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The theory of the electrodynamics of a rotating body is used to show that there exists:
1) circular birefringence of purely relativistic origin, composed of dispersive acther drag
and residual, ensemble averaged, magnetization; 2) non-relativistic circular birefringence
due to the a.ngu.lar velocity of the body in the observer frame; 3) non-relativistic axial
birefringence in chiral media due to the angular velocity of the body; 4) second order,
relativistic equivalents of 2) and 3).

1. Introduction

It appears that J. J. Thompson was the first to analyse acther drag, when, a few
years after the first Michelson Morley experiment, he considered! light passing
through a medium that is rotating about an axis parallel to the propagation axis
(Z) of the electromagnetic radiation. The angular drag per unit path length was
obtained by Fermi? as

£=%Z(n1———1—)58 (ng — ng) (1)

where n is the mean refractive index of the medium as it appears to an observer in
the laboratory frame (X, Y, Z); Qz is the angular frequency of the measuring radi-
ation, and c¢ the velocity of light. Player® later extended the analysis to dispersive
aether drag, which causes a tiny circular birefringence of purely relativistic origin,
measured carefully by R. V. Jones,? using a sensitive laser polarimeter. Player
asserts® that there are two fundamental errors in Fermi’s derivation, although he
accepts that the final answer (1) obtained by Fermi appears to be correct, because
it agrees with Thompson’s.!

In this paper we use the well known classical theory of the electrodynamics of
a rotating body to isolate several new effects which can be measured experimen-
tally through circular and axial birefringence. In Sec. 2 a Maxwell equation is set
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up in the laboratory frame (X, Y, Z) of the stationary observer, using the usual
Lorentz transformations from the frame of the rotating medium. Section 3 solves
the equation for circular and axial birefringence effects of purely relativistic origin.
Section 4 isolates new, purely relativistic, circular birefringence terms due to magne-
tization from the Lorentz transformation. These appear not to have been discussed
by Player? or Fermi?; and what became the Lorentz transformation was probably
not available to J. J. Thompson.! Section 5 introduces new non-relativistic circular
and axial birefringence due to a rotating body, and Sec. 6 introduces new second
order effects, the relativistic equivalent of (4).

2. The Lorentz Transforms and Maxwell Equations

Consider electromagnetic plane waves from a static source in (X, Y, Z) propagating
through 1 metre of a cylinder of polarizable and magnetizable molecular material
which is at rest. Assume initially that the magnetization and polarization are
of similar order of magnitude, and that both must be considered in the initial
theoretical development. Denote the laboratory frame by K : (X, Y, Z, t) and let
there be a frame K': (X', Y’ Z’, t') which is moving at a velocity v(X, Y, Z, t).
Assume that all fields in K do not have Z-directed components, and vz = 0.
Furthermore, let the velocity v = vd, where 9 is a unit vector parallel to v and » is
the magnitude of v. Then, let

g = (1— g)_l/z : | (2)

The Lorentz transforms are then defined as®1°

E' =93 -E)1-F)+B(E+vxB);
B' = (3 - B)(1— B) + (B — v x E/c?) ;
D' =40 -D)(1—6)+ B(D+vx H/?) ;
H =40 -H)(1-0)+pfH-v xD);
P'=46(¢-P)(1—-8)+B(P~vxm/c?);
M =4(3- M)1-8)+(M+vxP).

<
~~
N4

Here E denotes electric field strength in volts per meter; B magnetic flux density in
tesla; D is electric displacement in coulombs per square metre; H is magnetic field
strength in amperes per metre; P is electric polarization in coulombs per square
metre; M is magnetization in amperes per metre. The velocity of light ¢ is in
metres per second, as is the frame velocity v. In these S.I. units the equations of
the Lorentz transform are self-consistent.!!

In the approximation

v/e < 1 (4)
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they become
E' = B(E+vxB);

B'=f8(B—-vxE/?);
D' = B(D +v x H/c?) ;
H =pH+vxD);
P' = B(P-vxM/?);
M =pM+vxP).

