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Frequency dependent biaxial anisotropy due to the Rosenfeld
tensor, an FMD computer simulation
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A novel biaxial anisotropy (BA), accompanied by torque frequency doubling, is reported from a field applied molecular
dynamics (FMD) computer simulation of (S)-CHBrCIF in a right and left circularly polarised pump laser. The BA is
observed as anisotropy in several time correlation functions computed in the presence of the laser, and is measurable
experimentally as a refractive index difference between circularly polarised and incoherently or linearly polarised probe
laser radiation.

1. Introduction

In a series of papers [1-6] we have developed the technique of field applied molecular dynamics
(FMD) computer simulation for a number of non-linear optical phenomena: (a) static and dynamic
electric polarisation due to the non-linear conjugate product (I f;“) [1] of an intense, circularly
polarised, laser, (b) the optical Kerr effect [2], (c) the inverse Faraday effect and inverse magnetochiral
birefringence [3], (d) optical NMR [4], (e) circular dichroism and optical rotatory dispersion [5], and (f)
the frequency doubled optical Stark effect [6]. In all cases the forces loop of a standard molecular
dynamics computer simulation algorithm TETRA was modified to take an extra, external, torque due
to each non-linear optical effect (a) to (f), and a range of novel information extracted [1-6] on the
effect of the laser on the molecular ensemble.

In this paper the FMD technique is used to reveal a novel bi-axial anisotropy [5} due to the
Rosenfeld tensor which is accompanied by torque frequency doubling (BAFD). Bi-axial anisotropy
indicates bi-axial birefringence (BBFD), which must be distinguished at the outset from circular
birefringence. In the former, the refractive index is different in the propagation axis of the laser (Z)
and orthogonal (X and Y) directions. Circular birefringence is the refractive index difference measured
with right and left circularly polarised electromagnetic radiation. Bi-axial birefringence was shown in
ref. [5] to accompany circular birefringence in chiral ensembles, and to exist in some achiral point
groups through the mediacy of off-diagonal elements of the Rosenfeld tensor. Bi-axial birefringence of
the type reported in ref. [5] is the same for right and left circularly polarised radiation, but vanishes
when it is incoherently or linearly polarised [5]. Therefore there exists a difference in the refractive
index of water, for example, when measured in the same propagation axis, Z, with firstly a circularly
polarised laser, and secondly an unpolarised laser. This difference gives unique information [5] on the
Rosenfeld (i.e. electric dipole/magnetic dipole) tensor in achiral molecules.
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In section 2 of this paper the torque responsible for BBFD is described in a frame of reference fixed
by the principal molecular moments of inertia of (S)-CHBrCIF, and whose magnetic and electric origins
are described in detail. In section 3 the FMD methods are summarised briefly; section 4 presents
evidence from FMD for the existence of BBFD using the anisotropy of various time correlation
functions computed in the presence of the BBFD torque. In this section it is shown that BBFD is not
accompanied by circular birefringence, and frequency doubling consequently isolates bi-axial birefring-
ence from circular birefringence due to the same Rosenfeld tensor elements. Finally, a discussion is
given of the experimental methods likely to be used for the first measurement of BBFD.

2. Description of the torque

The technique of FMD codes into forces loop of a standard molecular dynamics algorithm (of any
suitable variety) an extra torque set up between the external field and each molecule of the ensemble.
There is, furthermore, no restriction on the type of field which can be used, provided it forms a torque
with the individual molecules (or atoms). The integral over configuration of the torque is related to the
work done by the interaction of field and molecule, which is equal in magnitude but opposite in sign to
the interaction potential energy [7]. The latter is a term in the Hamiltonian describing the interaction
process, and this reveals why the torque method is a rigorous and general description which is
approximated numerically by FMD.

