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ABSTRACT

Tl}\e recent discovery of the photon’s magnetostatic flux
quantumn [&“} is explored in new fundamental directions. It is
shown that there exists a novel symmetry duality in Maxwell'’s
equations in free space which sh&ws that the classical equivalent
of ;'ﬂ , the axial vector E\T , can be defined simultaneously in
terms of scalar and pseudoscalar magnitudes (Bo\) +m'u:l (BJ_ .
respectively. In the guantised field this is interpreted as a
duality in the photon’s angular and linear momentum operators .'I\
and ’;‘ respectively, each of which can be used to define g“ . This
is shown to be a generalization for the photon of the
fundamentally important de Broglie wave particle duality. Some
consequences for elementary particle theory are discussed
gualitatively. It is argued that the operator :TF , Or its

classical equivalent, B is responsible for other fundamental

e
phenomena of physical optics, among which are ellipticity in an
electromagnetic plane wave, ellipticity developed in the
measuring beam of the Kerr effect, and circular dichroism, each
of whose wheee origins are therefore shown for the first time to
be magneto-optic and fundamentally dependent upon g w’ In

general, the ubiquitous, pseudoscalar, Stokes third parameter 53

is shown to be directly proportional to the pseudoscalar

magnitude (&;\ . and the guantised third Stokes operator, 53
recently introduced by 'I'anas/ and Kielich (1) is proportional to

N
the operator B'[r .




1. INTRODUCTION.
It has recently been demonstrated theoretically that
A .
there exists an operator B“, of the quantised electromagnetic

field that describes the photon’s magnetostatic flux density:
A

B‘_“_ % gn -3 ; — (\)
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Here B, has been interpreted (2-5) as a scalar magnetic flux

density amplitude of a beam of circularly polarised light
A
consisting of one photon, and J is the well known boson operator

{(6,7) describing that photon’s guantised angular momentum. The
n

classical equivalent of Bﬂ, is a novel axial vector BTI' which is

directed in the propagation axis of the beam. In this paper it is_
demonstrated using elementary tensor algebra, and from inspection
of the Maxwell equations of the classical field, that there is

another possible interpretation of the scalar amplitude B

a f

designated henceforth by (B‘) 4 where the + subscript is to be
interpreted as "positive to parity inversion". 1t turns out that

B_ can be interpreted both as a scalar and as a pseudoscalar

guantity designated OB:)_ , where the subscript - means "negative
to parity inversion". This is designated "symmetry duality", and

N
is shown in this work to imply that BTT can be defined

simultaneously in terms of the photon’s angular momentum operator
N N
J and linear momentum operator p, a result which is a

generalisation of a keystone of wave mechanics, the de Broglie
A
wave particle duality ( 6 }. The latter is linked through B_ to

m
a symmetry duality in Maxwell’s classical equations.




It has already been shown theoretically [ &-5 ) and
experimentally ( 9 , €, ) that circularly polarised light can
magnetize, leading for example to the inverse Faraday effect (10-12
} and novel, potentially very useful, light induced shifts in NMR
spectroscopy {%,% ) in one and more dimensions. The existence of

"
the operator BT(' and its classical equivalent B ;, makes it

much easier to interpret these magnetization effllts by treating
circularly polarised light as a "magnet" generating this novel
flux guantum per photon. The E&T concept also makes it relatively
straightforward to forecast the existence of novel spectral
phenomena such as optical Zeeman, anomalous Zeeman and Paschen
Back effects ( ° |}, an optical Faraday effect and optically
induced magnetic circular dichroism { 4 }, an optical Stern
Gerlach effect, using a focused laser beam to produce a light
induced magnetic field gradient, optical ESR effects, optically
induced effects in interacting beams, such as a beam of
circularly polarised photons reflected { S )} from a beam of
pelarised electrons, and so on. All these effects can be thought
of as arising from the replacement (or augmentation) of an
ordinary magnet by or with a circularly polarised laser. These
theories allow scope for the development of several novel
analytically useful methods.

