetry D{"”(—) of a time-odd polar vector in R(3). Note
that this has the same D symmetry as that of the Faraday effect (a time-
odd axial vector symmetry) in R(3). There is no Wagniére~Meier effect.
however, in achiral ensembles, for example of atoms, without parity viol-
ation.””” The optical equivalent with B replaced by Il therefore gives
an excellent opportunity of observing P violation in atomic and achiral
molecular ensembles by tuning the pump laser (for example a dye laser)
Lo exact resonance,

Substituting IT for B we obtain the phenomenon of FB birefringence
caused by a pump laser parallel or antiparallel to k of a probe laser, whose
semiclassical theory is developed, with order of magnitude estimates. in
this section.

L. Parity Violation in Molecular Ensembles due to I1

The terra watt power levels achievable with contemporary pump lasers
makes Il-induced circular bifringence (the Il-induced analogue of the
Faraday effect) a candidate for the attempted observation in molecular
ensembles of minute P violating phenomena due to electroweak interac-
tions mediated by the neutral intermediate vector boson®”® whose exis-
tence was recently verified by the CERN experiment.* It is shown later,
for example, that a focused and Q-switched Nd:YAG laser delivering E2
up to 10" volts> m 2 is capable of rotating the plane of polarization of a
probe laser at visible frequencies by about a million radians per meter of
sample for E, at a modest 10,000 voltscm™'. By tuning the high power
Nd:YAG pump to a P-violating transition (e.g., one that violates
Laporte’s Rule’™) it may be possible to attain the enormous amplification
needed to see clearly the P-violating spectral absorption.
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M. The Optical Zeeman Effect — Quantization of the Imaginary Part
of the Atomic or Molecular Polarizability (the Electronic Orbital-Spin
Angular Polarizability)

It is well known that quantized angular momentum is described by impor-
tant commutator relations and coupling coefficients such as those of
Clebsch and Gordan.”™ It is proportional through the gyromagnetic ratio
to the quantized magnetic dipole moment, which in general has orbital
and spin components. Many important spectral phenomena, are induced
by applied static magnetic flux density B. NMR depends on the availability
of magnets of up to 14 Tesla, with a necessarily high degree of homo-
geneity. Imaging, medical, and Fourier transform NMR and ESR now
pervade much of contemporary analytical chemistry. It would be interest-
ing to supplement or replace the NMR magnet with IT of a circularly
polarized and inexpensive laser.

The interaction Hamiltonian'” describes the way in which the quantity
IT interacts with an ensemble of atoms or molecules. The quantity II; is,
as we have seen, a T-negative, P-positive axial vector, proportional to the
square of the electric field strength of the laser. As such, it can be ex-
pressed mathematically as a rank two antisymmetric polar tensor®

H,. = 'Eijknjk {413)

where € is the Levi Civita symbol (the rank three, totally antisymmetric,
unit tensor). The interaction Hamiltonian in this representation is, mathe-
matically, the tensor contraction on to the scalar**°

i i i (1] i n ﬂ'
AH = _ﬂ'];f H;‘j = E(Ei.txn.t'x + {rl_tyn.r_v G T n'l_v:n}r: + ﬂll::“z:;)

2
(419)

where afj; is the rank two tensor representation of the imaginary part of
the polarizability.*”*** On the grounds of symmetry, this must also be
an antisymmetric second-rank polar tensor in order to contract on to a
scalar energy in Eq. (419) For a pump laser propagating in the Z direction,
the tensor representation of its conjugate product is

0 2E} O
M.=|-2E5 0 0 (420)
[0 0 0
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with XY and Y X components being nonzero. By definition of the mathe-
matical procedure of tensor contraction,?****" this implies that the imagi-
nary part of the polarizability is

L i3 "
X1z = Wy — Ay

— E-- tx”.
i -I'_I.I'k ik :| {42 1}
that is, either an axial vector with one Z component, or an antisymmetric
polar tensor with X'Y and Y X components. From semiclassical theory?*
these components are

o "
Aey = ~ Xy

=23 ———— Im((n )y ) (422)

hi join 3y, — @*

where u. and p, are orthogonal electric dipole moment components
defined by quantum states n and j, with transition frequency

Wiy = lf-ti',' = ik, {423}

The angular frequency in radians s~ ' of the pump laser is w. It is immedi-
ately clear from Eq. (422) that the imaginary part of the dynamic polariz-
ability vanishes as w goes to zero. If the laser is tuned to the transition
frequency,

W = wj, (424)

the vector af; is amplified enormously.

The axial vector af; has the same P and T symmetries as angular
momentum, and is therefore quantized in the same way. This allows an
important analogy to be drawn between the properties of af;, which we
name the electronic orbital-spin angular polarizability (angular polariz-
ability for short), and the magnetic dipole moment m; .

The angular polarizability a, is a quantized axial vector with positive
P and negative T symmetries, the same P and T symmetries as m; and
angular momentum J;. In relativistic quantum theory, the magnetic dipole
moment is proportional through the gyromagnetic ratio (y,) to a sum of
the orbital (L) and spin (2.002S) electronic angular momenta, neglecting
for the moment the nuclear contribution proportional to the nuclear angu-
lar momentum
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m; = y(L; +2.0025;) (425)

By a comparison of the Hamiltonians (Eq. 419) and

AH, = -Te-'-"z Bz {42ﬁ}
we can immediately derive
Ye
ay, * ( ) (427)
] Bufl

showing that the angular polarizability is also proportional to the angular
momentum. In analogy with Eq. (425) we have

ay; = v.(L; +2.0025;) (428)

where vy, i1s a new fundamental atomic or molecular property analogous
to the gyromagnetic ratio, a gyroptic ratio.

Equation (428) leads to the important conclusion that the angular
polarizability has all the quantum mechanical properties of the angular
momentum itself.

Therefore it has the point-group symmetry in the molecule fixed frame
of the well-known R symbols of the point-group character tables.”” It has
the commutator properties

[aiy, aiy] = ihay. (429)

[/

E'ﬂli_'pﬂ ﬂ'f’:] — fﬁ&;;'

P ir - 3
[ﬂl:‘ ﬂllr — fﬁﬂl_v

Without having to solve the Schrodinger equation, and using the hermi-
ticity of the commutator, it follows directly that angular polarizability of
the commutator, it follows directly that angular polarizability is described
by the angular momentum quantum numbers themselves. for orbital mo-
mentum these are L and its Z-axis projection, M

M=1J-1,..., ~J (430)

and by the spin-angular momentum quantum number §. These angular
polarizability quantum numbers couple to others, such as the nuclear
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angular momentum quantum number N, or the framework angular mo-
mentum quantum number O through the Clebsch Gordan, Racah. and
Griffith equations.™"

This leads to the expectation that a circularly polarized pump laser can
generate all the spectroscopic properties customarily attributed to static
magnetic flux density B, with a variety of useful analytical consequences,
and with the important advantage of tuning to resonance (Eq. 424) with
a natural frequency of the sample. One of these is named here the optical
Zeeman effect, whose Hamiltonian can be expressed as

AH = - }'ﬂa(a{-;‘ + ESi}Eﬁi {431}

This puts the Hamiltonian in a form where it can be developed with vector
coupling models, as in the conventional (magnetically induced) Zeeman
effect.”™ It follows from Eq. (431) that the selection rules for transitions
between energy levels in the optical Zeeman effect are

Al=0. =1
] (432)
AM=(, =1
where M takes the values J, . . .. - J.

A probe microwave (GHz frequency) field can be used to detect the
optical Zeeman effect. When the probe is parallel to Il the selection
rule is AM =), giving the 7 components; and when the two fields are
perpendicular, AM = %1, giving the o components of the optical Zeeman
effect. The pump laser is conveniently a circularly polarized narrow-width
dye laser, and the sample may be sodium vapor**—>* as in the original
experiment by Zeeman.”” This combination of GHz frequency probe and
circularly polarized visible frequency dye laser can probably be used in
the investigation of fine and nuclear (hyperfine) structure in the optical
Zeeman effect.”™ The hyperfine structure is conveniently referred to as
optical electronic or nuclear spin resonance.

For simple diatomic molecules, for example, the Hamiltonian (Eq.
431), initially neglecting hyperfine interactions, can be developed follow-
ing Townes and Schawlow™ in terms of the well-known Hund vector-
coupling models. In the weak coupling limit, L, and S; precess about
the molecular axis, which precesses about the total electronic angular
momentum J;. In the presence of the circularly polarized pump dye laser,
tuned to resonance™ with, for example, an atomic beam of diatomic
molecules, J; precesses about II; of the dye laser, with projection M; in
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the direction of Il;. This allows the Hamiltonian (Eq. 431) to be rewritten
as

(A +2-002Q)y,ME},

AH = 433
JI#+ 1) L

with A and () defined by
O=k.') A=k L (434)

where k, is a unit vector in the molecular axis. We expect (2J + 1) equally
spaced optical Zeeman lines corresponding to the different values of M.
The extent of the splitting is determined by the ratio of the interaction
energy a}.E{ to the reduced Planck constant A/27r. This ratio is increased
dramatically in the resonance condition (Eq. 424).
Hund’s case (b) can be written in direct analogy to Eq. (11-5) of
Townes and Schawlow™ as

- 3 {AE{N(N+ D+ SES+1)—-JJ+1)
27 +1) N(N+1)

+2.002[J(J+1)+S(E+1)-N(N+ 1}]} My, E; (435)

In general, the Hamiltonian of the optical Zeeman effect can be written
in terms of the Landé factor g,

AH = —g;My,.Ej§ (436)

with g, of the order of unity for molecules with net angular momentum,

as in the conventional, B-induced, Zeeman effect. Otherwise g, is domin-

ated by the nuclear spin quantum number /. In general, g, depends on
the net electronic angular momentum J;. In the optical Zeeman effect, if
the Landé factors in states J, and J, are g, and g, respectively, and if the
transition frequency (in Hz) between J, and J; is »,, the optical Zeeman
spectrum will be a series of lines defined by

v= vy + (g2 — g) My Edlh (437)

for AM =0 (7 components), and
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v= 1w+ (g2 — g1)M = g1] ¥y~ Edlh (438)

for AM=M, - M, = *1 (o components), with M, the lower state quan-
tum number. As the pump laser is swept across resonance with a natural
ltransitian frequency of the sample, the angular polarizability af; will
increase and decrease dramatically, and the spectral splittings will change
accordingly. This pattern of change will be different for each natural
transition frequency, giving plenty of scope for the development of useful
new analytical methods based on the optical Zeeman effect.

In general, the g factors contain hyperfine (nuclear) and super hyper-
fine™ contributions, which cause nuclear electromagnetic resonance as the
GHz probe is swept across the same frequency as that of a transition
frequency between hyperfine states. This is an optical equivalent of NMR.

For observation of the ¢ lines of the optical Zeeman effect, the electric
field of the GHz electromagnetic probe should be perpendicular to I1; of
the circularly polarized pump laser (dye laser, Nd:YAG, CO, laser, etc.)
so that the direction of propagation of the pump laser is parallel to the
length or broadest faces of the waveguide carrying the GHz probe. No
optical Zeeman effect can be observed if the pump laser has not at least
some degree of circular polarization. This is useful in distinguishing it from
the well-known Autler-Townes, or optical Stark, effect.”®* 3! The latter
depends on the real part of the polarizability (e.g., Eq. 2.59 of Ref. 388),
whose symmetry is T-positive’® from semiclassical theory, and which is a
symmetric second-rank tensor with no axial vector equivalent. The optical
Stark effect also has a zero frequency (DC) component,*®® whereas the
optical Zeeman effect vanishes with vanishing w from Eq. (422). The
optical Stark effect has none of the quantization properties of the optical
Zeeman effect, because the real part of the dynamical atomic or molecular
polarizability is not proportional to angular momentum, having opposite
I'symmetry and being a symmetric-rank two tensor with no rank one axial
vector equivalent.

It is important to bear in mind the opposite T and suffix symmetries®*®
of the real and imaginary parts of the dynamic electronic polarizabilities.
The fundamental difference between the Autler-Townes and optical
Zeeman effects is a manifestation of these symmetry differences.
| The general appearance of a simple type of optical Zeeman spectrum
Is expected to be similar to that sketched in Fig. (11-1) of the standard
text by Townes and Schawlow™ but will also depend, as mentioned,

on resonance of type in Eq. (424). When nuclear hyperfine structure is
considered, a Hamiltonian such as

A= — %{ng.r Jill; + ¥omgr LIL) (439)
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must be used, where vy, is the nuclear gyroptic ratio and I the nuclear
spin quantum number. If this is much smaller than the hyperfine energy,
so that II; does not disturb the coupling between J; and I, the vector
coupling model gives the Landé type Hamiltonian

AH; ={—Yamgll(I +1) + F(F+ 1) = J(J 4+ 1)]

M Ej
v« + 1)+ F(F+1) = I(I+ 1]} b (440)

where F is the total angular momentum quantum number and M, its
projection on to Il; of the circularly polarized pump laser. For a diamag-
netic molecule, both terms of the optical Zeeman effect described by Eq.
(440) are roughly equal in magnitude, giving considerable extra spectral
detail for analytical purposes.

There appears to be another important potential advantage of the
optical Zeeman effect over the conventional magnetic Zeeman effect. The
pump laser of the former effect puts the molecule into an excited electronic
state, in which there is net angular momentum imparted™* to the mol-
ecule. The conjugate product II; spins a quantum state of the atom or
molecule through the mediacy of a};. This extra angular momentum results
in a spectrum that is possible in the conventional Zeeman effect only in
a molecule such as nitrous oxide, which is in a state with J number 3/2,
so that the M, states are 3/2, 1/2, —1/2, and —3/2, each of which is split
into M, =1, 0, —1 states. Each M, state would be expected to show
hyperfine structure in optical Zeeman spectroscopy. Another example is
that of oxygen, in which there would be an optical Zeeman splitting of
the p-type triplets.

Symmetric and asymmetric tops would have more complicated optical
Zeeman spectra, the case of HOD, for example, being interesting because

its 470 state coincides with a circularly polarized Nd:YAG pump fre- |

quency.””**** The use of such coincidences between circularly polarized

pump laser frequencies and natural transition frequencies is reminiscent

of the well-developed techniques®*"" of infrared and infrared—radio

frequency double resonance, and of superhigh resolution saturation spec-
troscopy.”™ In each of these techniques, the circularly polarized pump
laser (e.g., a narrow-width circularly polarized dye laser’”* would be used
both for resonance, and for generation of Il;, in analogy with the methods

already in existence for multiphoton optical Stark splitting.*’

One of the most sensitive techniques for optical Zeeman spectroscopy

in atomic vapors would be possible with apparatus resembling that of
Stroud and co-workers™’ utilizing circularly polarized visible dye lasers
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and radio-frequency fields focused carefully on to an atomic beam of
sodium vapor. Using this apparatus, Molander, Stroud. and Yeazell**®
have characterized what they termed *high angular momentum Stark
states™ using a process of two-photon absorption by a circularly polarized
dye laser, using a circularly polarized radio frequency field to produce
quantized angular momentum in the sodium atoms. In this way the sodium
atoms were excited to the n = 25 manifold, that is, “dressed” by the
circularly polarized radio frequency field at 200 MHz, 8 V em ™" equivalent
clectric field strength. The “‘dressed” state was then excited by a sensitive
resonant two-photon process, reminiscent of the method used by Whitley
and Stroud™” for one of the first unambiguous observations of the optical
Autler-Townes effect. For observation of the optical Zeeman effect in
sodium vapor, the dye laser of this apparatus would be intense and circu-
larly polarized, possibly Q-switched and focused, and the MHz/GHz probe
would not necessarily be circularly polarized. Another possibility would
be the use of two radio-frequency fields, one intense and circularly polar-
ized pump to produce II,, the other a weaker unpolarized probe. (The
same concept of producing II; from a radio-frequency field would be
potentially very interesting in a conventional NMR spectrometer, using a
circularly polarized probe radio-frequency field to produce extra angular
momentum, thus electromagnetically Zeeman splitting the conventional
NMR spectrum and giving a large number of analytical possibilities.)

N. Semiclassical Theory of the Optical Zeeman Effect

It is well known in semiclassical theory®® that the conventional (B-
induced) Zeeman effect can be described as the A term of the quantum
mechanical description of the Faraday effect,”® first derived by Serber,
f”“j rederived in terms of useful molecular property tensors by Buck-
ingham and Stephens.™™ The semiclassical treatment depends on a Voigt-
Born perturbation™ of the appropriate molecular property by the applied
field. In the B-induced Faraday effect

aley(B:) = afiy + @iy B+ + + - (441)
and in the Tl-induced Faraday effect
afo(Il) = af, + e T, + - - (442)

h_ﬂth involving the imaginary part of the dynamic polarizability, the quan-
tity, which, as we have seen, mediates the optical Zeeman effect. This is
consistent with the fact that there is also an optical Faraday effect, whose
A term is the quantum description of the optical Zeeman effect. The first
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indications of the presence of an optical Faraday effect were obtained*"!”
“? by measuring the bulk magnetization due to a circularly polarized
pulsed giant ruby laser, using*” a simple inductance coil. The magnetiz-
ation was easily observable®”*** in a range of diamagnetic liquids through
an electric current generated with the coil during a laser pulse, even
though no resonance tuning-amplification was used. The optical Zeeman
effect can be thought of as one of the numerous (and unexplored) spectral
consequences of this magnetization by the circularly polarized pump laser.
With resonance tuning, these effects appear well within the capability of
ultrasensitive contemporary apparatus, such as that developed in other
contexts by Stroud and co-workers,”?7*%

In semiclassical theory the angle of rotation of the optical Faraday

effect can be expressed*™ as

AG= ; wpocIN (@ (f) + oL (443)

2 % mpﬂddﬁ"agg (::a&::r; () + ﬁ,mrzn ok, m}) (444)

where @ is the measuring frequency (radians s '); u, the permeability in
vacuo in SI, ¢ the velocity of light; / the sample length; N the number of
molecules per unit volume; d, the quantum state degeneracy; E} the
square of the pump laser’s electric field strength; and kT the thermal
energy per molecule. Here f is the dispersive line-shape function of
semiclassical theory.?®® The ellipticity change in the probe is

. ]. Fig Il 1 ] i !
-5-7] = 5 W o Cl’f EE; ( "I{l.'l-',:': {g)} + E_{ﬂlzn Ay (H))) (445}

L

where g is the absorptive lineshape function.**®

The circular birefringence and dichroism due to Il; can be written in
formal analogy with the magnetic electronic A, B, and C terms, written
in the molecule fixed frame, as follows:

. RocINE3[2wime® .5 z ( : )]
A= - — o)A + B+ — 446
= == (f ) w f T (446)
. wecINER [4wjne’ ; ( ¢ )]
An= — A+ B+— 447
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for a quantum transition from n to J» where n is the state of lower energy,

usu.:all}f the ground state. The A, B, and C terms due to the pump laser™s
conjugate product are

3
A= ;4}‘ (@) = @iy Im (e )ty )

. (k|ay.|n) .
B = Elm(z : i (Cnlpne X7 ey ) = (mlaay |13 | i)

dn n k= Wy,

oIk
+ 3 Sl ikl ) {niuyfj}{klnxlﬂ}))

ko wf fimkj

3
C= - § arzn Im ((nf i)l 2y |m))

which represent a sum over transitions from component states of a de-
generate set to an excited state y; which itself could be a member of a
degenerate set. Note that the A term, which describes the optical Zeeman
effect in semiclassical theory, requires a definition of the angular polariz-

abilit}r ay. in states n and j. The definition in state n is Eq. (422), and
that in state j is !

