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Optically induced static magnetization near optical resonances
in molecular systems. 2. Inverse magnetochiral birefringence
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CH-8057 Zurich, Switzerland

(Received 26 June 1991, aceepted 3 September 1991)

The static magnetization induced by unpolarized (or arbitrarily polarized)
light in an isotropic medium composed of chiral molecules increases significantly
in absolute magnitude near optical resonances. The magnetic dipole as well as
electric quadrupole interaction with the radiation field have been taken into
consideration to obtain analytical expressions for and numerical calculations of
the effect. Dispersion curves of diamagnetic and paramagnelic contributions to
the inverse magnetochiral birefringence are shown. Complete theoretical
expressions [or the nonlinear polarizabilities involved in the effect are presented
and their properties discussed.,

1. Introduction

The multipolar theory of electromagnetic polarization states that the optical
properties of a molecular system undergo modification when an external electric or
magnetic field is applied [1-5]. Thus, a static magnetic field directed along the
propagation direction of circularly polarized light in an optically active isotropic
medium induces a linear magnetorefractive eflect [1, 6, 7], The molecular theory of
this effect, which describes the variation of the refractive index and the absorption
coefficient, has been formulated for molecules with a nondegenerate or degenerate
electronic ground state [8, 9]. It has been shown [9, 10] that the change in refractive
index and in absorption coefficient in the presence of a static magnetic ficld applied
along the direction of light propagation is not a circular differential effect, and that
it can occur in optically active media for circularly, linearly, and unpolarized light,
leading to magneto-chiral birefringence (MCHB) and magnetochiral dichroism
(MCHD) {I1, 12], The molecular theory of MCHB and MCHD has been extended
to the case of additional external static electric [13] or optical [14] fields for media
composed of diamagnetic as well as paramagnetic molecules [15]. Both eflects have
also been considered in connection with parity violation in atoms [16].

As was recently shown [17], a coherent beam of light of arbitrary polarization
travelling in a medium composed of randomly orientated chiral molecules induces a
static magnetization parallel or antiparallel to the direction of propagation. The sign
of the magnetization depends on the direction of propagation of the light as well as
on the particular enantiomer of the chiral molecules, and changes by cither reversing
the propagation direction or replacing the chiral molecules by their enantiomers. This
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Figure 1. Diagrams for three level systems exhibiting magnetic dipole imem_ction with the
radiation (equation (20)). The effect related to transitions (), () and (¢) is described by
the functions g,(w), g:(w) and g;(w), respectively; p denotes electric dipole and m
magnetic dipole transitions.

nonlinear optical effect, in analogy to the inverse Faraday effect (TFE) [18-22], is
named inverse magnetochiral birefringence (IMCHB). The role of molecular sym-
metry in IMCHB in nonabsorbing molecular systems has been discussed recently [23].

2. Diamagnetic contribution to the static magnetization
2.1. Polarizability description
A coherent beam of arbitrarily polarized light within electric and magnetic fields
E = E- + E* = Eme™'i™%n 4 Elrefenkn, (0
B = B~ + BY = B e™wh:0 4 prelwi=kn (2)

propagating in a molecular system induces electric and magnetic multipole moments
[1-5, 24]. Since we are interested in the static magnetization induced in the medium
by the nonlinear interaction with the radiation, it is sufficient to consider only the
following terms for the induced magnetic dipole moment:

m(0) = "0 o, — )b By
+ TR0 — o, 0)E" By + 1 (0; o, —w)ET VES
+ 1m0 (0; —w, )EFVES, (3)
where Moy and Mof, are the dipolar magnetic polarizabilities related to the electric
dipole and magnetic dipole transitions (the former) or electric dipole and electric
quadrupole transitions (the latter). The quantum mechanical form of these polariz-
abilities in the presence of damping can be calculated using a density matrix formalism
(double Feynman diagrams) [25, 26] or an energy perturbation technique (single
diagrams) [27]. In general, the polarizabilities "a*™ and ™« may be split
myem chm + Z-m,)'}cm’ (4)
myce mﬁcc + im?cc’ (5)
where ™™, "9°", ™ B and ™§* are all complex in the presence of damping, with the

quantum mechanical forms given by equations (A1-A4) in appendix A. The electric
quadrupole moment operator Q is traceless (0, = 0)and symmetrical with respect to
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permutation of the indices (Q; = Q;); therefore, the coordinates of ™™ fulfil the
relations

