AN EXPERIMENTAL TEST OF THE EXISTENCE OF WHITTAKER'S g AND f FLUXES IN THE VACUUM #### **ABSTRACT** Whittaker has shown that the electromagnetic entity in vacuo consists fundamentally of two longitudinally directed magnetic fluxes, g and f, which are physical and produce measurable effects in theory. In this paper, an experiment is proposed in which the physical nature of g and f can be tested when there are no fields and vector potentials present. The only entity present under the experimental design conditions is a physical scalar potential, which quantizes to a physical time-like photon. ### INTRODUCTION Superpotential theory was initiated by Whittaker $\{1,2\}$, who showed that the electromagnetic entity under all conditions can be described by two longitudinally directed magnetic fluxes, g and f, from which electric and magnetic fields are obtained by double differentiation. In this paper, an experimental design is proposed to test whether g and f are physical and gauge invariant, or unphysical. A successful demonstration of the physical nature of g and f will indicate that, in the vacuum, there are longitudinal waves present, as well as the transverse waves of the received view $\{3-5\}$. The magnetic fluxes g and f cannot exist physically without a magnetic flux density being present in a beam of finite radius. Such a longitudinally directed magnetic flux density has been proposed $\{6-10\}$ and referred to as the g component of radiation, a component of O(3) gauge theory applied to electrodynamics. #### **EXPERIMENTAL DESIGN** The experimental design is very simple. Two dipole antennae are set up in close proximity so that the vector potentials A_1 and A_2 from each antenna cancel: $$A_{1} = -i \frac{\kappa e^{i\kappa r}}{4\pi c \varepsilon_{0} r} p_{1} \tag{1}$$ $$A_2 = i \frac{\kappa e^{i\kappa r}}{4\pi c \varepsilon_0 r} \mathbf{p}_2 \tag{2}$$ Here p_1 and p_2 are the dipole moments of each antenna, κ is the wave-vector magnitude, r is the radius vector magnitude, ϵ_0 is the vacuum permittivity and c the speed of light in vacuo. The expressions are therefore in S.I. units. The principle of the experiment is therefore very simple. We have: $$A = A_1 + A_2 = 0;$$ $E = 0;$ $B = 0;$ (3) so there are no vector potentials or fields present in the vacuum. Also, Whittaker's f and g vector functions are equal in magnitude but opposite in direction: $$g_1 = -g_2;$$ $f_1 = -f_2.$ (4) However, the scalar magnitude of g, denoted G, from both antennae is the same, and the sum of G from both antennae is $\{11-14\}$: $$2G = \frac{2}{\sqrt{2}}A^{(0)}(X - iY)e^{i(\omega t - \kappa Z)}.$$ (5) The scalar potential from 2G is therefore $\{11-14\}$: $$\phi_I = 2\dot{G} \tag{6}$$ and obeys the massless Klein-Gordon equation: $$\Box \phi_T = 0. \tag{7}$$ It can be shown $\{11\text{-}14\}$ that canonical quantization of (7) leads directly to an ensemble of massless bosons which are physical time-like photons, each of energy $\hbar\omega$. The complete classical energy in the electromagnetic entity emanating from the double dipole antenna is: $$H = \frac{2}{\mu_0} \int \boldsymbol{B}^{(3)} \cdot \boldsymbol{B}^{(3)} dV \tag{8}$$ where $B^{(3)}$ is the Evans-Vigier field $\{6-10\}$. #### DISCUSSION When all vector potentials and fields are eliminated, the energy (H) should be detectable by a bolometer, even though there are no vector potentials or fields present. This would demonstrate the physical nature of f and g in the vacuum. Recent theoretical work suggests that the fluxes g and f are physical. The experiment would also demonstrate in another way the physical nature of $B^{(3)}$, which has already been shown to be physical in several other ways $\{6\text{-}10\}$. Since G is a propagating wave, it travels through the vacuum, and when it meets matter, the d'Alembert condition (7) may no longer hold, so fields may reappear upon interaction with matter, specifically a single electron. This would be an interaction between a physical time-like photon and an electron, producing, perhaps, a photoelectric effect and measurable electric fields. If the logic of Whittaker's papers is followed, there can exist physical time-like photons in the vacuum without fields or vector potentials. Apart from the need to invoke the longitudinal flux density $B^{(3)}$, this is a result of the Maxwell-Heaviside equations which therefore produce longitudinal scalar waves in the vacuum. #### SCALAR INTERFEROMETRY When two scalar beams of the type: $$G_{1} = \frac{A^{(0)}}{\sqrt{2}} (X - iY) e^{i(\omega t - \kappa Z_{1})}$$ (9a) $$G_2 = \frac{A^{(0)}}{\sqrt{2}} (X - iY) e^{i(\omega t - \kappa Z_2)}$$ (9b) interfere, their combined energy density in the zone of interference is easily shown to be: $$\frac{En}{V} = \frac{cI}{R^2 \omega^2} \left[1 + \cos\left(\kappa \left(Z_1 - Z_2\right)\right) \right]$$ (10) where I is the combined power density in watts per square meter, ω is the angular frequency and $Z_1 - Z_2$ is the difference in propagation distance of each beam. If we now define: $$G_3 = \frac{1}{G^{(0)}} (G_1 + G_2) (G_1^* + G_2^*)$$ (11) $$\Box G_3 = B \neq 0 \tag{12}$$ and a fluctuating magnetic flux density magnitude appears in the zone of interference. Therefore so does a fluctuating electric field strength magnitude E = cB. Outside the sone of interference, the fluctuating B and E disappear again. The heat due to the scalar beams and the fluctuating E and B should be detectible. Note that eqn. (12) is a gauge invariant construct and so the B and E produced in the interference zone are real and physical. The energy density En/V is also gauge invariant and fluctuates in the interference zone: $$\frac{En}{V} = \frac{B^{(0)2}}{\mu_0} = \frac{GG^{\bullet}}{R^4 \mu_0}$$ (13) because $B^{(0)}$ is a magnetic flux density and G is a magnetic flux, with R^2 as the beam area. The lateral extent of the beam is constrained by the inverse lateral distance raised to the fourth power. Of course, if R is constant, it is not infinitely expanding. So X and Y are constrained by $X^2 + Y^2 = R^2$. #### ACKNOWLEDGMENTS Funding for individual AIAS (Alpha Foundation's Institute for Advanced Study) group members is acknowledged, together with generous private funding and many e-mail discussions. #### REFERENCES - {1} E.T. Whittaker, Math. Ann., 57, 333 (1903).* - {2} E.T. Whittaker, Proc. London Math. Soc., 1, 367 (1904).* - {3} L.H. Ryder, "Quantum Field Theory" (Cambridge, 1987). - [4] J.D. Jackson, "Classical Electrodynamics" (Wiley, New York, 1962). - W.K.H. Panofsky and M. Phillips, "Classical Electricity and Magnetism" (Addison Wesley, Reading, 1962). - (6) M.W. Evans, Physica B, 182, 227, 237 (1972). - [7] M.W. Evans and S. Kielich, "Modern Nonlinear Optics" (Wiley, New York, 1992, 1993, 1997). - [8] M.W. Evans, J.P. Vigier, S. Roy and S. Jeffers, "The Enigmatic Photon" (Kluwer, Dordrecht, 1994 to 1999), in five volumes. - {9} T.W. Barrett in A. Lakhtakia (ed.), "Essays on the Formal Aspects of Electromagnetic Theory" (World Scientific, Singapore, 1993); and in T.W. Barrett and D.M. Grimes, "Advanced Electromagnetism" (World Scientific, Singapore, 1995). - [10] M.W. Evans and L.B. Crowell, "Classical and Quantum Electrodynamics and the **B**⁽³⁾ Field" (World Scientific, 1999/2000). - {11} M.W. Evans et al., AIAS Paper submitted to Found. Phys., U.S. Dept. of Energy website;; reprinted in J. New Energy (1999). - {12} M.W. Evans et al., AIAS Paper submitted to Found. Phys., U.S. Dept. of Energy website; reprinted in J. New Energy (1999). - {13} M.W. Evans et al., AIAS Paper submitted to Found. Phys.; Dept. of Energy Website, reprinted in J. New Energy (1999). - {14} M.W. Evans et al., AlAS Paper submitted to Found. Phys.; Dept. of Energy Website; reprinted in J. New Energy (1999). - * In this issue of Journal of New Energy. ## Emerging Energy Marketing Firm, Inc. (EEMF) 3084 East 3300 South Salt Lake City, Utah 84109 EEMF is a new company devoted to the development and marketing of several newenergy technologies. EEMF has acquired all rights to the *Journal of New Energy* and will continue the publication of this journal with Hal Fox continuing as editor. This is not an offer to sell shares in EEMF. The offer to sell shares to the public can only be made by an Offering Circular in conjunction with proper filings with the Securities and Exchange Commission, with shares generally sold through an existing stock broker. Interested companies and other qualified investors can obtain further information (including a Private Placement Memorandum) by calling 801-466-8680 or by email kalfox@slkc.uswest.net.