Paper 1
Ultra Relativistic Inverse Faraday Effect

In the ultra relativistic limit of the inverse Faraday effect it is
shown that the magnetization of the sample by the circularly
polarized electromagnetic field becomes directly

proportional to the B® field of the radiation. Observation
of such an effect is direct observation of the B®) field.
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1.1 Introduction

The simple geometrical hypothesis ofa B® field of electromagnetic
radiation is supported by the inverse Faraday effect, which to date has been
verified experimentally in the non-relativistic limit, defined by relatively low
intensity and relatively high frequency [1-5]. In such a limit the observable

magnetization is proportional to beam intensity through the factor B@B®,
where B® = BOk. The effect is conventionally interpreted through the

conjugate product of plane waves in the vacuum, within the traditional
framework of Maxwell-Lorentz theory. The U(1) constraint imposed on
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such a theory implies that there is no B® field in the vacuum [6—10].
However, if this group constraint is removed, the B cyclic theorem shows
that the conjugate product is proportional to the recently inferred B® field
by ordinary three dimensional geometry [11]. Such group constraints reduce
the generality even of the restricted, linear Maxwell-Lorentz-Cartan
electrodynamics, and are, in the last analysis, subjective [12—15]. There is
no reason therefore to reject the existence of the B® field on the basis of
the U(1) group restriction applied to a linear theory of electrodynamics. By
hypothesis, B® is a field of non-linear electrodynamics, and is not
hypothesized in Maxwell-Lorentz electrodynamics.

Furthermore, the B Cyclic theorem is by its very nature a non-
Maxwellian construct, which shows geometrically that the curl of the B®
field is zero in the vacuum. This prediction has recently been confirmed
experimentally [16 ]. The theorem has been shown to be rigorously Lorentz
covariant [17], and therefore quantizes to a CPT conserving field theory.
It therefore has merit in special relativity and quantum mechanics. On these
criteria, the B® field is as valid as any other field component in theories
that are Lorentz covariant. There is therefore no reason to assert that
B® = 0, and no reason to assert that it is a field of Maxwell-Lorentz
electrodynamics. If observed experimentally therefore, it signifies an
advance in the basic structure of electrodynamic theory. The B Cyclic
theorem is more fundamental in nature than the Maxwell-Lorentz-Cartan
theory, because the theorem is, tautologically, an angular momentum
operator relation, i.e., within %, a relation between rotation generators of
space itself [18]. It is therefore as fundamental as a geometrical hypothesis
such as the Pythagorean theorem. For the first time, it applies
relativistically correct, Lorentz covariant, geometry to three magnetic field
(or rotation generator) components in vacuo interlinked by the structure of
space-time. If we break this link, we automatically impose a subjective
constraint, and change the ordinary topology of space-time. There is no way
of arguing against the B® field using a model of electrodynamics,
especially a linear model, because the latter is inevitably constructed in the
same space-time. The B Cyclic theorem is as fundamental as the Noether
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theorem. Space-time geometry, and the concomitant relation between fields,
is valid irrespective of any model of electrodynamics, such as that of
Maxwell. The B Cyclic theorem is a geometrical relation between three
magnetic field components, all three of which are propagating at ¢ through
the vacuum. Such a concept obviously does not exist in Maxwell-Lorentz
electrodynamics, yet is Lorentz covariant [17] and CPT conserving. Any
criticism of B® based on Maxwell-Lorentz electrodynamics is therefore
misplaced from the beginning [19]. Such criticism applies an inadequate
linear model to a fundamental, topological, non-linear and very fundamental
new theorem.

In this paper it is shown that in the ultra relativistic limit of the
inverse Faraday effect, the magnetization observable in the sample is
proportional directly to B, to no other magnetic field component, and is
a direct demonstration of its existence. Due to the relation between B®
and the transverse plane waves [20] this result can be obtained from the
relativistic Hamilton-Jacobi equation [21] in a limit of very low frequency
and very high intensity. Furthermore, this limit is experimentally accessible
[22]. In Sec. 1.2, the reasoning leading to this result is reviewed in terms of
delayed action at a distance theory, which was shown by Schwarzschild [23]
to be fully equivalent to Maxwell-Lorentz theory. This picture is not
adequate for the interpretation of the inverse Faraday effect (/FE) however,
because as we have seen, B® is not defined in Maxwell-Lorentz theory,
but is a very useful way of thinking of the inverse Faraday effect reduced to
its essence. To properly define B®, a non-linear theory of electrodynamics
is the minimum requirement. In Sec. 1.3, the ultra-relativistic limit is
developed for one electron, and the equation given showing the direct
relation between B® and magnetization. The latter is longitudinally
directed and can be proportional only to a longitudinally directed magnetic
flux density propagating through a vacuum. This is the B® field of the

radiation.
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1.2 Delayed Action at a Distance

