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ABSTRACT

A truncated Mori expansion for the angular velocity autocorrelation
function is used as a starting point to calculate the orientational auto-
correlation function for a disk and sphere using the newly developed
methods of Lewis et. al.[Q]. A series expansion is obtained for the
sphere which reduces to the free rotor and Debye limits, and a closed
form is obtained for the disk which does the same. It becomes clear

. : . .o 13]
that this three variable Kivelson/Keyes formalism , when used for the
disk angular velocity, is equivalent to the inertia-corrected two
. . - . [24] ce s .
dimensional itinerant oscillator . Thus it is now possible to relate
analytically a realistic, oscillatory angular velocity autocorrelation

function to a realistic orientational autocorrelation function for the

same molecular symmetry.




Introduction

[1-5]

In several recent articles on Brownian motion the Langevin

equation for the angular velocity W of a molecule, viz

| I + IR w = Il (1

| (6]

; has been used in a more general form to allow the original friction
coefficient, Bf, to become time dependent. In equation (1) I is the

moment of inertia and IBf the frictional couple written as Cw by

e

Debye 7 . I is the torque due to random driving forces caused by

thermal fluctuation in the environment. 1In this paper a more flexible

[8] [6]

integro~differential formalism due to Kubo and Mori is used to

calculate an expression for the autocorrelation function of orientation

for a dipole unit vector u embedded (i) in a sphere; (ii) in a disk.

1.[9]

[10]

calculation than one outlined by Evans in a previous paper, where

[11]

a cumulant expansion was used to relate <w(t)*w(0)> to <u(t)*u(d)>

The method used is that of Lewis et. a , and is a more complete

for a two dimensional rotor. The type of calculation presented here,

though tedious and intricate, is needed to attempt a match with the

[12]

results of computer molecular dynamics , where <@(t)'9(0)> is often
shown‘to be an oscillatory function of time, sometimes with negative
! ‘ portions, while <@(t)'9(0)> from equation (1) is simply exp O-Bft), a
form that violates the fundamental axiom of time reversibility for
classical autocorrelation functions[zc]. Below, we use a more
realistic, oscillatory, angular velocity autocorrelation function

[e]

derived from a Mori continued fraction




The Dipole Embedded in a Sphere

Consider the Brownian motion of a spherical molecule containing
a rigid dipole passing through its centre. Independently of the shape

of the body we have:
u(t) = w(t) X u(t) ... (2)

Since the w's are Gaussian random variables we have

(a)) (a
2n+1
w, Y. w, b <o ... (3)
! 2n+1
(a,) (a, ) (a.) (a))
1 2
<wi e wi s o i ﬂi <wi r wi 5 1)
1 2n r’s r s

where the superscripts denote components. So that repeated integration

of equation (2) gives, on averaging:

<u(r)> = u, + j{ Sy X (wy X ug))>dt,de

~0 2
Ot <t <t

15%2
* f ' f Clwy g X (wy X Wy X ug))))Tdty...dty,
0t .. <t <t
+ ... v .o v 5)

which converges to the unique solution of equation (2)‘provided w(t) is
a continuous function of t and u(0) = uo. Using the Dirac notation of

Lewis et. al.[g] then, for example:

- X = . - .
Wy X (Wy X ug) = Wy Wyeup) - (Wyow,yJu,

]

v | - @jinlo.




-

3
[1-4] . . .
In one very popular form of the generalised Langevin equation
we have:
t
I + I f K, (t - TW(T)dT = 19 e (6)
~ o e
) . l2c] o

where K is the memory function defined by:

Ko (t) = <O(t)*0(0)>/<w(0)*w(0)>

The variate © is Gaussian and non-Markovian. According to Mori[s] K

may be replaced by a continued fraction which we truncate here at a level
. 4

commensurate with Kivelson/Keyes three variable theory[ ! so that in

Laplace transform space (p)

io(p) _ KOfO) _ KO(O)
P + Kl(p) P + Kl(O)
Pty

where KO(O) and Kl(O) are equilibrium averages (variances), and Yy is

defined by:

K, () = K, (0) exp (-Yt) .

