Paper 20

The Cyclic Structure of Vacuum
Electromagnetism: Quantization and

Derivation of Maxwell's Equations

Starting from the classical A cyclic equivalence principle of
the new electrodynamics, the Faraday and Ampére laws are
derived in quantized form, these being two of the Maxwell
equations. The third A cyclic can be quantized self
consistently using the same operators and de Broglie
wavefunction. This method shows that: 1)if B® =? 0 the
Maxwell equations vanish; 2) there is no Faraday induction

law for B®,
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20.1 Introduction

The cyclic structure of the new electrodynamics based on the B®
field [1—7] gives an equivalence principle between the field and space-time,
because, generally speaking, the structure of the field becomes the same as
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hat of three dimensional space, described by the O(3) rotation group. In this
_etter the second and third equations of the A cyclics [8] are quantized to
sive two of the vacuum Maxwell equations, the Faraday law and Ampere
aw with Maxwell's displacement current. The same method self-
sonsistently quantizes the first equation of the A cyclics and shows that there
s no Faraday induction law for B®. Consistently, no Faraday induction
1as been observed in a circularly polarized laser beam modulated inside an
svacuated induction coil [1—4]. In this method, A® quantizes to
he 1h9/0Z operator and is not zero. If set to zero, all three A cyclics vanish,
ind with them the Maxwell equations. The Maxwell equations
or B® = B®* imply the existence of B, and if the latter is set to zero
irbitrarily, the Maxwell equations vanish. Finally the method allows direct
juantization of the A cyclics to the Maxwell equations, which become
:quations of the quantum field theory. The method is therefore direct,
simple, and easy to interpret.

20.2 Quantization of the Second and Third Equations
The A cyclic equivalence principle relies on the existence in the

/acuum of a fully covariant four-vector whose four components are
nterrelated by [8]:

AV x 4@ = j4O40) (2.20.1)
AP x 40 = j4O4O" (2.20.2)
AV x 4D = jfO4@* (2.20.3)

n the complex space basis ((1), (2), (3)) [1—4]. In this section, Egs.
2.20.2) and (2.20.3) are quantized self-consistently to give two of the
/acuum Maxwell equations, the Faraday Law and the Ampére law with
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Maxwell's displacement current. Write Eq. (2.20.2) as the classical
eigenvalue equation,

AP x 4@ = j4O4@ (2.20.4)
Use the minimal prescription in the form [8],
p® = ied @ pO = jeg O (2.20.5)

and identify 4@ with the classical eigenfunction ¥@. Here e is the
elementary charge. This procedure results in the classical equation,

p®x PO - jHOPD) (2.20.6)

and the vector potential has taken on the dual role of operator and function
in a classical eigenequation. Its ability to do this springs from the duality
transform A - i4 [9—12] in the complex three space ((1), (2), (3)).
Therefore if iA4 is a polar vector multiplied by i, then A isan axial vector.
The same duality transform takes the axial vector B to iE/c, a polar vector
multiplied by i. The fact that A is both polar and axial signifies that
electromagnetism is chiral, with two enantiomeric forms — right and left
circularly polarized [13]. Chirality in Dirac algebra becomes the eigenvalues
of the y; operator, playing the role of i in Pauli algebra [14]. This dual
polar-axial nature of A allows it to be both an operator (polar vector) and

function (axial vector).
The classical eigenvalue equation (2.20.6) is now quantized with the

correspondence principle, whose operators p® - Mooz
and p©@ - -(ih/c)(0/0t)act on a wavefunction in our complex three
space. Let this wavefunction be [15],

Y@ = cBD - jED, (2.20.7)
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as used by Majorana. Here c is the speed of light in vacuo, B is magnetic
flux density and F is electric field strength. The function (2.20.7) includes
the electromagnetic phase in the form of the scalar de Broglie wavefunction
[16], and it is understood that the operators introduced by the

correspondence principle operate on this. Therefore the operators p®
and p© are phase free, the function P is phase dependent. The quantum
field equation derived in this way from the classical equation (2.20.6) is

v (cB® - E®) - g(cB(z) ~E®). (2.20.8)

i
c
Compare real parts to give an equation of quantized field theory in the form
of Ampére's law modified by Maxwell's vacuum displacement current,

1 GE®
c2 o

VxB® = (2.20.9)

Compare imaginary parts to give an equation of quantized field theory in the
form of Faraday's law of induction,

(2)
Vx E® - —QI;T . (2.20.10)

Equations (2.20.9) and (2.20.10) are two of the four vacuum Maxwell
equations, but have been derived through the correspondence principle and
are therefore also equations of the quantum field theory. These take the
same form as the classical Ampére-Maxwell and Faraday laws but are also
equations of a novel, fully relativistic, quantum field theory.

Similarly, Eq. (2.20.3) quantizes to

1 GE®
VxB® = —— |
o (2.20.11)

SRS
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B
Vx ED = _—aat : (2.20.12)

20.3 The d'Alembert Equation, Lorentz Condition and Acausal Energy
Condition

The dual nature of the vector potential, once recognized, leads
immediately to the d'Alembert equation, because 4, is light-like.

Therefore,
AuA*l = 0, (2.20.13)

and taking the operator definition this becomes the d'Alembertian operating
on a wavefunction in space-time, i.€.,

9,0, = Oy, = 0. (2.20.14)

This is the quantized d'Alembert equation written for the four-vector .