(5)

Let Maxwell’s equations in K’ be

V’xH’:iD',
ot’ 6
R T ©)
VXE:—'&;B,J_—‘O
and in K 5
VxH=_-D,
BT
VxE:—iB, (7)
ot
J=0

where J is the impressed current density in amperes per square metre; N the number
of molecules per cubic metre in the sample; and po and ey the permeability and
permittivity in vacuo. In S.I. units these quantities are, respectively

po = 4r x 1077 Js2C?%m™? 8
g0 = 8.854 x 107** J7!C’m™!. )
They are related through

1
Eolo = 2 (9)

In IUPAC convention, the electric field strength (E) and magnetic flux density (B)
appearing in Eq. (1) satisfy the relations!?74

Er = Eo(i—ij)e’®"; Er = Eo(i+1ij)e’'™ |
By, = Bo(j +ii)e'®; By = By(j — ii)e'?® | (10)

¢r =wt—Kg 'r; ¢, =wt — Ky, -r.

Here w is the angular frequency of the electromagnetic radiation in the static
medium, 1 and j are unit vectors in X and Y of the laboratory frame (X, Y, Z) of
the static observer, t is the time in this frame, Kgr and Kj, are the wave vectors
of the right (R) and left (L) circularly polarized components of the electromagnetic
field, and r is a distance vector in the propagation axis (Z). Finally 7 denotes the
root of minus one.
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Now let the cylinder rotate at an angular velocity Q7 about the Z axis, while
radiation propagates through it along the same Z axis. The velocity v in the Lorentz
transforms (5) is defined by?®

v=0OxR, V.v=0; Vxv=20 (11)

where R is the radius of the cylinder. Note that v has components in X and Y but
not in Z:
vx = —QzY, Vy = QzX . (12)

Since v is clearly due to rotation in K it is a function of X and Y. In consequence,
the rotating cylinder appears inhomogeneous as well as anisotropic to an observer
in K, i.e. in the laboratory frame (X, Y, Z). To preserve the integrity of the
material under Coriolis and centripetal acceleration therefore, gravitational and
intermolecular forces should be considered additionally if v approaches ¢.5° To all
practical purposes, i.e. for attainable rod revolutions per minute, we have |vmax| <
¢ and the validity of the adiabatic Lorentz transformation is conserved.” 10

Consider a material in K’ which has a polarization P/ = D’ — gE’ and a
magnetization M’ = -‘%;B’ — H'; then

P = B(P' + eopov x M') (13)
and

M = B8(M' —v xP’) (14)
in K, showing that the effect of relativity is to introduce additional Lorentz mag-

netization and polarization, the terms —eouov x M and +v x P, respectively. The
Maxwell curl equations in K’ can be written as

'ULOV’ xB -V xM = so%E' + %P' (15)
V! x E = mé%B’ (16)
50
|-
IIEV X (B —€opovxE)- V' x(M+vxP)
= 50%(E+ v x B)+ %(P — eopoV X M) (17)
t
and
V’X(E+VXB):—£7(B—€0[.LQVXE) . (18)
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Note that E, B, M, and P belong to K, but the operators V'x and -2;, belong to
K'. However, if |v| < ¢ we can remove the primes in Eqgs. (17} and (18) to give

;}-—VX(B—EQ[JQVXE)*VX(M-I-VXP)
i
= 2(E+ XB)-I-"(?-(P—(-: v x M) 19
and 5
VX(E+VXB)=—E(B—€0/_‘DVXE) (20)
implying
1 0
—VxB=—(¢E+P
I ai(o )
+Vx(vaoE)+Vx(M+vxP)+50%(va—vxpoM)] (21)
and OB 9
VxE= ~ % + [Engé?(v xE)—V x (vx B)] (22)

