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Abstract

The angular velocity and orientational auto correlation function
of a disk are evaluated using a four-variable Mori formalism. It is
pointed out that the equivalent three-variable formalism is formally
identical to the inertia-corrected itinerant oscillator model developed
recently by Coffey et al[a]. Therefrom a sound physical interpretation
can be given to the four-variable model in terms of a disk (in the 2-D

case) surrounded by two annuli, the outermost of which undergoes

rotational diffusion.
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Introduction

The itinerant oscillator as a model for diffréétional motion in
condensed fluids has been a consistent theme in the literature over the
past decade. It was first propounded by Hill[l] and extended by

wyl1gel2] (31 [4]

and Larkin Lately, Coffey et al have developed a more
realistic, inertia-corrected version 1in two dimensions. An alternative
approach to the same problem is that of generalizing the Langevin
equation so that the friction coefficient is replaced by a memory kernel.
The auto-correlation function (a.c.f.) may then be expanded in a Mori

. . . [7] .
continued fraction which has been shown to converge under the right

e
conditions. The purpose of this latter is to use such a continued
fraction expansion to estimate the angular velocity a.c.f. for a disk,
. . . (5]

and then to use the recently derived relations of Lewis et al to

. . 6 .
calculate the orientational a.c.f. therefrom[ ]. It transpires that

the angular velocity a.c.f. of Coffey et al is formally identical to

'three variable' Mori theory, and therefore a clear physical interpretation

of higher order truncations suggests itself.

Theory

Consider the Mori/Kubo generalisation[7] of the Langevin
equation for a disk undergoing itinerant torsional oscillation in a
plane. Neglecting dipole-dipole coupling[8] we have in the field-free

H]

case, for a moment of inertia I:
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where T i“ﬁik is the couple due to extraneous random torques, and the




factor:

is the frictional couple arising from the medium. We emphasize that

T

\ . is Gaussian and non-Markovian. Ko, the memory function, is

defined by:
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Solving eqn(l) leads to the following in Laplace space (p):
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Since . -. is a variate that obeys the same type of stochastic

differential equation as (1), it follows that:
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where K; is the memory function of K,. It has been shown[4] that the

'three variable truncation' of equations (4), i.e.:
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yields the final expression for . ': ‘', the power adsorption coefficient,

formally identical to the inertia-corrected itinerant oscillator model
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of Coffey et al, although these authors usad an entirely different
starting proposition. In this letter we propose to extend the Mori
[91]

theory tc the next order of truncation , using:
R - (5)

The physical significance of this is discussed below, but first we note

that eqn.(2) now reads:
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where o T PR A s, S0 that in inverting
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the transform in eqn. (6) we need to solve a quamtic in the denominator,

viz:
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Writing this as:
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then it has the discriminant :
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The equation can be reduced by the substitution IR O to:
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Now a quantic with q,r,s real;

1 o and . , has:




s

(i) 4 distinct real roots if ¢ and 4s - q2 are negative and
003

(ii) no real root if q and 4s - q? are not both negative and
£ 0

fiii) 2 distinct real and 2 imaginary roots if % J:O;

fiv) at least 2 equal real roots if o= 0.

-
It is quite easy to solve the quaptic numerically to any degree

of accuracy f(using the N.A.G. library available on most computers)
given the above rules, whence it is possible to discuss the analytical
forms the auto-correlation function of angular velocity will take.

In case (i) we have:

(7)

where D, are soluble in terms of the distinct roots ﬁﬁn by taking

partial fractions. In case (ii):

(8)
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where the roots are ( ...
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and the x factors are all expressible in terms of .

Similarly in case (iii):

and finally, in the fourth case, Lcl '2, at least, in eqn.(9).

It is possible now to calculate the orientational autocorrelation




function C,(t) of the dipole unit vector u (and thus the

wave spectrum) by use of the relation:

5
derived recently by Lewis et al[ ].for the disk,
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Thus in case (i):
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with a simple charge for the fourth case, In each of eqns. (11) - (13)

there is no linear or  term in the Maclaurie expansion of the exponent,
and at very short times, each reduces to exp ( ARSI S ),
the autocorrelation function for free rotation in 2 - D, At long times

the form in each case is exp ( - * , g ) where . is the

equivalent of the Debye relaxation time.

Discussion

The three variable formalism represented by the exponential
truncation at K; (t) may be given physical significance by reference[4]
to the Coffey/Calderwood model. Here it is assumed that the mechanical
system consisting of the vibrating central molecule and its cage of
neighbours may be represented by an annulus which is free to rotate about--
a central axis perpendicular to itself. Concentric and co-planar with
the annulus is a disk (of diameter less than the annulus) which is free
to rotate about the same central axis. The disk carries a dipole jfg
iying along one of its diametes whose orientation is specified by an
angle (t) relative to a fixed axis determined by the applied field
direction, while the position of a point on the rim of the annulus is
specified by an angle (t) relative to the same fixed axis. The

mechanical interaction between the central molecule and its neighbours

is represented by a restoring torque acting on the dipole and proportional

b
e
~

to the displacement () - - (B). In our notation, SN R
3

the angular frequency of the disk when the annulus is held stationary;

5. S
: ’ Yoy , where I, = moment of inertia of the

il

annulus, I, = that of the disk, . e, i ; where :T*D

is the Debye relaxation time,




In extending the Mori series to the four variable level by truncati

exponentially at K,(t) we have created the following equations linking

" (t) to a Wiener process - ,(t).
(14)
- o (15)
S B (16)
Now : ;(t) is Caussian and Markovian whereas <7 (t) and :'(t) are

non-Markovian, although still Gaussian by the central limit theorem.

Thus any fluctuations - -° (") and - -'('5 induce in the surrounding

LN

LI

molecules flcutuations which after a time cause further ones in
and . So . (t) or . . (t) each remains partly stationary in
[11]

space . On the other hand o 1:(‘) flows through the ensemble,

since being Markovian it must not affect .  again, and thus - Ei (t)

3

is propagated, as would be - -j(t) for the Debye sphere, where C_\(t)
is a single exponential with a characteristic time S Further,

is a characteristic operator of one or a small number of molecules -
typically the nearest neighbour cage, so that . (t) depends on the next-
nearest neighbours etc. To say that . (t) propagates through the
fluid is to assert rotational diffusion for the nearest neighbour cage

(the annulus of the model above) and thus if .  (t) propagates, the

next-nearest shell must be undergoing this type of motion. So we have



3.
in the four-variable theory a disk surrounded by twe annuli (in two
dimensions}, so that K,(") is a function of all three moments of inertia
and of the disk proper frequency »Z;. Obviously the formalism can
be extended although one cannot (by a theorem of groups) solve analytically

higher order polynomials than the quahtic denominator of eqn. (6).
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