Paper 2
On the Use of a Complex Vector Potential in
the Minimal Prescription in the Dirac

Equation

It is argued that the use of a complex vector potential in the
minimal prescription maintains the basic Hermitian property
of the Hamiltonian operator in Dirac's equation for the
interaction of a fermion with the classical electromagnetic
field. This is demonstrated by setting up the Dirac equation
for a complex vector potential and for its complex conjugate,
then forming a pure real Hamiltonian.
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2.1 Introduction

In the standard theory [1] the minimal prescription is used in the
Dirac equation with a real vector potential. This method reproduces the
standard description of the Stern-Gerlach experiment but does not allow for
a coupling between the conjugate product [2—6] of the electromagnetic field
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and the Pauli matrix of the fermion. In this paper we show that the use of
a complex vector potential in the minimal prescription results in a pure real
Hamiltonian operator which maintains the Hermitian properties of the Dirac
equation intact and gives a direct coupling between the conjugate product
and the Pauli matrix o. In Sec. 2.2 we set up the equations necessary for
this demonstration and solve them in Sec. 2.3. A short discussion is given
of the consequences to nuclear magnetic resonance and electron spin
resonance of the existence of such a direct coupling.

2.2 The Dirac Equation with a Complex Vector Potential

The use of a complex vector potential to describe electromagnetic
radiation is a mathematical procedure in classical electrodynamics in which
it is understood that the physical part is the real part [7,8]. In quantum
mechanics the eigenvalues of Hermitian operators are real [1,9] and the
eigenstates corresponding to different eigenvalues of Hermitian operators are
orthogonal. Therefore it seems to be assumed implicitly that physical
eigenvalues generated by the Schrédinger or Dirac equation must be pure
real in order to be physical. This is a different rule from the one used in
classical electrodynamics. In this paper we consistently use the same rule
for both classical and quantum mechanics, and assume that the real part of
a complex eigenvalue is physical. Therefore we use a complex,
multiplicative, vector operator 4 multiplying the wavefunction
(eigenfunction) in the basic wave equation, in this case a Dirac equation.

Proceeding on the basis of this working hypothesis, two Dirac
equations are written for the interaction of the fermion with the classical
electromagnetic field, represented respectively with a complex A4 and its

conjugate A *. The real parts of A and 4 * are the same, so if we work on
the basis of the rule that the real part of the complex operator is physical, the
two Dirac equations become the same. Therefore the use of 4 and 4" in

this way is a working mathematical hypothesis, one which leads to a pure
real (and Hermitian) Hamiltonian operator. It is shown in Sec. 2.2 that this
method leads to a well known result first given by Volkov [10] but in

addition gives the interaction energy between the conjugate product 4 x A
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of the classical radiation field with the Pauli spinor ¢ . This interaction
energy is proportional to intensity I divided by the square of angular
frequency w .

The Dirac equation is

Hy = EY, 2.2.1)

where the Hamiltonian operator is

H - ca-(p —fA] +Brmc? + eV 222)
C

Here ¥ is the four-component Dirac spinor [1], and E the energy eigenvalue.
The physical energy eigenvalue is real, so it is assumed usually that 4 must
be real. In Eq. (2.2.2) we use Gaussian units [11]. Here c is the velocity of
light, p the assumed real momentum of the fermion, e its charge and m its
mass. The scalar potential V7 is also assumed to be pure real in the
conventional method [1,9]. The matrices o and [ are defined by

_(00 (10 203
*“lso) b= 01/’ (22.3)

where o is the Pauli matrix and 1 is the unit matrix. Following standard
methods this equation is modified for the rest energy to

(E+me?)y’ = (ca-m+Pme? +eV )y, (2.2.4)
where the modified spinor can be expressed as two two-component spinors, Y,

and Y. The minimal prescription is expressed through [11] the pure real,

n=p—§A, (2.2.5)
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ind the Dirac equation splits into two interlinked equations,

~ coO'T
Yy = Trame? o (2.2.6)
2 . 2
(E-eV)y, - —S19°™) 22.7)

E +2mc? -eV 4

Dne of these is an equation in Y, and the other links {, to ;. The second

san be expressed as the wave equation,

Hll’A = Ell’A > (2.2.8)
vhere H is the Hamiltonian,
c{o-m)
E+2mc?-eV

H = +el. (2.2.9)

[his standard textbook procedure evidently gives a satisfactorily Hermitian
:quation which gives real and physical energy eigenvalues, positive and
1iegative [1], but pure real.