" It follows that:

t
dcty + f Ky (t-TDO(DAT = 10, . ... (N
0
and: Ql(t) + y@l(t) = Qz(t) . e (8)
Solving equations (6) - (8) we have:
9(0) 0(0)
w(p) = - + ~ —
p + Ko(p) (p + Kl(p))(p + K (p))
. 0,(0) + L(O4t))

()
3

2
p” + p7Y + p(K (0) + K, (0)) + YK, (0)




v

1
In equation (8) ®z(t) is assumed to be a Wiener process[ 3], so that:

<92(t)> =0 ;

Uyt 78 (Oy(t ) e ) = cimin(t, t)S,

where ¢ is a constant and ei, ej two of three mutually perpendicular
unit vectors in 3-D space. 61j is the Kronecker delta. For time

intervals A, A'; letting:

0, = Oyt = ECt, - ¢

NERNE (10)

we have:

<EMy> =0,
(11)
SEBYe N (ED e > = czéiJ{A. AL

Considering the roots of the cubic in equation (9) ; a cubic equation
with real coefficients has three distinct real roots, a single real

root, or at least two equal real roots, according as its discriminant

is positive, negative or zero. The discriminant of our cubic is:

_ _ 3 22 _ 3 2,
AO 18b0c0d0 4b0d0 + boc0 4c0 27d0 ;

where b = Y; ¢y = K (0) + K (0); dj = YK (0).

In the case where AO > 0 the roots (which we designate in this
case as al, az and a3) must be found numerically (using, for example,

the comprehensive N.A.G. library available for most computers), and the

steady state solution for w(t) from equation (9) becomes:

t3 -0, (t-T)
w(t) = J EI%Ie £(dT) - (12)
n

where the preexponential Dn can be expressed in terms of an using

partial fractions.




.

In the case where AO £ 0 the roots (which we designate in this case
by (p + ui)(p + uf + iB")Y(p + ai - if')) may be found by Cardan's formula,
and may be related to KO(O), Kl(O) and Y as in the appendix. The steady

state solution is now:

—(t—T)OLZ'
w(t) = f Yo + [y, sin [B¢t-T)] + v, cos [B' (t-1)]1]

-(t—T)OLl'
X e E (dr)

~

t _Eo(t—T) —Oto(t—T)
f [Cl cos (Bo(t-T) +de + Cze 1€ty ... (14)

-00

- —v = VoL oy 1y 2 2771
where Yo vy [(OL2 0 S + B7]

- 1
Og' = Oy

1
an Vo 12 ' 2
8 (o =a,)" + 8

yZ—

Calculation of <u(t)>

Defining: 3 _an(t_T)
Xnne , T Et
ft(T) = |n
0 T > t,

we can proceed in the mathematically less onerous case of

AO = -4A% - 278B% > 0 (see Appendix) to calculate, By equation (11):
Py G5 o 025 (D2/20. + D.D./(u.+0.) + D.D./(0.+ a.))
Kk % ij 1% 1727172 173 1T U3
~exp (-a, |t -t ) + (D) /20; + DD,/ (a +0,)
+ DD,/ (0y* 0g)) X (- ay |t -ty )

2 2
+ (D3/2a3-+D1D3/(a1+a3)-+D2D3/(a2+a3))

exp (-asltk—tl\) ... (15)




i 6
‘l,
b %
; 2
= S. . T .
; ¢ 8y, J £, (T) £t (T) dT (16)
oo
So we have:
(1) (1)
<w cw,.> = 3< >
w twy 3wy "Wy
In the case tk = t2 = t equation (15) reduces to:
i
o D D D 2D_D 2D_D
<m(1)(t)2> _ 1 N 2 . 3 + 12 . 173
2a2 2a2 2a3 (a1+a2) (a1+a3)
2D_D_
___~__23 c? v (17)
(u2+a3)_
- 2
= ¢ /28 v e PN (18)
for brevity. (N.B. in our notation B' is unrelated to 8 and is not

its derivative.)

