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Poincaré group electrodynamics is AT conserving and Lorentz
covariant under all conditions by definition. Examples are
given of these properties. Comay’s comment is incorrect:
any CPT conserving field theory that is Lorentz covariant is

consistent with special relativity, whose underlying group is
the Poincaré group.
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1. POINCARE GROUP ELECTRODYNAMICS

Electrodynamics must be developed within the underlying
symmetry group: the Poincaré group for special relativity;
the Einstein group for general relativity. This was the view
of both Einstein and Pauli [2], figures on the opposite sides
of the Copenhagen-Realist debates in quantum mechanics;
probably the most profound dialogue in twentieth century
natural philosophy. It has recently been argued in this

Address for correspondence: 50 Rhyddwen Road,
Craigcefnparc, Swansea, SA6-5RA, Wales, Great Britain

255

0894-9875/97/0600-0255812.50/0 © 1997 Plenum Publishing Corporation



256 Evans

journal and elsewhere that there exigt novel relations
between electromagnetic field components in the vacuum, e.g.,

BW xB@ = 1p0ipB)e, et cyclicum, (1)

where B@ , @ B are magnetic flux density components
in the basis ((1), (2), (3)) [3-11], and in vacuum

B3 = g a3 (2)

where @ = k is a unit vector in the propagation axis Z.
Here B(® is the scalar magnitude of B®?, which is directed
in the axis of propagation of the beam if B1) = B@* jg 4
plane wave. More generally, B, B  and B® are
relations between space components that are proportional to
rotation generators of the Poincaré group, a result which is
independent of any equation of motion and depends only on the
structure of spacetime. The received view [12,13] however,
asserts that the group of electrodynamics is U(1l), and in
consequence there can be no longitudinally (i.e., Z) directed
fields in vacuo. Dirac [14] has argued forcibly that the
U{1) sector symmetry cannot accommodate the Coulomb law,
formulated in 1785, and it 1is now clear that it cannot
accommodate the Evans-Vigier field B®), first inferred in
1992 and observable empirically in magneto-optics [15-17].
Comay [1] argues that Eq. (1) is inconsistent with
special relativity. We first examine this claim in the
vacuum (Sec. 2), then in field-matter equilibrium (Sec. 3).

2. COVARIANCE IN VACUO OF THE B CYCLICS

Let us accept, for the sake of argument, the received
view that the photon is massless; that the classical electro-
magnetic field’s signal velocity in vacuo is identically ¢,
the speed of light. Accordingly, the signal velocity in all
Lorentz frames is ¢, and the notion of transformation from
one frame to another is meaningless in this condition. There
is no rest frame for the massless photon. Equations (1) are
written for the vacuum electromagnetic field, and it is
meaningless to apply the Lorentz transform to them in vacuo.
Comay’s equations (1) to (9) (and his conclusions based
therean) are not applicable to the vacuum cyclic relations
{(1). The latter form a part of the Lie algebra [18] of the
Poincaré group of special relativity and are therefore
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lorentz covariant and therefore CPT conserving [19].
Fquation (1) demonstrates the algebra of votation generators
of the Poincaré group [3~7]. On the classical level in which
£q. (1) is written, there is conservation
of &BT, &P, &T, PT, &, P and T. The corollary of
the GPT theorem then asserts that since Eq. (1) is &PT
conserving, it is Lorentz covariant, and therefore consistent
with special relativity. This is unsurprising because £q.
(1) represents an algebra of rotation generators, a sub-group
of the Poincaré group underlying special relativity. This
argument is alone sufficient to show the erroneous nature of
Comay’s claim that Eq. (1) is idinconsistent with special
relativity. In the remaining part of this reply we will
demonstrate why Comay reached this erroneous canclusion.

3. COVARIANCE OF THE B CYCLICS FOR FIELD-MATTER INTERACTION

Comay’s equations (1) to (9) apply the standard linear
Lorentz transformation to the standard antisymmetric field
tensor (his Eg. (3)). Unsurprisingly, he obtains the
equations for the transformation of field components from one
frame X to another K/ moving at v with respect to X. In
order for this aorthogonal transform to be physically meaning-
ful there must be two distinct, well-defined, Lorentz
frames X and X’/. This is possible if and only if there is
field-matter interaction, otherwise the field is in vacuo as
in Sec, 2, and there is no rest frame, i.e., there is only
one well-defined Lorentz frame. Comay has therefore worked
out the effect of Lorentz transformation on the B cyclics in
field-matter equilibrium.