References [1-6] contained a detailed description of some of the relevant torques in non-linear
optics, where an intense pump laser interacts with a molecular dynamical ensemble. In FMD this
interaction is treated classically, using the equations of the electromagnetic plane wave, but in general
there is no reason why the method cannot be extended, for example, to the quantum mechanics of, and
chaotic phenomena in, non-linear optics [8, 9]. The data banks accompanying refs. [1-6], and animation
videos [10, 11] provide evidence of the information provided by FMD analysis of non-linear optics. In
this paper we shall be concerned primarily with orientational rise transients which occur immediately
after the application of the laser (switching on the torque) and time correlation functions [1-6, 12] in the
presence of the laser. (In real experiments [13, 14] this would be a pump laser pulse, for example, or as
in ref. [5] the probe laser or broad band radiation of an instrument designed to measure optical rotatory
dispersion and circular dichroism in the far infrared [15, 16]. In bi-axial birefringence [5] the field is
simply a probe electromagnetic wave with given polarisation characteristics.) For BBFD, consider an
electromagnetic plane wave propagating in the Z axis of the laboratory frame (X, Y, Z) through an
ensemble [5] of (S)-CHBrCIF molecules, enantiomers of C; molecular point group symmetry. It is well
known that the electric field (E;) of the plane wave induces [5] a magnetic dipole moment (m™ Y in

the molecule through the intermediacy of the complex Rosenfeld tensor ("ay;) of semi-classical theory

[17]. Similarly, the magnetic field (B;) of the plane waive;ninduces an electric dipole moment (")

through different components of the Rosenfeld tensor (“a7). Accordingly, the torque to be considered
in the frame (1,2, 3) of the principal molecular moments of inertia of (S)-CHBrCIF is

T=T1T"+T1?
TW=—p"%E, (1)

where we have used vector notation. In order to work out the scalar elements of the torque it is useful
to convert to subscript tensor notation [17] using the Einstein convention of summation over repeated
indices. In this notation the same torque becomes




8 M.W. Evans, S. Wozniak | Frequency dependent biaxial anisotropy

T,=T"+T%,
(1) _ e m ]
TV = —€,/a}B,E,, (2) |

2) _ m e
"= €y aikEkBj >

where ¢, is the rank three totally antisymmetric unit tensor (or Levi-Civita symbol).
The tensors ‘e and "a;; can be written (S, 18] as

e . m __epm seam
a,; = Bij tivyy,

m_ e mQAhe smae (3) 4
a; = Bij+1 Yii-
In the vicinity of optical resonance each part becomes complex [17, 18]:
mae m_e -m_e’
Yi = 'Yi,'+1 Yii »
“®

mpe _ mpe -mpe’
Bij_ Bij+1 Bij'

Clearly, several torques can be formed from the various parts of the Rosenfeld tensor. We narrow j
consideration for BBFD to the gamma tensors ¥, and “y;. f

The real part of each of these, "y° and °y™, are known as the polarisability tensors of optical §
rotatory dispersion (“ORD tensors™) and the imaginary parts ™y and ‘y™ are the polarisability |
tensors of circular dichroism (“CD tensors’). It was shown in ref. [5] that the ORD tensors mediate §
bi-axial birefringence in chiral and achiral ensembles of appropriate molecular point group symmetry, §
such as the C,, symmetry of the water molecule. :

The torque used in ref. [5],
T = _M(ind) X E* — m{ x g* ’ (5)

removes the phase of the plane wave by using multiplication of complex conjugates, E*, for example,
denoting the complex conjugate of E,. However, in the torques (1) or (2) of this paper a key difference |
is that frequency doubling occurs through products such as B, E, of electric and magnetic components |

E® = Ey(ex +iey) CXP(_i¢(L)) )

E® = Eq(eyx —iey) exp(—i¢(R)) )
L (6)
B = By(—iey + ey) exp(—iqS(L)) )

B™ = By(iey +ey) exp(=ip™),
of the electromagnetic plane wave. Here E, and B, are scalar amplitudes, and e, and e, are unit vectors

in the X and Y axes of the frame (X, Y, Z). The phases ¢* and ¢® are different for left and right |
electromagnetic plane waves: |

¢(L) = @t — K(L) er

’

(7 |

d)(R) =wt—k®.r

B

T
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where o is the angular frequency of the wave in radians per second at an instant ¢ (s); k™ and «® are
the left and right wave vectors in inverse metres at a position r in metres.
For the FMD simulation we approximate the phases by

p=¢" =0 =wt, (8)

which is valid at far infrared and infrared frequencies.

