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Field applied molecular dynamics (FMD) computer simulation
of circular dichroism and optical rotatory dispersion
The discovery by FMD of bi-axial Rosenfeld birefringence
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Field applied molecular dynamics (FMD) computer simulatjon is used to investigate circular dichroism (CD) and optical
rotatory dispersion (ORD) in the picosecond time window (far infrared frequency interval) using second order rise
transients (RSs) and a range of time correlation function (CFs) in the presence of right and left circularly polarised (cp)
lasers propagating in (a) chiral (5)-CHBrCIF; and (b) archiral liquid water. In case (a) simulated RSs and CFs are
computed using the torque mediated by the Rosenfeld tensor, and are found to be different for right and left cp lasers, and
the FMD results are expressed in terms of a set of novel pseudoscalar, difference CFs. Detailed agreement is found
between the RTs and analytical Langevin—Kielich functions, and the first far infrared ORD spectrum isolated in terms of a
novel rotational velocity difference CF for different applied laser intensities. In case (b), pseudoscalar difference functions
between right and left cp lasers are not observed, indicating that there is no CD or ORD in water, but a novel anisotropy
develops due to surviving off-diagonal elements of the Rosenfeld tensor in water.

m

dipole molecular property tensor ‘a ;- In semi-
classical theory [3] ‘a7 is in general complex and

1. Introduction

Fresnel [1] in 1824 realised that the rotation of
the plane of polarisation of electromagnetic
radiation by an optically active material is an
expression of the fact that left and right circular-
ly polarised light interacts differently with such a
medium. Interesting descriptions of the early
attempts to understand this in terms of molecules
have been given by Mason [2] and by Barron [3].
Among the earliest successful applications of
quantum mechanics to the problem was that of
Rosenfeld [4], who described optical activity
through the second rank, T positive, P negative,
imaginary part of the electric dipole/magnetic
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frequency dependent and can be written in terms

of beta and gamma components [5, 6]; (see €gs.
(10) and (11)):

e m _eaAm eam
oy =By +iVy . (1)

Near optical resonance in semi-classical theory,
A eam

the components ‘87 and “7’ each become com-
plex [3,5, 6]:

By =B HIBY )
V= ity ®)

The component “y; is responsible for optical
rotatory dispersion (ORD), and “y}" for circular
dichroism (CD) across the complete range of
electromagnetic frequencies. The evolution of
experimental and theoretical understanding of
CD and ORD has occurred from ultraviolet and

visible frequencies (electronic mechanisms {7]) to
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infrared frequencies [8-10], where vibrational
effects become important. The experimental
technique has reached frequencies on the edge of
the far infrared range [11-13], corresponding to
about 100cm " It might soon be possible to
investigate spectrally the fundamental rotation/
transition molecular dynamics of CD and ORD.

This paper anticipates this development with
the first computer simulation of far infrared
ORD and CD using the method of field applied
molecular dynamics (FMD). This was first de-
veloped [14] to investigate the molecular
dynamics of ensembles under the influence of a
static homogeneous electric field, and successful-
ly reproduced thermodynamic averages that de-
velop in response to the applied field, the
Langevin and Kielich functions. This early FMD
technique resulted in the discovery of fundamen-
tal ensemble properties such as fall transient
acceleration [15], field decoupling [16], and a set
of novel statistical cross correlations which ap-
pear in the laboratory frame (X, Y, Z) in re-
sponse to the field [17, 18]. FMD was later ex-
tended [19-23] to simulate the interaction of the
electric field of a laser with the permanent elec-
tric dipole moment of both achiral [24] and chiral
[25] ensembles, to circular flow [26], shear flow
[27], and to electrorheology [28], resulting in the
isolation of novel asymmetric cross correlation
functions (CCFs) fundamental to the under-
standing of non-Newtonian rheology in atomic
ensembles.

Recently, the FMD method has been de-
veloped for general use in non-linear optics.
Each non-linear optical effect [29-35] has its
characteristic torque, generated between laser
and molecule.

In each relevant case, the FMD method ap-
plied to well known non-linear optical effects
[36—-39] (such as the optical Kerr effect) has
successfully reproduced the appropriate Kielich
function by coding the torque for each molecule
into the forces loop of a standard molecular
dynamics algorithm (of any relevant type), and
generating rise transients to the point of satura-
tion. The simulated Kielich function is then a
plot of saturation level of the rise transient ver-
sus the energy of interaction per molecule of

laser and ensemble. Not only does the technique
accurately reproduce available analytical Kielich
functions, but it also describes in great detail the
nature of the molecular dynamics in the statisti-
cally stationary state in the presence of the laser,
something which is inaccessible analytically.
Thus far, the following non-linear optical phe-
nomena have been FMD simulated: (1) dynamic
electric polarisation [40, 41] due to the non-
linear conjugate product of a circularly polarised
laser; (2) the frequency doubled (or dynamic)
optical Stark effect [42]; (3) the optical Kerr
effect [43]; (4) the inverse Faraday effect [44]:
(5) inverse magnetochiral birefringence [44]; (6)
optical Zeeman effects and optical NMR and
ESR [45-47]. In cases (1), (2), (4), and (5),
FMD revealed fundamentally novel types of sec-
ond order orientational rise transients (RTs) for
which there are no Kielich functions, because the
time average of the interaction energy vanishes.
In cases (3) and (6), Kielich functions are de-
fined analytically, and were accurately repro-
duced in the FMD simulation. Additionally,
FMD revealed in great detail the nature of the
molecular dynamical response of an ensemble to
an intense laser, both in the RT condition and in
the laser applied steady state following transient
saturation. The FMD method was also able to
reproduce the magnetisation [44, 48—50] of the
inverse Faraday effect through the t— % value of
the simulated molecular angular momentum au-
tocorrelation function (ACF).