with ALL quantities now defined in (X, Y, Z). Note that Eq. (21) has four extra
relativistic terms as a direct consequence of the Lorentz transformations. These are
denoted within the braces in Egs. (21) and (22). Two of these appear to have been
discussed by Player,® but not the contribution coming from the initial assumption
that the rod is polarizable, which introduces a purely relativistic magnetization
term v X P. The purely relativistic Lorentz polarization term —eguov x M, coming
from the fact that the rod has been considered magnetizable, had also been pre-
viously left unconsidered. Additionally, the second Maxwell equation (22) has two
purely relativistic terms denoted within the braces on the right-hand side. Player
considered a quasimonochromatic optical disturbance in a isotropic medium of low
absorption, where the displacement D was put directly proportional to the electric
field strength B, with no explicit consideration of the (molecular) origin of P. We
have considered the material equations (13) to {16) within the adiabatic Lorentz
approximation, i.e. we have assumed that the material of the rod is both polarizable
and magnetizable.

The quantities E and B appearing in Egs. (19) to (22) continue to satisfy the
plane wave equations (10), where E and B are mutually perpendicular quantities
in (X, Y, Z). Note that Egs. (1) and (19) to (22) are both written in (X, Y, Z),
but if E and B are mutually perpendicular in one frame, they continue to be so!?
in any other frame of reference after Lorentz transformation.

The angular frequencies of the right and left circularly polarised components
of the electromagnetic plane wave propagating in Z through a medium which is
itself rotating about Z are affected through equal and opposite Doppler frequency
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shifts,” denoted (w + Qp) and (w —~ Qp) in frame (X, Y, Z) respectively for R and
L components. The angular frequencies of the R and L components of the plane
wave in the rotating medium appear different to the static observer.3

Finally in this section, we note that the Maxwell equation appears not to be
written by Player® in S.I. units, whereas ours are written in the international (S.L.)
convention adopted, for example, by Atkins.!?

3. Purely Relativistic Circular Birefringence

We have been careful to define the quantities appearing in Eq. (21), which is now
solved for circular birefringence of purely relativistic origin, the so-called aether
drag.3* The solution leads to new results based on the explicit consideration of P
as in Eq. (13). It proves convenient to use the purely algebraic relations among
vectors

VXx(vXE)=vwV-E)=E(V-v)+(E-V)v—(v-V)E (23)
VEXV)=Ex (V- V)+vx(VXE) +(v-VIE+(E-V)v  (24)

which in the problem defined in Sec. 2 lead to
Vx(vXxE)=V(E-v)-2ExQ~vx(VxE) (25)

a result which appears to have been accepted® as the only origin of dispersive
aether drag. (It will be shown later that the term —(v x M)/c? can also introduce
aether drag in appropriate molecular ensembles.) Considering firstly the aether
drag produced by (25), we write Eq. (21) as

1 1
-—VXB:

Ho poc?

(V(E-v)—2E % ) +... (26)

and consider carefully the contributions of the two terms on the r.h.s. of (26), whose
right and left components are

3 . .
= (QRzERj — QzEBi) 4 k components

and
3 L - L:
=z (QzExj — 0z Eyi) + k components

where ¢ is the frame invariant velocity of light. The right and left wave vectors are
I !
Kiy = (w+Qp) =2, K, = (v — Q)25 (27)

where np and ny are the real refractive indices. The angular frequencies in (27)
are different due to the opposite and equal Doppler effects 312,13
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Appendix 1 considers carefully the contributions of the term V(E - v) in terms
of 1, j, and k, the unit vectors in X, Y, and Z. It is shown there that

V(E -v)=—-QzEyi+QzExj+ (QGEZ{UX + 5;;}’ vy> k. (28)
The Lh.s. of (26) is therefore
iK{ (i —ij)Boe*?* or iKpy(1+ij)Bge'?®
and comparing either 1 or j coefficients gives, self-consistently
(w — Qo)ngz = 30z; (W + Qo)nky = ~3Q7 . (29)

The difference of these two equations gives the aether drag as the circular birefrin-
gence

1 1

! ! — Q .
(npz — npz) =30z (w o + ” +QD) (30)

Using the fundamental relation between £y and Bg in S.I. units
Eo = CBQ ’ (31)

finally gives the simple result
30z —-3Q7
r roo_ )