" f’fk/ = mﬁulk
m.,acc maee ’ (6>

Yie = Vi
mBuklc = mf"ffkk = 0. (7)

Since the operators g, m and Q in equations (A1-A4) in appendix A are Hermitian
operators, we have the very important relations

T (05 0, —w) = "ep*0; —w, w), (8)
"o (0 0, —w) = "eii0; —w, w), )

from which in particular we find (™" = Re"’ﬁe"‘ My = Re™§*)
" i}}: (0’ W, — ) ijk (0 —w, CO), (10)
"0 0, —0) = —"y5(0; -, w). (11)

These relations are important for the calculation of the inverse magnetochiral
birefringence.

For a macroscopic molecular system we express the magnetization as
M = N{m(E, B), (12)

where N is the number of molecules per unit volume; ( > stands for the statistical

average. After space-averaging equation (12), taking into account equations (3—11), we
have

N w
Mp(0) = [ bapy " By (05 @0, —~ @) + = "oy (0 0, —w’)] (E-.E*)s (13)

with s designating a unit vector along the propagation direction of the light. Further-
more, we have used the well known relations:

vE: - Fi%sBt, BT x BY = E*x B = LETENs (19

subscript D in (13) stands for ‘diamagnetic contribution’. This effect occurs for chiral
molecules only. Point group symmetry implies:

N :m w m,,cc m,,cc -
My = 2? [mﬁLm + 1_6( Vi + 2 ')’1221):| (E-.E*) (I5a)
for molecules with the symmetries O, Y and K;
N cC m,,ct m,.cec —
My = DL = v e SO e 0 | (E7 B (s

for molecules with the point group symmetry T;

2N
My = En l: Bin + BN + "5k

w m C tad — 2
+ —5‘(’“)’3333 + 2™+ 2795 + 2795 + 2795, ] (E-.E")

(15¢)
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Figure 5. Diagrams for three level systems exhibiting electric quadrupole interaction vyi[h the
radiation {equation (24)). The effect related to transitions (a), (b) and (c) is described by

the functions &, (), hy(@) and /;(w), respectively; p, m and Q denote electric dipole,
magnetic dipole and electric quadrupole transitions, respectively.

for molecules with the symmetries C;, C,, Cq, C,, Dy, D, and Dg;

N m m cm m m m m m cm w ce m,,ce
My = gg[m o+ "hE B — = " — A+ 'S—(m}’nu + "o

+ ™S5+ Y%+ ™a TR+ T+ TYshe TS } (E™.E™)

(15d)
for the symmetries C,, C, and D,.

In reference [23], the magnetization induced by the inverse magnetochiral

birefringence is described by the polarizabilities ® 875" (— w; w, 0) and *yj5,(— w; w, 0)
which, in the absence of damping, give results equivalent to equations (13-15). Since
(E~.E™) does not depend on the polarization of light but on the intensity of light

only, effect (13) is independent of the polarization, in contrast to the inverse Faraday
effect [22].