—

" i
Eiaa,; = XAag, g

2
== 2 ———Im((]] o k5 )) (448)

ﬁ.kr‘j Wij = W

where k denotes a quantum state higher in energy than j. In writing the
A. B, and C terms in this way, weighted Boltzmann averaging®®® is used
with the energy ratio —a{, E3/kT. A Q-switched and focused Nd:YAG
laser pn:::‘duces E, of about 10” voltm™', and for an order of magnitude
estimate f” of about 10™*' C*m?J ™! for . the ratio ai.E4/kT is of the
order unity. It appears that this can easily be achieved by tuning to
resonance with the transition frequencies Wy OT W),

Th_e A term is responsible for optical Zeeman splitting by the circularly
pﬂlarfzed pump laser as measured by a suitable probe. A right circularly
p:::i_anzed pump laser delivers a photon with —A projection in the propa-
gation (x) axis of the laser, producing a change AM = —1 in the atomic
or mulecfﬂar quantum state. Conversely, the left circularly polarized pump
laser delivers a photon with projection +h, with selection rule AM = 1
In a linearly polarized pump there is no optical Zeeman effect. and the;




628 M. W. EVANS

selection rule is AM = 0. This is accounted for classically in Eq. (409),
where the left conjugate product is positive, and the right negative. The
sign change produced by switching the pump™s polarity from left to right
is equivalent to the change produced in the Faraday effect by switching
the direction of B relative to the propagation vector of the probe.

As in the conventional, B-induced Faraday effect, the A term due to
Il comes from the splitting of lines by II into right and left circularly
polarized components. The B term of the optical Faraday effect originates
from the mixing of energy levels due to the pump laser, and the C term
is a change of electronic population of the pump-laser-split ground states.
In each case the magnetic dipole moment operator of the conventional
Zeeman effect is replaced by the angular polarizability vector af with the
same P and T symmetries and M quantum number selection rules. The
angular polarizability can be greatly amplified by resonance as we have
seen.

In the Il-induced A and C terms, the vector polarizabilities in states n
and j exist in general in the presence and absence of degeneracy, from
the definitions (Eqs. 446 and 447). Therefore the A and C terms should
be visible in molecules of lower symmetry than in the conventional
B-induced equivalents.

O. Laser-Induced Electronic and Nuclear Spin Resonance

The above discussion leads to the theoretical expectation of electron and
nuclear spin resonance due to optical rectification, of great potential value
because lasers and circularly polarized radio frequency fields can ulti-
mately*” supplement interestingly the magnets of NMR and ESR spec-
trometers. The origin of electron spin resonance with IT is found in the
quantum nature of the vector polarizability «f, which is proportional
through Eq. (431) to the sum of the orbital and spin-angular momenta of
the electron, the latter taking the values 1/2 and —1/2. If the probe is
tuned to the resonance frequency wy, it is absorbed when

hwe = E(1/2) — E(—1/2) ] (449)

P zﬁT#Eﬁ

which is the condition for electron spin resonance due to optical rectifi-
cation in a circularly polarized electromagnetic field. This depends on the
AM = 1 transition between the electron spin polarizability states 1/2 and
—1/2. If the pump laser inputs the energy a.Ej, the resonance frequency
range is roughly a.Eg/h, which is in the MHz for an order of magnitude
107*'C* m*J™! for the angular polarizability, and a pump laser electric
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field strength of the order 10°-10° voltm~'. Conventional ESR spec-
trometers can therefore be adapted for use with the pump laser, using
existing microwave probes. High-sensitivity apparatus is available similar
to that developed™ by Stroud and co-workers in another context.
Resonance amplification of the angular polarizability can be utilized.

The most useful feature of conventional, B-induced, ESR is retained
when B is substituted by I1. This is coupling of electron and nuclear spins
caus:*:d by the Il-induced transition between electron orientation states b}:
the_ Interaction of the spin-angular momenta of the electron with nuclei
which have nonzero spin-quantum numbers /. This hyperfine resonance
structure can be induced, under the right conditions, by IT of a pump
laser, _such as a dye laser. In the triphenyl methyl radical, for example
the B-induced hyperfine structure of one resonance peak contains no 13551
than 196 lines, and similar detail is expected from II used in place of B.

If a circular polarized pump laser is used to supplement the mag-

nen-:::_ﬂux_ density of a conventional NMR spectrometer, the result is a
Hamiltonian of the form

AH; = —y,1I,B; — 3y J.I1, (450)

wh_ere Yn Is the nuclear gyromagnetic ratio. and the angular momentum
J; is the sum

.f'- - L,: o ZﬂUZSr f-ﬂ‘-ﬁl]

This Hamiltonian can be rewritten in the Landé form:

R _’}’N(l +f(!+ 1) -J({J + ”)JT-B-
2l +1) .

h(] I+ 1) -JU+1)

2 2r(Ir+ 1) ) Inll, e

where

is the total angular momentum quantum number, F
: . For I # 0 the customar
NMR line, defined through the selection rule :
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AM;= =1 (454)
is split into a new pattern of lines dependent on the selection rule
AM,,. =0, £1 (455)

and on the individual values of / and J. A convenient way of doing this
Is to increase the intensity and to circularly polarize the MHz probe
radio-frequency field of the NMR spectrometer. This has great potential
application in analytical laboratories, because modifications to include I1;
can be made in standard NMR instruments, including 2-D (imaging), and
Fourier transform NMR.

P. Rayleigh-Raman Light-Scattering Optical Activity due to
Optical Rectification

Magnetic Rayleigh—Raman optical activity was developed theoretically by
Barron and Buckingham®® and experimentally by Barron and co-workers.

The radiation scattered from a probe laser becomes optically active by
applying a magnetic field to the sample parallel to the incident probe

laser. For 90° scattering

E ]
A (90°) = 2 Im(ayxy ax) (456)
Re(aixy affvx + aixy afyy)
and
o
A,(90°) = 2Im(a;zy a%x) (457)
Re(aizx aisy + ayzy afly) -
where
e o
X 458
R (458)

is the dimensionless circular intensity difference.” The scattering is de-

scribed in Eqs. (456) and (457) by laboratory frame components of com-

plex molecular polarizability tensors and complex conjugates described by
a superscripted asterisk. The magnetic field B activates optical activity in

several different ways, and in consequence so does I1. The latter activates
the polarizability through a Voigt—-Born expansion to first-order in Ilz.

Consequently, in analogy with the effect of B, there are several new
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optically active scattering phenomena due to I of a pump laser parallel
to the incident probe. These can be subclassified into IT-induced Rayleigh
and Raman effects associated with diagonal scattering transitions; and
witl:l off-diagonal transitions which probe the analogue of ground-state
optical Zeeman splitting due to I1. There is also optically active resonance.,
as wel]‘as transparent, Raman scattering due to Il, together with the
interesting prospect of double resonance, when both the pump and probe
are tuned simultaneously. There is the additional advantage that IT is
expected to have a much more direct influence on vibrational spectra than
B, because I1 is electromagnetic in origin, and Raman scattering in general
is 2 phenomenon which depends on electronic states excited by electro-
magnetic fields.

Optical activity in scattered probe radiation due to Il of the pump
laser (or circularly polarized radio-frequency field) conserves parity and
reversality in all molecular ensembles (chiral and achiral) and the main
contribution in Rayleigh scattering is due to interference between waves
generated by polarizability tensor components respectively perturbed and
unperturbed by I of the pump laser. It is measured by scattered probe
radiation at any scattering angle, but the theory simplifies considerably*”’
for scattering at 90°.

The same considerations apply for Raman optical activity due to II,
but the interference is now between unperturbed symmetric transition
polarizability components, (a;);.., and antisymmetric components
(@), perturbed by I, and vice versa, 25

In both Rayleigh and Raman contexts the Voigt-Born expansion in I1
of the complex dynamic polarizability is

()¢

ﬂ‘u_.f{nﬂ o Efi'fj + Qi I~ f{ﬂfﬂ;‘ + ﬂi:;iﬁnk) (459)

and products such as a; . };,, are Boltzmann-averaged®® with the poten-
tial energy aizE{/kT. We obtain expressions for optically active scattering
due to IT analogous with those for B given in Egs. (3.5.45) and (3.5.53)
of Ref. 286. The most general expression for the Stokes parameters for
optically active scattered radiation due to Il are the analogues of those
due to B* in Barron’s Eq. (3.5.51), and in Barron, Meehan, and
Vrbancich.™’ Here the superscripts R and L refer to the scattered probe
radiation, whose electric field intensity is denoted E{”, and R is the
distance from the scattering center:

Aa = (If = IR + 1Y) (460)

where
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A = (o' woE ) (1672cR?) (461)
Ixn—Iz=A Im (o) vy aify) (462)
Iﬁ g f_%f = A Im{ﬂ1z}' @ y) {4&3)
A

IS+ 1% = E Re(a vy affvy + a)yy afy) (464)
A

IZ+15= E Re(aizy afex + a7y afsy) (463)

The products of polarizabilities in these expressions are perturbed by II
of the pump laser. After Boltzmann averaging™® for Il in the Z direction

of the incoming probe beam, we have; " *!!

R Lo 2 ' T
Iy — Iy =2AE\ Aa|xx ﬂ':‘.xrz

B ()t & {7)r H { e i
—QixxyQixyz T Qlyyz Q) yvzr — X ¥yz O vy
1 (1]
% " " U i
2 5 E.{ﬂ’fxx yyy dixyy — i yy ﬂi,‘i"r'ﬂlﬁ"]‘)} {45‘5)

for the numerator of AX. It is seen that this is proportional to the square
of the electric field intensities both of the pump and of the probe. In
consequence, it appears that the effect can be easily large enough for
observation with a suitable pump dye laser.

These Stokes parameters contain cross terms between and («{;)7, which
are responsible for resonance Raman scattering from the probe due to IT

of the circularly polarized pump. “Resonance™ in this context refers to

the probe frequencies. The Stokes parameters switch sign if the pump is
switched from right to left for a given probe circular polarity. The effect

can also be generated by a pump laser at any suitable angle to the probe,
automatically removing the need to filter off scattered pump radiation.

In developing averages of the type shown in Eq. (466) use is made™™
of Boltzmann weighted averaging techniques to produce results in the
laboratory frame such as

ff:* = I:L = ZAEﬁ{{IIA'X O fy) [46?)

which transform into the molecule fixed frame*™as follows:

H* - ' n = u
(afyy ﬂ{li'!.'r‘f = ﬂ']r?ﬁ ¥ lﬂeu,ﬁ.l (Inkﬁhﬁﬁfe}
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1 ¢ i ¢
= __(zalﬂﬁsa'rﬁﬁlgyﬁ + ﬂ'!nnfﬂjrﬁﬂir;ﬁﬂ} (468)

30

using Greek subscripts to refer to molecule fixed-frame quantities. Stokes
parameters such as

Se(0%) = — 2KES.[2a) o €arysid, s

T a{fnrfﬁ'rﬁﬂ r—:ﬁﬁﬁ T Eﬂrnﬁfu'rﬁﬂllﬁ?ﬂﬁ
.|._ N ! 1 2 ¥ [ ]
a!ﬂ.ﬂfﬁﬂ?aiﬁﬁ? T E,{ alttﬂfu'yﬁalgyﬂlﬁg
+ @aa€pysivsas,)]psin 2 469
laaCpystl s g, ) [P 510 27 I: J

can then be expressed conveniently in this frame of reference. These
equations are formally identical with Barron™'s Eqgs. (3.5.45-3.5.47) of
Ref. 286, but implement I in place of B and the angular polarizability af
in place of the magnetic dipole moment m. As in scattered optical activity
due to B, that due to I1 does not lead to a circularly polarized component
in the light scattered at 90° if the pump and probe lasers are parallel. It
can be generated when the circularly polarized pump laser is parallel with
the scattered beam, and the intensity of the scattered probe radiation
depends on the degree of circularity of the incident probe only when the
pump is parallel with the probe.

The circular intensity differences for scattering of probe radiation at
0%, 180°, and 90° due to I in a pump parallel to the probe are found in
analogy with the theory of Barron and Buckingham®® as

A(0°) = A(180°)

-2 ¥ i ]
= ZEﬂfZﬂlaﬂEﬂaﬂ: ﬁﬁ-rﬁ T ﬁl'mfﬁyﬁﬂlr;rﬁﬂ

1

e - 3 [1] ] F
1 zﬂlnﬂfﬂ?ﬁﬂl.?ﬁﬁ T ﬂ'lﬂﬂfulﬁ? ﬂ'[é*:g? + E(ZHIJ"ISEWTEHIETEEIE"

¥ ¥ A [ !
T 0y Eﬁ?ﬁalyﬁﬂ]ﬁﬂ}}f[?ﬂlA#ﬂllr.-t*;.r. * ﬂlruﬂufg 7 53;’&#“1?“}

(470)

Where the molecular property tensors are all expressed in the molecule

fixed frame and where the tensor summation convention has been applied
to repeated indices.
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Q. Forward-Backward Birefringence due to Optical Rectification

Forward-backward birefringence due to a static magnetic field was intro-
duced in 1982 by Wagniére and Meier,”™~** and is another fundamentally
important effect of B in atomic and molecular spectroscopy. From the
third principle of gtsm we immediately have the possibility of an analogous
effect due to I, an effect which can be developed theoretically*™ in terms
of the zeta tensor of semiclassical theory,** or alternatively,****"! directly
from the Maxwell equation.

Forward-backward birefringence can be measured with unpolarized
probe radiation. It is generated in the Wagniére-Meier effect, for exam-
ple,”***1® by reversing the direction of B with respect to k, the propagation
vector of the unpolarized probe. It is sustained only in chiral ensembles,
and therefore, if observed in atoms, would be an indication of parity
nonconservation.””*'* It has been shown recently that forward—backward
birefringence can be generated by a pump laser in at least two ways, called
class one and two spin-chiral birefringence.”” Class 1*'**'? is observed by
switching the polarity of the pump from left to right, keeping the direction
of its propagation constant. Class 2*'“*'* keeps the circular polarity con-
stant and reverses the direction of propagation. In both cases, Il plays
the role of B of the Wagniére—Meier effect, and spin-chiral birefringence
is sustained only in chiral ensembles, giving another good opportunity of
investigating parity nonconservation in achiral ensembles. Both in class 1
and 2 spin-chiral effects, amplification by resonance is feasible by sweeping
the frequency of the pump through natural transition frequencies of the
chiral ensemble.

The semiclassical theory of spin-chiral birefringence for pump and
probe directed in the Z axis relies on the following scalar elements of the
zeta tensor:”'°

F 2 m £ f
{xxz=— (5 xxz T ﬂfz.t'r) (471)

and

3

o e |
Civa =2 (— v . ﬂzwr) (472)

and on Voigt-Born perturbations linear in I, of the Rosenfeld tensor’'®

and electric dipole - electric quadruple tensor*'?
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arx(llz) = adxy + asyz Mz + -« - (473)
azyx(Il2) = asyy + ﬂ{;;?,;'z Iz+ --- (474)

Axz (1) = Alyxz + ASazzllz+ o (475)
Yrz(z) = AYyz + A%zl + - (476)

subjected to Boltzmann averaging with the interaction energy
V(Q) = —Ej aiz = —Ej(afxy — aiyx) (477)
The forward-backward birefringence of the class 1 effect is the difference
n'(Hz 11 kz) = n'(m21l k2) (478)

where k is the propagation vector of the probe laser. In a dilute solution
for Ej a'yvy <kT we have*'"?

| | 1 s
(n! —n') = ZMNEﬁ{E €apy@3apy(f)
1 ' "
+ ﬁ kT[{dﬁaﬂﬁTﬁ st E!:,Tﬁﬁﬁ - 5&&'55?){a2ﬂ?ﬂ1ﬁ5
’ . ({2 aln ™)
= Q28+ ﬂflmﬁ}] T E {EALajﬂﬂ{f} - Aiﬁﬁaﬂ(f) i } (479)

with tensor components defined in the molecule fixed frame. An order-
of-magnitude estimate of this effect*'® produces

n' —n' = 1072E; (480)

which for a Q-switched and focused Nd:YAG laser delivering 10'®
(volt/m)* is of the order 107>, even without the added advantages of
resonance tuning, in which condition the effect is amplified greatly. If a
highly polarizable chiral material is chosen, such as a helical biomacro-
molecule or a cobalt complex, it is probable that the forward—backward
birefringence can be increased to the point where it is easily observable
even in a transparent part of the spectrum.
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R. The Optical Faraday Effect — Order-of-Magnitude Estimate of the
Angle of Rotation of a Plane-Polarized Probe

An expressison for the optical Faraday effect in the laboratory frame
of reference can be obtained from the XY element of the perturbed
polarizability, Eq. (441), which parallels the standard Voigt-Born per-
turbation in the semiclassical theory of the Faraday effect. The rotation
of the plane of polarization of the probe laser can be derived*'® from Eq.
(441) as the laboratory frame expression

AR = %m;.tﬂdNEﬁ (fﬂiﬂ"{f}}' g e

(afs, ﬂ:'\[ﬁ}) (481)
kT

and where a;,(f) is the absorptive®™ part of the tensor component XY
of the perturbed angular polarizability. In the molecule fixed frame, Eq.

(481) becomes

| i a.
Ab=-wuycINEial ,—28 4 ... 482
5 Ha 0 I'ﬁkT ( )

for a/.Ej < kT in dilute solution.
For a conservative order of magnitude 10™*' J™' C*m” for af,4(f). we
obtain*!?

A# = 10" Ej radian (483)

at 300K for the angle of rotation due to the component of Eq. (482).
This is easily within range of a contemporary laser spectropolarimeter,*'*
even for an unfocused, CW dye laser operating out of resonance. As in
the conventional Faraday effect, there will be an accompanying dichroism
and optical rotatory dispersion in the visible and infrared frequency
ranges. This type of spectrum provides unique and potentially useful
analytical information for atomic and molecular ensembles, both chiral
and achiral.