The FMD simulation of ORD and CD is one
of the severest tests of the technique because it
has to distinguish between the fundamentally
significant but subtly different effects of right and
left circularly polarised radiation on an ensemble
of structurally chiral molecules, modelled [51-
55] with the appropriate site—site potential. This
is effectively the problem posed by Fresnel [1]
expressed in terms of fundamental molecular
rotation and translation on a picosecond time
scale (far infrared frequency range). In this
paper, the problem is approached via the field
molecule interaction energy

Im . B* +cc., (4)
(ind)

E _____%M(ind).E*_

n
(ind) are the electric and mag-
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dipole moments induced in a molecule,
ctively, by the magnetic field B and electric
E of circularly polarised (cp) light, and
diated by the Rosenfeld tensor (see section
Here E* and B* denote the complex conju-
).teS of E and B. The energy (4) corresponds to

14
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(5)

[n section 3 a description is given of the mol-
cular dynamics (md) simulation method in the
ansient and field applied steady states for tor-
jues of type (5) generated by the interaction of
ight and left cp lasers with (S)-CHBrCIF. The
FMD method generates RTs and difference CFs,
The FMD method is checked with a torque of
pe (5) applied to an cnsemble of water mole-
cules with right and left cp laser fields, using the
surviving off-diagonal elements [56] of the
Rosenfeld tensor in the C,, water molecule.
gection 4 presents results for: (a) the chiral and
p) the achiral molecular ensembles in terms of
analytical Kielich functions [57] from energy
terms of type (4); rise transients, and laser ap-
| Hlied difference CFs which are pseudoscalars,
' and describe in statistical terms the different
| molecular dynamical effects of left and right cp
. aser radiation. The difference CF of molecular
| rotational velocity [58) is presented as the first

| cvidence for the existence of ORD and CD in
* the far infrared.

In the achiral water ensemble, the difference

* CFs vanish in the noise of the FMD simulation, a

. result which is consistent with the fact that CD
| and ORD in water vanish in the absence of
- parity non-conservation [59]. However, the
FMD method shows the existence of a novel
anisotropy due to the non-zero off-diagonal ele-
ments in water of the Rosenfeld tensor. These
elements generate a Kielich function, whose
analytical form is found to be in detailed agree-
ment with its FMD counterpart, constructed
from saturation levels of rise transients.
Finally, the paper discusses possible ex-
erimental routes to far infrared CD and ORD,
and likely extensions of the FMD technique to
frequency dependent Rosenfeld tensor elements.
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2. Development of the torque for right and left
circularly polarised laser radiation

Consider a right or left circularly polarised
laser propagating in the Z axis of the laboratory
frame (X, Y, Z) through an ensemble of chiral
molecules (an enantiomer). The electric and
magnetic field components of the right (R) and
left (L) electromagnetic plane waves are

E, = Eq(ey tiey) exp(—idy),
Ey = E,(ey —iey) exp(—idy),
B, = B,(—ie, + ey) exp(—i¢, ),
By = By(iex + ey) exp(—igy) ,

(6)

where e, and e, are unit vectors in the X and Y
axes of the laboratory frame (X, Y, Z). Here E,
and B, are scalar clectric and magnetic field
amplitudes and ¢, and ¢y are left and right
phases

b =wt—|K |2, 7

bp = wt — IKRIZ R

where k; and kg are left and right wave vectors,
® is the angular frequency of the wave at an
instant ¢ and position r.

The total torque mediated by the Rosenfeld
tensor must be calculated from two processes
(eq. (5)): (1) induction of a molecular electric
dipole moment by the magnetic field of the
electromagnetic plane wave, and (2) induction of
a molecular magnetic dipole moment by its elec-
tric field

ind _ e m
l‘Li =« B'7

iy

(8)

ind m ¢
m; = "a,E;.

i

(9)
The polarizability tensor "a;; can be split similar-
ly to (1)-(3) using the basic properties of ‘a}
[3, 6]:

(10)

(11)

eqam _ mpaoe enm! _ mpqoer
B,‘,'_ B,',', Bi,' - B,‘.‘ >

e m¢ m_ ¢/

"Y.',' = Yii -

n_.e

’Y,',')

e m __
Yi =
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The total torque experienced by the molecule is
the real part of the expression

T,=+e,;(‘a;BLE} + "o E,BY). (12)

It is well known from semi-classical theory [3]
that both ORD and CD depend only on the
diagonal components of “y™ and ™y°, which near
optical resonance themselves become complex.
The torque, a purely real quantity, must there-

fore be developed through products such as

TV =~ e,y Im(E}B,) (13)
T = —€&; v Im(E,BY) . (14)

The torque (13) is that between the induced
electric dipole moment (8) and the electric field
of the plane wave, the torque (14) is that be-
tween the induced magnetic dipole moment (9)
and the magnetic field of the wave. The total
torque is the sum of (13) and (14) (T=T" +
T ). Clearly, it is also possible to construct a
purely real torque from the polarisability “y}’
and Re(E*B,) (and "yj; and Re(E, B})) but this
latter kind of torque is the same for right and left
circularly polarised light, and cannot contribute
to the effect simulated in this paper.

For circularly polarised light {6] the following
relations are fulfilled:

Im(E,B*)" = —Im(E*B,)" , (15)
Im(E,B*)* = ~Im(E*B,)" , (16)
Im(E,B*)" = ~Im(E,B*)" , a7

which lead to the total torque

TIL = - T;R = —€1ij(m'Yfk + 7Y ) Im(EkB;G)L '
(18)

It is convenient at this point to develop eq. (18)
in terms of diagonal and off-diagonal elements of
"yi and to express both types in the frame
(1,2, 3) of the molecular point group, (Later we
shall make use of this classification in the C,

point group of (S)-CHBrCIF and the C,, point

group of the water molecule.) The torque (18)
given in the molecular frame
Ty =-T;

= _euj(m?’fk + m?’ii)(ejxekx + erekY)EOBO )

(19)

where e, for example, means the Xth labora-
tory frame component of the unit vector e, fixed
in the j axis of the frame (1, 2, 3). (In eq. (19), i,
j, and k can take the values 1, 2, and 3.)