The constant ¢ may now be evaluated using the equation:

1 2
— I< > =
2I w(t)

N

kT, e cee (19)

so that c? = 2RkT/I . .. ... ... (20)

A frictional relaxation time (Tz) and a mean thermal angular period (Tl),
may now be defined as:

= M = é
| T, = /B 5 T, = (I/kDE . . e (21)




1)

Considering the component <u (t)> of <u(t)>, the contribution

to it from equation (6) can bhe written as

TS S T ¢ D'
j J (Ly° Up)¥q Wy W)y

Ogtlétzét

>dt, dt (22)

2

from which it follows from equation (21) that the 02 term is

-Qq (to~tq) —0p (to-tq) —Oq(to—-tq)
ooy D JJ 1(tg=14 B 2(to-ty 3(ta-ty

0 Aoe + 0e + Coe dtldt2

o<t g€t €t
1 2" (23)

where A, B_ and C0 denote the preexponential factors of equation (21).

0 0
(2)

Denoting the integral in (23) by Il (t) and evaluating it by means of

Laplace transformation we have

@y ... _ % B C Ay By S
A O R R rr R
1 2 O3 % Gy Og
—a.t ~a.t ~0.t
1 2 3
Aoe Boe Coe
+ + +
2 2 2
al az as




=

and so the contribution to <u(t)> is

—2¢%u 1. (¢) = -2(2BkT/I)u I (2)

01 Y911 (t) (24)

N

Next we evaluate the ¢’ integral

(25)

J. . J <({»r@l-an dnel-elfo>dt ...at,
15

< -
o<t ét4ét

The integrand reduces, after a deal of algebra, to

120, D W5y D, Dy 4y, D gy D, D
R e L T (26)

where equation (4) has been used for the fourth order averages.

v
Ot

Equation (25) may now be evaluated using equation (21) and the

theorem :

* * * = - -
(f1 f2 Cee fn) [...J fl(t tn_l)fz(tn_1 tn_z)....fn(tl)
t .
lat ....at (27)
where * denotes cpnvolution. Therefrom in Laplace space the integral

(25) is

AZ (4@ (praN®) T +6(p% (pra) P (p+201)) ™) + B2 (4% (pray)?) 7
+ 6(% (pray) 2 (p+20,))71) + C2 (A (pra) )T + 6(p% (proy) P (p+20,))7T)
+ A B (2(p° (p+ay) (p+a)) T+ (0% (p+ar ) * (pror  +a,)) T
+ (P? (P+oy) ? (PHa +ug) ) 7! + (P2 (Poiy ) (PHoy) (PHoi +oy)) ™)

1 1

+ 4A.C0 2% (pra)) (P+ag)) ! + (B (pHe ) (Pt 40 )) T
+ (2 (p+0p) 2 (pra 405071 + (B2 (PHay) (Prag) (pray+0g)) ™)

+ 4B C(2(p° (p+ay) (p+ag))7H + (2 (pray)? (pra,+a)) 7!

+ (% (H0) (P40, 400) )71 + (P (pH0L,) (PH0L,) (P, +0)) ).




==

Taking inverse transforms we have, for example

2 2t 3 "oyt —ogt
- - e e
L 1((p3(p+a1)2) 1) = 2 3 * W t 3 -3 n
2a1 al al al al
¢ 5 -0t —0th —2oL1t

- - e e e
L 1((pz(p+o,L1)(p+20L1)) ly = - - -+ t — —

20L1 40L1 OL1 0L1 40L1

2 -a.t -a,t

-1 3 -1 — 0 0 0 0 OLl 0 2
L “((p (p+0L1)(p+0L2)) ) x1+ x2t+ x3t + x4e + X5e

- - 1
L7 ((p® (prap) ® (prog+0,)) ) =

-1 2 2 -1
L “((p (p+a2) (p+a1+a2)) )

-1 2 -1
L “((p (p+a1)(p+a2)(p+a1+a2))

