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The Magnetic Fields and Rotation Generators of
Free Space Electromagnetism
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The relation is developed between rotation generators of the Lorentz group and the
magnetic fields of free-space electromagnetism. Using these classical relations, it
is shown that in the quantum field theory there exists a longitudinal
photomagneton, a quantized magnetic flux density operator which is directly
proportional 1o the photon spin angular momentum. Commutation relations are
given in the quantum fleld between the longitudinal photomagneton and the usual
transverse magnetic components of quantized electromagnetism. The longitudinal
component is phase free, but the transverse components are phase dependent. All
three components can magnetize material in general, but only the transverse
components contribute to Planck’s law. The photon therefore has three, not two,
relativistically invariant degrees of polarization, an axial, longitudinal, polariza-
tion, and the usual right and left circular transverse polarizations. Since the
longitudinal polarization is axial, it is a phase-free magnetic field.

1. INTRODUCTION

In conventional, classical, electrodynamics it is customary to consider only
the transverse, oscillating, phase-dependent components of a travelling
plane wave in free space. Transverse magnetic components can be written
as two orthogonal electromagnetic modes or components in a complex,
circular basis, "™

B B© o
B =——(ii+j)e?, BP=—xz(—ii+j)e " (1)

V2 V2

where ¢ = wr—x-r is the phase. Component (1) is the complex conjugate
of component (2). Here i and j are unit vectors in the X and Y axes of the
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laboratory frame (X, Y, Z), mutually orthogonal to the propagation axis,
Z, of the plane wave. Here w is the angular frequency in radians per second
at an instant of time, 7, and k the wavevector in inverse meters at a posi-
tion r in the laboratory frame. Modes (1) and (2) are both solutions of
the free-space Maxwell equations. Correspondingly, there are oscillating,
transverse, electric fields, usually written as

E© _ E© . _
E“>=:7§(L—ﬁ)yﬂ Eﬂ>=:7§(L+Q)e“@ (2)

in the same notation. In Eqgs. (1) and (2), B© is the scalar magnetic flux
density amplitude, and E‘® the scalar electric field strength amplitude.

These fields constitute the well-known classical Maxwellian description
of electrodynamics in free space, a description in which there are only
two degrees of polarization, ie., in a circular (or Cartesian) basis, one
(longitudinal) degree of polarization 1s missing. This is easily seen by
considering the following circular representation of three-dimensional
space,

1
e‘”:—z(i—ij), e(2’=—1—(i+ij), eMx e =;e® =k (3)

NG
where i, j, and k are cartesian unit vectors, defined by
ixj=k (4)

Therefore if i and j are polar, k is axial; if i and j are axial, k is also axial.
In the representation of transverse electric fields [Egs. (2)], i and j are
. polar; for transverse magnetic fields [Eqgs. (1)], t and j are axial. The unit
vectors e!!), e'?, and e® in the circular basis form the cyclical algebra,

e xeB) =jell)* — ;a2 (5)

e(3) % e(l) — ie(Z)* — ie(l)

so that if any one is zero, the other two also vanish. The basic electro-
dynamical notion that there can be only two degrees of field polarization
in three-dimensional space is therefore geometrical nonsense. This simple
illustration translates into well-known fundamental difficulties in the
theory of electromagnetism. In the required language of special relativity,
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the electromagnetic four-potential 4, loses manifest covariance, only two
out of its four components are physically meaningful, and since A4 . 18
known to be physically meaningful through the Bohm-Aharonov effect,®
this is obviously not a satisfactory description.

In this paper these difficulties are resolved by the use of the
longitudinal magnetic field B®), which is phase free and which contributes
nothing to the Planck radiation law because its associated frequency
is zero. For this reason it is referred to as the “ghost field” (Gespenster-
strahlung) of electromagnetism. In the quantum field theory it is repre-
sented by the longitudinal “photomagneton,” which is the operator B,
directly proportional to the well-known spin angular momentum of the
photon, whose eigenvalues are # and —# if the photon is considered to
have no mass, and #, 0, and —# otherwise. The B®) photomagneton is
simply B multiplied into the normalized photon angular momentum
operator, J/A. In Section 2, this result is derived from simple geometrical
considerations. Evidence for the existence of B®) is available in the inverse
Faraday effect”"'® (frequency independent magnetization by light). If B®
were zero, then both B and B® would vanish. Since B®), the expectation
value of B"™), is directly proportional through B'® to unit angular
momentum, represented by the axial unit vector k, it is relativistically
invariant in free space, a requirement of the Maxwell equations. In the
quantum theory this is interpreted through the fact that photon spin
angular momentum, #, is also frequency independent, i.e., does not depend
on v, the frequency of the light. (In contrast, photon linear momentum,
hv/c, 1s proportional to v, and photon energy, as originally proposed in
Ref. 13, is the quantum of light energy Av.) It follows therefore that B is
not absorbed at any frequency, because in the quantum field theory,
absorption depends on the quantum of energy Av, and B®’ has no energy.
The photomagneton B is therefore far more difficult to detect experimen-
tally than the usual transverse fields, and has no effect, as we have argued,
on Planck’s law of radiation. It can however, be detected because as a
phase-free magnetic field, it participates in the magnetization of matter by
light—the well-known inverse Faraday effect which has hitherto been inter-
preted in terms of nonlinear optics. This phenomenon occurs without opti-
cal absorption in general, meaning that it can occur without the absorption
of a quantum of energy Av, in other words at frequencies where the sample
is transparent to light.!"!%)