2.1. Contribution of diagonal elements of "y*
to the torque

The contribution to the torque (19) from diag-
onal elements of the polarisability tensor "y¢ is

T =-17
= =2("v5 — "v3)(exesx + €avesy) EgBy
Ty=—-T%
= —=2("y5% — v )esxe x t €sveiy) EoBy
Ty =-T%
= =2("y% — "vn)(e1xerx + €1very) EoBy -
(20)

In eq. (20) the contribution from both torques
(13) and (14) are exactly the same.

2.2. Off-diagonal elements of "y° in the torque

From the general equation (19) we can de-
velop the contribution to the total torque in the
molecular frame from off-diagonal elements

T; = _Tlll = —[("y T+ "¥5)(esxe 1 x T €sv€ry)
—(My5 + "y s)(eixeax T €rveay)
+(Myis Tt '"'ygz)(egz - egz)]EoBo ’

T; = —T? = —[("y% + "v)(exex + ervery)
—("yia + "Y5)(€erxesx T €sv€sy)

+("y5 + ins)(egz - eiz)]EoBO ’

{

P
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+
L=,_T';=~[(m‘)’§1 + "y 13)(€2x€3x €2y€3y)

3 ("t My S2)(esx€ix + esyery)
+(m'Yr12 + m')’;l)(eiz - egZ)]EoBo s

(21)

«off-diagonal’’ torque

(13) and (14) are in

general different except when off-diagonal ele-

mye fulfill the relation Tyt =Ty In

ts of "V
E‘;nmolecmar point group S, (see table A.] of

the appendix).

The contributions to the
(21) from the torques

23. Torque and molecular point §roup
symmelry

torque due to the ORD polar1§ab111ty
m;hfstit;; su?n of diagonal and Off-dlagogal
cor‘{tributions (eqs. (20) and (21)). The num er
. of independent contributing scalar el'ements is
. determined [3, 6] by the molecular point group.
In this paper we consider the C, symmetry of
(S)-CHBrCIF and the C,, symmetry .Of the water
molecule. In the C, point group all nine elements
of "y;; are in general non-zero a_nd independent,
but in the C,, point group, if axis 1 labels that of
the permanent electric dipole moment, we have

Y Y (22)

Equation (22) shows that even in an achiral
molecule, there may be non-zero elements of the
ORD and CD polarisabilities, something which
is frequently overlooked. This means that in
water there is a non-zero torque due to the
Rosenfeld tensor, and this defines a Kielich func-
. tion, second order rise transients, and anisotropy
* related to bi-axial birefringence. This apparently
new phenomenon is simulated in this paper by
FMD. 1t is well known experi_menta,lly, however,
that there is no CD and ORD in water, so that
this non-vanishing torque mediated by the
Rosenfeld tensor cannot produce pseudoscalar
Phenomena [60, 61] such as rotation of the plane
of polarisation of a linearly polarised probe
laser, and cannot produce pseudoscalar differ-
ence CFs. This is corroborated in the FMD
Simulation, The Rosenfeld torque in water pro-
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duces only bi-axial birefringence, i.e. a differ-
ence in refractive index in the propagation axis
of the laser and orthogonal Cartesian axes. This
is a scalar, not a pseudoscalar, observable.
Clearly, this conclusion is consistent with the fact
[3] that a pseudoscalar observable is supported
only in chiral ensemble in the absence of parity
non-conservation, and it is important to note
that all difference CFs are also pseudoscalar
observables, one of which, the rotational velocity
difference CF, signifies the existence of far in-
frared ORD and CD.

3. FMD simulation methods

The FMD method used in this paper is based
on the code TETRA, which is listed in full in the
the literature [62], and which has been animated
for video casette [63,64]. TETRA is a robust
and widely used algorithm which produces a
variety of thermodynamic and dynamical infor-
mation. The total torque (20) plus (21) was
coded into the forces loop [14-23], and second
order rise transients of the type

<€fz>, <e§z>’ <e§2> ye

monitored until saturation both for (S)-
CHBICIF and for water.

3.1. (S)-CHBrCIF

The intermolecular potential is a site-site Len-
nard-Jones type first reported in [65]:

12 6
dy=42el{Z) —(Z) |+ charge—charge,
i=42el( ; g
i i ij

i

(23)
e/k(H-H) =10.0K, o(H-H)=2.8A,
e/k(C-C)=358K, o(C-C)=3.4A,
e/k(F-F)=549K, o(F-F)=2.7A,

a(Cl-Cl)=3.6 A,

€/k(CI-Cl) =158.0K ,
o(Br-Br)=3.9A,

€/k(Br-Br) =218.0K ,

q(H) =0.225¢| g(C) = 0.335]¢],
q(F) = —0.22[e|, g(Cly = —0.18le|,
g(Br) = —0.16]e| .
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A time step of 5.0 fs was used to integrate the
equations of motion for 108 molecules. Isotropy
in the liquid state in the laser off condition (field
free equilibrium) was monitored through the fact
that second order orientational averages fluc-
tuate about the value 4, fourth order about 3,
and so on for X, Y, and Z components of the
unit vectors e,, e,, and e, in frame (1,2,3).
First, third, fifth, etc. order orientational aver-
ages vanish. Frame (1,2, 3) was defined as the
frame of the principal molecular moments of
inertia [65]. Therefore, at field free equilibrium

<efz> = <e§z> = <e§z> =
<exz> <ezz> <egz> =

and so on.