Here the x's are complicated co
z the equivalent functions for

the fourth order contribution t

-0t -0_t -(a,+a )t
x1+ x2t+ X, e 1, X te 1, xse 172
-a,t -0t -(o,+0,)t
. ' ' 2" 1, 2 . 1772
x1 + xX_ 't + x3 e + x4 te + x5e
2 2 2 —alt 2 -azt 2 —(a1+a2)t
) = x1+ x2t+ x3e + x4e + xse

mbinations of 0L1 and 0L2. Denoting by y and

the pairs (OL1,0L3) and (0L2,0L3) respectively,

o <u> is given finally by

4 2., 2 2 2 _ 2 2 2 -
EOC {2t (A0 /OL1 +B0 /OL2 +CO /OL3 +A1) t(5(A0 /OL1 +BO /OL2 +CO /OL3) A2>

9 2 4y 2 y 2 A
+ 2(AO/OL1 +B0/0L2 +CO/OL3 )+1\3 + t(e

—Oth 2 3
(ZAO/GI -+A4)

-a,t -o,t

2

2 3 3
+ e (2B0 /OL2 + A5) +e

2,3
(2CO /OL3 +A6))

-a,t -0t -a,t

1 2 [N
- e (6A0 /OL1 - A7) -e

-20._t -20,t
3
+ — (A % 1 /0L1l+ + Boze 2

2

-(o,+a )t
1 72
+ 4 (e Alo+e

-(a1+a3)t

2 [N 3 2 N
(6B0/a2 - A8)-e (6CO/0L3 -Ag)

Y -204t
/sz + CO e /OL3 )

~-(a,+o )t
273
11+€ Alz)}. “.. (28)




In equation (28) the A factors are cross terms of AOBO’ AOCO and

B C_. involving O

oo and &,_,. The full expression, which is

1’ %o 3
cumbersome, is available on request. We also indicate below the

basic structure of the next term, which is

: 6]4 . 3,, 4, 3 4,3 v, . o
Egc {St (AO/OL1 +BO/OLZ +C0 /OL3 + _1)

- 6t2(A0‘*/a1‘* +B(;*/o¢2“ +co“/a3‘* + Ep)

73 4,5 y , .5 4,5 =
6t(AO/OL1 +B0/cy.2 +C0/OL3 + _3)

95
9

1]

4 6 " 6 " 6
(A0 /OL1 +B0 /ot2 +C0 /OL3 + )

4

-0, t
1 b2, 5 6 =
+ e (A0 (t /OL1 61:/0L1 + 15/(11) + ~5)

-0t
2 y .2 4 5 6 =
+ t /0 - o 15/a +
e (Bo( /2 6t/2+ /2)

{1
~

-0,t
3 o 2, 5 6
+ e (C0 (t /OL.3 6t/0L3 +15/OL3) +

{1]
A4

“204t 5 3 =
‘e Ay (t/20° - 5/0°) + Zo)

-2a2t 4 5 3 =
+ e (B0 (t/20!.2 - 5/0!.2) + _9)

“2a.t 5 6 -
+ e (C0 (t/20L3 - 5/0!.3) + :10)

5 -3o0,t -30,t -3o0.,t

) 1 b 6 2 b 6 3 " 6
+9(e Ao/al+e BO/OL2+e C0/0¢3

+ :11) + :12 } , (29)
where 512 represents cross terms of the exponentials

—(Ol.1+OL2)t —(a1+2a2)t —-(aqy+ogt+aig)t
e , € , € , etc,

and all possible permutations of the indices among Oy, Oy, and 0L3.
The other Z's represent cross terms proportional to AozBoz, A03B0,

2 2 . .
AO BOCO’ AOBOCO, etc., in permutation.
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This series expansion for <£1(t)> simplifies considerably in two
limiting cases which illuminate certain of its properties and physical
significance.