The results of this procedure do not apply, however, to
our Eq. (1), which defines a relation between vacuum field
components. If we replace B by the magnetic field
strength H; and the electric field strength E by the
displacement D, i.e., introduce field-matter interaction,
the Lorentz transform may be applied correctly to each field
component. This is demonstrated in the following section, in
which we correctly recover Eq. (1) as v goes to ¢. It is
well known that in the presence of field-matter interaction
(e.g. in a waveguide) there are longitudinal field compo-
nents. In this situation, the Poynting vector represents the
Tinear momentum of the field and the B! vector is propor-
tional to the field angular momentum about Z. The relative
orientation of these vectors before, during and after field
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matter interaction is determined by conservation of charge;
total energy (kinetic and potential) and total momentum
(1inear and angular). There is no reason to assume that the
Poynting vector must always be parallel to B in field-
matter equilibrium. Comay shows that the Lorentz transform
during field-matter equilibrium has different effects on the
vacuum Poynting vector and the vacuum B¢* . For plane waves
in vacuo, B 14s parallel to the Poynting vector in vacuo
for plane waves [3-11].

4. LORENTZ TRANSFORM OF THE B CYCLICS IN FIELD-MATTER
EQUILIBRIUM

Consider an electromagnetic field in a frame k7,
propagating at ¢ in vacuo. In any other frame X it must
also propagate at ¢, and so in the quantum theory, the
photon has no rest frame. This is a counter-intuitive
feature of special relativity, but follows from the first
principle, which asserts that ¢ is a universal, invariant,
constant. This feature must also be compatible with the
result of the Lorentz transform applied to the field strength
tensor F,,, a process which produces

g’ Y[B(l) _ vx EW

B@ = YB(z) _ VX E(z)\
o2 /’ (3)

with v as the constant speed of X/ in the Z = (3) axis with
respect 1o K. For a plane wave, Egs. (3) produce the result

1/2
R
Bl - B
1+ 7 (4)
C

where we have used EQ = ¢B(® | a relation which holds only
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at the speed of 1ight in vacuo. The phase of the plane wave
is a Lorentz invariant [5], and so the amplitude of the plane
wave would gradually diminish to zero in frame k/ if v were

allowed to approach c¢. If the hypothetical rest frame X/
could be defined in this way and if the plane wave continued
to propagate at ¢ with respect to kx/, there would be no
radiation, a vreduction to absurdity. The root of this
paradox is found in the fact that the plane wave is already
propagating at ¢ in frame X/, and in consequence frame X'
cannot move with respect to X at any velocity, (other than
0 or c), without changing the value of ¢ measured with
respect to frame K, and thus violating the first principle
of relativity, that ¢ is a Lorentz-frame invariant universal
constant. The only possible solution of the paradox
is v =0 in Eq. (4), leading to B’ = B This means
that the plane wave propagates at ¢ in any frame, and has no

rest frame. It is frequently stated that the massless photon
has no rest frame.

There follows the important result that the B cyclic
theorem, when applied to a plane wave propagating at ¢ in
vacuo, is also a Lorentz invariant construct. It remains the
same in any Lorentz frame of reference, and is therefore an
invariant feature of the Poincaré group of special relativi-
ty, forming an invariant Lie algebra. It is therefore
automatically Lorentz covariant in vacuo, and a CPT conserv-
ing field equation. It is concluded that in standard special
relativity, B 1is a bona fide magnetic flux density. If
the converse were true the B cyclic theorem would violate
the £BT theorem, probably the most fundamental theorem 1in
physics. Note that this conclusion follows directly from
application of the Lorentz transform to the field strength
tensor of electromagnetic radiation propagating at ¢ 1in
vacuo. Similarly [5~7], the B cyclic theorem conserves the
other six symmetry combinations, i.e., &, B, T, &P, &T, BT,
and at the classical level violates no discrete symmetry in
physics. The B®) field in vacuo is phase free and Lorentz
invariant, as indicated directly by Eq. (3).

In the received view the field B = B@®* conserves
the seven symmetry combinations of physics, but it is
asserted that the cross product B x B® does not produce
another field. At this point, the received view violates
the &PT theorem, which, as we have Jjust seen, asserts
that B pust be a field.