In Section 2, the rigorous geometrical basis of B is developed using
rotation operators in O(3) and in the Lorentz group of Minkowski
spacetime. It is shown there that the neglect of B® implies that one
rotation generator is erroneously asserted to be zero. In the quantum field
theory this translates into the conclusion that one angular momentum is
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missing, this being the longitudinal angular momentum, and this is of
course diametrically inconsistent with the basic assumption that the photon
(considered as massless) have an ineluctable spin angular momentum,
“ whose components in the longitudinal axis are i and —#. Therefore, photon
spin immediately implies the existence of B®),

In Section 3, the experimental basis for B®' and B® is examined
through the inverse Faraday effect. The main conclusion of this section is
that if there were no B®), there would be no inverse Faraday effect,
contrary to experimental data."'%)

In Section 4, the nature of the longitudinal, concomitant electric field
in free space is examined. It is clear from symmetry**) and special relativity
that there can be no real E®, because Fitzgerald—Lorentz contraction
reduces any longitudinal polar axis to zero for any object travelling at the
speed of light. For a massless photon, this axis remains zero in any frame
of reference, because the Maxwell equations in free space do not vary under
Lorentz transformations. For a massive photon,**) it becomes possible that
there be, in the observer frame, an additional, phase-dependent,
longitudinal magnetic field B and electric field E®. It is shown that these
equations can be resolved in an internally consistent manner by deducing
that B® is accompanied by a pure imaginary iE®). This implies that the
combined contribution of B® and iE® to the Poynting theorem in free
space is zero, this being the classical statement equivalent to the fact
that, in the quantum field, B has no Planck energy because it has no
frequency. (In Planck’s postulate of 1900 energy is directly proportional
to frequency, so that B® corresponds to an oscillator state of zero
frequency.’®)

The use of B® and /E*®’ makes the theory of electromagnetism in free
space fully consistent and manifestly covariant.

2. GEOMETRICAL BASIS FOR B®

The first indication of the existence of B®) in free space appeared in
Ref. 17 through its relation to a quantity known in nonlinear optics as the
conjugate product, the vector cross product E) x E®. This quantity is
also referred to in nonlinear optics as the antisymmetric, or vectorial, part
of the light intensity tensor g,cE;E,,"'® and therefore has a well-defined
physical meaning. Any quantity to which E"'x E@ is algebraically equal
also has a well-defined physical meaning by tautology. From Eq. (2), the
conjugate product is the pure 1maginary, longitudinal quantity

EN xE® ={E©K (6)
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where k is a unit axial vector. The product E") x E® is therefore magnetic
n nature, with positive parity invession (£) symmetry and negative motion
reversal (7') symmetry.*®’ Using the fundamental free space result,

E(O):cB(O) (7)
immediately gives the field B¢/,
ED X ED = 2BO*B2) — jo2BOBG) (8)
with
B®) = Bk (9}
It is elementary to show, with these relations, that,

B x B = ;OB ;pORH
B®@ x BG) = ;30" - ;BOIR(2) (10)
B® x B =B PB?" = BPBM

where the * denotes complex conjugation. It is seen that there is a sym-
metric, cyclical algebra between the three magnetic field components in free
space. This structure is that of the complex basis vectors e, e, and ',
[Egs. (5)].

This is precisely what is expected if there is a three-dimensional,
geometrical, relation between the tranverse and longitudinal components of
solutions of Maxwell’s equations in free space. The longitudinal compo-
nent, B®), must be phase free, because of the Maxwellian condition

V.-B=0 (11)

If it is accepted that B is nonzero (otherwise there is no electro-
magnetism), then, Egs. (10) show that if B®’ is zero, both B"") and B
vanish. Conversely, if B and B® are nonzero, then so is B*). This result
once more emphasizes the fundamental inconsistency in the conventional
approach,™ in which B® bears no relation to the transverse B’ and
B and in most texts is not considered. Equation (10} shows that there is
a well-defined geometrical relation, which shows that B® is physically
meaningful. The converse of this result is that if it is asserted that B is
zero, then the conjugate prouct vanishes, in contradiction with experimen-
tal data on the inverse Faraday effect,” ') and in contradiction to the
fundamental theoretical structure of non-linear optics.!'2-!®
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The question now arises of the fundamental properties of B®) in the
classical and quantum theories of fields. In this section it is shown using
elementary tensorial methods that it is defined in the quantum field theory
" by the operator

(12)

where J is the photon angular momentum operator. For one (massless)
photon the eigenvalues of J are +#, meaning that the projections in the
longitudinal (Z) axis are +# or —#. In the quantum field theory, therefore,
B® depends on the existence of J, because B/ is a constant of the elec-
tromagnetism for a given intensity. Realizing this, any attempt to assert
that 8% is zero becomes inconsistent with the fundamentals of quantum
mechanics, because such an assertion would imply that the photon spin
angular momentum is zero. It is well accepted that the photon spin is an
intrinsic, irremovable property,®® and therefore so is B,

The interpretation of B the longitudinal “photomagneton” of elec-
tromagnetism, is therefore simple in the quantum field theory—it is an
operator generated directly from photon spin. The latter has eigenvaiues
+# independent of the frequency (v) and phase (¢) of the electromagnetic
field. Any attempt to understand the meaning of B must therefore be
based on the meaning of J. Similarly, the interaction of B® with matter
must be understood in the same way as that of J with matter. In particuar,
there must be conservation of angular momentum—the total angular
momentum before and after the interaction must be the same. To
uderstand this, one needs the theory of angular momentum coupling in
quantum mechanics.®® Therefore B'® is obviously not a static magnetic
field in any conventional sense (e.g., a field generated from a bar magnet
or a solenoid). It is a novel property of light.