(1) 1If Otl, otz and 0L3 are each small enough for the exponential

components of (24), (28) and (29) to remain comparable to the others

(a t)2n+1
in magnitude, and also for ——-—(—P‘z——-lT'—-— to be negligible compared with
2n n+ H
o, t) n
= , where n here refers to the ¢ th term and m = 1, 2, 3 and
(2n)!
relevant permutations and combinations thereof we have T, >> t

2

(equation 19), and equation (5) becomes, after a great deal of algebra:
2.2 44 2 2 2
< = -
u(t)> u, [1- c*t (A0+BO+C0) + ¢t (5(A; +B; +CO)/12
6,6 u L "
+ 5(A0B0+ AOCO+BOCO)/6) c't (7(A0 +B0 +CO)/72

3 3 3
+ 7(AO (BO +C0) +BO (AO+C0) +CO (AO +B0))/9

24 2 24 2 242 2 2 2
+ 7(AOBO +AOC0 +BOCO)/12+9(AOB +BOAC +C A B )/8) + ...]

OCO 00 000

_ 2.2 5 4y 2
=1, [1- et (A0+BO+CO) T t (AO+BO+C0)

o L o646 4
75C t (AO+B0+C0) + ...].

Using c¢? = 2B(xT/I) and (A0+B0+C0) = 1/2f3, we have, finally, for a

very long frictional relaxation time:

2 2 3
kTt? 5 (kr)2 ., 7 (kT)° 6
< > = - —_— = - —_— | — . . 0
wt)> = u,1 - 75 +12{1}t 72[1]1: e GO

In this 1imit the orientational autocorrelation function is:
<B(t)-E(O)> = <1;1(t)>'130 ; (31)

and is expanded as in equation (30).
Now the classical autocorrelation function for the free rotation of
a spherical top molecule is obtainable from Desplamques' expansion for a

symnetric top [17] :




e

11

2
kTt? 1 (kT2 I'] <N“>p
< S = - = |—= —_—
E(t) BO 1 I + 3 (I ] [1-+4I] +—§ny t ... (32)

in the limit where the mean square torque <N 25 > 0, and the moments

of inertia I' and I become equal. Then we have:

I

<u(t)>su, =1 -

2 2
kTt® 5 (KP)* w4 _
o I 12

giving exact agreement with equation (30) up to the t* term.

(2) When al, az and a3 each become very large, the dominant term in
each coefficient of the expansion will be the t term, t? term, etc.,

so that:

< S = -—
u(t)>eu, =1 -2

4 0 2
t2 gty Tt Ayt
Al B ! c !
- %cs doa PR aoa +E T (33)
1 2 3
A B A.C B-C
0~0 00
However, we have Al =2 0°0 + +
O 0g  Oy03 003
AnBACh . |An%|B c By’ [Ag Co Co% (B A
and % = 6~9—9*9 + 2 —Qé —9 + _9_ + 5T+ —| + — _9 + _9
so that equation (33) becomes, by inspection:
A B C
<u(t)>u_ = exp | -2¢?|{_ 0 + _0 + O}t (34)
h ~0 o a o
1 2 3

-t/TD

i
o

where TD is the Debye time.
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Thus our orientation a.c.f. reduces to the free rotor and Debye
limits for 7, >> t and T, << t respectively, although the angular

velocity a.c.f., containing a coefficient in t® in its Maclaurin

[10]

expansion is theoretically imperfect. The expansion of <u(t)> in

the general case is cumbersome, and applicable experimentally in the
far infra-red/microwave only for dipolar '"accidental" spherical tops

such as

CD30F3. An approximate closed form, éoffeet up to the t? term is:

_ ap¥T| 20, Bo ol %0 Bo %o
exp Tta *3 ta a2t a2t 2
1 2 3 1 2 3

-0, t -0t ~-0,t

1 2 3

+ Aoe + BOe + Coe v (35)
2 2 2
OLl 0,2 OL3

oQ

and the spectrum (J < u(t)>°uoexp (-iwt)dt) may be found to the
0~ ~

necessary accuracy by using Laplace transforms and the method of

. 14
successive convergents[ ]. In the case oo, =0, =0, = T,

1 2 3
D1 = D2 = D3 = 1/3, our expansion reduces to that of Lewis et. al.[g]
[15] . .
and therefore to that of Sack , who investigated the problem of

the rotating sphere using a diffusion equation derived from a

generalised Liouville equation. We now consider the disk, where it is
possible to derive the orientational a.c.f. for AO < 0 in a closed form
and also for AO > 0, given the analytical angular velocity a.c.f. of

the Mori expansion.
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The Dipole Embedded in a Disk