S. Electric Circular Birefringence and Dichroism

Faraday noted *“no effect” when he attempted to see circular birefringence
due to a static electric field. It is now known that such an effect would
imply nonconservation of reversality. However, a nonzero time derivative
of an electric field is negative to T, and can produce electric circular
birefringence and dichroism in chiral ensembles. Recently, this effect has
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0.5} =
= Figure 52. Diagonal (auto) and two off-
g o R— diagqnal (cross) correlation elements of the
yx = ——==——-——= rotational velocity correlation function of the
J electric Faraday effect. The Fourier trans-
, — ] | form of the autocorrelation function is far
0 0.2 04 ps  infrared dichroism.

been supercomputer-simulated,*" following a semiclassical treatment.*'2
Electric circular dichroism was observed in the simulation through the
Fourier transform of frequency spectra in the far infrared and dielectric
range (Section I of the § enantiomer of bromochlorofluoromethane, using
a Voigt-Born expansion of electric dipole moments:

IE (1

Mig = Moy + (ﬂ'uf L iz ; :;{ ) ) E}S - (484)
aE (1

Mir. = Moy + (ﬂnji"il’njz_l;—”)Ef‘i‘ e (485)

induced respectively by a right and left circularly polarized probe field
parallel to the electric field derivative. The latter was assumed to be
cosinusoidal.*"* The electric circular dichroism observed in the far infrared
range during the course of this simulation is illustrated in Fig. 52 for an
input electric field derivative equivalent in energy to 7.0 kJ/mole. Figure
52 illustrates the difference in the rotational velocity correlation tensor
(Sections I-VII) for right and left circularly polarized probe electromag-
netic radiation. Electric-field-induced birefrin gence and dichroism is there-
fore accompanied by the appearance of asymmetric cross-correlation func-
tions of the type seen in another context in Section VIIL. It is accompanied,
also, by anisotropy in the diagonal elements of the cross-correlation func-
tion. This produces spectral differences which are observable in principle
with a modified Fourier transform spectrometer (Section I1) with elec-
trodes with central apertures to allow alternating left and right circularly
polarized probe radiation from a piezoelectric modulator*'® or wire grid
beam dividers*'” to pass through the chiral sample in the Z axis of the
laboratory frame. The electrodes are used to apply the AC field derivative.

The orientational acf (Sections I to VII) exhibits the same type of
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; 2 L
IFignre 53. _As for : Fig. 52, orien- o
tational correlation function. L !

behavior (Fig. 53). However, in this case, the cross-correlation functions
(XY and YX elements) are symmetric in time dependence. These are
accompanied by the development of interesting new nonvanishing di-
agonal elements of the cross-correlation function between the linear and
angular molecular momentum (Sections 1-VII). These are much smaller
in magnitude than the XY and YX ccf’s of orientation and rotational
velocity shown in Figs. 52 and 53, but nevertheless exist above the noise
of the simulation. The ZZ element has a different time dependence from
the XX and YY elements, which are approximately equal.

T. Frequency-Dependent Electric Polarization due to Optical
Rectification in Chiral Ensembles

It has been shown recently by Evans and Wagniére*'® that I of the optical
rectification effect can produce frequency-dependent electric polarization
in chiral ensembles through the mediation of the angular polarizability.
(This is the optical equivalent of B-induced electric polarization in a
chiral ensemble capable of supporting the Rosenfeld tensor.) It should be
carefully noted that this effect is again different from the well-known**®
A.C. Stark effect, or Autler-Townes effect, because the latter is mediated
by the T-positive symmetric real part of the atomic or molecular polariz-
ability and has a zero-frequency (DC) component.

It is convenient to discuss the new effect by Evans and Wagniére*'®

in terms of the quantum mechanical expressions for optical rectification

introduced by Ward®”® and used recently by Wagniere®” to derive the
inverse magnetochiral effect.

Optical rectification as discussed by Ward?”? leads to an expression for
the DC electric polarization induced to second order by the electromag-
netic field, and consists of double sums over all eigenstates of the unper-

turbed molecular system. The individual terms in these sums contain in
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the numerators products of matrix elements of the system field interaction.
In the denominators appear the transition energies of the system, the
frequency of the radiation field, and appropriate damping factors. It is

sufficient for our purposes to consider the numerators, which are of the
general form

pp -E7)(p"-E") (486)

where p,p’, and " designate matrix elements of the electric dipole mo-
ment operator and E~, E™ are the complex conjugate electric field strength
vectors of the laser. Using isotropic averaging,”*!® Eq. (486) splits up
into a real part:

(b p' X p)E” XE") (487)

Ihe product E” X E™ vanishes if the radiation is linearly polarized, and
is purely imaginary (Eq. 409) for circularly polarized lasers. The induced
DC electric polarization proportional to the product (Eq. 487) is therefore
not directly observable, because it is purely imaginary.

However, at finite laser frequency o in Eq. (422) the imaginary part
of the polarizability is nonzero. and multiplies the imaginary product
E" XE™ to give a real electric polarization which is mediated by a P-
negative molecular property tensor.*'® This means that a circularly polar-
ized electromagnetic field produces electric polarization in ensembles of
chiral molecules. A particularly interesting aspect of this is the potential
utilization of a circularly polarized radio-frequency field (from a wave-
guide) to produce linear and nonlinear*® dielectric relaxation (Sections
[-VII) in chiral liquids.

The first supercomputer simulation*'® and video animation*?® of this
effeitz 1has recently been pursued with a torque (Sections IV-VI) of the
type

{Tq} e {.Si;'.e E;' Er X E) (488)

and approximating the electromagnetic phase factor by
0; = 0 = wt (489)
The real part of this torque was incorporated into the code of the program
TETRA (see Appendix) for 108 molecules of S-bromochlorofluorome-

thane, a chiral structure. The orientation and rotational velocity time-
correlation functions of the ensemble were evaluated in the field-applied
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Figure 54. Orientational acf for (§)-bromochlorofluoromethane. (S), and the racemic
mixture (RS}, at field-free equilibrium.

steady state using two far infrared field frequencies of 10.0 and 1.0 THz

respectively. : N
Figure 54 illustrates the orientational acf under field-free conditions for

the 5 enantioner and racemic mixture. There are no orientational cross

correlations. Figure 55 is the same correlation function for an applied field
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Figure 55. The effect of the conjugate product at a field-frequency of 10.0 THz. (a)

Autocorrelation functions: (b) cross-correlation functions.
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Figure 56. As for Fig. 55, frequency 0.01 THz.

of 1.O0THz, and Fig. 56 for 10.0 THz. each in the § enantiomer. At the
lower frequency, anisotropy in the orientational acf components is clearly
visible for a laser beam propagating in the Z axis. This is accompanied
by the development of off-diagonal cross-correlation functions of orien-
tation. At the higher frequency, Fig. 56, the anisotropy is lessened con-
siderably, but the time dependencies of the orientational autocorrelation
functions are clearly different from those at field-free equilibrium in Fig.
4. The Fourier transform of these acf elements is dielectric loss,'? and
this shows the presence of laser-induced dielectric relaxation™® a poten-
ially very useful phenomenon. In practice the THz fields of the simulation
are replaced by GHz circularly polarized fields from a klystron or wave-
guide. Figure 55 also shows the presence of four off-diagonal orientational
time-cross correlation functions in the presence of the circularly polarized
electromagnetic field.

Figure 57-59 show the effect of the laser on the Fourier transform of the
far infrared power absorption of the chiral liquid. There are interestingly
asymmetric rotational velocity cross-correlation functions reminiscent of
those simulated for shear (see Section VIII) by Evans and Heyes.*?? This
shows that a circularly polarized radio-frequency field is capable, in a
chiral liquid, of producing bandshape changes in the far infrared, providing
new information on the molecular dynamics (Sections I-VII) of the liquid.
The far infrared is of course the high-frequency adjunct (Section I) of
the frequency range in which relaxational behavior has been investigated
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Figure 57. As for Fig. 55, rotational velocity acf’s.

historically, and these results show the presence of electromagnetically

induced far infrared relaxational effects.
The precise molecular dynamical nature of these have been animated

on video at the Cornell National Supercomputer Facility and video copies
are available on request from the Cornell Theory Center.

U. Symmetry of Laser-Induced Electric Polarization in
Chiral Single Crystals

It is possible to express the induced electric polarization just described in
terms of a P-negative molecular property tensor X;; defined through

1.0 l r

Figure 58. As for Fig. 57, 10.0 THz. 0 0.1 0.2 ps
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Figure 59. As for Fig. 57, 0.01 THz
i = X1l (490)

wherre H; 1s the induced electric dipole moment. It has been shown that
Xi; is defined through the time-dependent Schrodinger equation by**?

Xop= - 23 (OlusliXjladsln) -

ﬁji-ﬂ- m,:"

for a !:ransitinn between quantum states n and j. Here u. is the transition
electric dipole moment. The angular polarizability is conveniently ex-
pressed by

A1y = Qupg — g (492)

through the tensor definition*** of the T-negative, antisymmetric, part of
the imaginary polarizability.

In this subsection, we consider the symmetry characteristics of X;; in
the 11 mgjnr chiral crystal point groups. This is important for ab initio
computations and experimental investigations of X;; in individual chiral
molecules, and in chiral single crystals of material with useful nonlinear
optical characteristics. In general, the symmetry of X, is

[(X5) = T'()) T(e)) (493)
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TABLE VIII
Symmetry of X;; in the Chiral Crystal Point Groups

Point Group Finite Compeonents of X, Orientation Symmetry
nichnic C, {1 All Any DA
:-'Ir:uﬂ::;]ini:: Ci ;E; X, YY.ZZ. XY. YX Ll | SA +4B
Orthorhombic D, XX.YY. ZZ C: I XY IA, + 2B, + 2B, + 2B,
Trigonal Cy(3) XX =YY, ZZ, XY - ¥YX Gz A + 3E .

D,(32) XX =YY, ZZ Sl 2y 2A, + A: + 3E
Tetragonal Caid) XX =YY, ZZ XY -YX C.llZ 3A +2B +2E :

D, XX =YY, ZZ Cill Z: C:| Y za,+A;+E.+J§:+zE
Hexagonal — C,(6) XX =YY, ZZ, XY - ¥YX CallZ 3A +2E, + E;

D, (622) XX=YY.ZZ Coll Z: G Y A, + A, + E; + 2E,
Cubic T(23) XX =YY =27 G Z: Call ¥ A+ E‘+ T
Chural liquid XX=¥YY=2ZZ D+ D't 4 DA

which is a product of those of the electric dipole moment ,u.',-_and the
angular polarizability «f;. In the point group R(3) of all rotations, the
point group of a liquid ensemble of chiral molecules (Section VIII}, Eq.
(493) can be expressed in terms of the irreducible D representations and

D symmetries of Section VII as follows:
I'(x,) = (D' + D'V + D¥N)(-) (494)

It is T- and P-negative, and must be activated by the T-negative influence
I1 to be observed, following the third principle of Section VII. It disap-
pears at field-free equilibrium because the angular pnlarizah?lityqi!:‘. essen-
tially a projection of the imaginary part of the dynamic pn]gnz_ablhty (Eq.
422) on to the Z axis. This is a finite ensemble average in a liquid ensemble
only in the presence of Il. It mediates a P-negative electric dipole moment
u; produced by the P-positive influence Il;, and in consequence can exist
only in chiral media, such as chiral single crystals (Table VIII).

Note that this table can be used to characterize the equivalent molecular
point groups, with the laboratory frame (X, Y. Z) replaced by the mol-
ecule fixed frame of the point group character tables.

In the triclinic crystal C, for example, there are nine indepe_ndent
components of X,;, that is, the crystal supports all components in the
laboratory frame (X, Y, Z). This is summarized by nine occurrences of
the totally symmetric representation of the C; point group in the laist
column. Similarly, in a molecule of C, symmetry, all elements of X;; exist
in the molecule fixed frame. In the monoclinic there are five indepenj:!-._ent
elements, in the trigonal C, there are three, and so on, thus summarizing
the symmetry of the tensor X;,. mediating laser-induced electric polariz-
ation in chiral crystals.
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V. Electrodynamics of a Rotating Body — Some Spectral
Consequences of the Lorentz Transformation

In the relativistic theory of classical electromagnetic fields*** the Lorentz
transformations relate E and B in the rest frame to their equivalents in a
moving frame. The latter may translate or rotate with respect to the
tormer. The Lorentz transformations show that the electromagnetic radi-
ation reaching the rest frame of an earth-bound observer from a source
in a distant galaxy, for example, receding along the X axis of the rest
frame contains information about the velocity v at which the source is
receding from the earth. The further away the galactic source in an ex-
panding universe, the closer the fraction v/c approaches unity, where c is
the constant velocity of light. This manifests itself in such well-known
spectral phenomena as the stellar—galactic red shift.

The red shift is only one out of many optical phenomena which can be
observed in the rest frame of the earth-bound observer with a contempor-
ary laser spectropolarimeter, such as the one constructed by R. V.
Jones,*' attached to a telescope. It is shown in this subsection that circular
birefringence in a chiral earth-bound sample is amplified relativistically
when observed with the telescope—polarimeter. It is shown in Ref. 425 that
the optical activity observed in this way with a source of electromagnetic
radiation receding with a velocity v, (e.g., a star in a far galaxy) is
amplified by the factor

R=(c+ vz)l(c — Hz} {495:]
the relativistic amplification."** This appears to be of interest in the ampl-
ification of the tiny parity nonconserving optical activity recently observed
in atomic vapors.***~*** The measurement proceeds in principle by gather-
ing the stellar radiation with a powerful telescope, possibly in orbit, plane
polarizing it, and analyzing the angle of rotation with the probe laser
spectropolarimeter to microradian accuracy. This simultaneously provides
iInformation on the velocity of recession v of the source. and amplifies
relativistically the natural optical activity of the earth-bound sample.

Elegant use was made of a laser spectropolarimeter by R. V. Jones*'?
in the first experimental demonstration of rotational ether drag, a circular
birefringence of pure relatively origin generated in an achiral rotating
glass rod by the Lorentz transformation.

It appears that J. J. Thompson**' was the first to analyze ether drag,
when, a few years after the first Michelson-Morley experiment, he con-
sidered light passing through a medium that is rotating about an axis
parallel with the propagation axis of the electromagnetic beam. The angu-
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lar drag per unit path length (the angle of rotation) was later obtained by
Fermi*** and was proportional to the ratio of the angular frequency of the
rotating body (£2) to the velocity of light. Player** later extended Fermi's
analysis to dispersive ether drag in a transparent rotating rod, which was
measured meticulously by R. V. Jones, giving a result in good agreement
with theory.*"

The present author has extended the consideration by Player in several
directions™* to include the magnetization term of the Lorentz transforma-
tion, second-order effects, and polarization effects in a rotating rod of
absorbing chiral material. In each case relativistic terms were found to give
theoretical contributions to the angular rotation measurable in principle by
a laser spectropolarimeter.*'*

These new effects were based on the Maxwell equation

Fxﬂ:i
dt

1
Ho

Equation (496) is written in the approximation M <P, and J = 0, where

M is the bulk magnetization, P the polarization, and J the current density
in the rest frame of the observer. Here €, and p, are respectively the

frame invariant permittivity and permeability in vacuo. The time r 18

measured in the observer frame.

Consider the rod rotating at an angular velocity {1, about the Z axis of
the observer frame while radiation from a source in this frame propagates

through it in the same Z axis. The quantities P, E, and B in Eq. (496) are

now defined in the frame (x, y, z) which rotates with the rod. The inverse
of the Lorentz transformation must be used to relate P, E, and B in frame

(x, y, z) to their equivalents in the frame (X, Y, Z) of the static observer,
the frame in which ¢ is defined. In SI units,

1
(Bl = [B (B-Svx E)L B (497)

[Elixy.oy = [B(E + v X B)](x.v.2) (498)

[P]{I.}'.:} = [ﬁ(F T E'f.'r@t""'l.'l"Ir el M)]IH.F.E} {499] :

where

SIMULATION AND SYMMETRY IN SPECTROSCOPY 647
-\ T 1/2
B=(1-% 500
f_"'z l:" }

and where the velocity v is defined** by
Uy = —{). y; v, = (1.X, v.=0 (501)
where R is the radius of the rod. Note that v has the components
v={) X R; V.-v=0; Vxv=20 (502)
Therefore, the Maxwell equation (Eq. 496) becomes

1( 1 d
—|VXB——=V x v:-cE)= it
e 2 ( ) a}m[E+v:~:B)

0
L5 ;{P — €V X M) (503)

with all quantities defined in the frame of the observer, the static labora-
tory frame (X, Y, Z).

Equation (503) has three extra terms of purely relativistic origin.***
One of these is the Lorentz magnetization, —eyuov X M, which introduces
a contribution to the Thompson—Fermi-Player angle drag as described in
Ref. 434, and also produces an interesting relativistic forward-backward
birefringence which is measurable®* in the Z axis with unpolarized light.
~ Player®™ considered a quasi-monochromatic optical disturbance in an
1sotropic medium of low absorption, where the displacement D was put
::1_1r-.3c:t|;|,,r proportional to the electric field strength E, with no explicit con-
sideration of the molecular nature of the polarization P and Lorentz
magnetization. Molecular property tensors were employed in Refs. 434
and 435 to consider the relativistic effects of rotating a rod composed of
molecular material. The displacement was accordingly

D=¢gE+P (504)

with E and P defined respectively by Egs. (498) and (499).
~Asin Player_‘s analysis, the angular frequencies of the right and left
circularly polarized components of the electromagnetic plane wave are

affected by equal and opposite Doppler shifts, so that their frequencies
in frame (X, Y, Z) appear to the observer to be**
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wrp = @ + w; W = w— W, w.=(¥)m (505)
-

respectively, for right and left circular polarization of the probe laser.
Accordingly, the frequency-dependent molecular property tensors are
functions not of @, but of these Doppler-shifted frequencies.

Without the Lorentz magnetization, the circular birefringence due to
ether drag is found from Eq. (503) to be

1 1
Al g 3{1:( + ) 506
e o Oy = ﬂ” w + ﬂf_} { }

so that the angle of rotation is proportional to the ratio of (). to the
velocity of light, as found by both Player** and Fermi.*** When Lorentz
magnetization is accounted for in an absorbing chiral rod this result is

supplemented™” by
(ni. = nr)es = 20z Y(aazy)poN (507)

which is proportional to the number of molecules per unit volume of the
rotating rod N, and to the ensemble average over the Rosenfeld molecular
property tensor component a;zy. There are also interesting second-order
effects®™ which can be treated with molecular property tensors.