If for some reason the electromagnetic radiation does
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not propagate at ¢ in frame K, e.g. if the medium of
propagation in frame K is 1in general magnet1za@1e 'and
polarizable, then B must be replaced by the magnetic field
strength H, and E by the displacement D. The Lors;ntz
transform (3) retains its form only if there is no magnetiza-
tion (M) or polarization (P), sO that

H= =, D = ¢ FE, (5)

and in frame K/ there exists a relation

[ * ) 1 (2)
(B + ) (By + E)® = 2B BT = BV B (6)

I

and so forth in ¢ = 1 units, where [12]:
Bl =yB,, Bi=vB,, Bi=B =38, (7)

Z = -8yB,, B =fyB, E=0. (8)

In Jackson’s notation [12], Eq. (6) is a Z axis lLorentz
transform to frame X’ of the K frame cyclics

(1) 5 (2}
Bj By

€5k = iB©® B, (9)
Equation 6 has the same form as, and is therefore automati-
cally covariant with Eq. (9) and the B cyclics are Lorentz
covariant. This 1is hardly surprising because the cyclics
transform as spin angular momentum. The complete theory of
relativistic angular momentum requires the Pauli-Lubanski
vector formalism as is well known. This is the correct way
to carry out the Lorentz transform of the B cyclics, and the
result is not surprising because B x B3 = i@ g+ jg
a physical observable [2-5].

For electromagnetic radiation propagating at ¢ in the
vacuum, there is no rest frame, and the Lorentz transform in
this condition is compatible with the first principle of
special relativity if and only if v = 0. This is also true
for Lorentz transform in axes other than Z. These conclu-
sions can be arrived at in several ways, one of which is as
follows. Consider the Lorentz transformation matrices of a
four-vector in the X, v, and Z axes. For a single Lorentz
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transform from frame X to X’ these are, in the conventional
notation B = v/c; v = (1 ~ v2/c?)2/2

Yy 00 iy 1 0 0 0
~ 0 10 0 0 y 0 iy
Lei=) o 01 ol BTl o 1 o |”
-iyB 0 0 ¥y 0 -iyBP 0 ¥
(10)
10 O 0
L_01 0 0
Z oo y iyp
00 -iyB v

If we now consider a double boost, one from X to X/,
followed by one from x/ to X/, the resultant matrix is

[ Y1Yo(1 + Ble) 00 i'Yle(Bl + pz)1
‘ x 0 10 0
1 0 0 1 0 !

__i'Yle(Bl B, 00 yiy,(dt B.B,)]

It

(11)

and this becomes the matrix L, for a single boost from &
to k7 if

Y 1= VYL + BBy By = vova(By By (12)

These equations give the relativistic velocity addition rule
[12]

v, + V.
v = r_ 2

, 13
1+ wvv,/c? (13)
where v, 1is the speed of x/ relative to k; and v, is the

speed of K/ relative to kx’/. Equation (13) gives the result
that if v, = v, =¢, thenv=c¢c; and if v, =v, =c,
then v = ¢. So if X/ moves at ¢ relative to k, X/ also
moves at ¢ relative to both X and X’/. If however, Kk’ moves
at ¢ relative to K, and k¥’ moves at a velocity v,«c

relative to k7, then 7 from Eq. (13) must move at ~ c+ v,
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relative to X. This violates the principle that c is the

same in every frame of reference. Afield B = BW 4+ g2 4 g3
which propagates at ¢ in one frame propagates at c in every
other frame and cyclic relations between these field are
Lorentz invariant in the vacuum.

If we consider consecutive boosts in orthogonal direc-
tions (e.g., a boost in Z followed by one in X}, the relevant
matrix product is

vy, 00 iy,p;Jf1 0 0 0 ]
0 10 0 01 0 0
X2y &7 0 01 0 00 Y2 iy,P,
_“_i'Ylﬁl 00 vy, [|00 ~iv,B, v,
Y. 0 ¥,¥,B.B, 1v.Y,B (14)
0 1 0 0
) 0 0 Y2 iv,B, |

_—j—YJ_Bj_ 0 _iY1Y2B2 YiY2

and this does not have the structure of an individual boost
in X or in Z, the reason being that a commutator of boost
matrices is a rotation generator 1in spacetime [5]. For
example, the commutator of boosts represented by XZ - ZX is
an off diagonal 4 x 4 matrix representing a rotation about Y