Following the application of torque (20) plus
torque (21), rise transients for a laser propagat-
ing in the Z axis of the laboratory frame were
monitored until saturation, using up to 4000 time

(24)

= L=

(S}-CHBRCLF, RIGHT CP. LASER
SECOND ORDER RISE TRANSENT, Ei VECTOR, FELD = 50.

A

QW fia

Vo maniuan S/ M
012 ] WoW Y lﬂ \’ \/ R
Q" T T T T L L A T T
¢ 1 2 3 4 5 8 7T B8 8 B
(2) PICOSECONDS

steps. The development of anisotropy through
second order orientational rise transients is ex-
emplified in fig. 1 both for left and right ¢p
lasers. For the same molecular trajectories, it
was observed that all first order transients fluc-
tuated around a mean value of zero. In comput-
ing the curves of fig. 1, the following nine scalar
elements were used of the ORD polarisability, in
the apparent absence of ab initio or experimental
data:

Ty MYt Ty s Ty Ty 2T
Tyos YR YR
=7:8:9:1:2:3:4:5:6. (25)

Changing these numbers will clearly change the
details of the time dependence of the transients
in fig. 1, but not the following fundamentals:
(1) The saturation values of the transients are
different for left and right cp radiation.

S)'G'IO.BHF LEFT C.P. LASER
TRANSEN S, FIELD = 60, VECTOR 1t

SECOND ORDER RISE
TRANS]
0.18 !
ol ‘”,“\f,/. Jv/m/” el afin m/\rln, i
0.47
0.8 T T T T T T T T
(b) 2] 1 2 3 4 5 ] 7 8 ] 10
PICOSECONDS

Fig. 1. Second order rise transients for liquid (S)-CHBrCIF: (a) rlght (b) left cp plane wave propagating through the sample in

the Z axis of the laboratory frame. —— (el,\,) ------- (e |y>

<elz>
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o

_ . o dependencies of the transients in
z)The tluration inverval are also different.
thcipr,c—sature (1) implies immediately that the
eanctions of CD and ORD should be
Kielich uor right and left cp radiation using a
differen tiomer, and later in this paper, this is
. given eﬂznby an independent method based on
confirm® amic averaging. This method and
Ve in detail, Kielich functions for CD
FMD D being constructed by plotting satura-
and O ]s such as those in fig. 1 against the
tion le;’.zn energy per molecule.
mteraclcllea of the effect of the cp laser on the

An 1 | energy of the sample was obtained by
potenti? over up to 6000 time steps the con-
compuflnil part of the internal potential energy
figuration ble ((U)), both in the presence and
of the ense™ 7 ;
absence Of the applied electromagnetic plane

wave:
(U> = <z Z ¢ij> +U., (26)
i<

here the sum is over all atom-atom pairs for
which the interatomic distance r; is less than the
cut-off distance r. of the potential. The correct-
ion U. is based on a uniform distribution of the
molecules beyond this cut-off distance [62].

In the FMD computation of transients {14}, a
numerical thermostatting routine is necessary to
maintain the mean translational and rotational
temperature of the sample near the input values
(both 296 K). When the laser is applied to the
sample (i.¢. when the torque is switched on at an
instant ¢) there is an immediate increase in tem-
perature and pressure, because energy is being
pumped in to a finite molar volume, which is
fixed in constant volume magnetic dipole simula-
tion [66]. The temperature rescaling routine
drives down the rotational and translational tem-
perature towards the input value (296 K) by
rescaling the kinetic energies every N time steps,
where N is an input parameter. Since tempera-
ture js kinetic energy this means that the linear
and angular velocity vectors are scaled back
every N steps. Animations [63, 64] show directly
that the effect is to cause jumps in the absolute
Values of these vectors for individual molecules,
leavmg all 108 vectors relatively unchanged.

M.W. Evans et al. /| FMD of circular dichroism and optical rotatory dispersion 139

There is no discernible visual effect [63, 64] on
the orientation vectors. The RTs for this work
and is related FMD simulations [42] of the fre-
quency doubled optical Stark effect were com-
puted with N =50, and occasionally checked
with N = 1. The saturation levels reached by the
transients are unaffected within the noise by
replacing N =50 by N =1, but rescaling every
time step tends to eliminate rise transient oscilla-
tions (these are not discontinuities), and an ex-
ample of this is given in ref. [42]. The change
N =50 to N =1 has no discernible effect on the
time taken to achieve saturation in the RT.

In the post saturation state, i.e. the laser
applied stationary state, ACFs, and difference
CFs were computed over 6000 time steps by
running time averaging, and displayed to 400
time steps only, thus maintaining “good statis-
tics”” for each cartesian component of the CF. In
this field-on condition, temperature rescaling
every 50 time steps was considered adequate,
and the difference CFs show no discontinuities
due to rescaling. In this laser on condition, ani-
mations [63, 64] are available of related work on
the inverse Zeeman effect, and reveal in direct
detail the effect of the laser on the molecular
dynamics. (These animations are currently avail-
able from MWE at his Cornell address, or from
IBM. Reference {64] will shortly be distributed
by Media Magic of California.)

Without digital rescaling , or thermostatting,
the sample would heat up rapidly, causing a
commensurate increase in pressure, until floating
point overflow eventually stops the production
run.

It is noteworthy, while on the subject of tem-
perature rescaling, that whenever Langevin or
Kielich functions are definable, the saturation
levels of rise transients from FMD reproduce the
functions in detail. This was one of the first
checks [14] applied to the technique. Such a
check is made later in this paper, and again,
detailed agreement obtained.

