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Circular and axial birefringence due to net angular momentum is introduced in
analogy with the Faraday and Wagniére/Meier effects. Spin induced circular
birefringence conserves reversality and parity in both achiral and chiral ensembles,
whereas the axial counterpart violates parity in achiral ensembles, and is
supported in consequence only in a chiral molecular material. The new effects are
treated with novel molecular  property temsors in  the nonrelativistic
approximation, and distinguished carefully from the relativistic phenomenon of
rotational aether drag.

Introduction

The theory of the electrodynamics of moving bodies implies translational aether
drag, first described by J.J. Thompson!, resulting in a tiny circular birefringence.
This was later recognised as a relativistic phenomenon and was analysed by the
young Fermi2, whose result was correct but whose derivation, however, appears
to be in error,’ a mistake in the basic electrodynamics is cancelled, according to
Playcr,3 by the use of an incorrect form for rotationary power. We shall forgive
young Fermi for this, in view of later contributions. R.V. Jones meticulously
measured* the analogous relativistic phenomenon of rotational aether drag, which
was analysed theoretically by Player.? Rotational aether drag is experienced by
electromagnetic radiation propagating in Z through a medium (such as a long
glass rod?) spinning about the same, Z, axis of the laboratory frame (X, Y, Z). The
source of the radiation is in the same frame, and Jones demonstrated
experimentally4 the presence of a tiny circular birefringence whose origin is
exclusively relativistic. ,

In this paper, circular® and axial® 10 birefringence is introduced whose origin
is NOT relativistic, which is caused by net macroscopic or microscopic
angular momentum, and which is mediated by novel molecular property tensors
in achiral and chiral molecular ensembles. This new nonrelativistic ghenomenon
should be distinguished from the outset from rotational aether drag.>* Section 1
demonstrates that the effect conserves parity (P) and reversality {T) under
appropriate circumstances; Section 2 introduces the mediating molecular property
tensors; Section 3 provides expressions for the new effects.
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1. Conservation of parity and reversality

The Wigner principlr;:s“'12 of conservation of parity and reversality are
applied in direct analogy to the Faraday and Wagnigre Meier effects, because the
reversality symmetry (T) and the parity inversion symmetry (P) of angular
momentum (J) and magnetic flux density (B) are both the same. Both J and B are
negative to T and positive to P. Electromagnetic radiation propagates with wave
vector K in Z through a sample spinning about Z with angular momentum J. The
T operator reverses both K and J, so that their relative directions are unchanged.
T also leaves unchanged the circular and axial birefringence variables 011 -011)
and (M1 - N1). The first of these is the difference between the refractive indices
of the molecular ensemble measured with left and right circularly polarised
radiation, in analogy with the Faraday effect.l* The second, axial
birefringence,® 'Y uses unpolarised radiation, and is the difference in refractive
index measured with J parallel and antiparallel with K. T also leaves unchanged
the coordinate system itself, an achiral molecular structure, represented, for
example, by water, and a simple chiral molecular structure, represented, for
example by an cnantiomer of bromochloroflouromethane. The variables of the
motion reversed complete experiment, as defined by Barron,!? are therefore
relatively all the same, and the experiment is therefore realisable.

Parity inversion, P, reverses K but leaves J unaffected, so that their relative
directions are reversed. P leaves (841 - 1) the same but reverses (17 — M -
The coordinate system is reversed, but the achiral structure is indistinguishable
after P and proper rotation.!? P generates the opposite enantiomer of a chiral
ensemble, and is therefore not a valid operation of the point group R;(3) of all
rotations and reflections.!>-16 We conclude that circular birefringence due to J is
possible in achiral and chiral ensembles, and reverses sign with J. Axial
birefringence due to J is not possible in achiral ensembles,because P changes the
sign of the variable (n - n) while leaving the achiral molecular structure the same.
The P inverted variable and ensemble therefore bear an opposite relation to each
other in the parity inverted experiment, and therefore violate the Wigner principle
of parity conservation in the complete experiment.12 Axial birefringence induced
by J is possible, however, in CHIRAL ensembles, because P is not a valid
symmetry operation in this case because it generates a different ensemble (the
opposite enantiomer). The point group of a chiral ensemble (the opposite
enantiomer). The point group of a chiral ensemble is the group of all rotations,
R(3),1316 not R,(3).