With these definitions therefore we can write out the torques as follows, (1) for the ORD
polarisability, (2) for the CD polarisability.
(1) Torque with frequency doubling due to the ORD tensor

(L)
T = ("~ "ysl(eixesy tesxe ) sin2¢ x (e3x€,x — €3p€,y) cOs 2¢]
+("y5 = "v5)2e ke y sin 26 = (elx — €ly) cos 2¢]
+ ("5 ="y Bl(e xeay Feyxey) Sin2¢ £ (e k8,5 — €, v€,y) OS24} EGB,
(B _ (gme _me .
T57 ={("v5 = "y)llexe,y + €1xery) sin2¢ £ (e, ye,5 — €,ye,y) cOs 26]

+(My5 — "vis)[2e,xe,y sin2¢ = (egx - egy) cos 2¢]
+ Myl = "yi)l(exesy T €sx€sy) Sin 2 £ (e,5€5x — €,p€3y) cOS2G]} E B, ,

(L)
R m_ e m_ e :
TS5 = {("y5 = "vis)l(esxesy teyxesy)sin2¢ x (e,5e35 — €;y€3y) COS 28]

+("y1 — "v5)[2esxe;y sin2¢ = (e§x - egy) cos 2¢]
+ (M5 = "y )l(esxey teixesy) Sin2¢ * (e3¢, — 63.Y61Y) cos 2¢]} E,B, . 9
(2) Torque with frequency doubling due to the CD tensor

(L)
(R) __ n ! re .
T )= {("y12 ="y D[ (e xesy t €3x€,y) COS2¢ = (€358, x — €3y€,y) sin 2]

+(My3s — "y5)[—2exe1y €08 2¢ = (€15 — ely) sin 2]

+(My5r— Tyl (e ey +esxe ) cos2¢ £ (e 1005 — €1v€,y) sin2¢]} EyB, ,
®
T3V ={("y2s — "va)l—(erxe,y T € x€,y) O 2¢ = (e1x€rx — €,y€,y) sin 2¢]

+(My30 = "y 2e,4e,y COS2¢ = (€§X - egy) sin 2¢]

+(My i ="y )l (egxesy T €3x€5y) COS2¢ £ (€y5055 — €,yesy) sin2¢]} E,B, ,
(L)

R m_ 1e m_ re .
T = {("v31 = "y ) — (e3xeay + €rx€5y) COS 20 + (€555 — €1y€5y) $in 2]
m_re m_ re 2 2 .
+(My s = "ya)[ 265585y COS 20 £ (€35 — €3y) Sin 26]

+(My25 = "yl — (e3xe1y T € xesy) OS2 * (e5xex — €yye y) Sin 2@ ]} EgB,, . (10)

Note that these are written in frame (1, 2, 3) and must be transformed back into frame (X, Y, Z)

through the rotation matrix
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Ty €1x €x ey || T,
Tyl=|€y €y eyl T,}], (11)
TZ €1z €z €3z T3

which is coded into the FMD algorithm at the appropriate point in the forces loop [1-6]. In this
notation, e, for example means the X laboratory frame component of the unit vector e, defined in the
axis 1 of frame (1,2, 3), the frame of the principal molecular moments of inertia of (S)-CHBrCIF.

We narrow consideration at this point to the torque of type (1), using the ORD tensor. In C,
molecular point group symmetry it has nine independent scalar elements [18, 19]. In the absence of ab
initio or experimental data these were coded in as in ref. [5], i.e.

m

Yt Y Y Ty TS Y5, =4:5:6:7:8:9, (12)

and the torque of type (1) used as follows to generate second order rise transients (RTs) and time
correlation functions (CFs) in the statistically stationary state in the presence of the torque.