Consider thergztion of a molecule that contains a dipole whose

axis rotates in a plane, and whose u(t) in the dipole axis. Then:
w(t) = w(t)k

where k is a unit vector and g(t) = Iw(t)|. Let I be the moment of

inertia of the disk about k. Since:

koug = 05 kX (kX up) = -y,
then it follows that:
> = - < > < >
<E(t) BO 1 J wzwl dtldt2 + [...J w4w3w2w1 dt
Oétlétzét Ostls...<t4<t
- >
....I w6m5w4w3w2wl dt1 dt6 + ... (36)
<
Oétlé. £t 6 t .
s
For scalar w, equation (21) becomes:
—a,|t, -t | ~a, |t -t, | —a, ]t -t,]
2 1"k "2 2'°k "% 3"k "2
> =
<w, Wy c [Aoe + Bje 0 ]

..dt

in the case AO < 0. We shall consider the whole domain of AO below.

So the first integral in equation (36) is:

(A B c

—czt._0+___0_ ___0_._

o o

P11 %2 %3

( a,t a.t a t_

A e 1 B.e 2 C e 3

+ O0—— + O + 0 Ce (37)
2 2 2
% %g Og
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(o]

Since the second integral can be written as:
5 t t2 .
— < >
2 2 J dtzf w(tz)w(tl) dt1 (38)
0 0 _
and all successive integrals as:
1]1,.1% B S| |% Bo %o
-r-'c t’or—+-—+————2‘+—2+—-—2-
(%1 %2 %3] (%1 %2 93
r
-t -0,t -0t
2 3
+ A&e + BOe 7~ + COe 5 .. (39)
% 4y %3 |
then immediately we have
A B C A B C
0 0 0 0 0
<u(t)>+u, = exp ~2BBIlt—+—+———7+—7+——%
9 % %3 (%1 % 93
-a,t -0t -a,t
L 2 BoS 2 Co® 3 (40)
s + 52 + )
1 2 3

Turning to the case where AO 5:0, we have:

2 2
. C C 2C.C
w® @ o g g e |
o Y *0™0]
2
= -Ez as t > « ;
Y
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G TLE:. | |

so that c¢? = ZBakT/I, 12 = 1/Ba - (41) as for equation (18). 1In the

special case where BO = 0 (which implies Yy = B(BKO(O))% in the Mori

continued fraction) we have:

! -£ t a.t
\ <u(t)>eu. = exp | - 28 SFltla e 0 4+ Ao O
‘ ~ ~0 a1 1 2 2
A , g2 a
i
I‘ —
A A —'(C_)Ot '-(X.Ot
oL s 2 4 [Age — - Aye - (41)
2 2
go 0L() E0 0LO
\
' c.? c.C
)]
| with Ay = 53— + 12
J T
2
z . c, c,C,
]

3,3 2,2 3.3 2.2 3,3 2,2

a 't oy tet o a et ettt ag’t? g’
{ ]
| 31 21 3 21 31 21
|
; equation (40) reduces to:
i .
i <u(t)>eu, = exp (- kTt?/21) . cee (42)

which is the orientational autocorrelation function for a free planar

rotor[ls]. On the other hand, when:

AO B0 C
—_— e — ¢ — is very large, then equation (40) becomes:
@ %y O3

e et b e e

:
|
vy
J
¢
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- e —

<u(t)>°u0 exp | -c¢ t (43)

-t/2T
0 , c (44)

so that the Debye relaxation time for the disk is twice that for a
sphere with the same moment of inertia and '""drag coefficient",
represented in this paper by the continued fraction coefficients

[2¢]

KO(O), Kl(O) and Y . We have KO(O) proportional to a mean

square torque, and Kl(O) proportional to its derivative for the
classical angular velocity autocorrelation function. Finally, we
note that an approximate form for <u(t)>*u