In this paper it is shown that‘gﬂ is related
directly to the ubiquitous { |Y4- ), pseudoscalar, third stokes
parameter 53' of the classical electromagnetic plane wave, which

becomes in guantum field theory the third Stokes operator of

/
Tanas and Kielich {1). Therefore it follows immediately that




several well known phenomena of physical optics can be re-~

4 A
interpreted fundamentally in terms of the operator BTT
. Examples include ellipticity in the

, Or its
classical equivalent 54‘
plane wave, ellipticity developed in the measuring beam of the
electrical Kerr effect, and circular dichroism, which are shown
in this work to be naqnatu—opticlphananena, Therefore, not only

n
does B allow this re-~interpetation, in both classical and

quantu:(fiald theory, but it also allows a link to be made
between de Broglie wave particle duality and symmetry duality in
the classical Maxwell equations. It appears, therefore, to go to
the root of physical optics and field theory.

In Section 2 the mathematical basis of symmetry duality
is developed with elementary vector and tensor algebra, before
embarking in Section 3 on a discussion of symmetry duality in the
link between E'rand S . Section 4 develops the link between
wave particle duality anﬂ the symmetry duality in Maxwell’s
equations dmonstrated in Section 3, and discusses gqualitatively
the implications for elementary particle theory. Section 5
develops the link between Eﬁr and 53 into a novel explanation
for ellipticity and circular dichroism in physical optics.




2. SYMHETRY DUALITY IN THE VECTOR PRODUCT OF TWO POLAR VECTORS.
It is well known that the components of a vector which
can be written as the cross product of two polar vectors do not
change sign under parity inversion ( S) and that the vector so
formed is an axial vector { |5}, or pseudovector. The conjugate

product of the classical electromagnetic field Ca ’5] L

1. Exgt - a(edie,, —
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is an axial vector, therefore. Here, ,_{3_1_ is an axial unit

A -2
vector, positive to P, and the guantity (t‘)f is a scalar, also

N M (
positive to P. The overall motion reversal (T) symmetry of 'ﬂ' "
)

—

is negative, and it is natural to define ,_Q_, + as a T negative
A

unit vector: so that (_EE).,. is a T positive scalar.

It appears at first sight that these definitions are
both necessary and sufficient for the complete definition of the
axial vector Em? but mathematically, there is an alternative,

which is revealed through writing any arbitrary axial vector as

il

< o= Cy & C.e- — (35

.‘.

A
C.l. and £+ are respectively P positive scalar and unit

where
axial vector quantities, and where Ce moid £
respectively ? negative pseudoscalar and ’1; negative polar unit
vector quantities. The overall ? symmetry of the complete axial

are

vector E_ia positive in both cases.
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This seemingly mundane observation in elementary vector
analysis has far reaching conéequences in the theory of the
classical and quantised electromagnetic fields.

In tensor algebra, the general vector cross product
QL A x B is written, as is well known, with the third rank
antisymmetric (or alternating) uﬁit tensor, ESde , known as

the Levi Civita symbol {_% \S )3
Cy = & 6 (A8, ~AyB) = 4 €apr Sy =

M

where the P symmetry of S is negative, so that (?Pf is a

dFy

P negative antisymmetric polar tensor of rank two. Evidently, cd__
P

must be P positive, and is the rank one axial tensor (i.e. an

axial vector). However, C:Fx' can also be written |{ \S ] as

C. ~-i€._¢C — (5)
PT PI -
N
where GEFI is the P positive, axial, unit antisymmetric tensor

of rank two, and C_ is the pseudoscalar of eqn. ( 3 ). Egqn ( 5 )
shows that the polar antisymmetric tensor of rank two can be
reduced, guite generally, to a pseudoscalar, a particular result
of a generalization well known ( |S } in the relativistic theory
of the classical electromagnetic field. Note that cﬁ? is purely
imaginary from the hermitian properties of the general second
rank tensor, which can always be written as a sum of real
symmetric and imaginary antisymmetric parts { \S ).