"Lz = T a0 O’ "Rz =~ ¥ O (32)

The angle of rotation of plane polarised radiation due to (30) is

lw
&= 5_(nLz — nRz) - (33)
The results (30) and (32) appear similar to those obtained by Player (Eq. (1)) as
follows ® 39
_®_39z w w
E=I—2c (w—QD+w+QD>' (34)
In the approximation Qp < w, Eq. (34) reduces to
6: @_Z_ .
¢

For visible radiation at 10'° radians per second; and for Q7 of about 100 radians per
second the circular birefringence due to aether drag is of the order 10~® from the
simple result (34). The equivalent result obtained by Player? is recovered through
the comparison of notation (see Eq. (1) ff.)

3 w w
ng_n¢:§(w—QD+w+QD> (35)
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which links the notation used by Player and ours. With this equivalence the results
are identical with those of Player for the angular aether drag per unit path length.
Equation (35) is developed further in Appendix 2.

4. Relativistic Circular Birefringence Due to Magnetization

The origin of this new contribution is the term —puoggv x M of the right-hand
side of Eq. (21). This is magnetization purely due to the Lorentz transform of
fundamental relativity theory.!? The magnetization M is multiplied by v and the
product may be significant in magnitude in frame (X, Y, Z) of the static observer.
Following concepts described elsewhere,1%1® M is assumed to be molecular in origin
and expanded in a double Taylor series in E and B. To first order, in tensor notation,

M,' = a,—_,-Bj + b,‘jEj + ... (36)

where a;; and b;; are respectively even and odd parity molecular property
tensor,'" 2% defined in (X, Y, Z). In general both linear terms of Eq. (36) con-
tribute to aether drag, together with higher order terms not considered here. The
effect is illustrated with the 1 and j terms of

viM=vyMzi—vx Mz} (M,-:a,-ij-i-...) (37)

which depend on off-diagonal components of the even parity molecular property
tensor a;;. These survive isotropic ensemble averaging!®?0 in general in certain
molecular crystalline point groups. The effect could therefore be observed in a ro-
tating achiral single crystal of appropriate structure. In a chiral single crystal there
are also aether drag contributions from off-diagonal components of b;;. Comparing
i and j coeflicients of the terms F%V x B and —Z(v x M)/c? respectively on the
left- and right-hand sides of Eq. (21) gives

(n'L — TI’R) = 2/1092YN(bzy) (38)

for the circular birefringence, a result which appears not to have been described in
the literature. We refer to this as aether drag due to Lorentz magnetization, or LM
aether drag.

5. Non-Relativistic Circular and Axial Birefringence Due to
Angular Velocity

In direct analogy with the well known Faraday effect,>”2! which is circular birefrin-
gence due to a static magnetic field, there is non-relativistic circular birefringence
due to the angular velocity 2z which appears through non-relativistic polarisation
and magnetization in the Maxwell equation. Additionally, there is axial birefrin-
gence of the type first described by Wagniere and Meier??>~24 for a static magnetic
field applied parallel and anti-parallel with unpolarised probe electromagnetic ra-
diation propagating in Z. The angular velocity vector Qz has the same parity (P)
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and reversality (T) symmetry?® as the static magnetic field, and therefore circular
and axial birefringence due to Qz conserves T in all ensembles.!? Circular birefrin-
gence due to Qz conserves P in all ensembles, and axial birefringence due to Q7 in
chiral ensembles.

Under appropriate conditions, therefore, aether drag as discussed by Player®
and observed by Jones? in a rotating glass rob is accompanied both by relativis-
tic LM aether drag and these non-relativistic effects caused by polarisation and
magnetization.