[10]

j with AO > 0 in the case
] of the disk has been given by Evans , Wwhose notation (subscripted
{

i

0

E) we link to ours below:

1

Clcos¢= (1+FE) j
C,sin¢ = -4 |, o+ Toay /@ + Ty ;
! 1 BE 1,E EZ)E E '
g =85 G p =%
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Discussion

It is necessary to indicate briefly which physical models lead

-0t
to an angular velocity autocorrelation function of the form Zl%le n

n

Lassier and Brot 18 have shown that:

T1 ~t/T, T2 -t/T
<w(t) w(o)> = ———e - —e (45)

s

is an analytic consequence of considering the motion of a classical
P linear rotator hindered by a two-well potential and submitted to random
torques in a plane perpendicular to the rotator. These leave the
é component oflg_parallel to the torque vector unchanged by the torque
il impulse, a condition equivalent to that of a smooth, hard sphere,
rigidly bound to the origin, in collision with an identical free sphere.

The torque impulse is perpendicular to the line of centres of the

spheres, and only the velocities along this line are exchanged. In

this case we have; after certain approximations

’ 1 -t/1y 2 -t/T,
<u(t)>euy = ——— e - —e . (46)

" The Maclaurin expansions of both equations (45) and (46) contain
a non-zero, unphysical[zc]t3 coefficient, so that equation (46) cannot
reduce to the free rotor hypergeometric Kummer function:
‘ ° ..k k
: Y(-1) (t?kT/1) /(1.3.5....(2k-1)) .
0]

This model is entirely equivalent to the J-diffusion mechanism of

[20]

Gordon[lg] extended to spherical and symmetric tops by McClung
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It has been extensively tested against far infra-red/microwave results
ﬁy Larkin et. al.[21], and in the time domain by Evans[zz]. It does
not predict a fast enough return to transparency at high frequencies,
and has been criticised by 0'Dell and Berne[23] using rough sphere
molecular dynamics experiments, where all the model conditions can be
fulfilled precisely.

In the case n = 3 dealt with above Coffey et. al.[24] have shown
recently that this form arises from consideration of an itinerant
oscillator model for the motion of an annulus concentric with a disk.
Thus in treating the sphere we have extended the itinerant oscillator
model to three dimensions, albeit in an unclosed expansion for the
orientational autocorrelation function. In two dimensions the disk
carries a dipole U lying along one of its diameters, whose position in
space is specified by an angle 0(t) relative to a fixed axis (the
direction of an applied field, for example). The dipole is then
attracted towards the direction in space specified by Y(t) by a
restoring torque proportional to O ) - Pt)). It is assumed that
the damping and random torques arising from the surroundings of the
system act only on the annulus.

In conclusion, it is possible to obtain expressions for <B(t)>'uo
given a truncated Mori approximation for <@(O)'Q(t)> for the sphere and
disk which both reduce to t?e correct free rotor limi£ and to a Debye
limit of rotatiomnal diffusi&n: Equatioﬁ (40) is a closed form for the
orientational autocorrelation function of the itinerant oscillator in
two dimensions, which may be matched against the experimental data such

as those for the far infra-red/GHz absorption/dispersion of disk-like
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molecules such as trimethyltrichlorobenzene in the plastic crystalline
phase, where the loss spectrum consists of two, distinct, and well
separated peaks. It will be interesting also to investigate the
Brownian motion of disks with computer molecular dynamics and compare
the computed <9(t)-9(0)> and <E(t)>-90 with the theoretical Brownian

model, and, if possible, the experimental (spectroscopic) evidence.
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; Appendix

! Considering the domain of AO £ 0 for the disk, the coefficients

. yO’ yl, and y2 may be related to KO(O), Kl(O) and Y as follows:
; al' = (s1 + sz)/z + Y/3 az' = -8, - s, ¢ Y/3;

i

1

| B' = (/3/2)(s; - s5,) ;

[-B/2 + (A%/27 + B2/ %

4]
Il

[-B/2 - (A%/27 + BE/0)21 ¥

A = kO(O) + K, (0) - Y2/3; B = (Y/3)(2Y%/9 + 2K, (0) - X, (0)).

