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Paper 13
The Charge Quantization Condition: Link

Between the O(3) Gauge Group and the Dirac

Equation

The charge quantization condition (CQC) equates the
quantized vacuum photon momentum to the classical product

eA© where e is the charge on the electron and where 4 ©

is the scalar magnitude of the potential four-vector of
electromagnetic radiation. It is shown that the CQC emerges

consistently from the expression for the Evans-Vigier field B ®

in the O(3) gauge group of vacuum electromagnetism and the
Dirac equation for the spinning trajectory of an electron in
the field.

Key words: charge quantization condition, B® field

13.1 Introduction

The magnetic components of the ordinary plane waves of vacuum
electromagnetism are now known [1-10] to act as the source of the
magnetizing field B ®, the Evans-Vigier field [6]. The real and physical
B® field propagates through the vacuum with the plane waves, and is an

axial vector directed in the propagation axis. It is an experimental
observable, and can be isolated [6,9] from the concomitant plane waves
through its magnetization of material matter, in the simplest instance one
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electron. The magnetization, M®, is, at microwave frequencies [11],

proportional to IO1 ” where I, is the power density of the beam in W m™.

Therefore B® is a physical magnetic flux density, and is now understood
in several different ways [9]. There is no reasonable doubt that it adds a
third dimension to the understanding of vacuum electromagnetism.

An immediate consequence is that the gauge group of vacuum
electromagnetism can no longer be considered to be the conventional O(2)
[12], the group of rotations in a plane. The natural generalization to O(3),
the group of rotations in three dimensional space, is considered in Sec. 13.2,
where it is shown that the field B® emerges from O(3) gauge geometry as
being proportional to the vector product of the plane wave vector potential 4
with its own complex conjugate 4@ This result leads to the charge
quantization condition (CQC), which equates the quantized vacuum photon
momentum hk to the classical e4®. Here e is both the charge on the
electron and the scaling constant of O(3) gauge geometry [12], and 4© is
the scalar magnitude of A®. In Sec. 13.3, the Dirac equation of one
electron in the electromagnetic field is used to produce an expression for
B® which becomes identical with that derived in Sec. 13.2 by using the

CQC. The latter therefore makes the O(3) gauge group theory of vacuum
electromagnetism consistent with the Dirac equation of one electron in the

electromagnetic field. Both theories consistently produce B® in the

vacuum, and a discussion is given of some of the wider implications of the
discovery of the Evans-Vigier field.

13.2 The O(3) Symmetry of Vacuum Electromagnetism

The need for an O(3) gauge group of vacuum electromagnetism is
revealed by the defining Lie algebra of the B® field [6],
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BUOx B® - ;pOBO*
B®x B® = jpOpW> (2.13.1)

B®x B — jpOBQ)*

where BO = B®* are the magnetic components of the ordinary plane
waves. This algebra is non-Abelian, compact and semi-simple, and has O(3)
symmetry [12], not O(2). Therefore the O(3) group must be used to describe
vacuum electromagnetism in the general theory of gauge geometries [12],
a theory which parallels general relativity in its conceptual development.
The O(3) theory of vacuum electromagnetism is non-Abelian in nature, and
therefore the field can act as its own source [6]. Thus, the conjugate product
B® x B® acts as the source of B, a new physical field which propagates
through the vacuum with the plane waves, and which is observed through its

IO1 7 profile [9]. This inference is reinforced conclusively [9] because the

source of B® can be described in terms both of a Biot-Savart-Ampére law
and as the curl of a vector potential [9]. Therefore B® has all the known

properties of a magnetic flux density, and acts experimentally as such [6].
In retrospect its existence has already been detected experimentally in
second order magneto-optic effects, because the well known conjugate

product [13] is iB@B®*, an experimental observable. Here B is the
scalar magnitude of B®. These phenomena include: 1) the inverse Faraday
effect [14]; 2) the optical Faraday effect [15]; 3) light shifts in atomic spectra
induced by a circularly polarized laser at visible frequencies [16]; 4)
magnetization at second order in B® of an electron plasma [17] with high

intensity microwave pulses.

In field-particle physics, the general theory of gauge geometries is
well developed [12], and there is a need only to adapt it for the emergence
of B® in vacuum electrodynamics. The theory is developed [12] in terms
of isospin indices in an abstract isospin space whose symmetry, however, is
O(3). By applying this theory to the physical space (1), (2) and (3) of
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sircular indices in which Egs. (2.13.1) are written, the O(3) electromagnetic
field tensors emerge [6],

(60 )y = (F®"), -2 (4P x4®),,
(6@ ),y = (F®"), - iZ(4®x ), 2.13.2)

(69"),, = (FO"),

v

_ _,%(A(I)XAG))W

[hese generalize the usual F uy tensor [12] to include cross products of

rector potentials. The cross product 4™ x 4@ for example, is not
sonsidered in the usual definition of F v in the O(2) (=U(1)) gauge group

or electromagnetism, but is nevertheless non-zero, even in that gauge group,
yecause [6]

O - ;K J0y 40
B ’A(O)A x AT, (2.13.3)