It is also obvious that the source of B in free space is the source of
J—usually thought of as a charge-current system at infinity, ie., matter
infinitely removed from free space. This is the same as the source of the
usual transverse, oscillating, fields, which in the quantum field theory are
thought of in terms of creation and annihilation operators. Therefore, the
existence of B® does not require a separate source. In the same way, J, or
photon spin, does not require a source in any way distinct or different from
that of electromagnetism.

We arrive at the inescapable conclusion that if J be accepted, as usual,
then so must B®).

The classical interpretation of B®), the expectation value of B®),
depends on the cross product B x B of negative and positive frequency
transverse modes (1) and (2). This must also be reflected in the quantum
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field theory, so Eq. (1) is more fully written in the accepted notation?* 18
as

. J
B3(0; —w, w)=B‘°’g(0; —w, ®) (13)

This shows that J itself is generated from a phase-free cross product of
negative and positive frequency waves, i.e., from a particular combination of
creation and annihilation operators.!*) This is the same combination as
that which defines!!? the Stokes operator S,. The latter is well known to
be an angular momentum operator, and the commutator relations between
Stokes operators are the same as those of angular momentum operators in
quantum mechanics. In this section, we shall develop commutator relations
for BY, B® and B®), These are also angular momentum commutator
relations.

Any interaction of B® with matter must therefore reflect its
fundamental character, i.e., account for the fact that it is defined as

B® = B30; —w, w) (14)
Similarly,
J=J(0; —w, ») (15)
S\,3:'5 5'3(0; —, (D)

Our earlier description” of B as “static” obviously refers to the fact that
it has no net (ie., explicit) functional dependence on phase, ¢ =wt—x -r.
In precisely the same way, J has none, ie., its eigenvalues are +#, which
are frequency-independent quantities. Similarly, the Stokes operator S, and
parameter S; have no net phase dependence. For a given beam intensity in
circular polarization, S, is a constant of magnitude +E©?; + for left, —
for right circular polarization.

We shall return to the question of how B® (0; —w, w) interacts with
matter in Section 3, when dealing with the inverse Faraday effect and time-
dependent perturbation theory. In the remainder of this section, Eq. (12) is
derived from first principles.

The first step is to put the cyclic relations between B, B®), and B®
into classical commutative form by using the result from elementary tensor
analysis(!>'®) that an axial rank-one vector is equivalent to a polar rank-
two antisymmetric tensor,

Bi:%‘gijkéjk (16)

825/24/11.5



1526 Evans

where ¢, is the rank-three, totally antisymmetric, unit tensor (the Levi-
Civita symbol). The rank-two tensor representation of the magnetic field,
By, is entirely equivalent to the usual rank-one vector B,, but has the key
advantage of being accessible to commutator algebra. This allows a
straightforward transition to the quantum field theory through a factor #.
Commutator algebra also provides a means of expressing B), B¥) and
B® in terms of O(3) rotation generators.®" In so doing, these magnetic
fields are related directly to quantum mechanical angular momentum
operators, and have the same commutator properties. This was originally
deduced!” using creation and annihilation operators, an independent
method.

The classical fields BY, B‘?), and B in free space are all axial vectors
by definition, and it follows that their unit vector components must also be
axial. In matrix form, they are, using tensor analysis of the type illustrated
in Eq. (16),

0 0 1 0 0 ~1 0 1 0
i=lo0 0 1|, j={0 0 of, k=|-1 0 0| 17)
0 -1 0 1 0 0 0 0 0

It follows that the matrix representation of the unit vectors in the circular
basis is

| 0 0 i Cfooo 0 1 0

6 =—— 01|, é,=—|0 0 1|, é=|-100

ﬁ-ﬂ—lo \ﬁirlo 0 0 0
(18)

and that these form a commutator Lie algebra which is mathematically
equivalent to the vectorial Lie algebra (5),

[é),é,]1= —iéf = —iés
[éz,éﬂ: —iéf = —ié, (19)
[é3:é1]= ~ié§"= _iél

If it is arbitrarily asserted that é; is zero, then both é, and é, vanish, ie.,
the assertion is fundamentally inconsistent with three-dimensional
geometry, expressed in a circular basis (5) rather than a Cartesian basis.
Nevertheless, this meaningless assertion is the root of the conventional
approach to electrodynamics, an approach which considers only transverse
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components of the plane wave in free space, and does not recognize that
the transverse field components are linked to the longitudinal field compo-
nent. This conclusion becomes clear if the geometrical (19) is used to
describe the plane wave in vacuo,

B — iRz ¢
B2 = RO, —i (20)

B3 = Blo)s3)

from which emerges the classical commutator relations between the three
magnetic field components.

