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ELECTRODYNAMICS

ELECTRODYNAMICS AS A NON-ABELIAN
GAUGE FIELD THEORY

ABSTRACT

The classical theory of electrodynamics is developed as a non-Abelian gauge field theory, offering
a route to field unification through the emergence of the fundamental magnetizing field, B observable in
magneto-optics. The new theory argues that the potentials are physical constructs and not a mathematical
convenience as proposed by Heaviside. The structure of the theory represents a return to the original concepts
of Faraday and Maxwell, while retaining the Heaviside equations in their original form.

INTRODUCTION

Electrodynamics is generally thought to be the most perfect theory in physics and, in its quantized
form, (quantum electrodynamics) describes data such as the Lamb shift with great accuracy. The theory,
which has its origins in the nineteenth century, is therefore a profound achievement of communal thought.
Towards the end of the twentieth century, however, it is beginning to be realized that there are several flaws
inherent in its linear structure. The Maxwell equations, in the received view, are four linear differential
equations in components of the electromagnetic field. The latter is thought to transmit energy/momentum
from one oscillating charge to another through the vacuum. The other three foundational fields of nature —
the gravitational, weak and strong — are non-linear.

In order to construct a unified field theory, it is beginning to be realized that the electromagnetic field
sector must be reconstructed carefully as non-linear in its components, and updated to absorb ideas about the
structured vacuum provided by the contemporary theory of the other three foundational sectors mentioned
already. Several of these ideas stem from the phenomenon of Aharonov and Bohm.

Maxwell’s linear field equations emerge from contemporary gauge field theory if the electromagnetic
sector is given a particular linear symmetry labeled in group theory by U(1) or O(2). In the intervening
vacuum between one moving charge and another, everything takes place in the plane perpendicular to the
direction in which the field is traveling. Electromagnetic radiation, in the received view, is thought to consist
of plane waves. The O(2) group describes rotation in a plane. Rotation in three dimensional space, however,
is described by a different group, O(3), whose “twin group”, or isomorphic group, is labeled SU(2), not U(1).
Contemporary gauge field theory is based on group theory and produces the received Maxwell equations if
and only if the description of electrodynamics is governed by the two dimensional U(1) three dimensional
O(2), even in the three dimensional world of everyday experience. '

The great Maxwellian theory therefore runs into a profound paradox, which is revealed through non-
linear radiative phenomena such as those of magneto optics — circularly polarized radiation can magnetize
matter, at its simplest one electron. These and other phenomena defy description with a field theory whose
electromagnetic sector has planar and linear symmetry, so the solution of this paradox requires the equivalent
of the Maxwell field equations in non-linear O(3) or SU(2) symmetry. These are given in the concluding
section of this paper, and open the way to a unified field theory based on a structured vacuum as inferred from
general relativity.
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The natural philosophy of the classical electromagnetic field, as deveioped by Heaviside and the
Maxwellians of the late nineteenth century, are crystalized into four differentiai equations which are known
as the vector Maxwell equations'. These are, in S.I. units,

VxB=0, )
VxE+?§—=O, 2)
ot
VxD=p, 3
V-H=J+6—D—, €]
ot

and are respectively the Gauss; Faraday; Coulomb and Ampére-Maxwel! laws. In this system:
D=gE+P, B=p,(H+M).

Here, E is the electric field strength (V m™); D is the displacement (C m™); o is the charge density
(C m™); H is the magnetic field strength (A™"); B is the magnetic flux density (T or Wb m™); J is the current
density (A m™); P is the polarization and M is the magnetization. The permittivity and permeability in vacuo
in S.I. units are:

€, = 8.854188 x 107 J'C*m™!
and

p, = 4w x107" Js’C 7 m

Equations (1) and (2) can be combined into the homogeneous tensor equations, and eqns. (2) and (3)
into the inhomogeneous tensor equations. The former is an identity in the fundamental fields E and B which
can be expressed in terms of the scalar and magnetic vector potentiais, ¢ and A,

B=VxA (5a)
o4
E=-22_-V. (5b)
ot ¢

The quantities that appear in the inhomogeneous Maxwell equations are D and H, and these are
equations rather than identities of the classical theory, which allows no magnetic monopoles.

In contravariant covariant tensor notation?, eqns. (1) to (4) become

0 “F =0 (6a)

0.H" =J' (6b)
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where F"" is the dual of the anti-symmetric field tensor F,

1

Uy 1 uvpo
F —28 F,,.