Therefore
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where G‘y_ is the rank one axial unit tensor, pisitive to ?, and
c+ is a P positive scalar. Recall that C_ is a P negative
pseudeoscalar. Egns. ( 3 ) and ( —T ), using vector and tensor
notation respectively, are expressions of that which we denote
"symmetry duality™, a purely mathematical result which shows that
a scalar and pseudoscalar may both be used to define an axial

vector. Clearly, if we take the magnitude (|C|) of the axial

vector C in egqn ( 3 ) we obtain

2
Ca-.'tC'C'i Cf‘c.. }

1< | =|ZC‘ST"I= <) = |C

so that the positive parts of the scalar C+ and pseudoscalar C_

are equal in absolute magnitude. This same result can be obtained
from the tensor egn. ( [ ) by taking a particular Z component:
C‘Z. > + 7+ ( XY WY Gzyx ¥,
— L)

where the well known Einstein convention of summation over

L
2

repeated indices has been used on the right hand side. With the

component definitions: étx:’ - 1') ém’ = 4 - G’L‘f‘x.

we obtain

- -y €, 01




C, ¢ « C_€ — [ 1=

where

|

C - z &
C'L- - CZX?‘ fo ’ ezfx Vx“OD |

is the Z component of the g'negative polar unit tensor of'rank
one, E&,.‘ Note that egns. ( > ) and ( |2 ) are identic;lﬁ :;Jﬁ?
the considered Z components of_E: Egn. ( |©), which is a direct
and fundamental consequence of elementary tensor algebra, again
shows the symmetry duality between scalar and pseudoscalar in the
definition of the axial, or pseudo, vector.

It is now possible to apply the purely mathematical
principle of symmetry duality to the classical, non-relativistic
(or relativistic), field to obtain novel information of
fundamental importance in physical optics, particularly in
respect of a g~pcsitive, ghnegative, axial vector, a novel
magnetostatic field, B, { & — S ) associated with the

electromagnetic plane wave, or in the gquantised field, the

N
magnetostatic flux density operator, B , of the photon.
m



3. AN EXAMPLE OF SYMMETRY DﬂliITY, THE RELATION BETWEEN Q“. AND

THE STOKES PARAMETER 83 "
Consider the classical electromagnetic wave in free
space, s0 that the real scalar refractive index is unity. 1t

follows from Maxwell’s equations for a plane wave that

E, - <&, — D

5 [
where E  and B, are Pand T positive scalars, amplitudes,

respectively, of the electric field strength and magnetic flux

density. The intensity of the wave is defined in free space by

T. - € ¢ &2 M ¢ 3 T

where €’° is the free space permittivity ( é ) in S.I. units, and
¢ the speed of light in vacuo. With egns ( \2) and ( 12), egn (Q

] can be rewritten as

T alE)ee: By — (W)

where we have defined the magnetostatic flux density vector B - [a "51

of the classical electromagnetic plane wave in free space:

be = <B°>+ =+ — A&,

A A
where ,'?__,‘_ is a P positive unit axial vector. The overall T

A
symmetry of B‘ll' is negative, and its overall P symmetry is

positive. In the introduction we have given an account of the

|©
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role of B . in the re-interpretation of well known effects, such
as circular dichroism, and elliptiuity, and its mediating role in
new effects such as optical NMR and ESR {9 ), optical Faraday

{ v ) and Zeeman { 2 ) effects, optical Stern Gerlach
effects, optical Compton scattering { S } and so on { R~ 5 ).
Its quantised equivalent is the m.agnetostatic flux density
operator of egn. ( 1. ), in which (Bﬂ)‘_is defined as the ? and J';"
positive scalar magnetic flux density amplitude of one photon.