3.2. Water

The FMD simulations for liquid water were
carried out at 296 K and 1.0 bar with a time step
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of 0.5 fs. The frame (1, 2, 3) was the frame of the
principal molecular moments of inertia, with axis
1 labelled as that of the permanent electric di-
pole moment. The intermolecular potential is a
modified ST2 first introduced in ref. [67]:

12 6
¢, =4 2 e[(rg) - (rg) ] + charge—charge ,
i y .

! ! (27)
o(H-H)=2.254A,
a(0-0)=2.80 A,
q(0) =0.00]e]

e/k(H-H) =21.1K,
€/k(0-0) =58.4K
a?(H) =0.23)¢|,

q (partial charge) = —0.23|¢} .

This has been tested in detail against the flexible
MCYL water potential [68] and against ex-
perimental data for water from 10 to 1273 K and
several kilobar [69]. RTs and difference CFs
were computed as described for the enantiomer
(S)-CHBICIF, with a torque mediated by the
ORD polarisability’s surviving off diagonal ele-
ments, eq. (23), for several different values of

Co= EoBo(m'/;s + ’nygz) ) (28)

so that a Kielich function was generated from
FMD by plotting the saturation values of second
order orientational RTs generated by this tor-
que. For each value of the parameter C,, the
simulation was carried out with left and right cp
laser radiation, and left and right RTs, ACFs,
and difference CFs computed.

4. Results: comparison with Kielich functions,
and far infrared ORD

The FMD transient results in fig. 1 show for
the first time that OED (and by implication CD)
is accompanied by Kielich functions which are
different for right and left circularly polarised
radiation. In the appendix the derivation of these
Kielich functions is detailed both for (S)-
CHBICIF and for water through the mediacy of
the Rosenfeld tensor, giving expressions such as

the following for the saturation levels ¢
order transients versus interaction ene
molecule.

4.1. (S$)-CHBrCIF
_ 2 h . >
I, = exp[+q<cos 6 — P 6 cos2¢
a, . :
+ ?smqbsm()cos()
a, )
+ ;cosd)sm()cos()
a; . .2
+ ; sin ¢ cos ¢ sin 9)] )

(etz) = (cos’ §)

T 2w w27
=ff cosZ()sin()Ilded()/ff sin 81,
0 0 0 0

(€2,) = {sin® ¢ sin” @)

™ 2m w 27

ffsm 0sin® 1, d¢d9/ff Sm“’dj

(e2,) = (cos® ¢ sin’ @)

w 2w w 27

ffsm 0 cos” @1, dqbdo/ff sin 81, d

dEo.

d= m'ycil ("17;2+m')'§3)> Q_ Ck.T-‘__

” m_ e m_ e m_,€ i
h_ "= "vn e Tynt
q 2d ' g d

m_e m_ e m e’z : 41
a _ "yt "y e Yoa t Y32
q d g d

1
Here # and ¢ denote the Eulef;:

other parameters are defined throt b
scalar elements of the ORD polfilrl )
(chiral) symmetry (see the appen di*
sign (—) is related to right and thé
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Both types of double integral are analytically
intractable, and were integrated using a double
Gauss-Legendre quadrature routine DGLNQ2
from the IBM numerical library of the IBM
3090-6S supercomputer of ETH, Zurich. The
integration grid was 48 X 48, with a few checking
runs at 24 x 24 to monitor for any numerical
instabilities.

For (S)-CHBrCIlF, the change from right cir-
cular polarisation to left is accounted for in the
Kielich functions (29) by changing the sign of the
parameter g from negative to positive. The same
lbing is accomplished for the water Kielich func-
tons (30) by changing the sign of parameter a.
The results obtained from these two numerical
quadratures are compared against the saturation
levels of a number of FMD transients in figs. 2
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and 3. For the second order transients

<e%z> ) <e§z> ) <§Z> )

satisfactory and detailed agreement is obtained
between FMD and the Kielich functions across
the complete range of existence. For (8§)-
CHBrCIF, both FMD and numerical quadrature
produce different Kielich functions by switching
from right to left circular polarisation. In FMD,
the switch is accomplished by changing the sign
of the coded total torque, in the quadrature, the
sign of g is changed. For all three unit vectors,
figs. 2 and 3 show clearly that these two totally
independent methods agree closely within the
numerical uncertainties inherent in both. In
FMD, uncertainty bars are generated by the
noise level of the saturated second order tran-
sient (fig. 1), and there is also numerical uncer-
tainty in the double quadrature. An example of
this can be seen in fig. 2 at the point g =0, where
the theoretical value of the double integral
should be %. The routine DGLNG2 reproduces
this to within about *+0.01, but the quadrature
result for (e3,) is systematically slightly too low,
and that for (e}, ) is slightly too high due purely
to the numerical uncertainty in the double
Gauss—Legendre quadrature with 48 X 48 grid.
As g becomes smaller in figs. 2(a) and (b) the
FMD uncertainty grows, because the noise in the
saturation level of the second order transients is
greater. The parameters used for the ORD
polarisability were the same in both methods,
the arbitrary sequence described in section 3.

For water, fig. 3, detailed agreement is again
obtained with both methods, but changing the
sign of the parameter @ does not affect the
Kielich function within the uncertainties, show-
ing that in the achiral water molecule, the
Rosenfeld tensor produces a novel scalar bi-axial
anisotropy, but does not produce a pseudoscalar
optical rotation. In this context it is interesting to
note that the difference between the left and
right Kielich functions for (S)-CHBICIF is a
pseudoscalar.