2. The mediating molecular property tensors

Section 1 has shown that circular and axial birefringence due to a sample spinning
with a net angular momentum J conserves P and T in appropriate circumstances.
The effect is not disallowed by the fundamental Wigner principles and merits
further investigation. This is initiated in this section by assuming that the
molecular polarisability and Rosenfeld tensors, 10.12 4enoted respectively i and
oLy, may be expanded in a standard Voigt Born series in powers of J1 . Note that
this is exactly analogous with the accepted Voigt Born expansion'“ of these
molecular property tensors in powers of B. There is also an analogy between the
interaction hamiltonian due to B and J. The former is
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AH=m-B ‘ (1)

where m is the molecular magnetic dipole moment, and the latter in a classically
rotating sphere, for example, is

1
AH:LE(_’_}J @
21

where I is the moment of inertia. The quantum equivalent of this expression is

(AH) i = -2-}1(1 +1)

where 1 is the rotational gquantum number.

Considering the rotation of a molecule of an ensemble which is itself subjected
to an external, macroscopic, angular momentum IO, the total molecular anqular
momentum becomes

Tg=3+10
and the rotational hamiltonian becomes
7-7+21.30 30 50
AH, = 3
1 ( 21 (3a)
The interaction part of this hamiltonian is therefore
AHz __:!_“]‘i) (3b)

I

which consists of the dot product of the natural (or thermal) molecular angular
momentum J, which exists in the absence of any macroscopically imposed
angular momentum, and J® which is due to the externally applied net angular
momentum. Note that the latter is a constant, independent of the properties and
statistical dynamics of the molecular ensemble. The equivalent of "m" in the
classical hamiltonian (2) is therefore “~J/1". Also, the T and P symmetries of B
and JU are both the same (negative to T, positive to P) so that the P and T
symmetries of the mediating, higher rank, Voigt Born tensors are the same for a
perturbation caused either by B or by J, Again, in exact analogy with B, the
perturbation caused by 31 is a time odd influence, which ‘activates’ the time odd
tensors of circular and axial optical activity.!? In tensor notation:

o (10) = ey + 01+ ofha ... @
1 |
0o (1) = o + 030 4= SV +... )

where the effect of J on 0;; and Q; is mediated by novel molecular property
tensors of increasing rank. All molecular property tensors are complex in
general!Z17 due to their quantum mechanical origins and properties. The overall
Tand P symmelriesu'” on both sides of equations (4) and (5) must, however, be
the same for the real and complex parts of the expansion. For our purPoscs it is
il *+ . . - 2
sufficient to use the standard semiclassical Rayleigh or Maxwell theory ' to solve

for(81¢ - 817 and (17 - nypdue to JU, the Taylor expansions are truncated at
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first order in J®, and the property tensors written out in terms of real (single
primed) and complex (double primed) components

oy, =04, — iog, (6)
oy, = a;y - ia;’u ()]
) .
asy)k = “fgk) -1 “{;1(1:) @)
and so on.

In analogy with the theory of axial and circular birefringence due to B, we
shall also require the Voigt Born expansion of the electric dipole/electric
quadrupole molecular property tensor'Z AUk as follows

A1) = A+ AU+ ©)

Note that the mediating tensors in all of these Voigt Born expansions are well
defined quantum mechanically. For example, the tensor iy can be defined by an
expression similar to that in equation (4.9a) of Barron and Vrbancich.” Specific
consideration of this is given in the Appendix.