Again, as in SeéEon 2, it would appear at first sight as
if the definition of the seemingly mundane quantity B, as a {; and
g positive scalar is sufficient. Remarkably, however, this is not
the case, there is an alternative definition possible of the
novel classical vector 9,1 which uses B as a pseudoscalar and
not only does this emerge naturally from the Maxwell equations \
for the plane wave, but also provides a uni:uza,l1 link between 31_ |
and the well known third Stokes parameter Sy {f‘l“m.’ 15},

These conclusions emerge straightforwardly from the well
known equations linking the E and B vectors of the classical
electromagnetic plane wave in a medium of refractive index n,
defined through the well known classical wave vector, 1 , a Q
and g negative polar vector directed in the propagation axis, 2,

of the plane wave { / }:

K =~ @ n - N ™2 -*(”’)
- e ™ ) v

Here @ is the angular frequency in radians per second of the
plane wave, as usual. Maxwell’s equations give the well known ( /

}:

A
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In free space, the positive absolute magnitude of the P and T

positive scalar, n, is unity. Using eqn. ( | [) the conjugate

product is
- _ ¥
ExE = =-c¢ \-.x(nxﬂ -'\‘:;.@L
—~ — '_3
&
A IN \
We note that the vector n is a P negative, T negative, polar —— (\ﬁ

vector, defined as usual {( [ } as a propagation vector whose
na e
scalar magnitude is equal to the‘hcnfgi refractive index, n: and

* A ~ )
that the dot product E«B is a T and P negative pseudoscalar. The
equation ( '¥) reduces to

(E,B.C e - En “-C— : _?A:_ — (\qk\
o Ja ¥ T = e '

I;_/—__} LY
Q“ﬁ);l FJQM-:«.&.[M J
Scalax """':‘jd rn"lw
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in which we have designated the various symmetries. It follows

algebraically that

(8), 2. = (%) - (@9

_""e-...__,,/*.

which can be rewritten in the notation of Section 2 as an example

of symmetry duality in the Maxwell equations:

(E)‘_w*- =US.>__E,.. )| (9\)

L = N
~— —:_ -
™.




This shows that classical vector 3“, can be defined
simultaneously in terms of the unit axial wvector £§+, and the
unit polar vector £ _ which is related to the well known
propagation vector ES , the photon linear momentum. In free

space, with n = 1:

g‘ﬁ' h (B'*)i-’g—i- b (B°)—?_.. -(B-»)_.C

——
—

>
—— (33)
demonstrating a duality between the classical angular and linear
momentum of the plane wave. We shall see that this is none other
than the classical equivalent of the well known de Broglie wave
particle duality for the photon in the gquantised field. .
Before making the transition to the guantised field,
however, another fundamentally new result emerges when we

Cis]
consider the well known definitioqiof the Stokes paraneterééz) :

cef_e ¢! ;uédp(g‘b_—ﬁm)

“f i

()= (). — (3

is a pseudoscalar quantity implying inter alia the symmetry

i
l

s0 that

duality

TT'(‘Q - 3 (}Efi)+ : Ei-f - EiGS;li fé_: — (:252)

—

It follows directly that the magnetostatic vector B _ can be

—

defined in terms of (83\ as follows
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and we find that the role of B, as pseudoscalar is none other

than the Stokes parameter S
3 in Hee Sges
positive scalar quantity. Thus B“ can be deflnedlthruugh the

symmetry duality

(B ) < = (SJ) n ( SJ)
o *— —— + p— P

QEQC. a.\-#(_
where the unit polar vector ™ can be identified with the unit
vector fé._ of this section.

We thus forge a novel and fundamental link between the

pseudoscalar magnitude of B“ and the pseudnscalar(?s).

B, = B)e. @) e, —0GO

A A
scaled by an appropriate P and T

- (aﬂ) |
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4. SYMMETRY DUALITY AND WAVE PARTICLE DUALITY FOR THE PHOTON.