Relativistic forward-backward birefringence is present, furthermore,
both in chiral and achiral rotating rods.*** This effect is interestingly much
larger in magnitude that ether drag, and is proportional to nonvanishing
diagonal scalar components of ensemble-averaged molecular property ten-
sors, giving information on them in a rotating chiral rod. In general, it can
be expressed in terms of diagonal and off-diagonal elements of molecular
property tensors through the magnetization term of the Lorentz transfor-
mation. It also depends on the X and Y velocity components of the
rotating rod. If this is a chiral crystal, the Lorentz magnetization also
makes a contribution, just described, to the rotational ether drag.

Defining k as a unit vector in the Z axis of the static observer frame,
relativistic forward-backward birefringence is generated from the equa-
tion
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', d
v{E*?}=—a(vKB)+m,a—(va} (508)
(

by comparing k coefficients in Eq. (503). Using the approximation
VX(vXE)~V(E-v) - 2E x (509)
Ref. 435 derives the results

Mow = 3((nL2) + (M) = 1 + 3 poNc(adyy) (510)

and

Aa = —((niz) + (nk2)) = poNc(adyy) (511)

ol -

for the average real refractive index n;, and power absorption coefficient
A_:;u along the axis of the rotating rod in terms of the frequency-dependent
diagonal elements (as,,) and (e3,,) of the Rosenfeld tensor. Both (asy,)
and (az,,) are visible therefore to unpolarized radiation. an interesting
new effect of relativity. The latter also enters into consideration through
the Doppler shifts of the frequency in the molecular property tensors. For
example, the real and imaginary parts of the Rosenfeld tensor

= W=ods _ penludiiibnds) G12)
hjmn (@0 £ @), — (@ = )
and
TR (w * w) i
ajyy = — - ; S Im((n|py|)(Glmyln)) (513)

hjmn (@ = @) = (0 = @)

Nutf: that_ the former is negative to T and the latter is positive to T from
5ﬂm|c§3551cal theory in a nonrotating medium. The rotation itself provides
a vehicle for the “activation™ of the real part of the Rosenfeld tensor.
which becomes observable (Eq. 510) through the average refractive index
measured by unpolarized radiation directed along the Z axis of the rotating
r!::-n:‘l. Funher discussion of the role of bulk angular momentum in a nonrela-
tivistic context is given in Ref. 436.

The above rotating rod method appears to be useful therefore in the
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study of vibrational dichroism™’ without recourse to circularly polarized
radiation.

W. Parity Nonconservation in New Laser Spectroscopies

Parity nonconservation is well known®””*** to cause tiny optical rotations

is atomic ensembles which are otherwise achiral. Several of the new laser
spectroscopies developed in this section are mediated only in a chiral
ensemble, examples being forward-backward birefringence due to (1)
static magnetic flux density (the Wagniére-Meier effect), (2) the cmnjug.:ate
product I1,*'**'* and, as we have just seen, (3) relativity in a rotating
chiral rod. If any of these effects are observed in an achiral medium, such
as water, it signals the presence of parity nonconservation in molecular
matter.**® Parity nonconservation applies whenever the Wigner Principle
of Parity conservation is broken; another example would be the obser-
vation of circular birefringence and dichroism caused in an achiral medium

by the time derivative of an electric field.

This is probably one of the most profound applications of the new
spectroscopies introduced in this section, and further details of the ideas
behind P and T nonconservation may be found in the interesting articles

by Barron?”****® and Mason.**
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APPENDIX: MOLECULAR DYNAMICS SIMULATION
ALGORITHM “TETRA"

This appendix provides FORTRAN code for the molecular dynamics
simulation algorithm “TETRA." evolved gradually from work by Scho-
field, Singer, Ferrario, and Evans. It integrates the classical equations of
motion for an ensemble of asymmetric tops diffusing in three dimensions.
The version shown is for liquid water, with a facility for applying a right-
handed circularly polarized laser.

This code formed the basis for much of the simulation work reported
in this article, and copies on magnetic tape are available from the author
upon request.

A library of molecular dynamics simulation algorithms has been set
up at the United Kingdom’s Science and Engineering Research Council
Daresbury Laboratory, CCPS Group, Daresbury, Warrington WA4 4AD,
UK. These algorithms are available for individual research scientists and
are described regularly in the CCPS Quarterly Newsletter. They are sup-
plied with detailed descriptive documentation, and are available for many
different areas of computer simulation. Algorithms for the test molecule
dichloromethane are available from the same source, and were set up

during the pilot project of the European Molecular Liquids Group
(EMLG).

The following TETRA code is not meant as a substitute for a compre-
hensive description, but illustrates the stages involved in the computer
simulation of an asymmetric top molecule diffusing in three dimensions.

PROGRAM TETRA

C---- MOL DYNAMICS PROGRAM FOR WATER «------
c

IMPLICIT REAL*S (A-H,0-Z)
C

C ATOMIC COORDINATES: XAT,YAT.ZAT, I.LEIA.LE 432
¢
REAL*S M(6),JX(108),JY(108),JZ(108),IN(6). TM
REAL*S KB,NAV,JCON,NINE,NTEN,NITF,NTTF
INTEGER TITLE(S0),INDEX(25), BIND(6)
CHARACTER*4 TIND(6),T11(8)
DIMENSION

L TXA(108), TYA(108), TZA(108),EXO(3,108), EYO(3,108), EZO(3,108)
2,RI(6),0DDT(6), EDDDX(6), EDDDY(6), EDDDZ(6)

DIMENSION 0O(6),05Q(6),0M(6),0MSQ(6),0DOT()
1,SQE(3),CO(6),EEX(6), EEY(6), EEZ(6), EXN(6), EY N(6)

2, EZN(6),ELX(6),ELY(6),ELZ(6), EDDX(6), EDDY(6), EDDZ(6)

3, TE(6),0P(101),EDOX(6),EDOY(6), EDOZ(6)

DIMENSION SIG(6,6),EPS(6,6),BSIG(36), EP(36),BSIGSQ(36),
*ACR(36),CHA(6),BCHA(36)

DIMENSION G(6,100),GR(6, 100)

COMMON JATT/ XAT(648), YAT(648), ZAT(648), X A(G48), Y A(648),ZA (648)
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&
C CENTRE OF MASS COORD.: XC,XCN(NEW),XCO(OLD);C.0.M. VEL. VXC.
c

COMMON /CMT/ XC(108),YC(108),ZC(108),XCO(108),Y CO(108),ZCO(108),

&XCN(108),YCN(108),ZCN(108),VXC(108),VYC(108),VZC(108)
&
C UNIT VECTORS ALONG THE PRINCIPAL AXES: EX,EY,EZ; EXN; EXO,
C EX(L,IC) L=1,2,3 SPECIFIES THE AXIS; IC(1-108)
C SPECIFIES THE MOLECULE
@

COMMON /CMO/ EX(3,108),EY(3,108),EZ(3,108)
C
C ANGULAR MOMENTUM JX,...
C

COMMON /CMIJ/ JX,JY,JZ,IN,TM,K B,NAV
e
C FORCES: FXC,FYC,FZC ION C.O.M.,FAX,FAY,FAZ: ON ATOMS.
C TORQUES: TX.TY,TZ; TXN(NEW).......TXO(OLD)....
C

COMMON /FOR/ FXC(108),FYC(108),FZC(108), TX(108), TY(108), TZ(108),

&FAX(648), FAY(648),FAZ(648), TXO(108), TYO(108), TZO(108)
Q
C PHYSICAL CONSTANT ...
&

COMMON /N/ NOM,NOMMI,NORM,NT,NOFST,NTINC,INOF
e

COMMON

TEMP,VOL,DT,BOXL,FACTOR,CONFAC,CUT,RTKTM,RKTF,FF,DTF
C

COMMON /NTR/ TRIG
&
C LENNARD JONES POTENTIAL PARAMATERS ...
C

C SIG=MATRIX OF DISTANCE PARAMETERS
C EP=MATRIX OF ENERGY PARAMETERS

c

C PRINCIPAL MOMENTS OF INERTIA IN(1-3);THEIR RECIPROCALS RI(l-
G :

C
C O=ANGULAR VELOCITIES ABOUT PRINCIPAL AXES OSQ=0*0

C......LOCAL VARIABLES=EX; EDDX, ETC. SECOND DERIVATIV

BLX..... \
C TE=SCALAR PRODUCTS OF TORQUES WITH UNIT VECTORS E,....

C SUMI() =I(1) +1(2)-21(3) ETC.
e
C PAIR DISTRIBUTION FUNCTION ... GR(SITE)
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DATA G,GR/1200*0.0D0/

--+=- IBM ERRSET -----

OO0 0

CALL ERRSET(201,256,-1,1,1,1)
CALL ERRSET(208, 0,-1,1,1,1)

0

KB =1.3807D-00

NAV =6.0223D +23
ELSQ=2.3071138D +05
NATM =5

DATA INDEX/1,2,1,3,3,2,4,2,5,5,1,2,1,3,3,3,5.3.6.6.
*3,5,3,6,6/
DATA TIH1/'CH2 */CL2 */OUT *,/LI +C’'HARG' “T = "
; , , ST= "293K’ 'VOL =

DATA TIND/'H-H ,'H- O, 'H-Q *,0- O’ 'O- Q,'Q-Q v
DATA BIND/4,4,8,1,4,4/
DATA ONE,TWO,THREE,SIX,PTF1/1.000.2.0D

,TWO, SIX, .0D0,2.000,3.000,6.000,0.5D0
DATA FOUR,ELEV,TWLE,EITE/4.0D0,1.0D0,12.0D0, 18.0D0/ H
DATA FIVE,SE?E,NiNE,NTEN,TWFD;S.DDH,?.DDH,‘J.I‘}DD,IiﬂDﬂ,ZﬁLﬂDﬂf

DATA

ZOFST,RSTKE,RSRK E,RTQTE,RRQTE,RTPE, RTPR,RTQP,RQTEN,RTEN,

—
=

&RTMO,RTIM,RQEK ,RVT,RVIR,RTRTE/] 6*0.0D0/

DATA ZER0,SSTKE,SSRKE, TQTE, RQTE, TPE. Tp
. . , TQTE, RQTE, TPE, TPR, TQP,QTOTE,TTEN
&TTMO,TTIM, TQEK , TVT, TVIR, TTRTE/16°0.0D0); A *
CALL DATE(DAT)
CALL TIME(TRIG)

X =RAND(I)
READ(5,3) (TITLE(I),I =1,80)
3 FORMAT(80A1)

READ(5,4) NOM,NMAX,NT,NTINC,NDUMP.MM
4 FORMAT(1018) MM MODE,MTIME,IPRINT

READ(S,10) TEMP,VOL,DT,FCC,CUT DFFT TMAX
10 FORMAT(8D10.3) B
6 FORMAT(10X,5X 80A1///))
8 FORMAT(1X,” NUMERICAL SIMULATION RUN CONDITION'/10X.

&NUMBER OF MOLECULES =I5, INTEGRATI
! pod ON TIM =
&’ POTENTIAL CUT-OFF DISTANCE = "G 12.5)) ESTEP = /G125

,? FORMAT(1X,” THERMODYNAMICAL CONDITION °/3X,” TEMPERATURE

&,F10.5/ MOLAR VOLUME = “G12.5
it G12.5//)
PYE =(DACOS(-1.0D0))
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AK1=TWO*PYE/FCC

RTKTM = DSQRT(KB*TEMP/TM)
ANINT =100.0D0

IF(MM .EQ. 1) GO TO 89

ROOT2=DSQRT(TWO) XX = DFLOAT(MM)
RR2=0ONE/ROOT2 PRINT 2345,DFLOAT(MM)

ROOT3=DSQRT(THREE) 2345 FORMAT(G14.6)

CONFAC=NAV/(DFLOAT(NOM)) CALL LATFCC(FCC)

BOXL =(VOL/CONFAC)**(ONE/THREE) GO TO 90

FACTOR =TWO/BOXL 89 CONTINUE

DELGR = CUT/(FACTOR*ANINT) C

TKIN=ZERO C *** READ INITIAL CONDITION FROM DISK FILE ***
TROT =ZER0 C

RDT=ONE/DT IF(MODE.NE.3) GO TO 731

DTSQ=DT**2 ZOFST =ZER0

DTCU =DT**3 READ(7)

DTF=DT*FACTOR READ(7)

NAT=NOM*NATM GO TO 734

NOMMI =NOM-I 731 CONTINUE

GRFAC=BOXL**3/(TWO*PYE*NOM*NOMM I*DELGR) READ(7) ZOFST,SRKE,STKE,SSTK E,SSRKE, TQTE,RQTE

INOF =0 & TPE,TPR,TQP,QTOTE, TTMO,TTIM, TQEK, TVIR, TVT
FF=FACTOR**2 READ(7) G

FF24=TWFO*FF 734 CONTINUE

FITW =FIVE/TWLE READ(7) XCN,YCN,ZCN,XC,YC,ZC,VXC,VYC.VZC

TWTH =TWO/THREE READ(7) JX,JY,JZ,EX,EY,EZ

ONTW =ONE/TWLE READ(7) TX,TY,TZ,TXO,TYO,TZO,TXA, TYA, TZA

ONSI =ONE/SIX C

ONTF =ONE/TWFO ol ST AR as

FITF=FIVE/TWFO &

NITF=NINE/TWFO PRINT 432,ZOFST

NTTF = NTEN/TWFO 432 FORMAT(1X,” SIMULATION RUN START FROM TIME STEP = *,F10.3)
STWT=SEVE/TWLE MM =1

VCON = 1.0D +02 DO9I=1,2

PCON = 1.0D-25 PRINT 431, XCN(I), YCN(I), ZCN(1),EX(1,1),EY(1,1),EZ(1,]),
FCON=1.0D-13 &JX(N),JY(1),JZ(1),XC(1), YC(I),ZC(1)

ECON =1.0D-23 | 9 CONTINUE

JCON = 1.0D-35 CALL ZERO(FCC)

CUTF=CUT/FACTOR IF(MODE.NE.2) GO TO 90

PRINT 6,(TITLE(I),I = 1,80) PRINT 433, MTIME,TEMP

PRINT 7,TEMP,VOL | 433 FORMAT(1X//,3X,” C.O.M. VELOCITIES AND ANGULAR MOMENTUM
PRINT 8,NOM,DT,CUTF | RESCA’,

CUTSQ=CUT**2 &LED INITIALLY AND EVERY 13, . TEMPE =
CALL LENJO(SIG,EPS,BSIG,BSIGSQ,EP,K B,FACTOR) CALL TSCAL{I,TRTE,RDTE%R SRR )
CALL CHARGE(CHA,BCHA,ELSQ,FACTOR,TWFO) 90 CONTINUE

CALL RANGE(PSI,PELR,CUT,NOM,ACR,EP,BSIGSQ) PRINT 431,DTSQ,DTCU,FACT _

CALL KINET(NAV,FACTOR,M,TM,IN,RI) PRINT 431,FF, E??(l},BSIG{E),Th? HEONPAGRTETM
RKTF=KB*TEMP*FF NOFST =INT(ZOFST)

RMTT =DTSQ/TM IF(NOFST.LT.NT) WRITE(I) Tl1,VOL
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[F(NOFST.LT.NT) GO TO 300 ATPOS DOES NOT AFFECT CENTRE OF MASS POSITIONS XC,YC,ZC

NSTO =(NOFST-NT)/NDUMP + 10
DO 737 J=1,NSTO

Ki=J

READ(I,END =847)

FORCES LOOP

2 00

DO 150 I =1,NOM

737 CONTINUE FXC(I)=ZERO0
847 PRINT 849,K)J FYC(1)=ZER0
849 FORMAT(10X,” NUMBER OF RECORDS SKIPPED = ',110, READY °, FZC(I)=ZER0
& TO WRITE THE NEW ONES’,1X///) DO 151 IA=1,NATM
300 CONTINUE 14=NATM*(I-1)
PE=ZER0 L=I4+]A
VIR =ZERO0 FAX(L)=ZER0
VIRT=ZER0 FAY(L)=ZER0
C START OF LOOP 151 FAZ(L)=ZERO0
SUMEX =0.0 150 CONTINUE
SUMEY =0.0 SK1=ZER0
SUMEZ=0.0 DO 152 IC=1,NOM
SUMVX =00 AK =TWO*AKI*(XC(IC) + YC(IC) + ZC(IC))
SUMVY =0.0 152 SK1=SK 1+ DCOS(AK +PYE)
SUMVZ=0.0 DO 350 IC=1,NOMMI
XCI=X(IQ)
YCl=YC(IC)
INOF =INOF + 1. ZCl=Z(IC)
NOFST=NOFST+1 [4=NATM*(IC-1)
ZOFST=ZOFST +ONE J=IC+]1
C DO 340 JC=J],NOM
C J4=NATM*(IC-1)
DO 369 IC=1,NOM C COORD DIFFERENCES BETWEEN C.O.M.S
UX =TWO*DINT(XCN(IC)) C
UY =TWO*DINT(YCN(IC)) € POTENTIAL CUT-OFF ON C.0.M DISTANCES TO HELP WITH CHARGES
UZ=TWO*DINT(ZCN(IC)) c
XCO(IC) = XC(IC)-UX DCX =XCI-XC(IC)
YCO(IC) = YC(IC)-UY DCY =YCI-YC(IC)
ZCO(1C) =ZC(IC)-UZ DCZ=ZCI-ZC(JC)
e DCX =DCX-DINT(DCX)*TWO
C CENTRE OF MASS POSITIONS COMPUTED NEXT DCY =DCY-DINT(DCY)*TWO
C DCZ=DCZ-DINT(DCZ)*TWO
XC(IC) =XCN(IC)-UX RCSQ=DCX*DCX +DCY*DCY + DCZ*DCZ
YC(IC)= YCN(IC)-UY IF(RCSQ.GT.CUTSQ) GO TO 340
ZC(IC)=ZCN(IC)-UZ DO 351 IA=1,NATM
C K=14+IA
C IAS =5*(IA-1)
C XATK =XAT(K)
369 CONTINUE YATK =YAT(K)
CALL ATPOS(NATM) ZATK =ZAT(K)
FAXK =ZER0

C
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FAYK =ZERO 350 CONTINUE
FAZK =ZERO DO 355 IC=1,NOM
DO 341 JA=1,NATM [4=NATM*(IC-1)
L=J4+JA DO 356 IA=1,NATM

DATX =XATK-XAT(L)
DATY =YATK-YAT(L)

DATZ =ZATK-ZAT(L)

DAAX =DCX +DATX

DAAY =DCY +DATY

DAAZ=DCZ+ DATZ

DAAX =DAAX-TWO*(DFLOAT(IDINT(DAAX)))
DAAY =DAAY-TWO*(DFLOAT(IDINT(DAAY)))
DAAZ =DAAZ-TWO*(DFLOAT(IDINT(DAAZ)))

RSQ=DAAX**2+DAAY**2 + DAAZ**2

RDIJ =DSQRT(RSQ)