w
o
I

Equation (16) becomes:
i t
< o, min(ty, ty) -ay' (t, = T)
mkm2> =c ([yzcos[B'(tk-T)-+ylsin[8'(tk—T)]]e
—az'(tk—r) ,
+ ¥,e )(y2 cos [B (tQ—T)]
~0., ' (t,~T) -, (t,-T)
+ ylsin [8'(tQ—T)] e 1 % + ¥g€ 2 % ydr

= c?[A" exp (-|t, ~tofa,) + By cos (B" [t ~t) )

0

N

Yo Yo' + V4B

where A ' =y + ;
0 0 . 02 v2y |
20, (@,'" + B'%)
By' = yo(yp0y' + ¥1B)/(0y' % + B'Y)
0 07272 1 2 '
2 2 ) 2 _ 2 \
o - (yo" + ¥4 . o' (y, Y1) * 2¥,¥,B
0 : 12 '2 ’
. 4oy a(a ' + B
[ 2 - 2 ]
B' (v Yo ) + 2¥1¥,04
D, =

' 2 )
4(0L1 + R'9)

+exp (|t ~tola ") (Cy cos (B[t ~t ) + D sin (8" ‘tk-tl‘))]m}
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(i1)

When tk = tl = t, we have:

2 ' 1 'y =
c (A0 + B0 + C0 ) kT/T . . (A3)

Using the relation derived above for the disk; viz.:

T
<u(t)>°uO = exp —[ (t - D)<w(t)w(o)>dr
_ 0
we have:
T _azuT
<u(t)>eu,_, = exp -c? (t-T)(A ‘e + B .'cos B'T
~ ~0 0 0
0
—ul'T
+ e (CO‘COSB'T + Do'sinB'T))dT
; [ ' ' ' _
B 2. R0 a,Cp" + BDy') Ay Gy L
= exp| -chit—/ + T ¥ gr2 +—(e -1)
G2 Q3 Qg
|} \ |2 -— |2 1 1 ]
B, Co' @y B'%) +2a,'B'Dy
- —5(cosB't-1) + 5 5%
B! @” + B')
-t Dy’ ()" - B'?) - 20, 'B'C"
x(e 1 cosR't~-1) + ) .
(ai + B'9)
—ag 't i i
xe sinfB't)| “h. . (A4)
t"":°"5\"~ \..«.k_.‘.‘—;\.i

This equation is the;cldéed form for the orientational auto-
[N '

. . [24] .: .
correlation function of the Coffey/Calderwood inertia-corrected
two dimensional itinerant oscillator, and should supegdede the

: ‘ ‘ [10]
approximate expression given by Evans .

Expanding the exponent in a Taylor series, there are no linear

or t coefficients, and:

<u(t)eu > = exp (- kTt2/21 +L:(t3))
> exp o—thz/ZI), the free rotor limit, at very

short times when EKta) is negligibly small.
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(iii)

At long timeé, we have:

T 1] t 1 1
<u(t)>*u,. *+ exp —tEE(A '+ B 4+C Y AO +OL1C0 rE Do}
by =0 ; 0070 ' ap? o+ Bl J

= exp (-t/ZTD)

in accord with equation (44).

Given Y, KO(O), and Kl(O), equation (A4) may be computed easily(}ﬁ:ﬁ

and compared with exponential data, and writing it as:

<B(t)>'30 = exp (-f(t)) v v (AS) ,
)

an approximate form for the sphere, for éii AO’ is:

<B(t)>-30 = exp (-2f(t)). (A6)

The following equations 1ink Y, KO(O) and Kl(O) to the

corresponding parameters in the itinerant oscillator:

KO(O) = w02 = angular frequency of the disk when the

annulus is held stationary.

—_ 2. .
Kl(O) (Iz/Il)w0 ;  where:

moment of inertia of the annulus,

I~
It

moment of inertia of the disk.

=
]

Y = KTt /I, ; where T is the Debye relaxation time.