Egn. (A, ) of the introduction shows that the photon’s
novel magnetic field operator, gﬁ , is directly proportional to
its well defined ( 6 } angular momentum boson operator .’I\ through
B, in its scalar representation; (B,) + ! interpreted as the
magnetic flux density amplitude of a single photon. The latter is
a massless lepton which propagates at the speed of light and is
not localised in space { |k ), unlike a massive lepton such as
the electron or proton. These well known properties are contained
in egn. {1 ), in that B varies with intensity I_ for a beam of
circularly polarised light containing one photon, and therefore B >
for one photon depends on the be?\n cross section, ?n i‘j’i'lite area.
The eigenvalues of the operator J are well known to bel‘ld_- 23,
there is no HJ = 0 component fro: relativistic considerations (6""]
) . Therefore the eigenvalues of B,“, are '_\'.(BD _".: where (Bb*_ is a
scalar, the positive eigenvalue corresponds to one particular
circular polarization, and vice versa ( | ), as in the well known
convention for the operator 9\

We now use the well known result (£, ) that the

eigenvalue of the linear momentum operator, Q, of the photon is:
p =8> =% — @8)
e

where )< is the wave vector as defined clasically in the
preceding section. It follows straightforwardly from egns. ( 23 )
and (2% ) that in free space (n = 1):




6.

R ). 5 - (8).c ¢
- - < — (%)
B'ﬂ' B" 4- Q - = ; f ( a\
Y n 4
which expresses the duality of egn. ( 23d) in terms of guantum
SN
field theory, and shows that the B“ operator of the photon is
simultaneously proportional to both its angular and linear

momentum operators. Egn. (d“\) summarises a duality in symmetry,

linear / angular momentum, and wave / particle character. \_;_,th

the results

HE)) ~sHW) ] — o9

gUB)) - =P (), |

egn. (349) implies the free space relation
N

p = ne 1553 n= 4, — (;3l:)

-

~
The expectation value of p is therefore given by the expectation
N

value of J, which is E’K Taking without loss of generality the
positive eigenvalue ‘F, we hava} me n o= ’l.,

? = @Y :gf‘- - - (jB;E)
c :
which is the de Broglie wave particle duality for the photon.
We have therefore succeeded in relating directly the well
known de Broglie wave-particle duality of guantum mechanics to
the novel symmetry duality (ad) of classical electromagnetic

field theory. It has also been shown that the novel flux quantum



T,

A N n
Bﬂ, is definable simultaneously in terms of J and p, one operator

being directly proportional to ﬁhe other, implying that both must

. N
be quantised in the same way. In a sense therefore, B is the

keystone of de Broglie‘’s concept of duality for the p:;tom.
Furthermore, contemporary elementary particle theory
argues that the photon is a chiralgentity, a massless lepton
which travels in any frame of reference at c, and whose
chirality, in consequence ( \'Tt, is well defined in terms of the
eigenvalues of Dirac’s 135' operator. The chirality of a lepton
with mass (i.e. a "massive lepton"™) such as the electron is not
well defined, leading to the idea { \ |} that mass itself is ill
defined chirality. Well defined chirality in the photon can be
thought of as being a consequence of superimposed linear and
angular momentum, and egn. ( 4“\ ) shows that there is a duality
between these two fundamental guantities. It appears therefore
that the novel 2“_ operator of the photon is a true chiral
influence as defined by Barron | "7 ), and is therefore
fundamentally different in nature from a magnetostatic flux
density, such as a magnetic field generated in an electromagnet.
The latter is now known to be an example of a false chiral
influence { \' | ), and cannot, for example, be a cause of
enantioselective synthesis. This is in contrast to the circularly
polarised electromagnetic field, which le Bel in 1874 ( 1% )
conjectured to be a truly chiral influence, and which is now
indeed well known to influence enantioselectivity in chemical

[

reactions. The definition of the B“, operator in eqn. ( 29 ) also

allows insight to the symmetry of natural optical activity, i.e.



circular dichroism and optical rotatory dispersion, as developed
in the next section. ‘

It may be conjectured, to end this section, that a
magnetostatic flux gquantum ;I is always carried by a massless
lepton whose chirality caﬂ be precisely defined as the
eigenvalues of the Dirac )Is operaiator; and conversely that the
massive lepton does not support ;