3. Frequency dependence of the diamagnetic contribution

3.1. Magnetic dipole interaction with the radiation

In this section we analyse the first term of equation (13) only: that means, the term
related to the magnetic dipole interaction with the radiation described by the tensor
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mgem(0; w, — ) and denoted now by M (0):

N
Mg (0) = 5~ &y " Ba (0 0, —w) (B E*)s (16)

which, taking into account equation (Al) in appendix A, can be written in the form
(see appendix B):

N
Mg = I Y pSH{(B) + B,) [Re(m, . py, x my,) — Re(m,..my x )]

ube

+ [(By + By) (I + K) + BsK'Re(m,.my, x p,,)} (E”.E*)s. (1T)

The coefficients B, are even in o, and their analytical form is given by equations
(B3-B7) in appendix B; K" and K” are the real and imaginary part of the correction

term, equation (AS) in appendix A. For the effect without damping
(BZ=B4=BS=KI=K”=O)

N w'(w,, + o)
MR = E&) 7 ba ca .
D 3h2C g& P wcu(wga . 0)2) (wgu . (1)2) Re(mac mg, X Auba)

Wy,

ool — ) Re(m,. . u,, X mbn)} (E-.E™)s. (18)

If, moreover, we assume that all molecules are in their ground state and we use the
relation

w
25 Re(m,, . py X my,) ——20
% ( ue « Hep b)wm(win_wl)
w(wbﬂ + (‘Uca)
- Re(myo. ey, X ), 19
éwbnwcu(wbu + w) (o, — w) ( Hep, b ) (19)

we have equation (18) in the form of equation (12) in [17].

Now we apply the general equation (17) to a three-level molecular system (a, the
ground state; 1 and 2, the excited states) and we neglect the correction term X (see
the discussion in appendix A). Assuming that all molecules are in their ground states,
the static magnetization induced by arbitrarily polarized light is given by the following

expression (for the contribution to M(0) from the diagonal transition matrix elements,
see appendix D).

N
My = kT {gl (w)Re(my, . gy x my,) + g {@)Re(m,, . .my x m,)
+ gy(w)Re(m, .m), x l‘za)} (E-.ET)s, (20)

where all frequency-dependent functions g,(w) are even in @ and their analytical
forms are presented in appendix C. Figure 1 shows diagrams related to equation (20).
We note that the first term in (20), (figure 1(a)) described by the function g, (w), is
related to electric dipole transition moments between two excited states (and magnetic
dipole transition moments between the ground state and the excited states), but the
second and the third term, described by the functions g,{(w) and g,(w), respectively,
are related to magnetic dipole transition moments between two excited states.

As in the first part of this work [22], we have calculated and plotted the functions
£,(@) = *g,(w) (with the dimension cm? if @ = w/c = 2a¥ is given in cm ™', where
c is the velocity of light) in absorption regions for different resonance frequencies w,
and relaxation times [,".
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As for the inverse Faraday effect [22], we observe an enhancement of the order of
10-10% of the stalic magnetlizalion near resonance frequencies, depending on the
damping factors I, and the main contribution comes from the functions g,(w) and
g,(w) (figure 1(h, ¢)), if the magnetic dipole transition between excited states is
strongly favoured. Moreover, the closer together are the excited states in energy, the
grealer is the ratio of the contributions from the transition illustrated in figure L(bor
¢) and (a). In figures 2-4 we show the functions g (©) and £,(@) only; the function
§,(®) has the same shape as (@) and its value is about 5% less than g,(@) for the
cases presented in figures 3 and 4, and about 30% less than g,(®) in the case shown
in figure 2. The static magnetization does not vanish inside the reasonances (w = ,
or @ = w,) (there the effect is of the same order of magnitude as far from the
resonance) because of damping, and the change of sign is shifted.

3.2, Electric quadrupole interaction with the radiation
The contribution M3 Lo the static magnetization related to the electric quadrupole
interaction with the radiation is given by the second term of equation (13) with the
tensor "y (0; w, —w):
Nw m,ecc - +
M3(0) = 15¢ Fwina 0 0, —w) (E”.E")s, 21)
which, taking into account equation (A4) in appendix A, can be written in the form
(see appendix B)
Q N W e '
ML) = 'l_sf{_z’(" Z P ‘((C'l -+ Cz) []n]("’uc . Qch‘,ubu) + Im(mcu . Qub . .ubc)]

ube

+ [(Cy+ C) (U + K) A+ CK Mgy« Que-me)} (E7.ET)s. (22)