[BY), B = —iBORD* = _;gOB>)
[B(Z), 3(3)]= —iB(O)E“)*= __l‘B(O)B‘Q) (21)
[B®, B = —iBOB2* = _;g®RWM

This algebra can now be expressed in terms of the well-known'® 2V rotation

generators of O(3) in three-dimensional space. These generators are
complex matrices,®*

- n
. &) 1 0 0 1
J(]):T =—| 0 0 —i
21 i o
j@ —e”_ 1 T .
JH=——=——2} 0 0 (22)
: \/E_—l —i 0]
o [0 —i 0
JP=—— = i 00
l 0 0 0

providing the key link between the magnetic field matrices and rotation
generators,

B _ goyF),ie
B‘(2)= fB(O)f(z)e_i"’ (23)
B3 — jpOIF3)
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This classical result shows that the commutator algebra of the magnetic fields
(21) is part of the Lie algebra of the Lorentz group of Minkowski
spacetime. >V [t shows that the longitudinal component B is nonzero,
" because J© is nonzero. An assertion to the contrary means that if
B® =170, then J® =170, which by reference to Eq. (22) is incorrect.

Furthermore, the generalization of the rotation generator from classi-
cal three-space [O(3) group] to classical spacetime (Lorentz group) is well
known®V to be

- 0 0 1 07
u - 1 0 0 —i O
M _ fox
=g Zl-1 1 00
00 0 0
- 0 0 1 07
- - 1 O 0 1 O
@)_ F%x -
Jo = f Al -1 -i 0o (24)
| 0 0 0 0,
0 —i 0 0
- - ;0 0 O
(3 _ Fx_ :
/ / 0 0 00
0 0 0 O

—

It follows that B, B® and B® can also be generalized in this way, and
are also well-defined properties of spacetime in vacuo. This result is in turn
consistent with the fact that all three magnetic components are well-defined
solutions of Maxwell’s equations, which in free space are invariant under
Lorentz transformation.::2) In this sense, B, B® and B are defined
directly by the rotation generators of the Lorentz group, generators that
form a Lie algebra in spacetime. By including B® and not arbitrarily
discarding it, as is the usual practice,*™ electrodynamics in spacetime
actually becomes more fully self-consistent. For example, the Wigner little
group®!) becomes O(3) instead of E(2): in other words three dimensional,
not two dimensional. It is well known in field theory®? that the Euclidean
E(2) is physically meaningless, implying that classical electrodynamics is
deeply flawed if the longitudinal field is not linked to the transverse fields
as in this paper.

The fact that the approach that leads to E(2) is incorrect is seen
through the fact that it leads to J© =? 0. Uncritical acceptance of such an
obviously incorrect result has become habitual because of the assumption
that Maxwell’s equations deal only with transverse field components in free
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space. Equation (10) shows that the longitudinal and transverse field com-
ponents in free space are linked geometrically. This finding is tautological
in nature, because Maxwell’s equations are written in three, not two, space
dimensions. The assertion 8 =70 not only makes nonsense out of
Euclidean (and Minkowski) geometry, but also leads to difficulties
throughout the gauge theory of electromagnetism, difficulties which are
actually well known.® Many of these difficulties disappear when it is
realized that B is a “spin field,” which is phase free, and which therefore
obeys the Maxwellian constraint V-B=0.

Tt is well known®’ that the rotation generators of O(3) form a Lie
algebra, part of the Lie algebra of the Lorentz group. In a circular basis
(19), this becomes the following classical commutator algebra,

[JO, JO]= — jo = jO)
[J@, JO] = —jux = _j@ (25)
[J® JO]= _jo— _jo

which becomes

[JX’ JY] = ZJZ
[y, T I=iJy (26)
[jz, jx] :ijy

in the cartesian basis, and which is, within a factor 4, identical with the
cammutator algebra of angular momentum operators in quantum mechanics.
This result provides a simple rout to quantization of the magnetic fields of
the plane wave in free space, giving the result

1)
AW B(O)!ﬁ—e’“’
p(2y _ (U)J_(z) —i¢
B = B0 27)

where B are now field operators in quantum mechanics. In particular, the
longitudinal operator B® is the elementary quantum of longitudinal
magnetic flux density, the photomagneton of electromagnetic radiation in
free space. The photomagneton is the pilot wave of photon spin in the
Einstein—de Broglie interpretation of the quantum theory of light. In the
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Copenhagen interpretation, the quantized field operators B, B, and
B®) form angular momentum commutators in free space,

[g(l)e—iqs g(z)ehﬁ] — — jB©®IBB3)
[3(2)61'45, B(B)] = — B B2),i¢ (28)
[B®), B1e=#] = —jBO S~

The fields can now be thought of in terms of creation and annihilation
operators’*!") as usual. In the Copenhagen interpretation, the three field
components appearing in each commutator relation cannot be specified
simultaneously.®® If B® is specified, then the transverse components
remain unspecified, as in any angular momentum commutator relation in
quantum mechanics. This is consistent with the fact that the (3) (ie, Z)
component of photon angular momentum is usually specified as eigen-
values, longitudinal projections # and —#, and that for a massless photon
travelling at the speed of light, the transverse angular momentum com-
ponents are mathematically indeterminate. The longitudinal component
of angular momentum in an object travelling at c is relativistically
invariant. Therefore B'» in free space is also relativistically invariant. This
must be so because it is a solution of Maxwell’s equations, which are also
relativistically invariant in free space. The specification of B® in terms
of photon spin is therefore fuily consistent with relativistic quantum field
theory.