As pointed out by Ritz [23], in an elegant criticism of Maxwell-
Lorentz electrodynamics, the latter is exactly equivalent to delayed
elementary action at a distance. The inverse Faraday effect can be
understood in terms of elementary actions without the use of intervening
fields. In the simplest case a circling electron in a transmitter radiates into
the vacuum and a time ¢ later an electron in a receiver is set into circular
motion. Magnetization in the transmitter becomes magnetization in the
receiver, both vectors being longitudinally directed in the Z axis. To
describe this process mathematically requires the use of the elementary
actions in a relativistic equation of motion, the most convenient one for this
purpose is the relativistic Hamilton-Jacobi equation, as pointed out by
Landau and Lifshitz [24]. The electronic motion set up in the receiver by the
field is circular motion, so the elementary actions must be introduced in such
a way as to reproduce this experimental fact, which can be inferred from the
observation of magnetization in the Z axis of the receiver due to the electron
circling about the Z axis.

When the calculation is carried out [25], the final result can be
expressed in terms of a magnetic field B®, but it can also be expressed as
an angular momentum due to delayed elementary action at a distance. In the
last analysis it is simply a transfer of angular momentum from the
transmitter to the receiver. The intervening agent is postulated to be a field,
whose mathematical structure is determined by the partial differential
equations known as Maxwell's equations. However, as shown by Ritz [23],
these equations are no more than model relations between space-time
components, whereas the B Cyclic theorem depends on no model.

The ultra relativistic limit being considered here is one in which the
observed magnetization is directly proportional to B® in the field theory.
This is a simple result obtained after a long and complicated calculation
based on the use of elementary action in the Hamilton-Jacobi equation. The
same calculation produces the well known non - relativistic limit, which has
been confirmed experimentally [1—5]. The elementary action is introduced
in such a way as to spin the electron in the receiver, and in such a way as to
reproduce the time it takes for the signal to reach the receiver from the
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transmitter. A combination of spinning and translating motions, combined
with a time delay, means that there is a phase present, which is the
electromagnetic phase. This appears only in the transverse components of
the elementary action, which when put into the Hamilton-Jacobi equation of
the electron in the receiver, produces the required circling motion. Because
of the B Cyclic Theorem, this is identical with spinning the electron witha B®

field, and this is exactly what the result gives us in the ultra relativistic
limit. The magnetization is directly proportional to B®. It is simply a
magnetic field strength in the receiver produced by the magnetic flux density
B® of the vacuum, produced in turn by a magnetic field strength in the
transmitter.

1.3 Calculation from the Hamilton-Jacobi Equation

The calculation given in Ref. 25 for the relativistic inverse Faraday
effect is modified here for the ultra-relativistic limit by correcting the
gyromagnetic ratio by the relativistic factor y . In Gaussian units, the

necessary expression is given by Talin ef a/. [26] in their Eq. (3),

el

M, = -
z 2mcy

L,. 2.1.1)

This corrects the usual gyromagnetic ratio [26 ], e/2mc in Gaussian units.
The origin of this correction is given by Talin ef al. [26] in their Eq. (12),

1 pdr, .
M, = ;fz—Z(rXJ(r,f))z, 2.1.2)

where M, is magnetization, V' the sample volume, r the relativistic radius

of gyration and j (r,t) is a symmetrized current density operator. From
this equation they develop their gauge invariant expression (38), which is
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proportional to the conjugate product of vector potentials, 4 x 4 ™. Thisis
the B Cyclic theorem in plasma,

MO = —ig/ AW x 4D (2.13)

where g’ is relativistic and depends on the plasma properties.