A m
def ined aiganv@ﬁues of 15 . This conjecture would imply that
~

and does not have precisely
fundamentally, qw is always a consequence of the absence of mass.
It would therefore follow that the neutrino @nd anti-neutrino)
carries a :1 field, but that the electron, neutron and proton do
not. However, it is not clear whether the neutrino has a
classical counterpart such as the classical electromagnetic plane
wave, the counterpart of the photon, and if the parallel between
photon and neutrino can be carried further, it would appear that
the neutrino must also be thought of as unlocalised in space.
This would imply inter alia that localisation in space implies
the presence of mass and the absﬁpca of well defined chirality
(or well defined eigenvalues of 15), and that the absence of mass
implies the absence of space localisation. Carrying the argument
further, wave particle duality in a massive lepton such as the
electron has been observed, because an electron beam can be
diffracted, for example, but since the electron is localised and

does not have well defined chirality, its wave nature must be

fundamentally different from that of the photon, and in
n

conseguence, no B“, can be constructed or defined for the

electron. Wave particle duality in the electron is therefore



: fundamentally different in nature from duality in the photon. The
electron has a magnetic dipole'ln-ant as is well known, and which
is proportional to the electron’s spin angular momentum operator
through the gyromagnetic ratio. We therefore conjecture that a
massless lepton cannot support a magnetic dipole moment, because
its effective gyromagnetic ratiolﬁould be infinite, but can
support a magnetostatic flux guantum. The opposite is true for a
massive lepton, With these assumptions, the g.

N
massless lepton would always be able to form an interaction

operator of a

hamiltonian operator to first order with the magnetic dipole

moment operator of a massive lepton, an example being a photon

beam interacting with an electron beam ( = ), or a neutrino

beam with a neutron beam and so on, giving rise to measurable
o effects in principle.

The inference overall, therefore, is that a beam of
massless leptons, for example photons or neutrinos, can magnetize
but cannot be magnetized, whereas a beam of massive leptons
cannot magnetize but can be magnetized.

The charge conjugation symmetry operator can be defined
as g (which operates to reverse the sign of charge), and with
this definition we recall the fundamental Luders Pauli Villiers

Theorem ( | [ }

A
NN 33
cev = . — (3
n
As is well known, the violation of P has been observed { | |} in
(4
a number of different ways, the violation of T in only one
N

critical experiment { | |}. The violation of P leads to the result

\q




that the space inverted enantiomers of a truly chiral entity such
as the photon or neutrino are not degenerate, or exactly the same
in energy, because of the existence of the g‘violating
electroweak force { ! | }. In contrast, the space inverted
enantiomers of a falsely or "pseudo" chiral entity, such as an
ordinary magnetic field, are praﬁisely the same in energy ( \7] }.
Thus, it is important to note that the true enantiomer of the
photon, or neutrino, is NOT generated by space inversion, or by
application of the g'operator, i.e. by reversing the linear
momentum and keeping the angular momentum the same. Assuming that

A
the photon is uncharged, so that C has no effect, its true or

exact enantiomer must be generated by simultaneous Q and 1"\
violation in order to conserve the validity of the Luders Pauli
Villiers Theorem ( 2% ). The true enantiomer of the left handed
photon is presunab{s, therefore, an object which must be
designated the right handed "anti-photon", and there is a very
emall, but non-zero, energy difference between the left handed
photon and the right handed photon. If the right handed photon is
to be regarded as having a different energy 4§Q¥ the left handed
photon, then either: a) Q'has been violated and T and C have been
conserved; or b) glhas been violated and ;'and slhava been
conserved. Assuming that g'has no effect on the photon, because
it is uncharged, the combined operation g;lnust be used to
generate the right anti-photon from its true enantiomer, the left
photon, and vice versa. The photon is an object whose chirality
is generated only as a result of its simultaneous translational

[
and rotational motion, and the novel B‘r operator is a

a0 .