The theory of the Faraday effect is well developed!” and can be adapted straight-
forwardly for circular birefringence due to 2z through the introduction of new fun-
damental molecular property tensors. The same technique can also be used for
non-relativistic axial birefringence due to z. It is therefore assumed!”?! that the
molecular polarisability tensor ay;;, molecular Roesenfeld tensor as;;, and electric
dipole electric quadrupole tensor A;;; are perturbed by {2z as follows

a1 (Qz) = auj + 013520z + ... (39)
ai; (Qz) = agij + agijzQz + ... (40)
Aie(Qz) = Aijr + AijrzQz + . .. (41)

to first order in {2z. The latter’s effect is therefore mediated by new higher rank
molecular property tensors which are caused by circular and axial birefringence.
The theory also accounts for the magnetization due to Ej;

and the induction of a molecular electric quadrupole moment
®ij = ArijE5 + ... (43)

both mediated by the new higher rank tensors in Egs. (39) to (41). With these
definitions it is straightforward to adapt the existing theory of the Faraday effect”
and Wagniére-Meier effect??72% to give the following ensemble averaged expressions
for non-relativistic circular and axial birefringence due to Q2.

Ensemble averaged non-relativistic circular birefringence due to the angular ve-
locity €2z 1s present in all ensembles and is mediated by even-parity scalar elements
of the new molecular property tensors as follows

(n, ~ ngr)11 — (oL — nR)7y
9 w
= 206" N ((2lxyz) — o= ({Axyzz) — (Avxz2)) - (44)

Its axial counterpart is measured by unpolarised probe radiation parallel and
antiparallel with Q7 and is mediated by ensemble averaged scalar components of
odd-parity molecular property tensors which exist in chiral ensembles only:

7 ! W "
(nyy —ngy) = poeNQz [(azxyz> —({aay xz) + g(( xxzz t (Alz'xxz)

+ (Ayyzz) + (A,Z"YYZ»] . (45)
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6. Second Order Relativistic Effects

These are generated by considering perturbations such as
azij(Qz) = agij + a2;z8z (46)

in Eq. (25) in frame (X, Y, Z) of the static observer, producing immediately results
such as
(n, = nR)Larrt — {nL — nR)Lm7y
= 4p0QZZYN<a2zyz) 4.

propartional to Q% and to a three rank ensemble average. The latter may survive
ensemble averaging in certain crystal symmetries, but not in an isotropic liquid
spinning with net 7. The contribution (5) to circular birefringence is a second
order effect, therefore, produced by a combination of relativistic and non-relativistic
effects.

(47)

7. Discussion

The interesting experimental work of Jones,* and theoretical work of Player® ap-
pears to form a solid base upon which to explore the several contributions to bire-
fringence discussed in this paper. Specifically, if the rotating rod of low absorbing
material investigated by Jones were to be replaced by an appropriate chiral or achi-
ral molecular material, several new effects could be isolated, some relativistic, and
some of molecular origin, providing information, therefore, on fundamental molec-
ular properties. Apart from the aether drag isolated by Player, which we have
derived as Eq. (35), there is circular birefringence due to Lorentz magnetization,
Eq. (38), which is relativistic, but depends on the molecular property tensor scalar
component (bzy), which survives ensemble averaging in certain crystal symmetries.
Then there is the non-relativistic circular birefringence (44), which exists in chiral
and achiral liquids, spinning in a container, and the axial birefringence (45), which
exists in chiral liquids. Finally there are second order effects exemplified by (47).

It is probable that the apparatus built by Jones* is sensitive enough to char-
acterise these new effects and to produce their spectra as a function of frequency
of probe radiation. For example the angular drag per unit length from Eq. (38) is
given by

' ® 1z
T = #o— (WY (bzy)N) (48)

which is proportional to the ¥ dimension of the rotating rod, and to the ensemble
average (bzy), a material property, multiplied by the number of molecules per
cubic metre, N. This form is quite different from that in Eq. (1), showing that the
Lorentz magnetization cannot be described as a simple modification of the index of
refraction.

There will be similar considerations, which we have not analysed here, for the
Lorentz polarization caused by the assumption that the rod is magnetizable in gen-
eral, as well as polarizable. The analysis leading to Eq. (38) has assumed implicitly



Electrodynamics of a Rotating Body 3053

that the magnitude of the magnetization is small compared with that of the polar-
ization, and a material can always be chosen to fit this restriction. If this assumption
is not made, the relativistic Maxwell equations become intractable without recourse
to numerical solution. It is hoped that this will be the subject of a separate paper
within the framework of general relativity.