Therefore, B® is a constant of motion,'2% while B") and B® are
governed by photon statistics and are subject to purely quantum effects
such as light squeezing.'? The field B, being defined by photon spin, is
not subject to light squeezing effects. In other words, photon spin itself is
not affected by light squeezing, and its eigenvalues remain a constant # and
—#. If the photon is massive,?® the eigenvalues become #, 0, and —#. The
constancy of the field B is consistent with the fact that in quantum
mechanics the general expression for the rate of change of an expectation
value is*%

d . i noa
E<B‘3’>=}; ([H, B®T) (29)

so that B®? commutes with the Hamiltonian H. This is consistent with the
fact that B> has no Planck energy and does not contribute to classical
electromagnetic energy density.?¥ The expectation value of B®), being a
constant of motion, is independent of time, and its eigenvalues are specified
as the constant # and —#. Similarly, the Stokes operator S, is a constant
of motion, so B is proportional to ;.07 Therefore the photomagneton
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B® conserves angular momentum in free space, and this is a consequence
of the isotropy of the Hamiltonian in free space,®® and therefore a
consequence of three-dimensional symmetry. %’

This conclusion is simply a way of saying that the spin of the massless
photon is +#, and that the photomagneton B® is a direct consequence of
photon spin. The classical B®) is therefore a direct consequence of the fact
that there exists right and left circular polarization in electromagnetic
radiation. This is an expression of Eq. (10) in words.

The expectation values of B and B®), on the other hand, are not
constants of motion, and do not commute with the Hamiltonian. This is
consistent with the fact that B'Y or B® contribute to classical electro-
magnetic energy density in free space. Similarly, the expectation values of
JM and J® are not constants of motion, and remain unspecified in the
Copenhagen interpretation if J is specified. Such a result is consistent
with special relativity, which deduces that the transverse classical angular
momenta of an object travelling at ¢ are indeterminate in the observer
frame and that the longitudinal component is relativistically invariant. In
other words, in special relativity,

Jz=J%, Jy=91Y, Jy=yJ% (30)

where y = (1 —v%/c?) 72 We see that if the relative velocity of two frames,
v,, is ¢ then J, and J, (in the static, observer frame) become infinite unless
Jy-=Jy=0. In this condition, Jy and J, are mathematically indeter-
minate but J,=J, is well defined. This is what is indicated by the
Copenhagen interpretation of Egs. (28): the field B® has specified,
relativistically invariant, eigenvalues which are projections in the
longitudinal axis of the propagating plane wave in {ree space. The trans-
verse fields ") and B® are not constants of motion and are not specified
if B is specified. It is well known that B and B® are subject to
quantum effects such as light squeezing, which are a consequence of the
Heisenberg uncertainty principle applied to photons.
If we compare directly the classical and quantum equations,

B! x B® = ;BOB®) (31a)

(BD, f] = — BB (31b)

it becomes immediately obvious that Eq. (31a) is a relation between spins in
the Maxwellian interpretation. Each spin component (1), (2), and (3) 1s
formed from a vector cross product of the other two, this being a require-
ment of Euclidean geometry. In order for this geometrical requirement to
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simultaneously satisfy Maxwell’s equation V-B =0, the longitudinal com-
ponent B®) must be phase free, otherwise its divergence is nonzero because
the phase has a Z dependence. In order to satisfy this and the other three
- Maxwell equations, the transverse components B"") and B® must be phase
dependent. Equations (10) tie these considerations together in a circular
basis, in the same way that rotation generators are tied together.

At the fundamental level, Eq. (13) shows that photon spin itself is
nonlinear in nature, being an angular momentum. In the quantum field
theory this has eigenvalues # and —#. In Maxwellian electrodynamics
the classical equivalent to photon spin in obtained from the nonlinear
conjugate product, B’ x B® (or E") x E®), which removes the phase ¢. In
this way the classical conjugate product and quantized photon spin are
linked together in a relation which clarifies the physical meaning of both.

In the Copenhagen interpretation, the Heisenberg uncertainty prin-
ciple applied to Eq. (31b) shows that

58D §B® =1 |BOFO) (32)

where 6B and 5B™® are root mean square deviations.®® As usual,®® the
right-hand side is a rigorous lower bound on the product 8" 6B, 4
Jower bound which is therefore defined by the photomagneton B®. If B®
were zero, B and B® would commute, implying that §8"=0 and
8B =0 simultaneously. The experimental observation of light squeezing?
shows that this is inconsistent with data; therefore B 0. In this sense,
light squeezing indicates experimentally the existence of the photo-
magneton B®),

In the next section, other experimental indications of the existence of
B® are discussed.

3. DETECTION OF B® IN THE INVERSE FARADAY EFFECT

In addressing the experimental effects of B, the question arises of
whether its interaction with matter {e.g., an electron) can be treated with
time-dependent or time-independent perturbation theory. Magnetization by
circularly polarized light, the inverse Faraday effect, can occur without
absorption, as observed experimentally by van der Ziel er al."”) However, it
can also occur with absorption, as shown theoretically by Wozniak, Evans,
and Wagniére.*® It seems reasonable to assert that if there is no absorp-
tion, there is no transfer of photon energy, /v, and so the effect is frequency
independent, meaning that in this limit, time-independent perturbation
theory applies. In this limit there is transfer of angular momentum from the
light to the sample, but no transfer of energy, so that the phenomenon of
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magnetization is in this sense “elastic.” Since B = B J/A and since B® is
proportional to the square root of beam intensity [, (watts per unit area),
it seems likely that such an effect is proportional to 7}/2.