The coefficients C, are relaled directly to the coefficients 4, describing the inverse
Faraday effect with damping [22], see equation (B16) in appendix B. If we neglect
damping (e.g., far from resonances),

C, = C, = C, = K =K' =0

and
A/!g = Na)"‘z z /)T“) l e} Um(m . Qb‘,‘bl) + Im(mcu'Qub'Jubc)]
ISh7e ube . wcn((ulzm - OJ-) " ¢ l
Wy + Wy B
5 b > = Iy, Qpe - mey) ¢ (E ET)s. (23)
(U)hn - ) ((Uca - )

Applying general expression (22) to the case of a three level system (with the same
assumptions as in section 3.1), we have

Ml()) = N’ {/ll ((U) [Iln(”’u'l * QZ[ . ”Iu) + I’n(”'lu ‘ Qul -.“12)]

1Sh e
+ hy(w) [Im(my, - Q). fa,) + Im(my,. Q- )]

+ hy(w) Im(y, . Q- my) + Im(py, Q. -mp)l} (B~ ET)s,
(24)
where

h(w) = wf,(w) (29)



| W 00€ ‘007 ‘001 = I PUB _WD0000p] = ‘@ JOf (W) (2) I,_Wo00E ‘00T ‘001 = 'J PUE | _wWo(0056 = '@
10§ (@)% (g) ¢, _woQOE ‘00T ‘001 = 'J pue _uw000zE = '@ 10§ (@) ¢t () ([ _WO W) 4x7 = @ SNSIIA (SSIUOISUAWIP) (@)“a suomouny oy, 01 unJg

C00ECL  O0OOLDE 00088 00028 00058 000€68 00018 DOOBB  00OL8 000ty  000BE  OOOLE DOCSE DOOEE  OOOLE 00082 0002  000SS
I

" . : sad 2 1 Lasceaergy Iesanuean i desvecngeediseasess [SETNR TR U ISR INUNT R [ENE AR SRR} {reagaesey 1L
- 00€- o8-

S. Wozniak et al.

r OOk

(@) " 008

29 = 1D ‘0000¥ » ZTM ‘000SE = LM TNNS

00t = 29 ‘000EE = ZM 'DO0ZE = IM WS
BN 'SONYNOST OLLINOVIN I0JdHOYN0 B IONVNOSTH DLLEENDYAVEY d TN0ANUOYN0

118



Inverse magnetochiral birefringence 119

QUADRUPOLE PARAMAGNETIC RESONANCE,
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Figurc 10. (continued.)

with f,,(w) given by equations (CI1-C3) in the first part of this work [22]. In figure 5
we show diagrams of multipolar transitions related to equation (24). We have cal-
culated numerically the functions 4,(®) = ch,(w) (with dimension in cm if @ =
wfc = 2n¥ is given in cm™') which describe the contribution to the static magnetiz-
ation arising from the corresponding transition moments (figures 6-8).

One can see that in the case where all multipolar transitions are allowed as
indicated, the main contribution to the static magnetization comes from the situation
shown in figure 5(¢). The magnetization induced by such transitions near the reson-
ance frequencies @, = 95000cm~' and @, = 140000cm™' is about 2 to 3 times
greater than the magnetization caused by the transitions of figure 5(a, b), respectively
(see figure 6). If the excited states are close together in energy, that contribution is even
more significant (e.g., for @, = 135000cm™" and @, = 140000cm™', it exceeds 28
and 27 times the contributions from the situations in figure 5(a, b) (see figure 7)).
Numerical calculations show that the function /(&) depends very slightly on the
damping parameter I (and /,(&) on T), and its shape and magnitude are the same
in parts (d) in figures 6-8 as in part (@).