Equation (6a) is a Jacobi identity,

and the basic derivatives are

0
g~ =
oz" #
—8— =0" =
Oz,
1t follows that
E =
E' =
and so forth, and that:
F* =

—cB® |
_E(Z)
E(l)

az\F;w + BILF[U\ + aqu\u = O

In this notation, the basic four vectors are:

0o 0

[18 0

cot 0X'9Y ' 02

0 0

0

" = (2°,z"2%,2%) = (et, X, Y, Z)
z, = (z,,1,1,,1,) = (ct,=X,-Y,~2)
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0 —Ey  —Egy ‘Em_
Fo- E, 0 c¢B; -—cB, (12b)
WO E, —cBg, 0 c¢B,
| By By, —cBy, 0]
[0 —-cB" _—cB® _.B®
) ) @)
-, | cB' 0 E® -E
F = cB® _EO 0o EW (12¢)
(cB®  E® EW 0
[ 0 -cB,, -cB, -cB,]
F o= By, 0 -E; Ey (124)
" By  Egy 0 -E,
By -Eo  E, 0]

Jpo

The symbol € is the fully anti-symmetric tensor in four dimensions with €”/? = 1. Using the
rules of tensor algebra with summation of repeated indices, the reader should check that eqn. (6a) gives eqns.
(1) and (2) and that eqn. (6b) gives eqns. (3) and (4) with the definitions

) -p" _p¥® —D®]
D(l) 0 _H(3) c H(2) c
H" =\, ) / 'n// : (13)
D H®/c 0 -H"/c
3) (2) M
D7 -H [e  HY/c 0]
The scalar and vector potentials can be combined into a potential four-vector such that
F;u/ = a;lAu _ al/A;t (143)
where
4* =(9,cA). (14b)

The reader should check that eqns. (14) give eqns. (5). This is a concise summary of the great
Maxwellian theory of classical electrodynamics, one of the most elegant and profound in all natural
philosophy.
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CLASSICAL LIMITATIONS OF THE MAXWELLIAN THEQRY

A vast amount of empirical data has been described with precision by eqns. (6). The classical
limitations of the theory are however well known. Ritz’, for example, argued precisely and elegantly against
it on the grounds that Maxwell’s ether was mechanically unsound, and that the third law of Newton is not

complied with. This is the well known radiation reaction problem treated at length in a classic mid-twentieth
century text such as that by Jackson*.

Recently, it has been argued by Barrett’ and Bearden’ that there are intrinsic assumptions which make
the theory far more restrictive than hitherto realized, even within its own classical framework, i.e., without
quantization being considered at all. Both have argued against it on the grounds that 4# is not gauge invariant
in the Maxwell theory as developed by Heaviside and is therefore unphysical and unobservable. They
therefore criticize what has been regarded as the basis of the classical theory — its gauge freedom. In the
standard vector notation, this problem can be isolated quite easily as follows. It is possible in the rules of
vector algebra to add to 4 and to ¢ an arbitrary variable ¥ such that*

O\
A>A-Vy, o>+ 2L (15)
ot
without affecting E and B in Eq. (5). In tensor notation this gauge transformation can be expressed as
A, > A, +0,(ov), (16)
which is conveniently written as
A“ —)A“ +a“¢. a7

In the standard development, the gauge freedom allowed by Eq. (17) is used to assert the Lorenz
gauge condition. In vector algebra,

1 8¢
Ved +—5—=0, (18)
ct ot
and in tensor algebra,
0,4" =0. (19)

Using eqns. (10) and (14b), it is seen that eqns. (18) and (19) are the same in S.I. units. The
importance of the arbitrary eqn. (19) is that it allows the derivation from eqn. (14a) of the d’ Alembert wave
equation which can be written symmetrically in ¢ and A. Upon quantization this leads to the idea of a
massless particle, the photon, and in classical electrodynamics to the idea of advanced and retarded solutions.

Criticisms of these well known ideas have been based recently’® on the fact that eqns. (1) and (4) are
vector equations in fields with no boundary conditions stated. They were derived not by Maxwell but by
Heaviside and the Maxwellians of the late nineteenth century by “murdering the potentials”, i.e., by relegating
A* to a subsidiary mathematical role. Evidently, the arbitrary nature of ¢ in the gauge transform, Eq. (17),
means that 4¥ cannot be physical in Heaviside’s interpretation of Maxwell. The latter used quaternionic
(SU(2)) algebra in twenty equations in which the potentials were physical. Faraday argued®’ for a
prototypically physical potential which he named the “electrotonic state”. Bearden’ has correctly argued that
the Lorenz condition is equally arbitrary in the Heaviside formulation because the Lorenz condition is one
on @ and A4, which are both arbitrary quantities in this view. A combination of such quantities, howsoever
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apparently useful, is arbitrary and unphysical. Bearden refers to the Lorenz condition as symmetrical
regauging’, a process which loses information about the vacuum flux, from which energy can be obtained.
The transverse gauge, in which @ is set to zero, shows that the quantity ¢ can become independent of 4
without any change in the transverse field components, for example vacuum plane waves. If one takes
Heaviside’s viewpoint, this is explained on the grounds that only fields are physical. However,
Schwarzschild® has shown that eqns. (1) to (4) can be replaced completely by delayed action at a distance
equations involving only classical potentials, which are therefore just as physical as fields. Whittaker>'' has
shown that the scalar potential is structured and the terminology “scalar potential” is therefore contradictory.