In Ref. 25, the relativistic Hamilton-Jacobi equation is used to
calculate the angular momentum set up in one electron by a circularly
polarized, classical, electromagnetic field. The result is the same as that of
Talin ef al. , except that S7 units are used in Ref. 25. However, in Ref. 25,
the non-relativistic gyromagnetic ratio was used to relate this angular
momentum to the magnetization. In S/ units this is -e/2m as given in
Eq. (9.3.1) of Atkins [27], and as used to define the usual Bohr magneton
eh/2m. From Eq. (1.3) of Talin ef al. [26] it can be seen that the
gyromagnetic ratio itself needs to be corrected relativistically under some
conditions. Therefore the Bohr magneton is not a constant, it depends on the
relativistic factor y as defined by Talin et al. [26].

When the necessary correction is made to the Bohr magneton, the SI
magnetization becomes

352
M® - __¢¢ ! BOB®

2m2w’V \ (63«))]2 (2.14)
+

mw

This is the magnetization in amps per meter (coulombs per second per
meter) caused in one electron by a circularly polarized electromagnetic field.

The magnitude of the magnetic flux density of the field is B, and its
angular frequency is . The charge to mass ratio of the electron is e/m.
The sample volume is ¥ in cubic meters. Finally B® := B©k where
k = ¢®. Equation (2.1.4) is valid over the whole range of existence of the
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inverse Faraday effect, from non-relativistic to ultra-relativistic. In the non-
relativistic limit we obtain the same result as Ref. 25,

M® BOB® (2.1.5)

._-> _———

eB O « mw 1 e3c?
V

2mie’

and the magnetization is proportional to intensity. This is the original
inverse Faraday effect, first observed in 1965 [1] and repeated several times
[4—5].

In the ultra-relativistic limit, eB©® » mw, Eq. (2.1.4) becomes,

0)

M<3>eB_3mw_T1/( g{)e@' (2.1.6)
2w

This seems to be independent of B® | but recall [27] that the magnetic

dipole moment of the field is,

602

v
m®] = == - E"IB“’I- 2.1.7)
0

Therefore in the ultra-relativistic limit,

v

2
v

11
2,

M® = B®, (2.1.8)

where 7, is the local volume element used to describe electromagnetic

energy in vacuo, and p, is the vacuum permeability.
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Equation (2.1.8) is clear proof that in the ultra-relativistic limit, the
magnetization is directly proportional tothe B®) field of the radiation. If B®
were zero there would be no magnetization, and this is inconceivable,
because the structure of Eq. (2.1.4) is valid over the entire range from non-
relativistic to ultra-relativistic. This means that there must be an ultra-
relativistic effect because there is an observable non-relativistic effect.
Equation (2.1.4), except for units, is identical with the second part of Eq. (3)
of Talin et al. [26].
Under all conditions,

VxM® =VxB® =0, (2.1.9)

Equation (2.1.6) or (2.1.8) is potentially very useful for applications as
discussed below.

1.4 Discussion

The ultra-relativistic limit (2.1.6) can be reached experimentally [22]
in the laboratory with standard apparatus. It is expected that the effect can
be observed in all materials with power line apparatus as standard in the
industry. From Eq. (2.1.6), which is more suitable for electrical engineering
applications than Eq. (2.1.8), it is clear that the expected effect is inversely
proportional to the angular frequency and the sample volume. Therefore in
order to maximize the effect it is necessary to maximize the power density
of the radiation field, minimize its frequency and minimize the sample
volume. Although the power density does not seem to be present in
Eq. (2.1.6), recall that it is the limit of Eq. (2.1.4). The power density
reveals itself through the product V©@B® in Eq. (2.1.8). It is easily
checked that both Eqgs. (2.1.6) and (2.1.8) have the required units of
coulombs per second per meter.

These are the SI units both of magnetization and of magnetic field
strength. So in the ultra relativistic limit the entire magnetic dipole moment
of the field is transferred to the electron. As shown by Eq. (2.1.6), there is
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no intensity dependence in this limit. Therefore a constant magnetization is
set up in a sample, such as a ferrite core of a power line design [22] and this
phenomenon is entirely new and unexplored, probably with many
applications. Although B® appears in Eq. (2.1.8), it is multiplied by V®,
and the product V©B® has no power density dependence. The latter
enters indirectly however because we are considering a extreme high power
density-low frequency limit of Eq. (2.1.4). Remarkably, this limit is easily
accessible in the laboratory and in applications [22].

The conclusion is that if B® were zero, there would be no
observable magnetization and this contradicts experience in the non-
relativistic limit of the main equation (2.1.4). Therefore there can be no
further doubt that B® is non-zero empirically. It is a non- Maxwellian
field.
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