0 0 y4p? 0]

X7 - ZX = °© 0 0 0 . (15)
-¥2p2 0 0 0O
.0 0 0 0]

Comparing the (0,3) elements of matrices (14) and (15) we see

that the extra (0,3) element in Eq. (14) 1is caused by
rotation, and

B =(P.Bo)"% v = (v, (16)

is a relativistic velocity multiplication rule equivalent to
the addition rule given by Eq. (13). If v, = v, = c then

again, v = ¢ from Eq. (16), and if v, = v, =0, v=0. If
however, we try v, = ¢ and v, < ¢, the resultant v becomes
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again different from c.  This violates the principle of
special relativity that c is the same in every Lorentz frame
of reference. Again, we arrive at the conclusion that a
field moving at c 1in one Lorentz frame moves at ¢ in all
forentz frames. Therefore the B cyclics in vacuo form a
Lorentz invariant field theory. This is an important result
because it follows that the B cyclics must form a GBT
conserving theory of fields. Therefore B! is a physical
magnetic flux density in the vacuum. In matter, the H
cyclics are Lorentz covariant, where H is magnetic field
strength, but no longer invariant. Covariance is sufficient
to show that the H cyclics also form a CPT conserving field

theory or structure, and a theory which is invariant is also
covariant. '

Equation (1) shows that there exists a Tongitudinal
current density 7 in the vacuum, related to B® through

J& - L ®pgw

e , (17)

and this current density can be expressed as part of the j
cyclics in the vacuum

FW  J@ = 75048+ ot cyclicum, (18)

where 7@ and 7@ are transverse current densities

7 (0) .
J = g@ = I if+ feit, 19
Vi ( ) (19)
Therefore the magnitude B is proportional to the magnitude
of the current density

e
Ar '

B0 = “O{Ej(m = B,oC (20)

and if the photon area is 1/x?, we recover, for every photon

7o = mﬁe} = wex? = cp!?, (21)

where p(® is the charge density of the photon. This type of
radiated vacuum current needs for its existence a finite w,
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and a finite, constant ‘tangential velocity, defined
by v = wr where r is a radius. In the vacuum, the radius
is 1/x and the constant tangential velocity is <. The
forward velocity is also ¢, and the resultant velocity is ¢
as we have shown already using the relativistic multi-
plicative and addition rules.

5. DETAILED REPLIES TO COMAY

Comay’s detailed comments are corrected as follows. His
points A to E of his introduction are applied to our Eq. (1),

which defines B® +to be irrotational in the vacuum.
Therefore,
VxB® =0, V:B® =9, (22)

The energy density associated with B® is defined through
the rotational Poynting theorem in Ref. 5. The B compo-
nent of the field propagates at ¢ in vacuo. The real part
of the component E® is zero, but formally,

VxE® =90, V-E® =g, (23)
The continuity equations for E® and B 4in vacuo are [3-7]

10B® 9@

EREL oz " (24)
1 gE 3 O (3
c et ez 79 (25)
Therefore,
(3)
Vx BO = zla%algt -0, (26)
(3)
Vx E® = ——_._agt = 0 (27)

are  vacuum  Maxwell  equations for B  and EG)
Since Vx E® is irrotational it does not induce - 9B /gt
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through the vacuum Faraday law. Similarly, Vx Bf® does not
induce (1/ c®IE®® /9t through the vacuum Ampere-Maxwell law.
These precise results correct Comay’s claims A to E.
Comay’s Eas. (1) to (9) apply the standard Lorentz
transform but assume that there are two well defined
frames, K and K'. In Sec. 4 we have given a correct
derivation of the B cyclics in vacuo using Comay’s own
methods. Comay’s conclusigns are corrected as follows:

(1) The fact that the Poynting vector (field Tinear
momentum) after Lorentz transform from X to X’ is no longer
parallel to B (field angular momentum in Z) after Lorentz
transform from X to X/ is not in conflict with Eq. (1) of
this reply. It is, rather, the result of Comay’s assumption
that there are two distinct Lorentz frames. In other words,
this finding 1is the result of field matter interaction and
standard special relativity.