3. The circular and axial birefringence

Expressions for axial and circular birefringence from the above Voigt Born
expansions can now be deduced by a straightforward adaptation of the standard
theory of the Faraday and Wagnigre Meier effects’-12. This uses the zeta tensors

ng = C;jk - i‘;;k 10)
In the presence of a time-odd influence, such as JO, all components of the zeta
tensors contribute!? to axial birefringence, due specifically to Jo

a) Circular birefringence

This is the difference between the real refractive index of the spinning sample
measured with left (L) and right (R) circularly polarised radiation. The
corresponding difference in the imaginary parts is the circular dichroism. From
the Rayleigh scattering model of refraction, as developed by Barron, 12 and also
from the Maxwell equations, the real parts of the refractive index of a sample as
measured by right and left circularly polarised radiation are, respectively

=1 N[t 1)+ e (1) an
0N+~ Uee () + G () + -]
n; =1+%%02N[Cqm(f )+ o (f) (12)

s (NN + AN+ L+ ]

The corresponding imaginary parts are
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»_1
=7 #oczN[a/lxx(g )+ iy (g)

+0(2)+5u8)- (2005 (&) + T (@))+ -+ (13)

n_1
n, = zuoczN[anoc(g) +yy(g)

+ )+ le) + 28 + B2+ -] a0
Circular birefringence is defined as the difference
(n = 1) =0 () + Lo (D’ | (15)
and circular dichroism as
(n 1) =(er (&) + e (o™ (16)

Here | is the permeability in vacuo, N the number of molecules per cubic
metre, and ¢ the velocity of light. In these expressions, the molecular property
tensors have been split'” into dispersive (f) and absorptive (g) components. The
polarisibility, for example, becomes

o, - o, (f)+ied,(g) an
with the quantum definitions'?
aiy(1) =3 FoRel(nl N o) as)
o4y (8) =2 g0, Rel(nfu| ), ) a9

The circular dichroism in the power absorption coefficient (neper eml) is
A% =28 (nyr—n (20)
c
and the angle of rotation of plane polarised radiation is
1 0
O =—I—(n{ —n; @21
L9 ;-
where 1 is the sample length.

b) Axial birefringence

In this case the probe is unpolarised6'l°. not plane polarised as in circular
birefringence. It measures an average refractive index :

n,= —;—(ni +ny) (22)

and axial birefringence is the difference in this AVERAGE with J parallel and
antiparallel to the light beam in Z. From the theory of axial birefringence due to
Barron and Vrbancich? we have the following expressions for refractive and
absorption indices in unpolarised light
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n, =1+Z#062N[dm((f )"’ vy (f )

+C’m(f) + C;yz(f )] (23)
and My = ‘};ﬂo"lN[“fxx (2)+ oty (2)
+00(8)+ 5l2)] 24

which can be related to the real and imaginary parts of the complex
permittivityls'19 by

g =nt—nil e =2y, (25)

av

c) Circular and axial birefringence induced by J @

The circular birefringence is obtained from equation (15), and ensemble
averaged.g'12 In direct analogy with the semiclassical theory of the Faraday effect
(circular birefringence and dichroism due to B) we have nonrelativistic circular
birefringence and dichroism due to net angular momentum, JO given by

(nf — ) = poc* Ny, ( )+ (26)

where the time-odd tensor component otyy "(f) is activated through a Voigt Born
perturbation to first order in J, a time odd influence:

oz (£.09)= et (1) +az1P+... @

and ensemble averaged using an interaction energy due to J. In a rod rotating
about Z with angular momentum J,, such as that used by R.V. Jones,* this can be
expressed from equation (3a) as

v=(’TZ)Jg’ 28)

This leads to the final ensemble averaged expression for circuiar
birefringence due to net J z“), with

(%)=(%§i’—%%)(i.f,kk)l‘é’ 29)

It is directly proportional to J,(", and reverses sign with 1,10, The angle of
rotation is

o
9""113“’#00“]2)% (a{’,,(,,”( f) -—-IYZ-—‘%Q} (39)

The effect exists in all molecular ensembles, in analogy with the Faraday
effect. The terms analogous to the Faraday A, B, and C terms are obtained from
equation (30) as in the standard theory of the Faraday effect.'? An order of
magnitude estimate of the effect can be made from equation (30), using the
relation