3. Summary of FMD methods

The methods used to provide numerical evidence for BAFD are similar to those used in ref. [5], so
that only a brief summary of differences is needed here. The key difference, as in section 2, is the
inclusion of frequency doubling, which is represented in the torque eq. (9) by the cosine and sine terms
of twice the phase. The analytical expressions for the torques (9) and (10) are also distinctly different
from that in ref. [5] for the torque with zero phase.

The torque (9) of this paper was coded into the algorithm TETRA [1-6} at the appropriate point in
the forces loop, and the FMD method applied with a time step of 5.0fs for 108 molecules of
(S)-CHBrCIF interacting with a Lennard-Jones site potential described fully in ref. [5]. For 2000 time

steps following the application of the torque, transient orientational averages of the following type were
computed

(e’1'i>; (e;1>’ (e;z>7 iZX’ YaZ’ (13)

where n is a positive definite integer, and where { ) denotes a simple average at each time step over
the 108 molecules. The temperature rescaling routine used to control the pressure and temperature
during this interval is described fully in refs. [5] and [6}], and the code is available in full in the literature
[20}. Video animations of the process are also available [11] on cassettes for the interested reader.

The transients reach a saturation level [1-6] in those cases where a Langevin or Langevin—Kielich
function [1-6] is definable. In BADF this saturation level was assumed to have been reached after 2000
time steps (see following section), because another key difference between conventional ORD (ref. [5])
and BAFD is that the Langevin-Kielich function exists for ORD but does not exist for BAFD. In the
saturation condition time correlation functions were computed of the molecular net angular momentum
(7), molecular orientation, defined through vector e,, and molecular rotational velocity (¢,, the time
derivative of e,). These correlation functions are, respectively:

_ {(Ji(7,(0))
1 W > (14)

C
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<eli(t)elj(0)>
= LT as)

_ <éli(t)élj(0)>
Cyy = ey eIy (16)

Here i and j denote laboratory frame indices and can be any combination of X, Y and Z. For
auto-correlation functions, i = j; for cross-correlation functions, i and j are different indices. These
correlation functions were evaluated at two different angular frequencies @ =6 MHz, and w = 60.0 THz
using running time averaging over 6000 time steps.

All production runs were made on the IBM 3090-6S computer of ETH, and estimates of the noise
levels in the simulations were obtained from two contiguous segments of 6000 time steps each. The
noise level rarely exceeded about 5% in the time correlation functions. In the rise transients, the noise
level was higher, because simple averaging was utilised rather than running time averaging as in the
correlation functions. The rise transient noise level is actually observable in fig. 1 at 60 THz.

(S)-CHBRCLF, AIGHT CP. LASER, FREQUENCY DOUBLED ORD.
SECOND ORDER TRANSIENTS, E1 VECTOR, FELD = 50, F « 60 THZ

TRANSIENTS,
0.42 4
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036 {4}
034,/
0da {i
0321
0.3t '::
030+ |
020 |
028 1
027 -

0.26 1

026 _\ T ML T T T T T

] 1 2 3 4 5 [} 7 8 ] 0
PICOSECONDS

Fig. 1. Example of second order transients {e};) under the torque (9). No anisotropy develops.——X component;——-Y
component;—- - — - - Z component of the laboratory frame (X, Y, Z).
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4. Results: bi-axial Rosenfeld anisotropy with torque frequency dependence

At both frequencies the transient orientational averages (13) were observed to fluctuate around
their initial value at the instant (¢ = 0) of torque application. An example is given in fig. 1 for the second
order transients (e’ ). This pattern was observable for n =1 to 4 for all three unit vectors e, e,, and e;.
This means that the torque (9) does not generate Langevin—Kielich functions [1] which are defined
[1-6} by a plot of the saturation level of an appropriate orientational rise transient against the energy
per molecule transferred by the electromagnetic radiation through the torque. This is in contrast to the
results of ref. [S] for ORD and CD, and the accompanying bi-axial birefringence, where Langevin—
Kielich functions from analytical theory and FMD simulation were found to agree closely. In this work
also, agreement has been achieved between FMD and analytical theory, in that the latter also predicts a
vanishing Langevin—Kielich function for BAFD because the energy of interaction equivalent to the
torque (9) vanishes when averaged over time.