The latter in general has a space-like and time-like component. In this
view A}1 must be a polar four-vector proportional to the generator of

spacetime translations, and so the d'Alembert Eq. (2.20.14) is the first (mass)
Casimir invariant of the Poincaré group [17]. The invariant is zero because
we have assumed that ¢ is the speed of light, and have taken photon mass

to be zero.

If, in the condition A4 pA k= 0, we take the first 4 , asan operator
through the correspondence principle, and interpret the second 4" as a
wavefunction ", we obtain the quantized Lorentz condition for a massless
particle,

auq:“ =0. (2.20.15)
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This is the orthogonality condition of the Poincaré group, which states
that 4, in operator form is orthogonal to A" in function form. The latter

becomes the Pauli-Lubanski axial four-vector of the Poincaré group [18].
The condition 4 IuA H = 0 interpreted as a condition on the

wavefunction gives the acausal energy condition,

U = 0,

which is the second (spin) invariant of the Poincaré group. Therefore we are
dealing with a quantized particle with spin described by the three A cyclics
(2.20.1—2.20.3). Evidently, this is the photon of the new relativistic
quantum field theory developed here. The empirical evidence for the
existence of this photon can be traced to the magneto-optical evidence

for B® in the inverse Faraday effect [1—4] and other effects.

Without B®, this photon is undefined.

Finally, the energy condition (2.20.16) is the acausal solution
suggested by Majorana [19]; Oppenheimer [20]; Dirac [21]; Wigner [22];
Gianetto [23] Ahluwalia and Ernst [24] and Chubykalo, Evans and Smirnov-
Rueda [25]. It is longitudinal because the Pauli-Lubanski four-vector v,

(2.20.16)

can be expressed in terms of the purely longitudinal [18,26],
y* = cB* +iE¥, (2.20.17)

in the vacuum.

20.4 Self-Consistent Quantization of Equation (2.20.1)

The quantization of Eq. (2.20.1) occurs in a self-consistent way using
the same operator interpretation of i4® and i4® = -i4®*. This gives
the relativistic Schrodinger equation,

e
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19( 9 e, o)
e | 4@
. at( 7z lIJO) ( N ) U, , (2.20.18)
where 1 is the scalar de Broglie wavefunction [17],
¥, = exp(id), (2.20.19)

where ¢ = wf - kZ is the electromagnetic phase. Here w is the angular
frequency at an instant f and k the wavevector at point Z as usual. Using
the vacuum minimal prescription [1—4],

ed©® = %, (2.20.20)

it is seen that Eq. (2.20.18) is self-consistent and consistent with the
correspondence principle in the form (2.20.5). The method used to
transform the second and third A cyclics into the Maxwell equations gives
a fully consistent Schrédinger equation for the third cyclic. In this
method i4® is clearly not zero, and since B® = k4® [8], neither
is B®. If we try to set i4® to zero the del operator vanishes along with
all three A cyclic equations. The Maxwell equations themselves vanish if
we try B® =2 0. There is no vacuum Faraday induction law
involving B, because of the structure of Eq. (2.20.1), and this is again

consistent with the experimental finding that there is no Faraday induction
in a coil wound around a modulated monochromatic laser beam propagating

in a vacuum [1—4]. The fundamental reason for this is that B® is an
unchanging property of one photon, i.e., /e divided by the photon area.

20.5 Discussion

The duality transform 4 -~ iA in the vacuum shows that A can act
as an operator and as a function. This transforms two of the A cyclic
equations into two of the Maxwell equations in fully quantized form,
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producing a new quantum field theory for the photon, which acquires in the
process three degrees of polarization. The first equation (2.20.1) of the A
cyclics is quantized self-consistently. The structure of these equations
shows that there is no Faraday induction law for B®, as observed
experimentally. The explanation of magneto-optical phenomena [1—7]
requires the use of the conjugate product B x B®; a product which
demonstrates the existence of iB@B®" in the vacuum, and therefore
of B®. Since B® is kA®, then an attempt to set 4 to zero removes
the three equations of the A cyclics, and so removes the Maxwell equations
themselves. Therefore the A and B cyclics become fundamental classical
structures from which the Maxwell equations can be derived in quantized
form using the correspondence principle.

There are clear differences between this new theory of
electrodynamics and the received theory.

(1) The Maxwell equations are no longer the fundamental classical
equations, they can be simultaneously derived and quantized from a more
fundamental classical structure in which B and the rotational A4 are
infinitesimal rotation generators of O(3).

(2) The potential four-vector 4, is fully covariant and has four non-

zero components inter-related as in Egs. (2.20.1) to (2.20.3). The older view
allows a non-covariant 4, such as the Coulomb gauge.

(3) The quantized d'Alembert equation becomes the first Casimir
invariant of the Poincaré group; the quantized Lorentz condition becomes an
orthogonality condition; and the quantized acausal energy condition
becomes the second Casimir invariant. These results can be derived from

the fact that 4, plays the dual role of operator and function. Since A4 O s

directly proportional to B® it is gauge invariant; a property which is
consistent with the fact that the cross product 4 ® x 4@ is gauge invariant
[17] in the Poincaré group, but not in the U(1) group of the received view.

The most important and fundamental result of this analysis is that the
Maxwell equations become derivative equations of a cyclical structure for
electromagnetism in the vacuum. A similar result can be derived for the
equations in the presence of sources (charges and currents).
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