(2) The appearance of the uniform electric field is,
again, a normal outcome of the ordinary Lorentz transform
from X to K/ in a state of field- matter equilibrium,
Comay’s result means that if B 4s in k and a Lorentz
boost occurs in 1, an electric field appears in . This is
a Biot-Savart law in the presence of charged matter.

In a revised version of his comment, Comay makes a few
additional remarks which are rebutted as follows:

(i) The magnitude of B js a scalar, B!, which is
not in general a Lorentz invariant, as can be seen from Eq.
(4) of this reply. Therefore Comay has confused B!® with
a Lorentz invariant of the electromagnetic field. If there
were nothing that could be described as B, then presum-

ably B would be identically zero and there would be no
field. The rest of Comay’s comment here is sequentially
erroneous.

(11) The B cyclic relations are angular momentum
relations, and the fields B, B  and B are related
by angular momentum commutator theory, whose energy proper-
ties are well worked out in quantum mechanics. Therefore
Comay’s argument here is a purely subjective assertion. The
equivalent of the Poynting Theorem for angular momentum is
given in the third volume of The Enigmatic Photon [5]. Comay
makes a basic error in asserting that the Pauli-Lubanski
four-vector is not Lorentz covariant. It is well known that
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the second Casimir invariant of the Poincaré group is defined
in terms of this vector, which is c1ear1y.derived from the
antisymmetric four-tensor by multiplication by the fully
antisymmetric four-tensor and the generator qf the space-time
translation. This is why the Pauli-Lubanski four-vector is
Lorentz covariant, and this is why the classical four-
vector A(® (B, B®) is Lorentz covariant.

(ii1) It is by now well established that the B cyclics
are Lorentz covariant and fully compatible with special
relativity and the Maxwell equations.  Thus B is the
scalar component of the Pauli-Lubanski vector A/ (g%, B®)
and the B cyclics are defined in a complex, circular basis
((1), (2), (3)). If B® f{is defined in the Z axis, then the
real parts of B and B@ are in the X and Y axes. Due

to the Lorentz invariance of the electromagnetic phase, the
B cyclics behave under Lorentz transformation as

Bl0)2gM) x @@ = BOI2(jg(3)%), (28)

where e @, @) and e @ are the unit vectors of the basis

((1), (2), (3)). Since B!®2 1is a common factor on both
sides of Eq. (28), consideration of Lorentz transformation

comes down to the behavior of the frame itself under Lorentz
transformation, i.e., of

el vg@ = ie(a)*, (29)

and this is covariant by definition. If frames of reference

were not covariant, no laws of physics could be Lorentz
covariant.

The counter-example proposed by Comay is based on the
ordinary Lorentz transform of the field tensor, in which B®)

is automatically aligned in Z. This means that B®' = B(®
after Lorentz transformation. We have shown that this result
is compatible with the covariance of the B cyclics, because

after Lorentz transformation, B®' xB®' s proportional

to B®' defined as B(®'e® . Therefore Comay’s counter-
example is incorrect, and he does not understand that an

0(3) gauge is necessary to define BB, i.e.,
B := —i(e/h)A™ x 4@, as in standard 0(3) gauge
theory.

In a note added to his original paper, Comay makes
further erroneous assertions which suggest that his claims
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are monotonously subjective: never moderated in vesponse to
reasoned reply or available scholarship. Equations (6) and
(9) are covariant, this fact is alone sufficient to refute
his claim that the B cyclic theorem is incompatible with
special relativity. The theorem is covariant in the same way,
tautologically, as spin angular momentum. The complete
pauli-Lubanski theory has been developed in Ref. 11b and
expanded in Ref. 3. This shows that (B!®, B ) myltiplied
by a normalized linear momentum [3,11b] forms a classical
Pauli-Lubanski pseudo four vector, which transforms under
parity as such. Had Comay read Refs. 3 and 11b, this should
have been as clear to him as every other scholar. Therefore
his new claim that (B(®, BG)) i35 neither a four-vector nor
a pseudo four-vector is as trivially in error as the rest of
his work. The claim seems to be based on an unwillingness to
read or understand the literature and a basic unfamiliarity
with relativistic angular momentum theory.