We conclude that, in addition to the magnetic dipole interaction, the electric
quadrupole interaction with the radiation field also causes an enhancement of the
optically induced static magnetization in the resonance regions (figures 6-8).
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4. Paramagnetic contributions to IMCHB

Following the procedure in reference [17], we also find paramagnetic contributions
to the static magnetization, in the cases of both magnetic dipole M}", and electric
quadrupole MY interaction with the radiation:

o 2w ow(@h = o 4 k)

p BhkTe &7 @k, — o + TR + 40Ty

Re((uub X n’bu) - ;my, (E— CEY )S,

(26)

2N © Hwl, — @ + Ty) Im x Qn).m (E-.E*)s
M;? = lshkTC L Pan (wga . wz + I—‘b?x)z + 40)21131 (Auab Qb.l i1 s
| 27)

where m,, = (ajm|a) is the magnetic dipole moment of the molecule in the ground
state a, k is the Boltzmann constant, and 7 is the temperature. For the three level
system introduced in section 3, we have

M = 2N @)Re(y X ), + @) Re(rg X may) mg) (B E)s,
P 3hkTe

(28)
MP = o (@) 0) iy + W@l @) ma] (B E7)s.
P \ShkTe ! ah e sstla 2
(29)
with

CL)”(CD,Z, - wl + 1-‘nz)
u,,(ou) - (wi _ CL)2 + 1—*"2)2 + 4(1)21-‘”27 (30)

W (w? — w* — T}
— n n l
W, () @ — o* + L2 + 4oL €2y

and where we use the notation w, = w,,, [, = I,.. We have calculated the functions
(@) = cu(w) (given in cm if @ = 2a¥ is in em™') and W,(®) = w,(w) (which are
dimensionless) for different resonance frequencies and different relaxation times I, "',
As can be seen from figure 9, the shape and the magnitude of #,(®) do not depend
on the resonance frequency but on damping (we present the function i, (@) only; the
function 7%, (@) looks exactly the same but it correspondingly depends on the fre-
quency ). On the other hand, the values of the functions w,(&) depend both on

damping as well as on resonance frequency (figure 10), giving an additional cause for
the increase of the effect.

Appendix A
Nonlinear polarizabilities in IMCHB

The polarizabilities describing the static magnetic dipole moment (equation (3))

induced in a molecule by the optical field given by equations (1) and (2) have the form
of equations (4) and (5) with

e I Re[(m)ae (1) (4]
o, ~w) = 53 0 !
PRO 0, —0) = 53 {(wm B Y P —; o
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N Re[(}ﬂ )m (iu'j )cb (rnA)bn]
(U)cn - ux) (O)hu +w - irbu)

RC[(H;)M (Fnk )cb (’ni)bu]
(whn + irb;() ((Dcu + w + ircu)
Re[(n1k)ﬂc(tuj)cb(nzi)bu]
(wbu + irbn) (wcu - w + l'rca)

Re[(#j)uc (’ni)cb (’nk )bu]
((ubu + o — irhu) (wcu + 0+ ircu)

Re[(mk)nconf)cb(#j)bu]
(U)bu - w —- irhz\) (wcu - w -+ ircu)
{ Im[(m,) '(mk)cb(.u')hu]
m Sem _ —_ 0} ac J
PR @ — ) Wé%t%—JMWm—w_%J
Im[(mi);\c(ﬂj)cb(mk)bu]
(wcu - ircu) ((Dbn + w - irba)
Im[(fuj)uc(’nk)cb(mi)bu]
(wbn + [rbu) (a)cn + + lrcu)

Im [(Iﬂ/\. )uc (/J])cb (mi)bu]
(a)bu + irbu) (wcu -+ ITC“)

+

(1 + X)

+

(1 + K)}, (A1)

-+

Im[(:uj)uc(}ni)cb(n1k)bz|]
Fnto-Mywetormml FH
Im[(mk)nc(mi)cb(/-tj)bu] }
* (wbu i irbu) (wcu —w + ircu) (l + K) ’ (AZ)

_ Z ()} RC[(I’H )nc(QAl)cb(luj)bu]
) - Paa Wey — lrcu) (wba — 0 — Zlrbu)

Re[(ml)uc (/‘Lj)cb (le)bd
( Wy — l-rcu) (wba +w - lr‘bu)