The FMD method has therefore been used
successfully to describe the Kielich functions for
ORD and CD.
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Fig. 2. Comparison of Kielich functions for (S)-CHBrCIF from FMD (points with uncertainty bars) and egs. (29) (lines)
mtmrm , {€2,). (a) right; (b) left cp plane waves propagating in axis Z. Plotted as functions
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It is now possible to proceed with a degree of
confidence to investigate with FMD the pico-
second scale molecular dynamics of the chiral
and achiral ensembles. In particular, it is of
immediate experimental interest to look for evi-
dence for far infrared CD and ORD with the
rotational velocity autocorrelation function

(€,:(1)¢,,(0))

a2 3
<é1,>”2< 11>”2 ( 1)

Clu( )=

This is essentially the Fourier transform of the
far infrared power absorption coefficient [12],
and was computed in this work as part of an
extensive data bank of time correlation functions
mediated by the Rosenfeld tensor both in (S)-
CHBICIF and water. There is space here only
for a representative sample of results.
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4.3. (S)-CHBrCIF

Difference CFs were computed for a Nt
of applied laser intensities, measured ¢t
the parameter E,B, in eq. (18). Of direct !
est to ORD are the results for the rotd
velocity difference CF, defined by

[ (u()€,,(0))
Cldiff(t)_ [ <éfi>1/2<é?j>1/2:|
_[ (é,:(D€,,(0)) ]

()™

and whose real Fourier transform [12]

Craing(@) = f Cqig(t) cos we dt
0
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Fig. 3. As for fig. 2, Kielich functions for water plotted as a
function of |al.

in far infrared optical rotatory dispersion. The
sequence in fig. 4 illustrates the behaviour of
CLaire(t) for increasing E,B, and is clear evidence
for the existence of far infrared ORD. Note that
Clai5:(1) is a time even pseudoscalar observable,
and that the Z component has a different time
dependence from those of the X and Y compo-
nents. In arriving at the results of fig. 4 we have
assumed implicitly that the ORD polarisability
tensor "y is frequency independent (section 3),
whereas more generally, the complex Rosenfeld
tensor is well known [3] from perturbation
theory to be frequency dependent. We return to
this point in the discussion. Therefore the results
in fig. 4 can give only an indication of the
fundamentals of far infrared ORD, further pro-
gress being dependent on more detailed knowl-
edge of "aj(—w, w) in the far infrared range.
However, fig. 4 reveals, importantly, that
molecular dynamics computer simulation, in par-
ticular the FMD technique, is capable of demon-
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strating the different interactions between a
given enantiomorph and left and right cp radia-
tion in terms of fundamental molecular rotation-
al and translational dynamics on a picosecond
time scale. Furthermore, this has been achieved
with a very small sample of 108 molecules over
6000 time steps.

The sequence of results in figs. 5 and 6 illus-
trate the difference CFs, respectively, of angular
momentum and orientation, defined by

(7 7;(0)) ]
<Ji2>l/2<‘]?>1/2 L

(J:()J,(0))

Coa)= |

(34)

and

(e (t)ey;(0)) ]
EIRREAN
_[ (eu(e,(0)) ]..

<e%i>”2<e%j> e

In figs. 4-6 the Z component clearly has a
different time dependence from the X and Y
components, indicating that ORD (and by impli-
cation CD) is accompanied by the development
of anisotropy in the molecular rotation/transla-
tion dynamics. Another check of the FMD meth-
od is that X and Y components of the difference
CFs in figs. 4—-6 have the same time dependence
within the uncertainty. This is expected by sym-
metry, because the electromagnetic plane wave
propagates in the Z axis of the laboratory frame
(X,Y,2).

Cagire(t) = [

(35)

4.4. Water

For water, difference CFs of the type illus-
trated in figs. 4-6 vanish in the uncertainty, a
result which is consistent with the fact that an
achiral ensemble cannot support pseudo-scalar
observables [60]. However, fig. 7 illustrates what
we believe to be a novel anisotropy phenomenon
due to the off-diagonal elements in water of the
ORD polarisability ™y3, — "y5,. This type of
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Fig. 5. As for fig. 4, molecular angular momentum (J) difference CFs.
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anisotropy reveals itself clearly in fig. 7 in the
angular momentum and orientational ACFs, and
is also discernible in the rotational velocity ACF.
In each case the i = j = Z component of the ACF
develops a different time dependence due to the
influence of ™yy;, despite the fact that there is no
ORD or CD. The anisotropy is the same for left
and right cp plane waves, but vanishes in a plane
polarised laser, where there are equal propor-
tions of right and left cp components. It is con-
cluded that when a cp laser interacts with the
’"'yf-'/- tensor, the refractive index in the direction
of propagation of the laser becomes measurably
different from those in the two orthogonal direc-
tions. This type of bi-axial (as distinct from
circular) birefringence, is the same for left and
right cp lasers, and vanishes for a plane polarised
laser. These characteristics allow for the mea-
surement of this new birefringence phenomenon,
and for distinguishing it from similar birefring-
ence phenomena which may be present. This
“bi-axial Rosenfeld birefringence” is a scalar
observable, and is supported in consequence
both in achiral and chiral ensembles.

It is proportional to E,B, and vanishes only in
achiral molecular point groups where all ele-
ments of the ORD polarisability vanish indepen-
dently (see refs. [3] and [6] and the appendix).
The discovery by FMD of this novel birefring-
ence shows clearly the predictive abilities of
computer simulation in non-linear optics, whose
conventional theoretical methods have over-
looked the existence of the phenomenon.

5. Discussion

FMD computer has been used to produce
Kielich functions, and to demonstrate the exist-
ence of far infrared ORD (and by implication,
CD). It has demonstrated the existence of bi-
axial Rosenfeld birefringence in most achiral and
all chiral ensembles.