RRSQ =ONE/RSQ

I=IAS5+JA

NDF = IDINT(RDIJ*ANINT) + |

IF(NDF .GT. 100) GO TO 342

K=I[4+]1A
FXC(IC) = FXC(IC) + FAX(K)
FYC(IC)=FYC(IC) + FAY(K)
FZC(IC) = FZC(IC) + FAZ(K) + CHA(IA)*0.0

356 CONTINUE

355 CONTINUE
DO 354 JA=| NAT
FAX(IA)=FAX(IA)*FF24
FAY(IA)=FAY(IA)*FF24
FAZ(IA) =FAZ(IA)*FF24

354 CONTINUE
PE=TWO*TWO*PE
VIR=TWFO*VIR
VIRT=VIRT*TWFO
SPE=PE+PELR

NIND = INDEX(1J) SVIR =VIR
GR(NIND,NDF)=GR(NIND,NDF) + ONE SVIRT=VIRT
342 CONTINUE RTPE = RTPE + SPE
ALJ =(RRSQ*BSIGSQ(1J))**3 C
BL]=ALI*AL)  PE AND VIR SHOULD BE S.1. UNITS;FORCES CONTAIN FACTOR
C

AEL= BCHA(IJ)/RDIJ
FLJ=EP(1J)*(BLJ + BLJ-ALJ) + AEL
PE=PE+EP(IJ)*(BLJ-ALJ) + SIX*AEL
VIR =VIR-FLJ
A=FLJ*RRSQ
C A=A-ACR(L)
VIRT =VIRT +(DAAX*DATX + DAAY*DATY + DAAZ* DATZ)*A

DO 353 IC=1,NOM
FXC(IC) = FXC(IC)*FF24
FYC(IC) = FYC(IC)*FF24
FZC(IC) = FZC(IC)* FF24
353 CONTINUE
C THE ABOVE LOOP COMPUTES NET FORCES

FAAX =A*DAAX TKE=ZER0
FAAY =A*DAAY XMO = ZER0
FAAZ=A*DAAZ YMO = ZER0
FAX(L)=FAX(L)-FAAX ZMO = ZER0
FAXK =FAXK + FAAX MD LOOP

FAY(L)=FAY(L)}-FAAY
FAYK =FAYK +FAAY
FAZ(L)=FAZ(L)-FAAZ
FAZK =FAZK +FAAZ

341 CONTINUE
FAX(K)=FAXK +FAX(K)
FAY(K)=FAYK +FAY(K)
FAZ(K)=FAZK +FAZ(K)

351 CONTINUE

340 CONTINUE

XCI ETC. UPDATED FROM XC(I) ETC TO COMPUTE VELOCITIES
XC(D), YC(I), ZC(I) DUMPED TO WRITE (1)

OO0

DO 360 I =1,NOM
XCl=TWO*XC(1)-XCO(I) + FXC(I)*RMTT
YCI=TWO*YC(I)-YCO(I) + FYC(I)* RMTT
ZCl =TWO*ZC(I)-ZCO(I) + FZC(I)*RMTT
VXC(1) = PTFI*(XCI-XCO(1))
VYC(I)=PTFI*(YCI-YCO(I))

VZC(1) = PTFI*(ZCI-ZCO(I))
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C
C CENTRE OF MASS LINEAR VELOCITIES, LAST POINT BEFORE DUMP
C
XMO = XMO + VXC(I)
YMO = YMO + VYC(I)
ZMO = ZMO + VZC(I)
TKE=TKE+ VXC(I)**2+ VYC(I)**2 + VZC(1)**2
XCN(I)=XClI
YCN(I) = YCI
ZCN(1) =ZCI
360 CONTINUE
TMO = DSQRT( XMO*XMO + YMO*YMO + ZMO*ZMO )*TM/DTF
STKE=(TKE/(DTF**2))*PTFI*TM
TRTE =TWTH*STK E/(K B*NOM)
RTMO = RTMO + TMO
RSTKE = STKE + RSTKE
RTQTE = RTQTE + TRTE*TRTE
ROTATION
PRINCIPAL MOMENTS OF INERTIA ARE IN(1)-IN(3)
RECIPROCALS RI(1)-RI(3)
CALCULATE ANGULAR MOMENTUM
IF NOFST=2 NO INITIAL MODIFICATION NECESSARY

16 (A0 X0

XJ1=ZER0
YJ1=ZERO
ZJ1=ZERO
ROTKE=ZER0
DO 361 IC=1,NOM
14=NATM*(IC-1)
TXI=ZER0
TYI=ZER0O
TZ1=ZER0
DO 362 IA=1,NATM
K=14+1A
TXI=TXI +YAT(K)*FAZ(K)-ZAT(K)*FAY(K)
TYI=TYI+ZAT(K)*FAX(K)-XAT(K)* FAZ(K)
362 TZI=TZI +XAT(K)*FAY(K)-YAT(K)*FAX(K)
EO0 = 100.00
OMX = 0.05
WT =OMX*NOFST
TXI=E0*(DSIN(WT)*EY(1,1C)-DCOS(WT)* EZ(1,1C)) + TXI
TY1=-E0*DSIN(WT)*EX(1,IC) +TY]I
TZI=E0*DCOS(WT)*EX(1,IC) + TZI
C  INITIALISATION REQUIRED.
IF(NOFST.GT.3) GO TO 374
IF(NOFST.EQ.3) GO TO 373
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. 'FINOFST.EQ2) GO TO 372
RST STEP ZERO ORDER ALGOR
ITH
IX(1C) =IX(IC) + DT*TXI HroR
IY(IC)=JY(IC) + DT*Ty]
JZ(IC) =JZ(1C) + DT*T2]
GO TO 371
¢ SECOND STEP FIRST ORDER ALGORITHM FOR |
IX(IC) =JX(IC) + PTFI*(TXI + TX(1C))* DT
JY(IC) =JY(IC) + PTFI*(TY| + TY(IC)* DT
JZ(1C) =JZ(IC) + PTFI*(TZI + TZ(10))* DT
DTORX =(TXI-TX(IC))*RDT
g_;om =(TYI-TY(IC)*RDT
ORZ=(TZI-TZ(IC)*RDT
GOTO 375
c THIRD STEP SECOND ORDER ALGORITHM FOR )
JT{I%}C) - :{}(e:g,l “ T;:;ﬁ TW*TXI+ TWTH*TX(IC)-ONTW*TXO(IC))
< WATYI+ TWTH*TY(IC).ONTW*
JZ(IC) =JZ(IC) + DT*(FITW*TZ] 4 Tw S i
THYTZ(IC)-ONTW*TZ0
DTORX =(THREE*TXI + TXO(IC) o
-FOUR*TX(IC))* PTFI*R DT
gggjggggjm +TYO(IC)-FOUR*TY (IC))* PTFI*R DT
DTORZ~( TZ1+TZO(IC)-FOUR*TZ(IC))* PTFI* R DT

C NORMAL ALGORITHM THIRD ORDER INTEGRATION

IX(IC) =JX(IC) + DT*(NITF*TX] + NTTF*TX(IC)-FITF*TXO(IC) + ONT F*Tmncﬁﬂ

JY(IC)=JY(IC) + DT*(NITF*TY] + NTTF*TY(IC)-FITF*TYO(IC) + ONTF*TYA(IC)

1Z(1C)=JZ(IC) + DT*(NITF*TZI + NTTF*TZ(] C)-FITF*TZO(IC) + ONTF*TZA(IC))

DTORX =(ELEV*TXI-EITE*TX(IC) + NINE*TXO(IC)- TWO*TXA(IC))*ONSI*RDT

DTORY =(ELEV*TY]I- EITE*TY(IC)+ NINE*TY IC)-TWO*TYA(IC)*ONSI*RDT

DTORZ =(ELEV*TZI-EIT
376 TXA(IC) =TXO(IC)
TYA(IC)=TYO(IC)
TZA(IC) =TZO(IC)
375 TXO(IC) =TX(IC)
TYO(IC)=TY(IC)
TZO(IC) =TZ(IC)
371 TX(IC) =TXI
TY(IC)=TyY]
TZ(IC) =Tzl
361 CONTINUE
370 CONTINUE

E*TZ(IC) + NINE*TZO( IC)-TWO*TZA(IC))*ONSI *RDT
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C

THE ANGULAR MOMENTUM HAS BEEN ADVANCED

SUMC=ZER0

DO 377 IC=1,NOM
DO 345 L=1,3
ELX(L)=EX(L,IC)
ELX(L+3) =ELX(L)
ELY(L)=EY(L,IC)
ELY(L+3)=ELY(L)
ELZ(L)=EZ(L,IC)
ELZ(L+3)=ELZ(L)

OM(L) = (JX(IC)*ELX(L) +JY(IC)*ELY(L) + JZ(1C)* ELZ(L))*RI(L)

OM(L +3)=0OM(L)
OMSQ(L) =OM(L)**2
OMSQ(L + 3) =OMSQ(L)

TE(L)=TX(ICY*ELX(L)+ TY(IC)*ELY(L) + TZ(IC)*ELZ(L)

345 CONTINUE

XJ1=XJ1+IX(IC)
Yl =YJI+JY(IC)
ZI1=ZJ1+JZ(IC)

ROTK E=ROTKE +PTFI*(IN(1)*OM(1)**2 + IN(2)*OM(2)**2 + IN(3)*OM(3)’

DO 346 L=1,3

O(L) =OM(L + 1)*OM(L +2)

OSQ(L) =OMSQ(L + 1) + OMSQ(L +2)

O(L+3)=0(L)

OSQ(L +3) =0SQ(L)

ODOT(L) =(TE(L) + (IN(L + 1)-IN(L +2))*O(L))*RI(L)
ODOT(L +3)=0DOT(L)

EDOX(L) =OM(L + )*ELX(L +2)-OM(L + 2)*ELX(L - )
EDOX(L) =-EDOX(L)

EDOX(L +3) = EDOX(L)

EDOY(L) =OM(L + I)*ELY(L +2)-OM(L + 2)*ELY(L + 1)
EDOY(L)=-EDOY(L)

EDOY(L +3)=EDOY(L)

EDOZ(L)=OM(L + 1)*ELZ(L +2)-OM(L + 2)*ELZ(L I 1)
EDOZ(L)=-EDOZ(L)

EDOZ(L +3) = EDOZ(L)

346 CONTINUE

L
C

&

C MIXED ALGORITHM,ONLY OMEGA DOT TERMS IN ACCELERATION.

C

TE(1)-(3) =T.EA
O(1)-(3)=OMA,OMB/IC ETC.
DO 385L=1,3

OF E VECTORS

EDDX(L)=0DOT(L+2)*ELX(L + 1)-ODOT(L + )*ELX(L +2)

& + EDOX(L + 1)*OM(L +2)-EDOX(L +2)*OM(L + 1)

EDDY(L)=0DOT(L +2)*ELY(L + 1)-ODOT(L + N*ELY(L +2)
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&+ EDOY(L+ 1)*OM(L +2)-EDOY(L +2)*OM(L + 1)
EDDZ(L)=ODOT(L+2)*ELZ(L + I}-ODOT(L + 1)*ELZ(L +2)
& +EDOZ(L + 1)*OM(L +2)-EDOZ(L +2)*OM(L + 1)
EDDX(L+3)=EDDX(L)
EDDY(L+3)=EDDY(L)
EDDZ(L +3)=EDDZ(L)
EDDDX(L)=ZER0
EDDDY(L)=ZER0
EDDDZ(L)=ZER0
185 CONTINUE
[F(NOFST.EQ.1) GOTO 386
DO 388 L=1,3
DTE=DTORX*ELX(L)+DTORY*ELY(L)+ DTORZ*ELZ(L)
TEDOT=TX(IC)*EDOX(L) + TY(IC)*EDOY(L) + TZ(IC)* EDOZ(L)
TEDD=IJX(IC)*EDDX(L) + JY(IC)*EDDY(L) + JZ(IC)*EDDZ(L)
ODDT(L)=DTE+TWO*TEDOT+TEDD
ODDT(L+3)=0DDT(L)
388 CONTINUE
DO 382 L=1,3

EDDDX(L)=EDDX(L + 1)*OM(L +2)-EDDX(L +2)*OM(L + 1) + TWO*(EDOX(L + 1)*ODOT
&(L +2)-EDOX(L +2)*ODOT(L -+ 1)) + ELX(L + 1)*ODDT(L + 2)-ELX(L + 2)*ODDT(L +1)
EDDDY(L)=EDDY(L + I)*OM(L +2)-EDDY(L +2)*OM(L + 1) + TWO*(EDOY (L + 1)*ODOT
&L +2)-EDOY(L+2)*ODOT(L +1)) + ELY(L + 1)*ODDT(L +2)-ELY(L + 2)*ODDT(L + 1)
EDDDZ(L) = EDDZ(L + 1)*OM(L +2)-EDDZ(L +2)*OM(L + 1) + TWO*(EDOZ(L + 1)*ODOT
&(L +2)-EDOZ(L +2)*ODOT(L +1)) + ELZ(L + 1)*ODDT(L + 2)-ELZ(L + 2)*ODDT(L +1)

382 CONTINUE
B6 DO 384 L=1,3

EXN(L) = ELX(L) + DT*EDOX(L) + PTFI*DTSQ* EDDX(L) + ONSI*DTCU*EDDDX(L)
EYN(L)=ELY(L)+ DT*EDOY(L) + PTFI*DTSQ*EDDY(L) +ONSI*DTCU*EDDDY(L)

EZN(L) = ELZ(L) + DT*EDOZ(L) + PTFI* DTSQ* EDDZ(L.) +ONSI*DTCU*EDDDZ(L)
EX(L,IC) = EXN(L)

EY(L,IC)=EYN(L)

EZ(L,IC)=EZN(L)

EXN(L +3)=EXN(L)

EYN(L+3)=EYN(L)

EZN(L+3)=EZN(L)

EEX(L)=EXN(L)
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EEX(L+3)=EEX(L) ROTKE=ROTKE/FF
EEY(L)=EYN(L) RTIM = RTIM + TIMI
EEY(L+3)=EEY(L) SRKE=ROTKE

EEZ(L) = EZN(L)
EEZ(L +3)=EEZ(L)
384 CONTINUE
C ORTHONORMALISATION
IF (NOFST.LE.4) GOTO 387
IF (NOFST.NE.(5*NOFST/5)) GOTO 377
387 CONTINUE
C ORTHOGONALISATION
DO 391 L=1,3
CO(L)=EEX(L+ 1)*EEX(L +2) + EEY(L+ I)*EEY(L +2) + EEZ(L + 1)* EEZ(L +2
391 CO(L +3)=CO(L)
DO 393 L=1,3
EXN(L) = EEX(L)-PTFI*(CO(L +2)*EEX(L + 1) + CO(L + 1)*EEX(L +2))
EYN(L) = EEY(L)-PTFI*(CO(L +2)*EEY(L + 1) + CO(L + 1)*EEY(L +2))
EZN(L) = EEZ(L)-PTFI*(CO(L +2)* EEZ(L + 1) + CO(L + 1)* EEZ(L +2))
EEX(L)=EXN(L)
EEY(L)=EYN(L)
EEZ(L)=EZN(L)
393 CONTINUE
C NORMALISATION
397 DO 390 L=1,3
SQE(L) = EXN(L)**2 + EYN(L)**2 + EZN(L)**2-ONE
CORR = SQE(L)*(THREE*PTFI/TWO*SQE(L)-PTFI) + ONE
EEX(L)=EXN(L)*CORR
EEY(L)=EYN(L)*CORR
EEZ(L) = EZN(L)*CORR
EEX(L+3)=EEX(L)
EEY(L+3)=EEY(L)
EEZ(L +3)=EEZ(L)
390 CONTINUE
392 DO 394 L=1,3
EX(L,IC)=EEX(L)
EY(L,IC)=EEY(L)
EZ(L,IC) = EEZ(L)
394 CONTINUE
SUMEX =SUMEX +EX(1,IC)
SUMEY =SUMEY +EY(1,IC)
SUMEZ =SUMEZ + EZ(1,IC)
SUMVX =SUMVX + VXC(IC)
SUMVY =SUMVY +VYC(IC)
SUMVZ =SUMVZ +VZC(IC)

377 CONTINUE
TIMI=DSQRT( XJI*XJ] + YII*YI]l + ZJI*Z]]1 )/FACTOR

ROTE =TWTH*SRK E/(NOM*K B)
TOTEN=STKE +SPE + SRKE

RTEN =RTEN +TOTEN

RSRKE=RSRKE +SRKE

RQEK =RQEK +(SRKE+STKE)*(SRKE +STK E)

RRQTE =RRQTE + ROTE*ROTE

RTRTE=RTRTE + ROTE*TRTE

RVIR =RVIR +SVIR +SVIRT + PSI

RVT=RVT +(SVIR +SVIRT +PSI)*(TRTE + ROTE)

PRESS =(STKE +SRKE-SVIR-SVIRT-PS1)/THR EE

PRESS =PRESS/(.101325D-01*(VOL/CONFAC))

RTPR = RTPR + PRESS

RTQP = RTQP + PRESS*PRESS

RQTEN = RQTEN + TOTEN*TOTEN

IF (NOFST .LT. NT) GO TO 379

NTT =NOFST-NT

IF(NTT .NE. NDUMP*(NTT/NDUMP)) GO TO 379

ZDUMP = DFLOAT(NTT/NDUMP) + ONE

WRITE(1) ZDUMP,XC,YC,ZC,VXC,VYC,VZC,IX, 1Y IZ.EX.EY.EZ
AFXC,FYC,FZC,TX,TY,TZ XA YA ZA ’

379 CONTINUE

SUMEX =SUMEX/108.0

SUMEY =SUMEY/108.0

SUMEZ=SUMEZ/108.0

SUMVX =SUMVX/108.0

SUMVY =SUMVY/108.0

SUMVZ =SUMVZ/108.0

PRINT 513, SUMEX,SUMEY,SUMEZ,SUMVX.SUMVY.SUMVZ
513 FORMAT(6E14.7)

IF(NOFST.NE.(NOFST/IPRINT)*IPRINT) GO TO 378

PRINT 501,NOFST,STKE SRKE,SPE, TOTEN,PRESS, TMO, TIMILSK |
501 FORMAT(IX,/, TIME STEP="15, KIN.EN="GI2.5’ ROT.EN="G[2.5

& POT.EN='GI25 TOT.EN='GI2.5/ PRESSURE="GI2.5/

& TOT.P="GI2.5, ANG.MOM.="G12.5, S(KX) = “,G12.5)
500 FORMAT(" TR.TEMP=",F12.2,5X,'ROT.TEMP =",F"12.2)

PRINT 500 TRTE.ROTE

IF(NOFST.NE.NT) GO TO 233
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NZ =INOF INOF = INOF - NZ
DO 222 L2=1.,6 RNOF = ONE /( DFLOAT ( INOF))