If we let A be complex, we can write two Dirac equations,

(E-eV)y, = co-myy, (2.2.10)
(E+2mc? -eV)y, = co-ny,, (2.2.11)

(E-eV)y, =cao-n"y,, (2.2.12)
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(E+2mc?-eV)y, = co-n"y,, (2.2.13)

and we can evaluate the consequences of this working hypothesis. Using
Egs. (2.2.10) and (2.2.13); or using (2.2.11) and (2.2.12) we obtain in both
cases,

HYy, = EY,, (2.2.14)

c{o-n)o-n*)
E +2mc? - eV

H = +el. (2.2.15)

This equation is identical to Eq (26) of Ref. 10 except for a change of sign
in ¥ and a factor 2 multiplying mc? in the denominator. Using the standard
[1] non-relativistic approximation,

E-eV«2me?, (2.2.16)

Eq. (2.2.15) can be written as,

H=H +H+.., (2.2.17)
2
" — e . *
H, := 2mc2A 47, (2.2.18)
62 . *
H, := > Sio-AxA”. (2.2.19)
mc
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The term labeled H, was first derived [10] by Volkov in 1935 and is pure

real. It is the second order contribution of the electromagnetic field to the
kinetic energy of the particle in the non-relativistic limit. The dotproduct 4 - A4
is often referred to in classical electrodynamics as a time average over many
cycles. Therefore the working hypothesis that A can be complex in
Egs. (2.2.14) and (2.2.15) leads to a standard Volkov result [10] for the
theory of the Dirac fermion in the classical electromagnetic field.

The same hypothesis also leads to a novel term,

e2

H, := Sio-AxA”, (2.2.20)
2mce

which in S./. units [10] becomes

2
Hy = < ioc-AxA", (2.2.21)
2m

and is also pure real. Thus, Volkov's term H, is accompanied by the term

H ,, which was first proposed using different methods in Ref 10.

2.3 The H, Term And Its Physical Meaning

The H, term represents a coupling between the half integral spin
ho /2 of the fermion and the conjugate product of the classical field,
A x A . It can be shown straightforwardly [10] that this is proportional to
I/ w?,

2,20 0)2
H -8 ik, (2.2.22)

2
2mw?
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Therefore it allows the possibility of resonance between states of the spinor
induced not by a magnet but by the conjugate product A x 4 * [3—6]. The
resonance frequency is given in S./ units by,

2
fos = ( il ) L, (2.2.23)

2thm wz

where p, is the vacuum permeability, and for a given S./ increases as the

inverse square of w. As shown in Ref. 10 this property is potentially of
great usefulness if developed experimentally. The theory also reproduces
the order of magnitude of optical NMR shifts [12] introduced at visible
frequencies.

2.4 Discussion

The Volkov term [I | cannot be produced from the Dirac equation if

we use the standard approach, that A is real. Yet it is a term which has
made its way into a standard textbook such as that of Itzykson and Zuber
[13]. The standard theory produces a term proportional to A4 + A, which is
highly oscillatory for electromagnetic radiation, and which is zero at high
frequencies. Yet it is well known [14] that there exist non-linear optical
effects proportional to the square of potential and field quantities. One of
these is the inverse Faraday effect, which is static magnetization by a
circularly polarized electromagnetic field, and which is described
phenomenologically with 4 x A* [15]. There are therefore internal
inconsistencies in the standard fermion-field theory of the Dirac equation.
In the standard approach, in which A is pure real, the resonance
frequency described by Eq. (2.2.23) becomes proportional to I/ w,

4mc m2 (V)

fo = ( o e—z] L, (2224)
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and so it is easily possible in theory to test the working hypothesis on which
is based Egs. (2.2.10) to (2.2.13). If one is not allowed to use a complex A
then the resonance frequency is proportional to //w ; otherwise it is
proportional to I/ w?. A simple beam experiment ought to be able to
distinguish between these predictions experimentally, or to show that both
are correct. In any event, the experimental demonstration of radiation
induced fermion resonance would be of great practical value, and the theory
of this effect has been developed elsewhere [16].
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