1 10 @n
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where Q, (1 is the angular velocity of the spinning sample, for example a
rod as used by R.V. Jones.* In equation (30) we have kT = 414 x 102 J at 300K;
I, the molecular moment of inertia, is taken typically as 500 x10~%7 kg m?. Using
N =6 x 1026 m™; pg = 47 x 107F m? A% ¢ = 3 x 10® m s71; a net angular
velocity of 10° radians s7!; an order of magnitude of 1038 11 2 m? for ik »
and visible sodium D line radiation at about @ = 10" radians per second, we
obtain

| © =10 fradians (32)

so for a roa a metre in length, the angle of rotation of plane polarised radiation
sent down the Z (rotational) axis of the rod would be the order of magnitude of
10~6 radians. This is in range of the apparatus constructed by R.V. Jones* for
rotational aether drag, a purely relativistic effect.

The effect is proportional to the square of the net rotational velocity, to the
molecular moment of inertia I, and to the molecular polarisability elements
a,ijk“(f) in the molecule fixed frame of reference. The angular momentum J, )
can be generated mechanically, or in a gaseous of liquid sample, by using rotati%
electric fields, a method first suggested by Born2? and demonstrated by Lertes,
and Grossetti.22 It has been discussed in depth by Dahler.Z Rotating electric fields
can probably provide Q, in the range up to 10® radians per second, and the sample
can be kept stationary. In addition there will be dispersive effects on the
observable angle of rotation in analogy with dielectric spectroscopy, 4. e. at very
high spinning electric field frequencies the molecules of the sample are not able
to acquire the full angular velocity of the rotating electric field. This was realised
by Born?V shortly after the appearance of Debye’s theory of dielectric loss at radio
frequencies.25 The axial birefringence from equation (23) is

’ ’ 1] P
(nﬁ - "n) = U,cNJ g’[s(3A$)( f )

_A;,,*,”(f)—(‘-%Aé}(f)ff--Aa}’s(f )1{*)/’“") (33)

%eu,(ag'}k(f )—!i’"“w(f )/ kT)+"']

in analogy with equation (3.17a) of Barron and Vrbancich for the magnetochiral
effect.? This effect can occur only in chiral ensembles, because it would otherwise
violate parity reversal symmetry. The averaged axial birefringence duc to net
angular momentum in a chiral sample is proportional to the square of net angular
velocity, and the effect is much smaller, probably requiring for observation a
method of inducing NET angular momentum at infra red or visible frequencies in
a molecular vapour, i.e. angular momentum that survives ensemble averaging.

Discussion

There appears to be only one brief mention in the literature, that by Barron,28 of
the possibility of the effects described in equations (30) to (33). Barron
anticipated that circular birefringence as in equations (30) to (32) would be a
‘magnetic’ type of optical activity, as opposed to ‘natural’. He appears to have
made no analysis of the axial equivalent, described in equation (33). It is clear
from the third principle of group theoretical statistical mechanics,'+! however,
that the symmetry of J is imparted to new ensemble averages with the same

symmetry, and this is seen clearly in equations (13} to (16). In achiral ensembles
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the symmetry of the effect is D, ¥, and in chiral ensembles it is DO,

Clearly, it may be generated %y ultracentrifuging, in the manner of R.V. Jones,
a molecular crystal or liquid with windows for a spectropolarimeter to measure
the circular birefringence. Plotting © vs. sz of the ultracentrifuge gives the
scalar Ot @¢f) and a new fundamental information about the molecule. An
extension of this investigation gives spectral information, such as circular
dichroism and optical rotatory dispersion induced by Jz(l). The corresponding
axial effects are much more difficult to see, being orders of magnitude smaller,
but if observed, again give new fundamental molecular constants.