However, the fundamental angular momentum J(0; — , w) needs two
modes for its definition (one, (1), negative frequency; the other, (2),
positive frequency) so it follows that the interaction of 8 with matter also
requires the consideration of —w and w, even though B® and J do not
explicitly depend on frequency. (The eigenvalues of both depend on #,
which has no frequency dependence.) Therefore the interaction of
B®N0; ~w, w) with matter requires, in general, time-dependent perturba-
tion theory, based on the time-dependent Schrodinger equation. Since

BY(—w) x BA(w) = iBOB3(0; —w, ») (33)

any effect due to B®0; —w, @) needs the simultaneous action of both
modes (1) and (2). In time-dependent perturbation theory, this property
must be accounted for in the molecular property tensor with which
B®)(0; —w, @) interacts at any order in the field. For example, the inverse
Faraday effect is described by WoZniak, Evans, and Wagniére®’ in terms
of B x B®, In a three-level atomic system the paramagnetic contribution
to magnetism, M(0), by circularly polarized light is given by

—iNc¢?

MO ==07

(p(w) 4+ py(w)B) BY x B? (34)

which is Eq. (30) of Ref. 25 written in our notation. Here

Azmaa 'Im(palx p’la}a Bzmaa'lm(p'azx p’Zﬁ) (35)
and

w(w]—w’—T?)

(w1 —w®+ ) + 40 7? ?

(@2 —0*+ T2 40?2
(36)

pw)=

where w,; and w, are resonance frequencies, m,, is a ground state perma-
nent magnetic dipole moment, and p,;, etc. are transition electric dipole
moments. The transition to time-independent perturbation theory is given
by setting the resonance frequencies w, and w, and damping factors /", and
I, to zero, giving the result

N¢?
3kTho

M(O) = Mg, Im("’a] X "'32) B(O)B(3) (37)
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Both equations (34) and (37) are to second order in the magnitude, B,
of B®). However, Eq. (34) represents a transfer of energy (at the resonance
frequencies w, and w,) as well as a transfer of angular momentum from
B®). Equation (37) represents a transfer of angular momentum only,
because there is no resonance. Therefore Eq. (34) 1s an “inelastic” process,
and Eq. (37) an “elastic” process. Both equations are semiclassical, in that
the field is treated classically and the molecular property quantum
mechanically.

Clearly, if B® were zero, there would be no inverse Faraday effect of
any kind.

The question now arises as to whether B®), having all the attributes
of magnetic flux density, can act at first order, so that there is an inverse
Faraday effect proportional to the square root of intensity in addition to
process (34) or (37), which are both proportional to intensity. The time
average of B®) is nonzero, because it has no phase dependence, and this
suggests that it can magnetize at first order. If so, then there should be a
component of the inverse Faraday effect proportional to the square root of
intensity. This interesting possibility should be checked by further
experimental work on the intensity dependence of the inverse Faraday
effect, whose standard interpretation is at second order, in BYB®), as we
have seen. The oscillating components B¢ and B also magnetize at first
order, but the time-averaged magnetization vanishes. Any energy transfer
process from the electromagnetic field to matter is second order, however,
in the electric field strength or magnetic flux density of the field, but
angular momentum transfer is first order in these quantities. For example,
when a quantum of energy, Av in the quantum theory, is transferred to an
atom, there is a simultaneous transfer of angular momentum (#) per
photon, Av, a process which is governed by angular momentum selection
rules.®® Since 4, the magnitude of the photon’s angular momentum, is
energy divided by angular frequency, it has units proportional to B® at
first order. Therefore, it follows that B®) can produce pure, first-order,
magnetization only if there is no transfer of photon energy hv to the sample.
(Otherwise the overall process is a mixture of first- and second-order
effects.) In other words, any purely first-order process in B‘*) cannot be
accompanied by absorption of light, because absorption is second order
in B®. The molecular property tensor through which B®) produces
magnetization must therefore be a susceptibility tensor calculated in the
limit of time-independent perturbation theory, in which there are no
optical resonances.

If further experimental work shows that there is a process in the
inverse Faraday effect proportional to the square root of circularly
polarized light intensity, then it would have been shown that B® can act
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as a first-order magnetic field. If the data show no sign of such a process,
however, it would be incorrect to conclude therefrom that B =?0Q. As
discussed in Section 2, such a possibility is excluded on several counts.
The absence of a first-order process in B might mean that two modes
(negative and positive w) are needed to define the classical equivalent of
photon spin angular momentum, J(0; —w, w), so that J itself is intrinsi-
cally nonlinear, and for this reason cannot act without the combined action
of two electromagnetic modes, (1) and (2). The inverse Faraday effect has
been observed experimentally in the absence of absorption, meaning that
there is no transfer of Av from radiation to sample, yet the sample is
magnetized.""” Therefore, the two modes making up J can act on a sample
without transferring any photons hv, and the inverse Faraday effect is
obviously not an absorption phenomenon. It is therefore confusing to
allude to 1t as a “two-photon” process, because that would imply the
absorption of two photons. Since J is nonzero and directly proportional to
B®), the latter also depends on the simultaneous action of two modes, (1)
and (2). The angular momentum, and B, do not depend on frequency,
however, and have no Planck energy. Any assertion that B®) is zero,
however, is geometrically incorrect. The question is whether B can act at
first order or not, and further experimental work is needed to clarify this
point. In Ref. 17, the interpretation of the inverse Faraday effect is dis-
cussed in more detail. In diamagnetics, effects at first order in B® are
prohibited by the fact that the sample has no permanent magnetic dipole
moment. In paramagnetics, such as the doped glasses used by van der Ziel
et. al., " effects at first order in B are allowed in principle, provided that
the symmetry of the sample allows a net permanent magnetic dipole