The correct commutation relations for the Pauli-
Lubanski pseudo four-vector is as follows:

[wh, W] = —iewPA W , (30)

where A, is a fully covariant potential four-vector [6]. The
correct parity law for W* is, on the classical Tevel,

p(we, w) = (-wW°, W), (31)

where
w® := -B'A, - B*A, - B4, , (32)

is the scalar helicity, a pseudo-scalar quantity negative
under parity. For plane waves,

W° = -B*A, = B,4,, (33)

in the required non-Abelian gauge theory [6].

Doctor Comay has chosen to ignore the work of several
authors who have recently deduced 7ndependently [6-9] the
existence of Tlongitudinal modes of vacuum electromagnetic
radiation; in my opinion this demonstrates a troubling
contempt for contemporary scholarship. Despite the rapid
emergence of several corroborating theories, Comay has
refused repeatedly to respond to or even to refer to this new
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work. His critical manuscript remains the same as origiqa}1y
submitted, about eighteen months ago.at the time of wr1t1ng
(March 18th 1997). It remains a trivially erroneous mocking
of the serious minded and legitimate SC1ent1f1g progress
currently being made on several fronts. My rep11es to the
critical papers cited by Comay have also been available for
some months, for example my reply to thg experiment by
Rikken: but again we find in Comay’s claims no reasoned
reference to these replies, merely a Tlitany of criticism
already shown to be deeply flawed. _

Our conclusion is vividly illustrated in at Tleast two
ways: through the 1ink between standard non-Abelian electro-
dynamic gauge theory [18] and the B cyclic theorem; and
secondly through the invariance of the Tatter under a Z axis
Lorentz boost. It has already been shown repeatedly [4] that
the general electrodynamical gauge field defined in Ry@er’s
Eg. (3.166) reduces to the B cyclic theorem from a consider-
ation of the element

B, =G, =-igla,, 4] , (34)

remembering that.Ap is a complex operator. The isospace

indices a, b, and ¢ used by Ryder are, respectively, (1),
{2) and (3) of the B cyclic theorem. Therefore the latter is
an example of non-Abelian gauge theory which is not only
standard, but highly developed. For example, the general
non-Abelian field tensor G,, is gauge invariant and the

general A, transforms as in Ryder’s Eq. (3.162). The non-

AbeTian homogeneous Maxwell equations become a Jacobi
identity of the underlying symmetry group, Ryder’s Eq.
(3.173).  The quantized non-Abelian theory is fully re-
normalizable to all orders in the absence and presence of
spontaneous symmetry breaking. The relevant Lagrangian is
defined in Ryder’s Eq. (7.55), the coupling to spin half
matter fields in his Eq. (7.59). The latter gives rise to
the well known Faddeev-Popov ghosts in the Feynman rules; the
self energy operator; vertex functions and STavnov-TayTor
identities, the non-Abelian equivalents of the Ward identi-
ties. The B field shows the need to apply this well
developed non-Abelian theory in non-linear optics, It is
utterly erroneous to claim, as does Comay, that this well
known standard theory is not covariant. The proper way to
develop the Maxwell equations is well known (Ryder’s Eq.
(3.173)) and so forth. Furthermore, the non-Abelian theory

conserves CPT, P, and &, showing once again that Comay is
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in error. This author has no access to Comay’s Physica B
reference, but it is anticipated that the claims made there
are again erraoneous, for the same reasons as presented in
this reply. The B cyclic theorem is a standard, covariant
construct of non-Abelfan gauge theory, and is, in fact,
contained within, and 1is a special case of, Ryder’s Eg.
3.166).

( F%na11y, adopting Jackson’s [12] notation and stan-
dard Z boost transformation, we obtain Eq. (6), showing that
the B cyclics are 7nvariant under the Z axis boost. They
are therefore automatically covariant. This result is of
course consistent, once more, with standard non-Abelian gauge
theory. Comay’s work can be seen to be a catalogue of
elementary errors and half-baked commentary. The field B
happens to be a solution of the Abelian Maxwell equations
(because it 1is phase free), but is defined through the B
cyclic theorem, meaning that the non-Abelian Maxwell equa-
tions must be used. This is discussed fully in Ref. 3, a
fact which has been pointed out to Dr. Comay, but which he

has chosen to ignore in his Comment and in several other
recent works.

6. SUMMARY

Comay’s comment 1is based on his use of two distinct
Lorentz frames K and K/, whereas our Eq. (1), the object of
his criticism, is written in the vacuum in which there is no

rest frame. Comay makes a series of sequential claims which
are corrected in our reply,
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