[his reveals a fundamental inconsistency in the O(2) gauge symmetry. In
he O(3) gauge group, on the other hand, we obtain, self-consistently from
9. (2.13.2),

. .e
BO®* - _I%A(I)XA(Z), (2.13.4)

“omparison of Egs. (2.13.3) and (2.13.4) gives the charge quantization
;ondition

ed©® = %y, (2.13.5)

vhose consistency within field theory is shown in the next section.
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13.3 The Dirac Equation of One Electron in the Field

It is well known that the electron has intrinsic spin (.S'), which has no
classical meaning. This is a result of the Dirac equation recounted on
numberless occasions. It has been shown recently, however, that the
interaction Hamiltonian formed between S and the electromagnetic field is

[6]

ho
H,, = S B® = =2 B©, 2.13.6
. o, (2.13.6)

where e/(2m,) is the gyromagnetic ratio and ¢ is a Pauli spinor and is

governed exclusively by B®, and by no other field component. Therefore B ®
is to vacuum electromagnetism as S is to the electron, an intrinsic
component which is not only non-zero, but irremovable. In other words,
without B @ the ineluctably and characteristically quantum mechanical part

of the Dirac equation of the electron in the field would be entirely and
incorrectly missing. The Dirac Hamiltonian eigenvalue would become
identical with the classical Hamiltonian of the electron in the field.

Thus, if S be accepted, so must B®.
The specific expression for B® from the Dirac equation can be
written as a vector cross product [6,12],

BO®* - _%p(l)xA(z), (2.13.7)

or as a commutator of a transverse momentum operator p») with the field
vector potential 4@ . The magnetic flux density appearing in the spin part
of the Hamiltonian, H,,, , is independent of time, and is therefore B®,

because the plane waves B = B®* are time dependent and vanish on
averaging at order one in B(®. The electron's intrinsic spin must interact

directly with B® of the field. This is a fundamental result from the first
principles of relativistic quantum field theory, and cannot be discounted as
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a modeling procedure. Thus B® is the fundamental magnetizing field of

electromagnetic radiation at all frequencies. It is an experimental

observable, whose presence in vacuo can be detected through the 1'01/2

dependence mentioned in the introduction.

Equation (2.13.7), defining B® from the Dirac equation, can be
obtained from Eq. (2.13.4) defining B ® independently from considerations
of O(3) gauge geometry, through the charge quantization condition (2.13.5)
in the form p® = e4W. The theory is therefore consistent.

13.4 Discussion

Since H_ pin in Eq. (2.13.6) is a Hamiltonian, it is time independent,
showing that B® is a phase free, time-independent, and observable
component of vacuum electrodynamics. Equation (2.13.1) relates it to the
slane waves B® = B®* which are complex conjugates in the basis (1),
2), (3). It follows from the well known minimal prescription,

p,~p,ted,, (2.13.8)

the basis [18] of the Aharonov-Bohm effect) that the transverse momenta

>f the electron in equilibrium with the field can be represented in the same
»asis by the complex conjugate pairs,

pV = p® (2.13.9)
n so doing, it is understood that measurable quantities are real, physical
»bservables, as in electrodynamics in general. The electron transverse
nomentum is driven by the field transverse momentum in field-electron
:quilibrium. This requires

eA® = p® = 3x® - pyO (2.13.10)

.
{,
i

|
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and taking magnitudes on both sides leads to the charge quantization
condition. The electron property (orbital angular momentum) is created
from the electromagnetic field, and the charge quantization condition the
electron property and the field property are indistinguishable.

Therefore, although the photon is conventionally considered to be
uncharged, its quantized momentum %k is now understood to have the

classical value ed®, the product of two C negative quantities. At a
fundamental level, therefore, the charge on the electron e becomes the O(3)
gauge coupling parameter, the constant of proportionality between
momentum and the vector potential. This is a result of the O(3) symmetry
itself [6,12], and so in this view, the vector potential is physically
meaningful. This is confirmed in the Aharonov-Bohm effect [18] which has
deeply meaningful consequences, for example in vacuum topology [12].
These inferences all rest on the emergence of B®, and illustrate its central
importance in field-particle theory.
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Paper 14

The Evans-Vigier Field, B® , in Dirac's

Original Electron Theory: a New Theorem of

Field-Fermion Interaction

Dirac's original electron theory is used to show that a
classical electromagnetic field interacts with quantized
fermion half integral spin through the Evans-Vigier field,

B® = -i(e/h)A x A", where Ax A" is the conjugate
product of field vector potential, A, with its own complex
conjugate 4 *; and where e/% is the ratio of elementary
charge to Dirac constant. Dirac's theory of the electron is
recovered when 4 ™ isreplaced by 4. However, since A is
complex from d'Alembert's equation in vacuo, B @ is always
non-zero. It becomes very large at low frequencies for

moderate field intensity, and has several important practical
applications.

14.1 Introduction

The original description by Dirac [1] of his famous theory of the

~ electron is used in this communication to show that the classical electromag-
netic field interacts with quantized fermion spin through the Evans-Vigier
field [2—10],