moment. Data are not available at present to test these matters further.
i A recent reinterpretation®® of the results of Frey et al*”) on the optical
, Faraday effect showed a square root intensity dependence of the light-
F induced Faraday rotation, which is a sign, albeit tenuous, that 8% is able

to act at first order. It is tenuous because there were ony six data points
available,®® and these did not go through the origin. Also, the pump laser
used by Frey et al.?” was not circularly polarized before entering the
intense magnetic field used in their experiment. However, it develops an
excess of circular polarization through the ordinary Faraday effect when it
passes through the magnetic field, producing a nonzero B'*.

We emphasize that the question of whether B can act at first order
is secondary to that of the existence of B, which is proven unequivocally
by the data of van der Ziel er al.'”’ and by the arguments of Section 2 of
this paper.

The simplest example of the inverse Faraday effect without absorption
1s when circularly polarized light interacts with one electron. This problem
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was first discussed by Talin et al,*® from which it is straightforward to
show® that the magnetic dipole moment induced, without absorption, in
one electron by circularly polarized light is

—e3c?

. BOB® (38)

m=
2miw

Here e and m, are the electronic charge and mass, and w is the angular fre-
quency of the light. It is therefore a simple matter to show that there is no
elementary, one-electron, inverse Faraday effect if B®) =2 0. Equation (38)
is second order in the magnitude, B®), of B If we assert®’ that B® can
act at first order, the effect becomes

e’c?

m= _ﬂ B® - —— _ BOIRB3) (39)
2my, 2miw?

where r, is an orbital electron radius. For w of about 10'° rad sec ™, and
for a first-order electron radius of about 10 A, the orders of magnitude for
a beam intensity of about 10 watt m ~? become

m| ~ ~107% |B®| — 1025 (40)

and the second-order effect 1s roughly ten times larger. Under other condi-
tions, the first-order effect may of course predominate. Again there are no
data available to test these hypotheses. These data would require the care-
ful measurement and analysis of the intensity dependence of the inverse
Faraday effect in a suitable electron plasma.®

4. THE LONGITUDINAL ELECTRIC FIELD, ;E®

The existence of a B'® appears to imply at first sight that there must
be a concomitant longitudinal electric field from Maxwell’s questions.
However, such a field has never been detected experimentally, and no large,
first-order, polarization effects of light have been observed to date. The
only known polarizing effect of light is optical rectification,®® a small,
second-order process. There are several factors that point toward the fact
that there is no real, (i.c., physical) electric field E®), but that there is an
imaginary iE®),

1. Inspecial relativity,®! the square of the complex vector cB®) + jE ),

(cB® +iE®)2 = 2B®? _ E®2 4 2, B®).E ) (41)
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is a Lorentz invariant. The real parts of the two independent
invariants, ¢2B®?2— E®2 and 2¢/B®-E®) are both zero. The first is the
contribution of B and E®’ to the free-space electromagnetic energy
density, and the second is pure imaginary. They are well known®" to
be the two independent invariants of the electromagnetic four-tensor,
F,, allows for the existence of longitudinal field components in free
space. These are customarily asserted to be zero with the use of a suitable
gauge.

2. The fact that

U(3)=_l%_B(3)_B(3)+80iE(3),I'E<3)___O (42)
0

in free space is consistent with the fact that B is directly proportional to
the spin angular momentum of the photon, which has no Planck energy.
It is not possible to assert that any real electric field be proportional to any
kind of real angular momentum, because of P and T symmetries."!”) The
imaginary iE ) therefore comes from fundamental special relativity, whose
well-known dual transformation®" converts a pure real magnetic field to
a pure imaginary electric field without changing the Maxwell equations in
free space.

3. The Maxwell equations in free space are satisfied by B®) accom-
panied by /E®) because both are phase free and therefore time independent
and uniform in classical electrodynamics. If we write B® in terms of a
vector potential

B® =V xA® (43)
and attempt to write a real E® in terms of the scalar and vector potentials,

(3)
E®=7_vp® - a’;t_ (44)

it is found that this leads to E®’= 0 in Maxwellian electrodynamics. There-
fore if B® is real, the real E®® vanishes.

4. The joint contribution of B® and iE® to U® in free space is
zero. The Poynting theorem then asserts that the vector

N=_ EGxBO =0 (45)

Ho




1538 Evans

is zero. This is consistent with the fact that B® is parallel to iE®) in the
propagation axis. It follows that,”® if B®) and E® are asserted to be in
general complex,

EOxBA=E® xBW®

E(Z)XBG):E(B)*XB(z) (46)

from which if B is real, then /E®®) must be pure imaginary.