Despite the absence of a Langevin—Kielich function, however, figs. 2—7 show clearly the presence of
an anisotropy in the molecular dynamics due to the torque (9), an anisotropy which manifests itself
through a different time evolution of the correlation functions (14)—(16). It is this anisotropy that we
cite as evidence for BAFD, and the latter has been obeserved to occur at both frequencies studied in
this work. The discussion presents a qualitative argument for the link between BAFD and BBFD, and
suggests an experimental configuration for the observation of BBFD.

The results in figs. 2—7 were unaffected within the noise by switching the torque (9) from left to
right at 60.0 THz. However at 6 MHz a small difference was detected (figs. 8—10).

(8)-CHBRCLF, FREQUENCY DOUBLED ROSENFELD EFFECT. 19)-CHBACLF, ROSENFELD EFFECT WITH FREQUENCY DUUBLING.
ANGULAR MOMENTUM ACF, FELD = 8,0 MHZ. ANGULAR MOMENTUM ACF, LEFT FIELD 6.0 MHZ
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Fig. 2. Angular momentum autocorrelation functions, w, =6 MHz; (a) right (b) left circularly polarised radiation. X, Y, and VA
components as in fig. (1).




Fig. 4. As for fig. 2, rotational velocity ACFs.
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()-GHBACLE, FREQUENC'Y DOUBLED ROSENFELD EFFECT, (81-CHBRGLF, ROSENFELD EFFECT WITH FREQUENCY DOUBLIG.
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Fig. 3. As for fig. 2, orientational ACFs.
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Fig. 5. As for fig. 2, @, = 60.0 THz. b
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Fig. 6. As for fig. 3, ©, = 60 THz.
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Fig. 7. As for fig. 4, w, =60 THz.

ROSENFELD EFFECT WITH FREQUENCY DOUBLING, DIFFERENCE C.F.S.
ANGULAR MOMENTUM CF.'S, FEELD = 6.0 MHZ
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Fig. 8. Difference correlation functions of angular momentum, left minus right, at w, =6 MHz.
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($)-CHBACLF, ROSENFELD EFFECT WITH FREQUENCY DOUBLING. ROSENFELD EFFECT WITH FREQUENCY DOUBLING, DIFFERENCE CFg - . ]
ORENTATION. FEELD = 6.0 MHZ. DFFERENCE CF.S, ROTATIONAL VELOCITY, FEELD = 8.0 MHZ 9
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Fig. 9. Difference correlation functions of orientation, left Fig. 10. Difference correlation functions of rotational ve
minus right. locity, left minus right.

5. Discussion

Numerical evidence has been cited for BAFD through the different evolution of time Corre;.atg;g
functions, figs. 2-7, which in absence of the torque (9) evolve in time identically (because the 119 ]
sample is isotropic [19]). The key implication is that the sample under the torque (9) is n° ction
isotropic, and therefore we have an anisotropy which is bi-axial because the time correlation furIIf the
component { = j = Z is different from the other orthogonal counterparts in frame (X, Y, )
sample is anisotropic its spectral properties measured in axis Z (the propagation axis for torqu
the orthogonal axes are different. It is well known, for example, that the Fourier transfor® w the |
orientational time correlation function is related to dielectric complex permittivity [21] and we ! ent in |
immediate conclusion from figs. 3 and 6 that dielectric loss and dielectric permittivity are di er ]
orthogonal axes if measured under the influence of the torque (9) even though ther® “". ... ¢
Langevin—Kielich functions. This is not an easy thing to see without FMD simulation, and ¢ nfeld ]
been unable to find any trace in the analytical literature of bi-axial phenomena due to the Roszbility 1
tensor, either of the type described in this paper or in ref. [5]. Clearly, this shows the predictiv® active |
of FMD in non-linear optics in general. The complex dielectric permittivity and complex reff ]
index are related simply by
(17)

~ "2
E=n",

- . . e (9)
i.e. the square of the complex refractive index is the complex permittivity. It follows that the tord
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produces birefringence, i.e. BBFD. In future work we hope to be able to solve the Maxwell equations
for BBFD and for the novel bi-axial phenomena of ref. [5] in order to give quantitative estimates of the
bi-axial birefringence in terms of the relevant Rosenfeld tensors.