The technique use in this first demonstration
paper assumes that the ORD polarisability is
frequency independent, and has also relied on a
simple Lennard-Jones/partial charge model of
the intermolecular potential energy. We have

also been obliged to program an arbitrary se-
quence of numbers for the individual scalar ele-
ments of "y, in (S)-CHBrCIF due to a complete
lack of ab initio or experimental information on
"y3- From semi-classical perturbation theory [3]
it is well known that the complete, complex,
Rosenfeld tensor is frequency dependent, even
in transparent regions of the spectrum far from
optical resonance. In first order perturbation
theory [6]

2 2 2
o, —w —I)
(02, —0” +T2) + 40T,

x Im(nfm,|r) (rimln) , (36)

m e 2
'Y.ijz};rgnpnn

rn

2
m_Je _ =~
YT g g P (@2 — w24 T3 ) + 40T,

n

xAm(n|m|r) (rlwln) (37)

where (r|uin) and (r|m|n) denote electric di-
pole and magnetic dipole transitions between the
states |n) and (r|, respectively, with the fre-
quency w,,; p,, is the population of the system in
the stationary state |n) and I'_', a characteristic
relaxation time between states |r) and |n).

A precise description of the frequency depen-
dence of the ORD polarisability "yj; clearly re-
quires knowledge of what we are seeking, name-
ly far infrared ORD and CD bandshapes over a
range of frequencies from about 10 to 300 cm™"
[11-13]. It is equally clear that the FMD demon-
stration reported in this paper, and used to
produce figs. 4-6, relies on approximating ™y}, at
one frequency, w = w,, in eq. (36). In other
words, we have coded in ""yfj as nine different
numbers, representing nine independent scalar
elements of the C, symmetry molecular point
group of (S)-CHBrCIF.

Progress towards a better understanding of far
infrared CD and ORD can be made by using a
combination of experimental, theoretical and
computational methods. Experimentally, CD
and ORD is approaching [70] the far infrared
range using Fourier transform interferometers.
For example, Nafie et al. {70, 71] have provided
data to about 300 cm ™' using a modified Nicolet
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7199 interferometer with a piezo-optic mod-
ulator. By using a polarising wire grid beam
divider, Polavarapu et al. [72] have demon-
strated the feasibility of the far infrared CD and
ORD interferometric technique to about
50cm™".

Evans et al. [73-79] have made several inroads
computationally towards an understanding of the
fundamental  rotation/translation = molecular
dynamics of chiral ensembles, using the enan-
tiomers and racemic mixture of CHBrCIF and
other simple chiral structures small enough for
computer simulation to be feasible with limited
computer resource. This work was initiated in
1983 with the discovery of a well defined set of
pseudo-scalar CCFs [73] in frame (1, 2, 3) of the
principal molecular moments of inertia of
CHBrCIF that; (a) vanish in the laboratory frame
(X, Y, Z) due to parity inversion symmetry, and
(b) change sign between enantiomers in frame
(1, 2, 3), vanishing in the racemic mixture. Al-
though unobservable directly in frame (X, Y, Z)
these “‘switching CCFs” characterise the fun-
damental, combined, molecular dynamics of ro-
tation and translation and have been classified
systematically [74] using group theoretical meth-
ods applied to ensemble thermodynamic aver-
ages, methods developed by Whiffen [75] and
Evans [76]. Detailed and precise agreement has
been obtained between computer simulation, in-
cluding FMD, and group theoretical predictions
in many molecular point groups [77], agreement
on which CCFs vanish and which exist in both
frames of reference. It has become clear that a
complete understanding of the elements of mol-
ecular dynamics requires both frames of refer-
ence, and analytical theory must accordingly en-
compass this development.

FMD simulation of the interaction of elec-
tromagnetic plane waves with CHBrCIF was
initiated by Evans et al. [25] by considering a
linear optical process, the torque between the
permanent molecular electric dipole moment and
the electric field of the plane wave. This method
led to discernible differences in frame (1,2, 3),
but not in frame (X, Y, Z). For laboratory frame
difference CFs the induction of electric and mag-
netic dipole moments is needed through the

Rosenfeld polarisability tensors, as in the work,
and this is a non-linear optical process. Recently,
some semi-quantitative analysis has been made
[78] linking far infrared ORD and CD to the
possible observation of fundamental pseudosca-
lar CCFs such as that between the diffusing
chiral molecule’s center of mass linear velocity
(v) and its own angular velocity (w). However,
work for this paper has shown clearly, and for
the first time, that a complete set of pseudoscalar
difference CFs is generated directly in frame
(X, Y, Z) through the intermediacy of appropri-
ate components of the complex Rosenfeld ten-
sor, the ORD (and CD) polarisabilitiecs. One of
these, the rotational velocity difference CF, is
the direct Fourier transform of far infrared
ORD, a pseudoscalar observable. Using the fun-
damental equations of motion of classical physics
we have arrived at an understanding of Fresnel’s
discovery of 1824 [1] in terms of the motion and
interaction of rigid, structurally chiral, mole-
cules.

Bi-axial Rosenfeld birefringence of the type
suggested by fig. 7 exists in principle not only in
the far infrared range, but also in the infrared,
visible, and ultraviolet, where it should be easily
measurable by refractometry. It is characterised
by a different refractive index in the propagation
and orthogonal axes of a circularly polarised
electromagnetic probe, a birefringence which
should be identical for left and right components
of the probe, but which should vanish when the
probe is linearly or incoherently polarised. Its
measurement gives unique information on off-
diagonal elements in achiral molecular point
groups of the Rosenfeld ORD polarisability. The
only other contemporary sources of such infor-
mation appear to be far more difficult to utilise
because they are much smaller effects, for exam-
ple magnetochiral birefringence [6, 80-86]
(hitherto unmeasured) or light scattering in the
presence of an electric field {87-89]. The only
experimental difficulty in the measurement of
Rosenfeld bi-axial birefringence appears to be in
distinguishing it from any other birefringence
effects which may be present. In principle, the
method can be developed into a new spectral
technique of considerable potential utility.
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Appendix

Circularly polarised light induced energy of a
molecule through the Rosenfeld tensor ™y*
(Langevin-Kielich functions)