DO 222 L1=1,100
222 GR(L2,L1) = ZERO
RSTKE = ZERO
RSRKE = ZERO
RQEK = ZERD
RTQTE = ZERO
RRQTE = ZERO
RTRTE = ZERO

IF(NOFST .LT. NT) GO TO 334
SSTKE = SSTKE + RSTKE
SSRKE = SSRKE + RSRKE
TQEK = TQEK + RQEK
TQTE = TQTE + RTQTE
RQTE = RQTE + RRQTE
TTRTE = TTRTE + RTRTE
TPE = TPE + RTPE

RTPE = ZERO TPR = TPR + RTPR
RTPR = ZERO TQP = TQP + RTQP
RTQP = ZERO QTOTE = QTOTE + RQTEN
RQTEN = ZERO TTMO = TTMO + RTMO
RTMO = ZERO TTIM =TTIM + RTIM
RTIM = ZERO TVIR = TVIR + RVIR
RVIR = ZERO TVT = TVT + RVT
RVT = ZERO DO 333 L2=1,6
RTEN = ZERD DO 333 L1 = 1,100

233 CONTINUE 333 G(L2,L1)=G(L2,L1)+GR(L2,LI)

C 334 CONTINUE

C TEMP.SCALING DO 223 L2 =1,6

" R = -DELGR/TWO

378 CONTINUE DO 223 L1 = 1,100

C R = R + DELGR

IF((INOF-NZ).NE.((INOF-NZ)/NTINC)*NTINC) GO TO 415 223 GR(L2,L1)=GR(L2,L1)*RNOF*GRFAC/(BIND(L2)*R**2)

IF (NOFST .LE. NT) GO TO 417 c
SUBAVK =(RSTKE-TKIN)*TWTH/(NTINC*K B*NOM) C *** DUMP FINAL CONFIGURATION TO DISK FOR RESTART ***
SUBAVR =(RSRKE-TROT)*TWTH/(NTINC*K B*NOM) C

IF(DABS(SUBAVR +SUBAVK-TWO*TEMP) .LT. DFFT) GO TO 417
CALL TSCAL(3,SUBAVK ,SUBAVR)
417 TKIN=RSTKE

WRITE(8) ZOFST,SRKE,STKE,SSTKE,SSRKE, TQTE,RQTE
& , T PE,TPR, TQP,QTOTE, TTMO,TTIM, TQEK, TVIR, TVT
WRITE(@®) G

TROT =RSRKE WRITE(8) XCN,YCN,ZCN,XC,YC,ZC,VXC,VYC,VZC
4 15%{1&%‘33 NE.2) GO TO 416 AR o e
NE. WRITE(S) TX,TY,TZ, TXO,TYO,TZO,TXA, TYA TZA
IF(NOFST.NE.MTIME*(NOFST/MTIME)) GO TO 416 (8)
CALL TSCAL(l,TRTE,ROTE) e R
CALL ZERO(FCC)
416 CONTINUE RSTKE = RSTKE * RNOF * (ECON*CONFAC)

RSRKE = RSRKE * RNOF * (ECON*CONFAC)
RQEK = RQEK * RNOF * (ECON*CONFAC)**2
RTQTE = RTQTE * RNOF

RRQTE = RRQTE * RNOF

RTRTE = RTRTE * RNOF

RTPE = RTPE * RNOF * (ECON*CONFAC)
RTPR = RTPR * RNOF

431 FORMAT(2X,3E13.5,1X,3E13.5/2X,3E13.6,1X,3E13.5)

IF (NOFST.GT.NMAX) GO TO 400
IF (NOFST.LT.NMAX) GOTO 300

400 CONTINUE
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RTQP = RTQP * RNOF
RTEN = RTEN * RNOF * (ECON*CONFAC)
RQTEN = RQTEN * RNOF * (ECON*CONFAC)**2
RTMO = RTMO * RNOF * (PCON*CONFAC)
RTIM = RTJM * RNOF * (JCON*CONFAC)
RVIR = RVIR * RNOF * (ECON*CONFAC)

RVT = RVT * RNOF * (ECON*CONFAC)
TRTE = RSTKE * TWTH / (KB*NAV*ECON)
ROTE = RSRKE * TWTH / (KB*NAV*ECON)

PRINT 988,INOF

988 FORMAT(1HI,, RUN AVERAGED QUANTITIES. *,I8,~TIME STEPS FOR

THIS
&," JOB.”/))

PRI

989, RSTK E, TRTE,RSRK E,ROTE,RQEK,RTQTE,RRQTE,RTPE,RTPR,RTQP,
&RTEN,RQTEN,RTMO,RTIM,RVIR,RVT,RTRTE
989 FORMAT(1X,” < KIN.-TRA.EN. > = ",G12.520X, < TRATEMP. > =",
&G12.5,//,1X,, < KIN.ROT.EN. > = *,GI2.5,20X,’ < ROT.TEMP. > =,
&G12.5./1X, < (KIN-TOT.EN)**2 > = " GI2.5,,1X, < (TRA.TEMP))
&2 > ="GI2.5/1X,” < (ROT.TEMP.)**2 > = "GI2.5,/,1X,
& < POT.EN. > = ",G12.5,/,1X, < PRESSURE > = ",G12.5,20X,
& < (PRESSURE)**2 > = ",GI2.5,//,1X,” < TOTAL ENERGY > = ’,GI25,
&20X. < (TOT.ENJ**2 > = ",GI2.5,//,1X,” < C.O.M. IMPULSE > =",
&G12.5,10X," < ANG. MOM. > = ",G12.5//1X,
& < VIRIAL > = ",G12.5, < VIR*TEMP. > = " GI2.5,
& < TRA.TEMP*ROT.TEMP > = ,GI12.5))
PRINT 999,(TIND(1J),1J =1,6)
R= -DELGR/TWO
DO 244 L1=1,100
R=R+DELGR
244 PRINT 1999,L1,R (GR({J,L1),] =1,6)
1999 FORMAT(4X,14,4X,G10.3,6(2X,G12.5))
999 FORMAT(1H ,” ATOM-ATOM PAIR DISTRIBUTION G(R) /15X
& 'R’ 4X,7(9X,AS5)/)
IF( NOFST .LT. NT ) GO TO 7000
RZOF = ONE/ ( DFLOAT ( NOFST - NT))
I[F(NOFST.LT.NT) RZOF = ONE/(DFLOAT(NOFST))
SSTKE = SSTKE * RZOF * (ECON*CONFAC)
SSRKE = SSRKE * RZOF * (ECON*CONFAC)
TQEK = TQEK * RZOF * (ECON*CONFAC)**2
TQTE = TQTE * RZOF
RQTE = RQTE * RZOF
TTRTE = TTRTE * RZOF
TPE = TPE * RZOF * (ECON*CONFAC)
TPR = TPR * RZOF
TQP = TQP * RZOF
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TTEN = (TPE+SSTKE+SSRKE)

QTOTE = QTOTE * RZOF * (ECON*CONFAC)**2
TTMO = TTMO * RZOF * (PCON*CONFAC)
TTIM = TTIM * RZOF * (PCON*CONFAC)
TVIR = TVIR * RZOF * (ECON*CONFAC)

TVT = TVT * RZOF * (ECON*CONFAC)

TRTE = SSTKE * TWTH / (KB*NAV*ECON)
ROTE = SSRKE * TWTH / (KB*NAV*ECON)
PRINT 688, NOFST,NT

688 FORMAT(IHI,Y RUN AVERAGED QUANTITIES. *,I8,-TIME STEPS FOR
THIS

&," SEGMENTS. OF WHICH ,15,-STEPS USED FOR EQUILIBRATION.’//)
PRINT 689,SSTKE,TRTE,SSRKE,ROTE, TQEK, TQTE, RQTE, TPE, TPR, TQP,
&TTEN,QTOTE, TTMO,TTIM,TVIR,TVT, TTRTE

689 FORMAT(IX,” < KIN.-TRA.EN. > = ",G12.5,20X,” < TRA.TEMP, > =",

&G12.5,//,1X,’ < KIN.ROT.EN. > = *,GI2.5,20X,” < ROT.TEMP. > = ,
&G12.5,//,1X," < (KIN.-TOT.EN.)**2 > = *,GI2.5,/,1X,’ < (TRA.TEMP.)
&'**2 > = 'GI12.5/1X, < (ROT.TEMP.)**2 > = ".GI12.5,,1X,

& < POT.EN. > = *,GI2.5,,1X,” < PRESSURE > = *,G12.5.20X,

& < (PRESSURE)**2 > = *,GI2.5,//,1X,” < TOTAL ENERGY > = ",GI2S,
&20X,” < (TOT.EN.)**2 > = ",G12.5,//,I1X,’ < C.O.M. IMPULSE > = *,
&G12.5,20X, < ANG.MOM. > = *,GI2.5,//,1X,

& < VIRIAL > = ",G12.5; < VIRATEMP. > = ",G12.5,

& < TRA.TEMP*ROT.TEMP > = ",GI2.5))

PRINT 999,(TIND(LJ},1J=1,6)

R = -DELGR/TWO

DO 247 L1=1,100

R = R + DELGR

DO 245 L2=1,6

245 G(L2,L1)=G(L2,L1)*RZOF*GRFAC/(BIND(L2)*R **2)
247 PRINT 1999,L1,R (G(I,L1),J=1,6)
7000 CONTINUE

STOP
END

SUBROUTINE LATBCC(A)
IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION
&XC(108),YC(108),ZC(108),XCO(108),YCO(108),ZCO(108),
&XCN(108),YCN(108),ZCN(108),VXC(108),VYC(108),VZC(108)
&,EX(3,108),EY(3,108),EZ(3,108),IN(6)
&,IX(108),JY(108),JZ(108)

COMMON /CMT/ XC,YC,ZC,XCO,YCO,ZCO,
&XCN,YCN,ZCN,VXC,VYC,VZC

COMMON /CMO/ EX,EY,EZ

COMMON /CMJ/ IX,JY,JZ,IN,TM,KB,NAV
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5 PRINT 610,IC,XCN(IC),YCN(IC),ZCN(IC)

COMMON [PH
610 FORMAT(10X,14,3(4X,D10.4))

TEMP,VOL,DT,BOXL,FACTOR,CONFAC,CUT,RTKTM,RKTF,FF,DTF

COMMON /N/ NOM,NOMMI,NORM,NT,NOFST,NTINC,INOF CALL ZERO(A)

COMMON /NTR/ TRIG CALL TSCAL(I,ET,ER)

LI=0 RETURN

DO 603 L1=1,25 END

DO 603 L2=1,25 SUBROUTINE LATFCC(A)

DO 603 L3=1,25 IMPLICIT REAL*8 (A-H,0-Z)

LMl=L18 REAL*8 IN(6),JX(108),JY(108),JZ(108)

LM2=12-8 DIMENSION

LM3=13-8 &XC(108),YC(108),ZC(108),XCO(108),YCO(108),ZCO(108),

&XCN(108),YCN(108),ZCN(108),VXC(108),VYC(108),VZC(108)

XAA =(LMI-LM2 + LM3)*A/2.D0-1.D0 + A/4.D0 + (RAND(0)-0.5D0)*A/8.D0
&,EX(3,108),EY(3,108),EZ(3,108)

YAA=(LMI +LM2-LM3)*A/2.D0-1.D0+ A/4.D0 +(RAND(0)-0.5D0)*A/8.D0

ZAA=(-LMI +LM2+LM3)*A/2.D0-1.D0 + Af4.D0 - (RAND(0)-0.5D0)*A/8.D0O

IF(DABS(XAA).GT.1.0D0,OR.DABS(YAA).GT.1.0D0.OR.DABS(ZAA).GT.1.0D(
& GO TO 603

COMMON /CMT/ XC,YC,ZC,XCO,YCO,ZCO,
&XCN,YCN,ZCN,VXC,VYC,VZC
COMMON /CMO/ EX,EY,EZ

LI=LI+]1
XCN(LD =XAA COMMON /CMI/ JX,JY,JZ,IN,TM,KB,NAV
YCN(LI)=YAA COMMON /PHY/
ZCN(LT)=ZAA TEMP,VOL,DT,BOXL,FACTOR,CONFAC,CUT,RTKTM,RK TF,FF,DTF
603 CONTINUE COMMON /N/ NOM,NOMMI,NORM,NT,NOFST,NTINC,INOF
PRINT 33,RTKTM,RKTF,TM COMMON /NTR/ TRIG
33 FORMAT(1X,G12.5,1X,G12.5,1X,G12.5) LI=0
DO 3 IC=1,NOM DO 603 L1=1,25
DO2L=1,3 DO 603 L2=1,25
EX(L,IC)=0.0D0 DO 603 L3=1,25
EY(L,IC)=0.0D0. LMI=LI-8
2 EZ(L,1IC)=0.0D0 LM2=L2-8
EX(1,IC)=1.0D0 LM3=L3-8
EY(2,1C)=1.0D0 XAA=(LMI+LM3)*A/2.D0 -1.D0 + A/4.D0 + (RAND(0)-0.5D0)*A/8.D0
EZ(3,1C)=1.0D0 YAA=(LMI+LM2)*A/2.D0 -1.D0 + A/4.D0 + (RAND(0)-0.5D0)*A/8.D0

ZAA=(LM2+LM3)*A/2.D0-1.D0 + A/4.DO + (RAND(0)-0.5D0)*A/8.D0

VXC(IC)=GRAND(0)*RTKTM*DTF
IF(DABS(XAA).GT.1.0D0.OR.DABS(YAA).GT.1.0D0.OR.DA BS(ZAA).GT.1.0D0

VYC(IC) = GRAND(0)*RTK TM*DTF

VZC(IC)=GRAND(0)*RTKTM*DTF & GO TO 603
AJl =GRAND(0)*DSQRT(RKTF*DFLOAT(IN(1))) LI=LI+1
AJ2=GRAND(0)*DSQRT(RK TF* DFLOAT(IN(2))) XCN(LI)=XAA
AJ3=GRAND(0)*DSQRT(RK TF*DFLOAT(IN(3))) YCN(LI)=YAA
IX(IC) =AJI*EX(1,IC) + AJ2* EX(2,1C) + AI3*EX(3,IC) nggl%!;gggh

JY(IC)=AJI*EY(1,IC)+AJ2*EY(2,IC) + AI3*EY(3,1C)

3 JZ(IC)=AJI*EZ(1,IC) + AJ2*EZ(2,IC) + AJ3*EZ(3,1C)

C NOTE:VX,VY,VZ, ARE MULTIPLIED BY DT,IX,JY.IZ, ARE NOT
PRINT 66, LILA

PRINT 33,RTKTM,RKTF,TM
33 FORMAT(1X,G12.5,1X,G12.5,1X,G12.5)
PRINT *, IN(1),IN(2),IN(3)

66 FORMAT(1HI,” STARTING FROM A RANDOM QUASI-BCC LA DO 3 IC=1,NOM
CONFIGURATI DO2L=1,3
EX(L,IC)=0.0D0

&N',/[,10X,15,-RETICOLAR SITES",F10.4,-LATTICE CONST."f/)

DO 5 IC=1,NOM EY(L,IC)=0.0D0
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2 EZ(L,IC)=0.0D0 LM3=L3-8

EX(1,IC)=1.0D0 XAA=LMI*A-1.D0 + A/2.D0+ (RAND(0)-0.5D0)*A/8.D0
EY(2,IC)=1.0D0 YAA =LM2*A-1.D0 +A/2.D0+ (RAND(0)-0.5D0)* A/8.D0
EZ(3,1C)=1.0D0 ZAA =LM3*A-1.D0+ A/2.D0 +(RAND(0)-0.5D0)*A/8.D0
VXC(IC)=GRAND(0)*RTKTM*DTF [F(DABS(XAA).GT.1.0D0.OR.DABS(YAA).GT.1.0D0.OR.DABS(ZAA).GT.1.0D0
VYC(IC)=GRAND(0)*RTKTM*DTF & GO TO 603
VZC(1C)=GRAND(0)*RTKTM*DTF LI=LI+1
AJl =GRAND(0)*DSQRT(RKTF*IN(1)) XCN(LD=XAA
AJ2=GRAND(0)*DSQRT(RKTF*IN(2)) YCN(LD) =YAA
ZCN(LD) =ZAA

AJ3=GRAND(0)* DSQRT(RK TF*IN(3))
JX(IC) = AJI*EX(1,IC) + AJ2* EX(2,1C) + AI3*EX(3,1C)
JY(IC) = AJI*EY(1,IC) + AJ2*EY(2,IC) + AJ3*EY(3,I0)

3 JZ(IC)=AJI*EZ(1,IC) + AJ2*EZ(2,IC) + AI3* EZ(3,IC)

C NOTE:VX.VY,VZ, ARE MULTIPLIED BY DT,JX,JY,JZ, ARE NOT

PRINT 66, LLA i ;
66 FORMAT(1H1,’ STARTING FROM FCC LATTICE CONFIGURATION *,/,

&10X,15,-RETICOLAR SITES’,F10.4,-LATTICE CONST.’//)
DO 5 IC=1,NOM

603 CONTINUE
PRINT 33,RTKTM,RKTF,TM
33 FORMAT(1X,G12.5,1X,G12.5,1X,G12.5)
DO 3 IC=1,NOM
DO2L=13
EX(L,IC)=0.0D0
EY(L,IC)=0.0D0
2 EZ(L,IC)=0.0D0

5 PRINT 610,1C,XCN(IC),YCN(IC),ZCN(IC) EX(1,1C)=1.0D0
610 FORMAT(10X,14,3(4X,E10.4)) EY(2,IC)=1.0D0
EZ(3,1C)=1.0D0

CALL ZERO(A)

CALL TSCAL(l,ET,ER)

RETURN

END

SUBROUTINE LATSCC(A).