5. An attempt to construct for an assumed rea!/ E®) a cyclic algebra
akin to (10) results in 7" violation.®®® This is consistent with the fact that
a real longitudinal electric field would have to be a polar vector, which
cannot, on basic geometrical grounds, be constructred from the cross
product of two mutuaily orthogonal polar or axial vectors. In other words,
any cross product such as E?x E? or B x B®) must produce an axial
vector. Cross products such as E") x B (those defining the Poynting vec-
tor) produce a polar vector which is T negative. Any real, physical electric
field must be T positive, and therefore cannot be produced from Poynting-
type cross products.

For these reasons B is accompanied, for consistency in classical
Maxwellian electrodynamics, by {E®), a conclusion with emerges from
special relativity. Dual transformation produces iE® from B®’ and vice
versa, as required, and these two components {one magnetic, physical, and
real, the other electric, unphysical, and imaginary) take their place in the
electromagnetic four-tensor £,,. Classical electrodynamics is therefore
rendered more fully self-consistent by their inclusion. B®’ produces physical
effects, iE® produces no physical effects.

5. CONCLUSIONS

There is experimental evidence"™'* for the fact that the product
B x B™® is not zero. Expressing this product as iB®B® shows that the
real, longitudinal, phase-free B®’ is not zero in free space, a deduction
which is supported on geometrical grounds in Section 2. Using these
methods, it has been shown that in the quantum field theory, B is
proportional to the photon spin angular momentum operator, J. The
source of B® is therefore the same as that of photon spin, and B is able
to propagate in [ree space with photon spin. The operator B’ has no
Planck energy because the eigenvalues of J for one photon are # and —#,
which are independent of frequency. Classically, the joint contribution of
B® and iE® to free-space electromagnetic energy density is zero. There-
fore B® (and B™) is not absorbed in field—matter interaction, and does
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not contribute to the Planck radiation law. We reach the fundamental con-
clusion that the photon has three degrees of polarization, and that this does
not conflict with the Planck law. The same conclusion is reached from the
hypothesis®* 32 that the photon have mass, however tiny in magnitude.
The Maxwellian B® can therefore be regarded as the “zero mass limiting”
form of a more general theory, in which the photon is non-zero. For
several reasons, it is concluded that B®) is accompanied in free space by an
imaginary {E®, which produces no polarization. If B® is asserted to be
zero, the inverse Faraday effect disappears, in conflict with experimental
results.’"!2) It appears plausible that B’ act at first order as well as at
second order in the inverse Faraday effect, and other related magneto-optic
effects.

APPENDIX. CYCLICAL ALGEBRA INVOLVING ELECTRIC
FIELDS

There are symmetric cyclical relations of type (10) which involve
electric fields and which can also related to rotation and boost generators
of the Lorentz group. In three dimensions there is, for example, the algebra

EWDE® _E(O)(l‘CBD))*
E® x (icBm) = —FORE®)* (Al)
~BG3) Mo _ pOR@)*
(icB®)x E EOE

which becomes a relation between boost and rotation generators when we
come to consider the four dimensions of the Lorentz group. The electric
fields are proportional to the boost generators, and the magnetic fields to
the rotation generators.

In order to derive a perfectly cyclical algebra involving electric fields
only, we first not that the existence in special relativity of the complex
vector ¢cB® +{E®) means that the symmetry of the imaginary /E® can be
regarded as magnetic, ie., regarded as the same as that of real ¢B®), This
of course means that {E® is not a real electric field. The square of the
complex vector ¢cB® +iE® gives Lorentz invariants as in the text. With
this realization, the following cyclical algebra can be written,

EMDxE® = _E(O)(iE(B))*
E®) % (Z-E(B)) = FOE0)* (A2)
(iE(B)) x BV = — FOERE@)=*
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which in spacetime is an algebra involving boost generators of the Lorentz
group,
[[2(”, K(Z)] = — JO)x

[K(z),j(s)]z — KW= (A3)
[j(t&)’ 1‘((1)] — K@=

Here, the boost generators in the circular basis are

0 0 0 1 0 0 0 1
. 1 0 0 0 —i . 1 0 0 0 i
03 N R@__—
K ﬁ 0 60 0OFf ﬁ 0O 0 0 0}
-1 7 0 0 -1 -1 0 0
0 0 0 0
- 0 0 0 O
(3) _ A4
K 0 0 0 1Y¢ (A4)
0 0 -1 0

The boost and rotation generators are related to the electric and magnetic
fields of the Lorentz group by

EWV=FORW4 Q) _ pORR— [ pO)g3)

AS
B~ _B(O)j(l)eiqﬁ, B®—_ _BOJQ,~—it BB _;p(0)F3) (A3)

Finally, the cyclically symmetric algebra of the Lorentz group is completed
by the relations

[RWM j1=0
[K®,JP]=0 (AS)
[K® JF]=0

Therefore, in the space part of the Lorentz group, the complete set of fields
are B, B® and B® and EW, E®, and {E®. These components,
expressed in the circular basis (1), (2), and (3), take their place in the
antisymmetric four-matrix F,,, the four-curl of 4, in spacetime. The fields
B® and {E® are therefore generators of the Lorentz group in free space,
and also in the presence of matter.
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