It appears equally clear that similar effects would be observable by spinning
the source and keeping the sample steady. There appear to be several
conséquences of the effect in astrospectroscopy, simply because the earth spins
diurnally and also orbits the sun. These are distinct from the purely relativistic
phenomenon of light aberration.?’ For example, the orbiting Hubble space
telescope carrying a spectropolarimeter would see circular birefringence in an
achiral sample with source radiation from the sun, birefringence induced by the
earth’s spin.

Optical activity induced by JU is also produced, in principle, by net
microscopic angular momentum which survives ensemble averaging. An example
has been given by Baranova and Zeldovich, 28 ysing a radio frequency field.
Another possibility, as mentioned, is the Born effect, O where a liquid sample
suspended on a torsion wire attains a net I through a spinning electric field.
The sample develops optical activity through the equations of this paper. Another
example is the Beth effect, 29 where a chiral crystal suspended on a torsion wire
is rotated by circularly polarised pump radiation. In general, spin induced optical
activity will appear in any experimental configuration where there is a net excess
of angular momentum which survives ensemble averaging, for example if
rotational quantum K states are unequally populated as the result of some external
perturbation. A possible source of such perturbation is a spin polarised electron
or neutron beam, inducing spin optical activity measurable by a probe laser.

4

Conclusion

Circular and axial birefringence and dichroism has been demonstrated due
to net angular momentum JO, and the circumstances defined under which
it conserves parity and reversality.
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Appendix

In this appendix we make the first inroads to what appears to be a profound ‘new
look’ at the role of angular momentum in physics.3 The remarks in this
appendix are confined to the role of net angular momentum in standard quantum
perturbation theory. This treatment follows that of Barron and Vrbancich in
reference 9, p.723, section 4. Quantum mechanical expressions for the perturbed
tensors o) and oy of the text of this paper may be found using
wavefunctions and energies perturbed by net angular momentum, which for the
sake of simplicity is kept classical (equation (2)). The eigenfunction \vj’ and
energy eigenvalue W;’ perturbed to first order in the energy are:

v = +J(zllzl sz'p. (AD)
I—WJ h kajwjk 1 J Vs

J
W)= w,.+< ,{ﬂ j>1‘;$ (A2)

which, as explained in reference 9, are valid even if the unperturbed



296 M.W.Evans

eigenfunction ; belongs to a degenerate set, provided the degenerate

eigenfunctions are chosen to be diagonal in the perturbation. The frequency
separation of the levels perturbed by (classical) net angular momentum is

m,,,=coj,,-—( 1 ]h" (A3)

where

J,,,,=< jL;L‘ j> (%)

is for the molecule in the perturbed state ;. Expressions for the perturbing tensors
then follow straightforwardly. For example

2 2

O _1y) Cut0 []2.11 sz)

OC-MB.,=— -
e [P N S

X Re((du,lj)(ﬂ%l")) |
R
+(n|mﬂ|j)(f Iﬂulk))] + Z‘w_y(mif—?)

y ReKj\%L‘k)((nwalf)(klmln)
Yt

This shows that net angular momentum plays the same role in spectroscopy as
a magnetic field, i.e., lifts degeneracy. In this paper we have confined discussion
to the nonrelativistic approximation, but a fuller relativistic treatment would
introduce many more new effects involving the rotational aether drag]
interacting with the new concepts introduced here. One particularly interesting
example of the fundamental role of angular momentum in physics and relativistic
cosmology comes from the Dirac equation. This produces a doubly degenerate
solution at low kinetic energies in the absence of a perturbation, which is usually
taken as a magnetic field. The results of this paper show that this perturbation
COULD EQUALLY WELL BE NET ANGULAR MOMENTUM. This removes
the degeneracy and leads to the entirely new concept that electron spin, with
quantum number s = 1/2, may be induced by net angular momentum. The
equivalent of the spin ‘magnetic moment’ is, in the classical limit, J/(I). Now this
quantity may be generated BY THE MOLECULE ITSELF, provided it has net
angular momentum, so the famous Uhlenbeck/Goudsmit hypothesis emerges
without further ado. This is one example out of many consequences of the role of
net angular momentum in physics.
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