In this paper we consider circularly polarised
light propagating along the Z-axis of the labora-
tory frame {X, Y, Z} and we also introduce the
frame {1, 2, 3} fixed in a molecule. If we denote
the angle between the axis Z and the axis 1 by 6,
we have the following transformation matrix ele-
ments between both frames described by
Eulerian angles 6, ¢ and x (0<sf<mw, 0s¢ <
2w, 0< y <2m):

e,y =sin xysin @,
€,y =—cos xsiné, (A1)

e,;=cosf;

€,y = COSs ¢ cos x —sind)sinxcosey,

e,y =cos ¢ sin y + sin ¢ cos x cos 6, (A.2)
e,, =sin ¢ sin 6 ;

€5 = —sin ¢ cos y —cos ¢ sin y cos 8,

€3y = —sin ¢ sin y + cos ¢ cos y cos 0, (A.3)

ey, =cos ¢ sin 0 .

The Langevin—Kielich functions, calculated
analytically in this paper (egs. (29) and (30)) and

from molecular simulation, are defined as

follows:

(€2,) = (cos’0) =

™ 2w 2w

Jcoszosinef feXp[—En(o, b, x)/kT]dx d¢ do
0 0

0

2w 2w

fsin@j j exp[—E, (8, ¢, x)/kT]|dxy d¢ do
0 0 0

(A.4)
(e5,) = (sin’¢p sin’g) =

27 2m
fsin“ofsmzqsf exp[—E, (6, &, x)/kT]dy d¢ de

Q Q Q

m 2w 2w

fsinef f exp[—E, (0, ¢, x)/kT]dxd¢ dé

0 0 0

(A.5)
(e3,) = (cos’p sin’0) =
m 29 2
fsin%)fcos%f exp[—E, (6, ¢, x)/kT]dx d¢ do
0 0 0
L1 27 2

fsinOf j exp[—E, (0, ¢, x)/'kT]dy d¢ do

0 0 0

(A.6)

where E, (6, ¢, x) (eq. (4)) is the change in the
potential energy of the molecule induced (in our
case) by circularly polarised light and mediated
by the Rosenfeld tensor:

E, =—3aj(-w, 0)EIB,— "a(~w, w)B}E,

n i

+c.c. (A7)

Using the relations (1) and (11) we can write
(A.7) in the form

i n I:4 m e
E,= ¢ ("Yxx + Yy E XE*),, (A.8)

where (E X E*), is the Zth component of the
product E X E*. To obtain eq. (A.8) we have
taken into consideration the fundamental rela-
tions between the electric and magnetic field of
the electromagnetic wave (By=—(1/c)Ey,
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By =(1/c)E,) which leads to
EXBy— EyBy=E}B, — E\B}
1 . 1
= E(EXE*Y_ EyF}) = Z(E X E*),, (A.9)

ExB, - E,By=E}B,—E,By=0. (A.10)
The product E X E* is pure imaginary for circu-
larly polarised light [85] and for left (L) and right
(R) cp waves (6)

(E x E*)S = —(E x E*)5 = —iE} . (A.11)
After transformation of the polarisability tensors

"y%x and "y, to the molecular frame, we have
for the case (A.11)

1 n -4
E" =7 Z(eXanB + eYaeyB) yaBE(z, , (A.12)

where the signs “—”" and “+” stands for right
and left cp light, respectively.

In general, for the lowest molecular symmetry
(C)), the tensor has 9 independent elements (see
table A.1) and the energy (A.12) has the explicit
form

p— 1 m e m
E, =% (2" + 2("y22 = "75)
2 2
X (€x, + €yy — €x3 — €y3)

Table A.1

= 5[y =AMy + "Yi)IGBe — 1)

+ ("t "y )(exexs teyiey,)

+ (M5 + ") exaexs t €yseys)

+ (" Ty (exsex, + eyseh)}Eg >
(A.13)

where "y =1"y! =31("yl + "y + Y5 is
the mean value of the tensor "y and "vyi,,
"y5,, - - . denote the elements of "y° given in the
molecular frame {1, 2, 3}.

If we use the relations (A.1)-(A.3) we obtain

the energy (A.13) described by Eulerian angles,

E" =F l
c
- %[m'yell - %(m')';z +"y35)1(3 cos’ — 1)

— ("y5,+ ™5 sin 0 sin ¢ cos 6

{27y + L(My5, — "y5s) sin’d cos 24

= (My {3+ "y5) cos ¢ sin 0 cos 0

— (MySs + "y5,) sin ¢ cos ¢ sin9) EZ
(A.14)

The above energy does not depend on the
angle y. Substituting (A.14) into (A.4)—(A.6) we
have the analytical expressions (29) for
Langevin—Kielich functions, which were com-
puted and compared with those from molecular
simulation (figs. 2 and 3).

For molecules of water only "y%, and ™y, are

The rank 2 axial tensors "y7, and ™y’* for all point groups. The components of

m_ e

the polarisability tensors "y, and ™y_; are denoted by the subscripts a8 each of
which, in the molecular system of coordinates, can take the value 1, 2, 3 (for the
other point groups the components vanish).

Point group of the molecules

m,_e m,_ e

Yap O Yap

(SRS I
B

o0
o

o

¥

op
‘5

:OQ.
<o
A 0

~

HUOTLOUA00

11,22,33,12,21, 13,31, 23,32
11,22, 33,23,32

12,21,13,31

23,32

11,22=33,23=-32
22=-33,23=32

11,22=33
23=-32
22=-33

11=22=33
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non-zero and the energy (A.14) has the form

E, == "y + "y) sin ¢ cos ¢ sin’d E2,
¢ (A.15)

which leads to Langevin—Kielich functions (30).
In eq. (A.15) the upper sign (+) is related to
right and the lower sign (—) to left circularly
polarised light.
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