Re[(»uj)uc(le)cb(mi)ba
(wbu -+ irbu) (wcu + o + irca)

Re[(QkI)uu(#j)cb(mi)bx\]
(wbu + Z.I-‘bu) (wcn -+ ircu)

Re[(uj)uc(nzl)cb(le)bn] (l + K)

Bukl(o @, —

abc

- (wbu + @ - ZT‘br\) (wcn + w -+ ircu)
Re[(Qr)ue (M1)eb (1)1 I K } A3
+ (wbu - @ — irba) (wcu - + ircu)( * ) ’ ( )

~ 0 I [( i)uc(Q*)cb(/"’j) u]

Im[(m )uc(“y)cb Ql\/)bd]
( e T lr )(wba + w — lrbd)
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Im[(#j)ﬂc(le)cb(mi)ha]
(a)bn + [rba) (wca + w + ircn)

I [( Qe dne (1o (7)1
(O)ba + irbn) (wcu — W+ [rcu)

Im[(#j)ac(mf)ch(Qk/)bu]
(a)bu + o - irba) (wca + o + ircu)

Im[(le)nc(ml)cb(#j)ba] }
(0, — © — Tpy) (W — @ + T,) (I + K)r, (A4

where (m)y = (blmla), (), = <bllad and (Quk, = (b|Qula) denote mag-
netic dipole, electric dipole and electric quadrupole transitions between the states [a)
and (b|, respectively (Qy is the traceless electric quadrupole moment operator), with
the frequency w,, = @, — ©, = (B, — E,)[h, p{ is the population of the system in
the stationary state|a), I, ' is a characteristic relaxation time between the states |b)
and |a), and

+

(1 + K)

+

Z(Fbc N rba - rc;\)

K = -
Wye — Ty

(A5)

is the correction term [22, 28]. Using simple perturbation theory [27] for the calculation
of the polarizabilities "« (0; w, —w) and ™of(0; w, — w), one obtains expressions
(A1-A4) without the correction term K. The quantum mechanical forms of the
polarizabilities Mo} (0; —w, w) and "af,(0; —w,w) in equations (3-5, 8-11) are
given by equations (A1-A4) if one replaces w by —w.

Appendix B

Coeflicients B, and C, of equations (17) and (22)

Taking into consideration that the electric dipole moment, magnetic dipole
moment and electric quadrupole moment operators u, m and @, respectively, are
Hermitian, we have

Re(#bc <My, X mca) = Re(tucb » My S mnc)a (Bl)
Im(“ab . Qca . ’nbc) = - Im(”bn . Qac - mub)- (Bz)

Equation (12), taking into account equations (A1) and (A4) in appendix A, can then

be written in the form of equations (17) and (22), with coefficients B, and C,, as
follows:

Bl = wbamcaq(cJQba (BB)
BZ = [(Dbuwcurbi - anrcn (CO%.‘, + wz -+ rb?x )]ngb, (B4)
BB = (wgu - wZ) (wzn - wZ) (wbnwcu + wz)quca (BS)

B, = {lulul0h — @ + T}) (05, — o* + T.2) + 40’T,,[L,]
+ (o0 + 0F) [N (@3, — 0%) + Ti(wp, — o) + 40’T, T, + [T
+ 20" Ty — Th) Nu(@f — @ + 1)) — Tyl — o + T2)gd., (BS)
By = {(0nT — 0alt) [(wh — @ + T) (04 — o + T2) + 40’1, T,.]
+ 20% 0y + 0g) [Ta(0, — 0+ T2) — Ty (@ — @ + T2)4guq.,
(B7)
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Cl = w2wcu(w§u - a)z)ngb, (BS)
C2 = - a)2 rbu (wcu rbu + 2wbu Fca)ngby (B9)
CJ = a)z(a)bu + wcu) (wﬁn - wZ)qum (B]O)

C4 = wz{(wbu =+ wcn) [(rbi(mga - a)Z) + ‘rcg(a)?m - ('02) -+ 4(‘02rbﬂrca + rbirmzx]
+ 2(wbarcu. - wcarbu) [rbu(a)zu — 0)2 + rci - rca(wtzm - (1)2 + rb?l)]}QbQCa