A computer simulation of these effects would provide estimates of the frequency
dependent polarization effects,?® as in recent work by Evans and Wagnitre.1%:26 We
expect similar frequency dependent effects due to relativistic Lorentz magnetization
and polarization. This is clear from the nature of the molecular property tensor
ensemble average (bzy) in Eq. (48), which in semiclassical theory is a dynamical
(frequency dependent) quantity.!” We note from Eq. (48) that the Lorentz magne-
tization effect appears to be of the same order of magnitude, at least, as the effect
of Eq. (1), depending on the order of magnitude of the molecular property (bzy).

Finally, an order of magnitude estimate can be made from Eq. (48) if we take
an order of magnitude for (bzy) of about 1073 A%27-tm3525 N about 6 x 10
molecules per cubic metre, a visible frequency w of about 10'° radians per second,
a rotational frequency 2z of about 100 revolutions per second, and Y about 0.01
m (one cm).

These give a value of about 107 radians per metre for the angular aether drag
per unit length of rod due to the Lorentz magnetization term alone. This is about
the same order of magnitude as the Fermi result (Eq. (1)) and very much depends
on the order of magnitude taken for (bzy). It has also been assumed that the value
of Qz is only 100 revolutions per second, or 6000 revs. per minute (r.p.m.), and that
the radius of the rod, Y, is only about a centimetre. It is quite possible therefore,

-to observe this effect, because it is within the limits of the apparatus built by R. V.
Jones.*
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Appendix 1

The term V(E - v) can be evaluated straightforwardly, but for clarity, the algebra
is summarised as follows. We have

0 . 0 . 0
1th
w OF Ovg

0 1:
5;(Exvz) = F;vx + EIE; (A2)
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and so on. The electric field components are

Ef = Eye'®r, EZ = Eget?-

L . A3
E'j = —Egie*?: Ey_ = Egie'*- (43)
that
so tha o5 _6E§_6E§*_(9E§‘_0 .(A4
oz ~ 8y ~ Oz Oy : )
but
oE: , OBy
0z # Oz 70 (A5)
Further results
Ov: _ Ovy _ Ovz _ Ovy _ Ovy  Ovy  Ovz _ dvz Ovz _
3@,——_-6_.@_—9“ 8z ~ 0z dy 8z Oz Oy Oz =0 (A6)
finally provide
_ ] ] 0FE: 0E,
V(E - v)=—QEi+QEj+ ( 5z vy + -—5z—vy) k (AT)

which is Eq. (28) of the text.

Appendix 2

The comparison of notation, Eq. (35) of the text, is developed using the relativistic
theory of the Doppler effect'3 to express the Doppler angular frequency as

_ Qz|R|w
Qp = P (B1)

where {2z is the frequency of rotation of the rod in revolutions per second and R
its radius in metres. The quantity

[Vrod| = Q2z|R| (B2)
is a linear velocity, and in consequence, the ratio

2¢

"= ol

(B3)

1s a relativistically generated refractive index, related directly to, and generated by,
the angular velocity of the rod. Equation (35) becomes

_3 ns no
" n¢:2(l+n2—1—n2> (B4)
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so that in our notation

N9 .
1+712’

na

3
Ili
Ml

[ CRNZU

(B5)

3 n
9 ¢

1—mn,
thus linking our notation to that of Player and Fermi in terms of a refractive index
ny, which is generated by the Doppler frequency shift due to the rotating rod. Note
that if the rod is not rotating, Qp vanishes, and there is no relativistic refractive
index difference. The difference due €13 is purely relativistic, and must be distin-
guished from other sources of birefringence, such as dispersion due to dn/dA # 0,
which are not relativistic. The non-relativistic birefringence remains measurable in
arod which is not rotating with respect to the observer and which does not generate
a Doppler frequency shift Qp.
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