IMPLICIT REAL*S (A-H,0-Z)

DIMENSION

&X.C(108),YC(108),ZC(108),XCO(108),Y CO(108),ZCO(108),
&XCN(108),Y CN(108),ZCN(108),VXC(108),VY C(108),VZC(108)
&, EX(3,108),EY(3,108),EZ(3,108)

&,1X(108),JY (108),JZ(108),IN(6)

VXC(IC) =GRAND(0)*RTK TM*DTF
VYC(IC) = GRAND(0)*RTK TM*DTF
VZC(IC)=GRAND(0)*RTK TM*DTF
AJ1=GRAND(0)* DSQRT(RK TF*IN(1))
AJ2=GRAND(0)* DSQRT(RK TE*IN(2))
AJ3=GRAND(0)* DSQRT(RK TF*IN(3))
IX(IC) = AJI*EX(1,IC) + AJ2*EX(2,IC) + AJ3*EX(3,IC)
IY(IC) =AJI*EY(1,IC) + AJ2*EY(2,IC) + AJ3*EY(3,IC)
3 JZ(IC) = AJI*EZ(1,1C) + AJ2*EZ(2,1C) + AJ3*EZ(3,1C)
C NOTE:VX,VY,VZ, ARE MULTIPLIED BY DT,IX,]Y.JZ, ARE NOT
PRINT 66, L1.A
66 FORMAT(IHI, STARTING FROM A RANDOM QUASI-SCC LATTICE
CONFIGURATI
&N',//,10X,15,"-RETICOLAR SITES’,F10.4,-LATTICE CONST."//)
DO 5 IC=1,NOM
5 PRINT 610,IC,XCN(IC),YCN(IC),ZCN(IC)
610 FORMAT(10X,14,3(4X,E10.4))

COMMON /CMT/ XC,YC,ZC,XCO0,YCO,ZCO,
&XCN,YCN,ZCN,VXC,VYC,VZC

COMMON /CMO/ EX,EY,EZ

COMMON /CMIJ/ JXJY,JZ,IN,TM,KB,NAV {
COMMON /P

TEMP,VOL,DT,BOXL,FACTOR,CONFAC,CUT,RTKTM,RKTF,FF,DTF

COMMON /N/ NOM,NOMMI,NORM,NT,NOFST,NTINC,INOF CALL ZERO(A)

COMMON /NTR/ TRIG CALL TSCAL(1,ET,ER)

LI=0 RETURN

DO 603 L1=1,25 END

DO 603 L2=1,25 FUNCTION GRAND(N)

DO 603 L3=1.25 IMPLICIT REAL*8 (A-H,0-Z)
LMIl=LI-8 COMMON/RANDNO/R3(127),R1,I2

LM2=12-8 COMMON /NTR/ TRIG
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P1=4.D0*DATAN(1.D0)
GRAND = DSQRT(-2.* DLOG(R1))* DCOS(2.D0*PI*R2)
RETURN

END
SUBROUTINE ZERO(Z)

IMPLICIT REAL*8 (A-H,0-Z)

REAL*8 JX(108),JY(108),JZ(108),IN(6)

DIMENSION
&XC(108),YC(108),ZC(108),XCO(108),YCO(108),ZCO(108),
&XCN(108),Y CN(108),ZCN(108),VXC(108),VYC(108),VZC(108)
& EX(3,108),EY(3,108),EZ(3,108)

COMMON /CMT/ XC,YC,ZC,XCO,YCO,ZCO,
&XCN,YCN,ZCN,VXC,VYC,VZC
COMMON /CMO/ EX,EY,EZ
COMMON /CMJ/ JX,JY JZ,IN,TM,K B,NAV

COMMON
TEMP,VOL, DT,BOXL,FACTOR,CONFAC,CUT,RTKTM,RK TF,FF,DTF
COMMON /N/ NOM,NOMM1,NORM,NT,NOFST,NTINC,INOF

SVX =0.0D0
SVY =0.0D0

SVZ=0.0D0

SXX =0.0D0

SXY =0.0D0

SXZ=0.0D0

DO 3 IC=1,NOM

C NOTE:VX,VY,VZ, ARE MULTIPLIED BY DT,XX,XY,XZ, ARE NOT
SVX =SVX + VXC(IC)

SVY =SVY + VYC(IC)
SVZ=SVZ+VZC(IC)

3 CONTINUE

RNOM = 1.0D0/(DFLOAT(NOM))

C SET THE MEAN VALUES TO ZERO
SVX =SVX*RNOM

SVY =SVY*RNOM
SVZ=SVZ*RNOM

SJX =0.0D0

SJY =0.0D0

8JZ=0.0D0

PRINT 66

66 FORMAT(IH ;' TOTAL TRASLATIONAL MOMENTA AND C.O.M. POS.", |

& SET TO ZERO )
DO 4 IC=1,NOM
VXC(IC) = VXC(IC)-SVX
VYC(IC) =VYC(IC)-SVY
VZC(IC) = VZC(IC)-SVZ
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XC(IC) =XCN(IC)-VXC(IC)

YC(IC) = YCN(IC)-VYC(IC)

ZC(IC) = ZCN(IC)-VZC(IC)

SXX =SXX +XC(IC)

SXY =SXY + Y(IC)

SXZ=SXZ+ZC(IC)

SIX =SIX+JX(IC)

SJY =SJY +JY(IC)

SIZ=S8IZ+JZ(IC)
4 CONTINUE

SXX =SXX*RNOM

SXY =SXY*RNOM

SXZ=SXZ*RNOM

SIX=SIX*RNOM

SJY =SJY*RNOM

SJZ=SJZ*RNOM

DO 44 IC=1,NOM

XC(IC) =XC(IC)-SXX

YC(IC) = YC(IC)-SX Y

ZC(IC)=ZC(1C)-SXZ

XCN(IC) =XCN(IC)-SXX

YCN(IC) = YCN(IC)-SXY

ZCN(IC) = ZCN(IC)-SXZ

JX(IC) = JX(IC)-SJX

JY(IC) =JY(IC)-SJY

JZ(1C) = JZ(IC)-SIZ

44 CONTINUE

RETURN

END

SUBROUTINE TSCAL(MODE, TTEMP,RTEMP)

IMPLICIT REAL*S (A-H,0-Z)

REAL*S JX(108),JY(108),JZ(108),IN(6),K B,NAV

DIMENSION
&XC(108),YC(108),ZC(108),XCO(108),YCO(108),ZCO(108),
&XCN(108),Y CN(108),ZCN(108),VXC(108),VYC(108),VZC(108)
&,EX(3,108),EY(3,108),EZ(3,108),0M(6)

COMMON /CMT/ XC,YC,ZC,XCO,YCO,ZCO,
&XCN,YCN,ZCN,VXC,VYC,VZC
COMMON /CMO/ EX,EY,EZ
COMMON /CMJ/ JX,JY,JZ,IN.;TM,KB.NAV
COMMON

TEMP,VOL,DT,BOXL,FACTO R,CONFAC,CUT,RTKTM,RKTF,FF,DTF

COMMON /N/ NOM,NOMMI,NORM,NT,NOFST,NTINC,INOF
KB=1.3807D-00
NAV=6.0223D +23

687
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ELSQ =2.3071138D +05
IF(MODE.NE.1) GO TO |
TTEMP =0.0D0
RTEMP =0.0D0
DO 2 1=1,NOM
TTEMP=TTEMP + VXC(I)**2 + VYC(I)**2 + VZC(I)**2
DO 3L=1.3
3 OM(L) =(EX(L,D*JX(I) + EY(L,D)*JY(1) + EZ(L,)*JZ(1))/IN(L)
RTEMP = RTEMP +0.5D0*(IN(1)*OM(1)**2 + IN(2)*OM(2)**2 -+IN(3)*OM(3)**2)
2 CONTINUE
PRINT 3456,K B,NAV,TM,IN(1),IN(2),IN(3)
3456 FORMAT (7G14.6)

19

TTEMP=TTEMP*0.5D0*TM/DTF**2
TTEMP=2.0D0*TTEMP/(3.0D0*NOM*K B)
RTEMP = RTEMP*2.0D0/(3.0D0* NOM*K B*FF)
| UT=DSQRT(TEMP/TTEMP)
UR =DSQRT(TEMP/RTEMP)
DO 413 [ =1,NOM
VXC(D) = UT*VXC(I)
VYC() =UT*VYC(I)
VZC(1)=UT*VZC(I)
15

XC(I) = XCN(I)-VXC(1)
YC(I) = YCN(I-VYC(I)
ZC(1) =ZCN(D-VZC(D)
IX(D) =UR*IX(I)
JY(1) =UR*IY(D)
413 JZ(I)=UR*IZ(I)
PRINT 412, TTEMP,RTEMP
412 FORMAT(1X,” TEMPERATURE SCALING. OLD TEMPERATURES : °,
&1X, TR.TEMP=",G12.5, RO.TEMP=",G12.5)
RETURN
END
SUBROUTINE RANGE(PSI,PELR,CUT,NOM,ACR,EP,BSIGSQ)
IMPLICIT REAL*S (A-H,0-7)
REAL*8 PSI,PELR,EP(36),ACR(36),BSIGSQ(36),
&CUT,CUTSQ,A,PGR
CUTSQ=CUT**2
PGR =(DACOS(-1.0D0))
PSI=0.0D0
PELR = 0.0D0
DO 19 J=1,25

—

C

AM(3)*(X3*X3 +Y3*Y3)

C MOMENTS OF INERTIA IN BOX UNITS
C IN(3) IS PARALLEL TO Z-AXIS

COM

IN(I)=IN(1)* FACTOR**2/(NAV*1.0D-24)
IN(2) =IN(2)* FACTOR**2/(NAV*1.0D-24)
IN(3) =IN(3)* FACTOR**2/(NAV*1.0D-24)
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A =(BSIGSQ(J)/CUTSQ)**3

PSI = PSI+ EP(J)*(A-2.0D0/3.0D0* A*A)

PELR =PELR +EP(J)*(A*A/3.0D0-A)/3.0D0
ACR()) = EP(1)*(2.0D0*A*A-A)/CUTSQ

PSI =PSI*2.0D0* FGR*(DFLE}AT(NGM*NDM])*CUT**J
PELR = PELR*PGR*(DFLOAT(NOM*NOM))*CUT**3
RETURN

END

SUBROUTINE KINET{NA?,FAETDR,M,TMIN,RI]
IMPLICIT REAL*S (A-H,0-Z)

REAL*8 FACTOR,NAV,TM, ,

Wi , TM,DCH DCCL,IN(6),RI(6),M(6)
DIl=1.0

D2=1.0

DOC=1.0

M(1)=1.0D0

M(2)=16.0D0

M(3)=1.0D0

M(4)=0.0D0

M(5)=0.0D0

TM =0.0D0

DO I151=1,5

M(D) = M(I)/(NAV*1.0D-24)

TM=TM+M(D

Pl1=3.1415927

ZET=PI*54.5/180.0

X1=DSIN(ZET)

Y1=-8.0/9.0*DCOS(ZET)

Z1=0.00

X2=0.00

Y2=DCOS(ZET)/9.0

Z2=0.00

X3 =-DSIN(ZET)

Yi=Y]

Z3=0.00

IN(D=M(D*(XI*X1 +ZI*Z1) + M2)*(X2* X2 +72°72)  AMQ)*(X3*X3 +Z3*Z3)
IN(2) =M(D*(XI*X T+ YY)+ M(2)*(X2* X2+ Y2* Y2)

ING) =M()*(YI*Y1+ZI*Z1) + M(2)*(Y2*Y2 + 72+ 72) AM(3)*(YI*Y3 +Z3*Z3)
JIN(2) PARALLEL TO 3-4 VECTOR,

IN(1) PARALLEL TO 1-2 VECTOR DOC=SIST. FROM CENTRAL ATOM TO
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DO 18 L=1,3
IN(L+3)=IN(L)

18 RI(L)=1.0D0/IN(L)
PRINT 20,IN(1),IN(2),IN(3),RI(1),R1(2),RI(3),FACTOR

20 FORMAT(1X//2X,” INERTIA(1,2,3) =",3G12.5," INV.MOM.INE.(1,2,3) =’

&,3G12.5,1X//2X,’ FACTOR =",G12.5,1X//)

RETURN
END
SUBROUTINE LENJO(SIG,EPS,BSIG,BSIGSQ,EP,KB,FACTOR)
IMPLICIT REAL*8 (A-H,0-Z)
REAL*3 SIG(6,6),EPS(6,6),BSIG(36),BSIGSQ(36),EP(36)
&, KB,FACTOR
SIG(1,1)=2.25
S1G(2,2)=2.8
SI1G(3,3)=2.25
SIG(4,4)=0.0
S1G(5,5)=0.0
EPS(1,1)=21.1
EPS(2,2) = 58.4
EPS(3,3)=21.1
EPS(4,4) =0.0
EPS(5,5)=0.0
SIG(1,2) =0.5*(SIG(1,1) +S1G(2,2))
SIG(1,3)=0.5*(SIG(1,1)+SIG(3,3))
SIG(1,4)=0.0
SIG(1,5)=0.0
EPS(1,2) = DSQRT(EPS(1,1)*EPS(2,2))
EPS(1,3) = DSQRT(EPS(1,1)*EPS(3,3))
EPS(1,4)=DSQRT(EPS(1,1)*EPS(4,4))
EPS(1,5) = DSQRT(EPS(1,1)*EPS(5,5))
SIG(2,1)=S1G(1,2)
S1G(2,3) =0.5*(SIG(2,2) + S1G(3,3))
S1G(2,4)=0.0
S1G(2,5)=0.0
EPS(2,1)=EPS(1,2)
EPS(2,3) = DSQRT(EPS(2,2)*EPS(3,3))
EPS(2,4) = DSQRT(EPS(2,2)*EPS(4,4))
EPS(2,5) = DSQRT(EPS(2,2)*EPS(5,5))
S1G(3,1)=SIG(1,3)
S1G(3,2) =S1G(2,3)
S1G(3,4)=0.0
S1G(3,5)=0.0
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EPS(3,1) =EPS(1,3)
EPS(3,2) = EPS(2,3)
EPS(3,4) = DSQRT(EPS(3,3)*EPS(4,4))
EPS(3,5) = DSQRT(EPS(3,3)* EPS(5, 5))
SIG(4,1) =SIG(1,4)
SIG(4,2) =S1G(2,4)
SI1G(4,3) =SIG(3,4)
SIG(4,5)=0.0
EPS(4,1) = EPS(1,4)
EPS(4,2) = EPS(2,4)
EPS(4,3) = EPS(3,4)
EPS(4,5) = DSQRT(EPS(4,4)*EPS(5,5))
SIG(5,1) =SIG(1,5)
SIG(5,2) =SIG(2,5)
SI1G(5,3) =SIG(3,5)
SIG(5,4) =SIG(4,5)
EPS(5,1) =EPS(1,5)
EPS(5,2) = EPS(2,5)
EPS(5,3) =EPS(3,5)
EPS(5,4) = EPS(4,5)
DO 14 1=15
I5=>5%(1-1)
DO 14 J=1,5
=15+
BSIG(1J) = FACTOR*SIG(I,J)
BSIGSQ(1J) = BSIG(1J)**2
EP(1J) = K B*EPS(1,J)

14 CONTINUE

RETURN

END

SUBROUTINE ATPOS(NATM,FACTOR)

IMPLICIT REAL*8 (A-H,0-2)

DIMENSION
&  XAT(648),YAT(648),ZAT(648),XA(648),Y A(648)
&,ZA(648),XC(108), Y C(108),2C(108), X CO(108), Y CO(108),ZCO(108)
& XCN(108),YCN(108),ZCN(108),VXC(108),VYC(108),VZC(108)
&,EX(3,108),EY (3,108),EZ(3,108)

COMMON /ATT/ XAT,YAT,ZAT,XA,YA.ZA

COMMON /CMT/ XC,YC,ZC,XCO,YCO,ZCO,
&XCN,YCN,ZCN,VXC,VYC,VZC

COMMON /CMO/ EX,EY,EZ

COMMON /N/ NOM,NOMMI.NORM.NT

COMMON : NT,NOFST,NTINC,INOF

ROOT2=70.5*3.1415927/180.0
FACTOR =0.13508
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PI=3.1415927
ZET =PI*54.5/180.0

X1 =DSIN(ZET)

Y1 =-8.0/9.0* DCOS(ZET)

Z1=0.00

X2 =0.00

Y2 =DCOS(ZET)/9.0

72=0.00

X3=-DSIN(ZET)

Y3=YI

Z3=0.00

X4 =0.00

Y4 =(1.0/9.0+0.8)* DCOS(ZET)

Z4=0.8*DSIN(ZET)

X5=0.0

Y5=Y4

Z5=-7Z4

DO 369 IC=1,NOM

IA =NATM*(IC-1) +1

XAT(IA) = FACTOR*(X1*EX(3,IC) + Y I*EX(1,IC) + ZI*EX(2,1C))
YAT(1A) = FACTOR*(XI*EY(3,IC) + YI*EY(1,1C) + ZI*EY(2,10))
ZAT(IA) = FACTOR*(X1*EZ(3,IC) + Y I*EZ(1,1C) + ZI*EZ(2,1C))
XAT(IA + 1) = FACTOR*(X2*EX(3,IC) + Y2*EX(1,1C) + Z2*EX(2,1C))
YAT(IA +1)=FACTOR*(X2*EY(3,IC) + Y2*EY(I1,IC) + Z2*EY(2,1C))
ZAT(IA + 1) = FACTOR*(X2*EZ(3,IC) + Y2*EZ(1,IC) + Z2*EZ(2,1C))
XAT(IA +2) = FACTOR*(X3* EX(3,IC) + Y3*EX(1,IC) + Z3*EX(2,1C))
YAT(IA +2) = FACTOR*(X3*EY(3,IC) + Y3*EY(1,IC) + Z3*EY(2,1C))
ZAT(IA +2) = FACTOR*(X3*EZ(3,IC) + Y3*EZ(1,IC) + Z3*EZ(2,IC))
XAT(IA +3)= FACTOR*(X4*EX(3,IC) + Y4*EX(1,1C) + Z4*EX(2,1C))
YAT(IA +3) = FACTOR*(X4*EY(3,1C) + Y4*EY(1,IC) -+ Z4*EY (2,1C))
ZAT(IA +3) = FACTOR*(X4*EZ(3,1C) + Y4*EZ(1,IC) 4 Z4* EZ(2,1C))
XAT(IA +4) = FACTOR*(X5*EX(3,IC) 4+ YS*EX(I,IC) + ZS*EX(2,I1C))
YAT(IA +4) = FACTOR*(XS*EY(3,IC) + YS*EY(1,IC) + ZS* EY(2,1C))
ZAT(IA +4) = FACTOR*(XS5*EZ(3,IC) + Y5S*EZ(1,IC) + ZS*EZ(2,IC))

369 CONTINUE

DO 30 IC=1,NOM
15=NATM*(IC-1)

DO 31 IA=1,NATM

K=I5+IA

XA(K) =XC(IC) + XAT(K)

XA(K) =XA(K)-TWO*(DFLOAT(IDINT(XA(K)))
YA(K)=YC(IC) + YAT(K)
YA(K)=YA(K)-TWO*(DFLOAT(IDINT(YA(K))))
ZA(K) =ZC(IC) + ZAT(K)

ZA(K) =ZA(K)-TWO*(DFLOAT(IDINT(ZA(K))))

31 CONTINUE
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30 CONTINUE
RETURN

END

SUBROUTINE GRAF{F.FI,FE,KMAX.IK,IL}

C
C

C PLOTTING 3 CURVES F,FI,F2
C KMAX= NUMBER OF POINTS

C IK = 0 (NORMALIZATION AT FIRST POINT),

g IL = 0("F CURVEONLY ), = | (‘F'&FI* CURVES), = 2 ( ALL CURVES
L

IMPLICIT REAL*$ (A-H,0-7)

gﬁiwﬂsfmm F(200),F1(200),F2(200),0(101)