(BI1)
Cs = o'{(Ty — o) [(@h — @ + T) (@ — 0 + T2) + 40T}, T,]
+ 2wy W + @ + T ) Mo (0f, — 0® + T2)
— Ty (@, — ©* + T)]}gude, (B12)
where
g = (Wi + D7, (B13)
gy = ot — o + TR) + 40’ T2]7, (B14)
g = [(wa — @ + Ta) + 40’ T7]7, (B15)
C, = wAd,, (B16)

with A, given by equations (B3-B7) of the first part of this investigation [22].

Appendix C

Frequency dependent functions g, (w) for three-level systems
If in equation (17) for a three level system we take into consideration the relation

Re(my;. gy X my) = —Re(m, ., x my,), (C1)

which follows from the Hermitian properties of the operators, we can obtain equation
(20) with the frequency dependent functions

gi@) = g'(w) - gP(w), (C2)
g:(0) = glw) — g’ (w), (C3)
&) = glw) — g?(w), (C4)

given by
gl = [ — o’ + ") = [ Lol + o + TPag,  (CS)
(W) = [wwwi — v + T2) — L@ + o + Tg,,  (C6)
gw) = 1 Y {0 - oY) (@ - o) (0o, + o + IT)

=12
+ 2w} — OGN + Tww, + o) + 204 — )]
+ OO + (ww; + @) (B0’ + OT) + 20°T7 + T4,
(CT)

where w; = w,, I} = T, and 4} and ¢, are given by equations (B13) and (B14) in
appendix B, respectively.
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Appendix D

Diagonal transition matrix element contributon to M, (0)
The sum I, in general expressions (17) and (22) contains two parts

Y=L+ 1)

abe 4b asb
b#c b=¢
c#a

The first term of expression (D1) applied to the three level system cor.lsidgred in this
paper leads directly to equations (20) and (24), respectively. Thc contributions to My
and M2 from the second term of expression (D1) depend, in contrast to the con-
tribution from the first term, on the off-diagonal as well as the diagonal transition
matrix elements, and have the following form:

Mlgl = 3%6 z pgx(z)l)}cb(w)mbb'Rc(l‘ab X mbn) (E— 'E+)S» (Dz)
b;lfa
M = T o (nn() (O Tm(ame) + iy (o i)
b;u
+ Cb(a))mbb - Im(Qbu ‘#1\b)} (E— . E+)S> (D3)
where
2w? + T2)
< == e D4
(@) (W — @° + T2) + 40’Ty,] (B9
w? wy, (0r, — @' — 31)

- s D5
o) (@ + Tu) [wh, — @ + Ta)* + 40T (B3)

2w wi,

— 4 ) D

R NS A A v o

The function #,(w) has a shape similar to that of the function w,(w) (equation (31)
and figure 10) with (0 = wy,) & —3/4w,,. However, the functions x,(w) and

¢, (w) have quite different shapes resembling absorption curves, with the maximum at
the resonance w = wy,; and

1
Kp( = wy,) & ==, D7
(= o) = 3 (™)
Wy,
Cb(w = a)bu) = 21—-2 = CUbaKb(a) = a)bu)' (DS)
ba

Equations (D2-D8) can be adapted to the three level system considered in this paper
if we put p = 1 and sum over excited states 1 and 2 (as in section 4). In this case,
one can see from equations (D2) and (D3) that the contributions to M|, considered
depend on the off-diagonal as well as the diagonal elements of the multipole transition
matrix for the excited states (g, my,, Q). Moreover, we have simple relations
between the functions ny(w), {y(w) and dy(w), ry(w), respectively; the latter two
describe the contribution to the magnetization M(0) from diagonal elements of the
electric dipole and magnetic dipole transition matrices in the inverse Faraday effect
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[22]:
m(w) = wdb(w),}

L) = on) (09)
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