In order to observe BBFD experimentally, the following simple configuration is suggested. No
doubt there are more sophisticated variations which might suggest themselves to interested experimen-
talists.

We note from the FMD results of section 4 that BBFD is independent, at 60 THz, of the left or right
circular polarity of the electromagnetic radiation passing through the ensemble in the Z axis.
Furthermore, the torque (9) is quite different in nature when we use plane polarised radiation. The
Jatter has equal amounts of right and left circularly polarised radiation, so that the cosine terms in eq.
(9) vanish, leaving only the sine terms. (The cosine terms change sign for fully right and fully left
circularly polarised plane waves, but the sine terms do not.) It follows that the refractive index
measured in axis Z by the incoming plane wave will be measurably different in theory when the
radiation is circularly polarised as opposed to linearly (or incoherently) polarised. This is the basis for a
very simple experimental measurement, therefore, of the effect of the torque (9) and of the new effects
presented in ref. [S]. In this configuration, the refractive index in axis Z should be the same,
furthermore, for right and left circularly polarised radiation. To observe frequency dependent effects
specifically, and in isolation of those of ref. [S] a pump probe system must probably be used, in which
the pump laser tuned to frequency o, induces birefringence which is measured by the probe laser [22].
In BBFD and in other cases where frequency dependence has been studied by FMD [1-6] we note that
the dependence is an intrinsic property of the non-linear electromagnetic development, and derives
from products such as E,B; whose phase doubles, thus generating the “second harmonic” cosine and
sine terms in eq. (9).

It may be possible experimentally to use the fact that BBFD exists in linearly polarised radiation
through the sine terms of eq. (9), but vanishes in linearly polarised radiation in the effect of ref. [5], the
implication being that any residual birefringence observable with linearly polarised plane wave must be
due to BBFD.

The frequency dependent torque considered in this paper probably does not give any measurable
reorientational effect at visible frequencies of the pump laser, because the molecules of the ensemble
may not be able to follow the applied electromagnetic field, and in consequence there is probably no
change in the equilibrium refrative index for pump lasers at these frequencies. However, for a low
frequency pump laser (figs. 8—-10) we have

w,7=1, (18)
where 7 is a characteristic relaxation time of the molecule, and the effect can probably be observed as a
change of the refractive index measured by a probe beam at the frequency w. The value of the

refractive index changes at the frequency 2w. From a solution of the Maxwell equations, we have found
that the following ensemble averages contribute to the refractive index s, (w):

(Bix) + (Bsv) . (Biw) = (Bix) >

i) = Y s ) YD

(19)

The statistical averaging in all terms of the above must be done with the statistical distribution function
v(£2, E, B), which should be obtained from the kinetic diffusion equation [23]. The expression we have
obtained for the change in refractive index due to our frequency dependent torque is
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ni:1+Ze_ <axx>+<ayy>+1(<axy>_<ayx>)+z(< ay) — (‘a¥y
0

(a4 (Ta0) = L (a%) + (aly) (M)~ (e | (

In this expression, the nonlinear terms due to nonlinear distortion of the electronic orbitajg gre
included. The nonlinear terms in eq. (19) all refer to orientational effects of our nonlinear torque, a
_it can be seen in general that the refractive index is different for right (+) and left (=) circu
polarisation. It is significant that this difference is observed through correlation functions ip ¢
computer simulation when the pump laser frequency is low (6 MHz pump laser), where the molecy
can follow the field, but not at high frequencies (60 THz pump laser). The analytical expression (19)
the refractive index was derived from a solution of the Maxwell equations for a probe beam willi
angular frequency w and a pump beam with angular frequency w,. ’
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