IH /,;TA/LHI/,T1/IH*/, T2/1H +

FF1 =Fi) /IH*/, T2/ L T3/TH/

FF11=FI(1)

FF21 =F2(1)

X =0.D0

DO I I=1,KMAX
IF(IK.EQ.0) F(I)= F(I)/FFI
X1 =DABS(F(I))
IFX1L.GT.X)X = X1
IF(IL.EQ.0)GOTO 1
IF(IK.EQ.0) FI(I)=FI(I)/FFI11
X1 =DABS(FI(I))
IF (IL.EQ.I) GOTO 1
IF (IK.EQ.0) F2(I) = F2(I)/FF2I
X1 =DABS(F2(J))
IF(X1.GT.X)X = X1

| CONTINUE
DELT=X /50.D0

DO21=1,

DO3J=]
30()=B
O(l)=TA

O(51)=TA

KMAX

,101

O(101) =TA
M=(F(I)+X )/DELT +1.5D0

OM)=TI

IF(IL.EQ.0)GOTO 4
M =(FI(I)+ X )/DELT +1.5D0

OM)=T2

IF(IL.EQ.1) GO TO 4
M = (F2(I) + X)/DELT +1.5D0

= 1 ( NO NORMALIZATION
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O(M) =T3
4 CONTINUE
IF (IL.EQ.2) PRINT 997,1,F(I),F1(I), F2(1),0
IF(IL.EQ.1) PRINT 998,1,F(I), F1(I),0
IF(IL.EQ.0) PRINT 999,1,F(1),0
2 CONTINUE
997 FORMAT(IH ,I3,3(1X,G9.3),1X,101 A1)
998 FORMAT(1H ,15,2(1X,G10.3),1X,101Al)
999 FORMAT(IH ,15,D15.7,101 A1)
RETURN
END
SUBROUTINE CHARGE(CHA,BCHA, ELSQ,FACTOR, TWFO)
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION CHA(6),BCHA(36)
CHA(1)=0.23
CHA(2)=0.00
CHA(3)=0.23
CHA(4) =-0.23
CHA(5) =-0.23
DO 14 [=1,5
I5=5%I-1)
DO 14 J=1,5
J=15+]
BCHA(1J) = CHA(l)*CHA(J)*ELSQ* FACTOR /TWFO
14 CONTINUE
RETURN
END
¢ RANDOM NUMBER GENERATOR
C
FUNCTION RAND(N)
IMPLICIT REAL*$ (A-H,0-2)
COMMON /RANDNO/ R3(127),R1,12
DATA S,T,RMC/0.D0, 1.D0, 1.D0/
DATA IW/-1/
IF((R1.LT.1.D0).AND.(N.EQ.0)) GO TO 60
IF (IW.GT.0) GO TO 30
10 IW = IW + |
T = 0.5DO*T
RI =S
S=S+T
IF ((S.GT.R1).AND.(S.LT.1D0)) GO TO 10
IKT = (IW - 1)/12
IC = IW - 12*KT
ID = 2*%(13 - [C)
DO2I = I, IC
20 RMC = 0.5DO*RMC
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RM = 0.015625D0*0.015625D0
30 12 = 127
IR = MOD(IABS(N), $190) + |
40 Rl = 0.D0
DOSOI = I, [KT
IR = MOD(I7*IR, 8191)
50 Rl = (RI + DFLOAT(IR/2))*RM
[R = MOD (17*IR, 8191)
RI = (RI + DFLOAT(IR/ID))*RMC
R3(12) = R
12 =12-]
IF (12.GT.0) GO TO 40
60 IF (12.EQ.0) I2 = [27
T = RI + R3(I2)
LF (T.GE.IDO) T = (R1 - 0.5D0) + (R3(12) - 0.5D0)
[ =T
R3(I2) = R]
12 =]2-]
RAND = R]
RETURN
END
SUBROUTINE DATE(DAT)
IMPLICIT REAL*8 (A-H,0-7)
RETURN
END
SUBROUTINE TIME(TRIG)
IMPLICIT REAL*8 (A-H,0-Z)
RETURN
END
SUBROUTINE SECOND(PTIME)
IMPLICIT REAL*8 (A-H,0-2)
RETURN
END

over N time steps and M molecules, and is capable of computing a c.c.f. over 6.000 time
Steps and 108 molecules in about one minute of IBM 3090 time.

PROGRAM CRLATE

PARAMETER (NSL = 1000,MAXMOL = 108, MAXCCF = 1000)
PARAMETER (IR=0,IV=1, [J=2, [E=3 [F=4 JIT=5, 1]1 =6,
1 IED=7, IW=8, [P=9  ITOTR = |0)

REAL X(0:3*MAXMOL*NSL-1 2)
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RCCF(0:MAXCCF),ACCF(0: MAXCCF), DENOM, DENOM I, DENOM2,DOT
LOGICAL LINTER,LPLOT,FIRST
NAMELIST JACFCCF/ NSLICE,NCF,IDI,ID2,1X1,1X2,NMOLS,NBYTE,
1 FIRST, NSLT, LINTER, NORM, LPLOT, TSLICE, ITOUT
COMMON /BYTE/ NBYTE
DATA NSLICE, NCF, 1DI, 1D2, IX1, IX2, NMOLS,
|  NSLT, LINTER, NORM, LPLOT, TSLICE, ITOUT
2 /900,200, 1, 1, O, 0, 108, 1000, F, 0, F, 0., 6/
INDX(NMOL,IX,ISL) = NMOL - | + (IX-1)*NMOLS + ISL*3*NMOLS
NBYTE =8
FIRST=.FALSE. CCC
READ(4,ACFCCF)

OPEN(UNIT=80,ACCESS ='DIRECT",RECL=3*NMOLS*NBYTE,ACTION ="

[F(IX1 .EQ.0) IX2 =0
[F( IXI.LT.0 .OR. IX1.GT.3 .OR. IX2.LT.0 .OR. IX2.GT.3) THEN
WRITE(6,*) * Invalid valucs of ccf components X1, 1X2’
STOP
ELSE IF(IX1 .EQ. 0) THEN
NORM = 0
ELSE
IF(NORM .NE. | .AND. NORM .NE. 2) THEN
WRITE(6,*) * Invalid normalisation type - must be | or 2'
STOP
END IF
END IF
IF(ID1 .EQ. ID2 .AND. NORM .EQ.2) NORM = 0CCC
DENOM = (0.D0
DENOMI = 0.D0
DENOM2 = 0.D0
DO 600 [ =0,NCF
600  ACCF(I) = 0:D0

[F(ID1 .EQ. 1D2) THEN
CALL READAT(X(0,1),ID1,NCF,0,NSLT,NMOLS)

DO 2000 IBLOCK = NCF, NSLICE-1, NSL-NCF
NN = MIN(NSL-NCF,NSLICE-IBLOCK)

CALL READAT(X(3*NMOLS*NCEF,1),ID1,NN,IBLOCK ,NSLT,NMOLS)

WRITE(6,*) * ****** DATA READ IN’

CALL CCF(X,X,NMOLS,NN + NCF,RCCF,NCF,I1X1,1X2)
DO 1000 ICF = 0,NCF

1000 ACCF(ICF) = ACCF(ICF) + RCCF(ICF)

REAL*
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IF(NORM .EQ. 0) THEN C
FROM’,IBLOCK-NCF,” FOR’,NN

DENOM = DENOM + DOT(X,X,3*NMOLS*NN) C
* DENOM =, DENOM
ELSE IF(NORM .EQ. 1) THEN
DO 2108 ISL=0,NN
DENOMI = DENOMI

| +DOT(X(INDX(1,IX1,IS L), 1), X(INDX(1,IX1 JISL),1),NMOLS)

WRITE(6,*) * CORRELATION

WRITE(6,*)

DENOM2 = DENOM?
! + DOT(X(INDX(1,1X2,ISL),1),X(INDX(1,1X2,ISL), 1), NMOLS)
2108 CONTINUE
END IF
C WRITE(6,*)  MOVING’,NCF,” FROM’,NSL-NCF,” TO",0

CALL MOVE(X(3*NMOLS*(NSL-NCF). 1).X 3*NMOLS*
2000 CONTINUE L NeR

ELSE IF(IX1.GE.l .AND. IXI1.LE.3 .AND. IX2.GE.l .AND. IX2.LE.3)THE

CALL READAT(X(0,1),1D1,NCF,0,NSLT,NMOLS)

CALL READAT(X(0,2),1D2,NCF,0,NSLT,NMOLS)

DO 4000 IBLOCK = NCF, NSLICE-1, NSL-NCF
NN = MIN(NSL-NCF,NSLICE-IBLOCK)
CALL READAT{X(E*NMGLS*_NCF.I},IDI,NN,IHLDCK,NSLT,NMGLS}
CALL READAT(X(3*NMOLS*NCF,2),ID2,NN,IBLOCK ,NSLT,NMOLS)
WRITE(G,*) * ****** DATA READ [N’

CALL CCF(X(0,1),X(0,2), NMOLS,NN +NCF,RCCF.NC F,IX1,1X2)
DO 3000 ICF = 0,NCF
3000 ACCF(ICF) = ACCF(ICF) + RCCF(ICF)
[F(NORM .EQ. 1) THEN
DO 4108 ISL=0,NN
DENOMI = DENOM |
1 +DOT(X(INDX(1,IX1,ISL), 1), X(INDX(1,1X1,ISL), 1),NMOLS)
o
s CDNTINU(E DX(1,1X2,ISL),2),X(INDX(1,1X2,ISL),2), NMOLS)
ELSE IF(NORM .EQ. 2)THEN
DENOMI = DENOM! + DOT(X(0,1),X(0,1),3*N MOLS*NN)

E F?;I;JEME =DENOM2 +DOT(X(0,2),X(0,2),3*NMOLS*NN)

gitt Mggg{x{awmnm*msuwcm,|},x{u,i}.3*wmmm*wcm
MOVE(X(3*NMOLS*(NSL-NCF),2),X(0.2).3*NMOLS*
CONTINUE R SRR
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ELSE
WRITE(6,*) * IX1(2) > 3 OR IXI(2) < 0, IX1,IX2
STOP

END IF

C CALL READAT(R,IR,NSLICE,NT,NMOLS)

C  NMOLN=NMOLS C
WRITE(6,*) * ***+#* COMPACTED’

C CALL FOR ‘DOT PRODUCT’ ACF
[F(NORM .NE. 0) DENOM = SQRT(DENOMI*DENOM?)
WRITE(ITOUT,100) DENOM,ACCF(0)

100 FORMAT(' DENOMINATOR = *,1P,DI6.8,’
DO 1080 1=0,200
1080 ACCF(I) = ACCF(I)/DENOM

< V(0).V(0) >

CALL PRINT(ACCF,ID1,ID2,1X1,1X2,NCF,ITOUT)
IF(LPLOT) THEN
IF(FIRST) THEN
REWIND 9
ENDFILE 9
ENDIF
REWIND 9
DO 98 1=1,10000
READ (9,END = 99)
98 CONTINUE
99 BACKSPACE 9
WRITE (9) ACCF,NCF,TSLICE,NMOLS,IDI,ID2,1X1,1X2
REWIND 9
ENDIF
STOP
END

FUNCTION CCFNOR(X1,X2,IC1,IC2,NMOL,NSL)
REAL*4 X1(1:NMOL,1:3,0:NSL-1),X2(1:NMOL, 1 :3,0:NSL- )
REAL*8 X1X1,X2X2, CCFNOR, DOT
XIX1 = 0.D0
X2X2 = 0.D0
DO 6 ISL = O,NSL-I

XIX1 = X1XI+DOT(XI(1,ICI,ISL),X I(1,ICI,ISL),NMOL)
X2X2 = X2X2+DOT(X2(1,1C2,ISL),X2(1,IC2,ISL),NMOL)
6 CONTINUE
CCFNOR = SQRT(XIXI*X2X2)
RETURN

CALL COMPCT(V,R,NMOLS,NMOLN,NSLICE)

", D16.8)
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END

SUBROUTINE READAT(X,IX,NSL,NSLO,NSLMAX,NMOL)
REAL*4 X(0:3*NMOL*NSL-1)
PARAMETER (MAXMOL = 108)
REAL*8 BUFF(0:3* MAXMOL-1)

COMMON /BYTE/ NBYTE C
TO *,NSL + NSLO- |

WRITE(6,*) " READING SLICES WNSLO,’

IF(NMOL .GT. MAXMOL) THEN

WRITE(6,*) 'READ BUFFER TOO SMALL -INCREASE NMOL’
STOP

END IF

J0=0cC
G
IF(NBYTE .EQ. 8)THEN
DO 1000 IREC=IX*NSLMAX 4+ NSL0 + LIX*NSLMAX + NSL + NSLO
CALL RBLOCK (BUFF,IREC,2*NMOL)
DO 1010 J=3*NMOL-1,0.-1
X(J+10) = BUFE(J)

WRITE(6,*) * READING RECORDS',IX*NSLMAX +NSL0+1,’
[IX*NSLMAX + NSL-+ NSL0

1010 CONTINUE
JO = J0 + 3*NMOL
1000 CONTINUE
ELSE

DO 2000 IREC=IX*NSLMAX +NSLO+ I,IX*NSLMAX -+ NSL + NSL0
CALL RBLOCK (X(J0),IREC,NMOL)
J0=J0+3*NMOL
CONTINUE
END IF
RETURN
END

2000

SUBROUTINE RBLOCK (BUFF,IREC,NMOLS)
REAL*4 BUFF(0:3*NMOLS-1)
READ(UNIT =80,REC = IREC) BUFF
RETURN

END

C FUNCTION DOT(A,B,N) C

REAL*4 A(N),B(N) C REAL*S
SUM,DOT ¢ SUM = 0.0D0 C DO 10001 = IINC SUM = SUM
T A(*B(I) Cl1000 CONTINUE C DOT=SUM C RETURN C END

SUBROUTINE MOVE(FROM,TO,LEN)
REAL*4 FROM(LEN), TO(LEN)
DO 1000 I =1,LEN
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1000  TO(I) = FROM(l)
RETURN
END

IF( ABS(R(IMOL,1,ISL)).LT.CUBE
A AND.ABS(R(IMOL,2,ISL)).LT.CUBE
B .AND.ABS(R(IMOL,3,ISL)).LT.CUBE) THEN
DO 2000 ILIST=1,NLIST
IF(IMOL .LE. MOL(ILIST)) GOTO 2600
2000 CONTINUE
NLIST = NLIST + |
MOL (NLIST) = IMOL
WRITE(6,200) ISL,(MOL(IL),IL=[,NLIST)
2600 IF(IMOL.NE.MOL(ILIST)) THEN
NLIST=NLIST +1
DO 3000 IL1=NLIST,ILIST,-I
3000 MOL(IL1) =MOL(ILL-1)

SUBROUTINE CCF(X,Y,NMOL,NSL,RCCF,NCCF,I1X1,1X2)
PARAMETER (NMOLS = 108,NSLICE =900,NT = 1000)
REAL*4 X(1:NMOL,1:3,0:NSL-1), Y(1:NMOL,1:3,0:NSL-1)
REAL*8 DOT,RCCF(0:NCCF)

DO 1020 [ =0,NCCF
RCCF(I) = 0.0
1020 CONTINUE
IF(IX1 .LE. 0 .OR. [X2 .LE. 0) THEN

IX=1 MOL(ILIST) =IMOL
IX=1 WRITE(6,200) ISL,(MOL(IL),IL = I,NLIST)
N=3 END IF
ELSE IF(IX! .LE. 3 .AND. X2 .LE. 3) THEN END IF
IX = IX1 1010 CONTINUE
IX = 1X2 1000 CONTINUE
N=1
ELSE WRITE(6,100) NLIST,(MOL(ILIST),ILIST = I,NLIST)
WRITE(6,*) 1X1,  AND ,IX2 ;" ARE INVALID COMPONENTS’ 100 FORMAT(" NUMBER OF MOLECULES WHICH ENTER INNER CUBE =
STOP ' 16/(1216)
END IF 200 FORMAT(' LIST UPDATED AT TIMESLICE',I5,/' NEW LIST....",(1016))
IX=0
DO 1000 ITO = 0,NSL-NCCF-1 DO 4000 ISL = 0,NSL-1
IF(MOD(IT0,10).EQ.0) WRITE(6,*) * WORKING ON SLICE’, ITO DO 40101 = 1.3
DO 1010 IDT = 0,NCCF DO 4020 IMOL = 1,NMOL
RCCF(IDT) = RCCF(IDT) + DOT(X(1,1X,IT0), IN = .FALSE.

Y(1,JX,ITO+1DT),N*NMOL)

DO 4030 ILIST = I,NLIST

1010  CONTINUE [F(IMOL .EQ. MOL(ILIST)) IN = .TRUE.
1000 CONTINUE 4030 CONTINUE
RETURN IF(.NOT. IN) THEN
END IX = IX + |

SUBROUTINE COMPCT(X,R,NMOL,NMOLN,NSL)

PARAMETER(NMOLS =08, NSLICE=900)

PARAMETER (CUBE=0.5)
REAL R(1:NMOL,1:3,0:NSL-1),X(NMOLS*3*NSLICE)

X(I1X) = X(INDX(IMOL,I,ISL)) C
IX,INDX(IMOL,1,ISL)
END IF
4020  CONTINUE
4010 CONTINUE

INTEGER MOL(NMOLS) 4000 CONTINUE
LOGICAL IN NMOLN =NMOL-NLIST
INDX(IM,IK,IS) = (1S*3+IK-1)*NMOL +IM RETURN

END

NLIST=0
DO 1000 ISL=0,NSL-1
DO 1010 IMOL=1,NMOL

SUBROUTINE PRINT(RCF,IX,IY,IC1,IC2,NRCF,ITOUT)

REAL*8 RCF(0:NRCF)

WRITE(6,*)
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CHARACTER*1 XYZ(1:3)

CHARACTER*127 DESCR

CHARACTER*15 WHICH(0:9)

DATA WHICH /'R(123) *,/V(123) "/VXW(123) ‘" RXW(123)
JRXW)XW/ VXW(LY,FXW(L)  /TOXV(L)
'W(123)  RXW(L)

DATA XYZ 'X’’Y",'Z'/

IF (IX .EQ. IY .AND. IC] .EQ. 0 .AND. IC2 .EQ. 0) THEN
DESCR = WHICH(IX)//' AUTOCORRELATION FUNCTION

ELSE

DESCR =WHICH(IX)//'(//XYZ(IC1)//))-"{/fWHICH(IY)//'("//X Y Z(1C2
/|") CROSS-CORRELATION FUNCTION’

END IF

WRITE(ITOUT,*) DESCR

WRITE(ITOUT, 100) RCF

FORMAT(IP,(1X,5D16.8))

RETURN

END
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