Barrett™ ¢ has demonstrated that the interpretation of several physical effects relies on a physical and
classical 4%, in Heaviside’s view a contradiction in terms. These phenomena include the Sagnac; Aharonov-
Bohm; topological phase; de Haas van Alphen; quantum Hall and Ehrenberg-Siday effects. These important
criticisms lead to the necessity of a major philosophical revision of classical electrodynamics because the
Heaviside vector equations (1) to (4) on which they are based are interpreted using a non-physical A#. This
contradicts experimental evidence® © and another explanation must be found for the fact that eqns. (1) to (4)
have appeared to be so successful. Such an advance is also needed because, in quantum mechanics, the vector

potential is primary and all. It should also be so in classical mechanics if we are to achieve any kind of
intellectual consistency.

ABELIAN AND NON-ABELIAN CLASSICAL GAUGE FIELD THEORY

The four equations (1) to (4) are linear in the fields and differential operators and can be derived from
an Abelian-Lagrangian through the Euler-Lagrange equation of motion.” The Abelian rotation group O(2)
is the group of rotations in two dimensions?, and is homomorphic with the group of complex numbers of the
form €'%, the group U(1). Similarly O(3) is holomorphic with SU(2). In contemporary gauge field theory, the
electromagnetic field is the gauge field that guarantees invariance under local U(1) transformations. The
gauge transform becomes synonymous with the U(1) covariant derivative,’

.e .
D, =9, +lgAu =0, —igA,, (20)
which is the minimal prescription expressed in coordinate space rather than momentum space, where it is
Py —)p“—eA“, 2D

Therefore the electromagnetic field adds e4, to the four-momentum p,,, a process which occurs in

ascalar inner space. Comparing (20) and (21) gives the well known ansatz on the four-momentum in quantum
mechanics,

p, —>ihd,,  En— ihg; p—hv (22)

so this introduces a physical 4, because the ansatz is one of quantum mechanics in which 4, is physical.
This is self-contradictory in U(1) electrodynamics because, in this theory, 4, is unphysical classically and
we cannot apply an ansatz on an unphysical quantity (the classical 4,) to obtain a physical quantity (the
“quantized” 4,). Yet this is the long accepted wisdom because it is a useful calculating device.

To attempt to remove this trouble, a more general form of gauge theory can be introduced into
classical electrodynamics by borrowing ideas from high energy physics, where the field can be any field, or
unified field, and in which derivatives f,, are replaced by covariant derivatives, D, defined for any group. In
this general gauge theory, the potentials are affine connections and are physical, universal influences.? '*"

The gauge transform is a physical coordinate transformation; the field tensor G, is a commutator of
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covariant derivatives for any field and group, and is rigorously covariant under a gauge transform. The field
tensor and vector potentials are written in an internal space superposed on space-time, and in general, the
theory leads to a non-Abelian Lagrangian and non-Abelian relations between physical fields and physical
potentials. A gauge transform of the potential in any group symmetry is a coordinate transform, a physical,
covariant process. These results are obtained elegantly from a round trip with covariant derivatives. The same
process leads to a generally valid Jacobi identity first derived by Feynman®:

D'G,, =0, 23)

and we can show'” that this equation leads back to the Gauss and Faraday Laws (eqns. (1) and (2)) with new
information, specifically the appearance under all conditions of a fundamental, real, phaseless, irrotational,
gradientless and time-independent magnetic field'*",

B® =—-igd"V x AP, (24)

where g is a constant and where A" x 49 =4 x A", and A" is the complex conjugate of 4. The magnetic
field B®) is observed as the physical quantity 4 x A" in magneto-optical experiments. This demonstrates the
superiority of the new theory (an O(3) symmetry theory) over the older U(1) symmetry theory because, in
the latter, 4 and A" are random, and 4 x 4" is unphysical. In fact, in the rigorous field theory that leads to eqn.
(24), A x A" is identically zero in U(1) linear, Abelian, classical electrodynamics®.

The meaning of “gauge transformation” is changed fundamentally during the course of this
generalization. In the older view, it introduces a serious internal inconsistency because the gauge transform
produces in the minimal prescription?,

p, > p, —eA, +ed, P, (25)

and since ¢ is undefined, then p, becomes random or arbitrary after U(1) gauge transformation. This is
a catastrophe for the classical, linear theory because eqn. (25) is a violent contradiction of observation. The
same gauge transformation in quantum mechanics can be written as

[8,, + i%A,L}w —0,(y+®)+ i%Aﬂw, (26)

and is normally interpreted as the addition of an arbitrary phase factor into the wave function. Thus, for
example, the Dirac equation is said to be gauge invariant in the presence of an electromagnetic field.
However, this long held interpretation of gauge transformation does not change the fact that the numerical
value of the still classical 4, in, for example, the Dirac equation, is changed arbitrarily and classically from
A toA+ a;,cI). Additionally, canonical quantization in the Lorenz gauge is beset with difficulties as is well
known, and leads to a dubious “elimination” of longitudinal photons with the Gupta-Bleuler condition?,

<\p lauA“]\p>:0. 27)
This has to be used because
0,4 |y)=0, (28)
even in the vacuum. Lastly, the Lorenz condition itself violates the fundamental covariant commutation

ansatz of the canonical quantization process’. The validity of the whole quantization procedure depends on
the famous gauge fixing term —()/\/23 ( f,‘A") , which is arbitrary and unphysical in the same classical
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theory that is being subjected to attempted quantization. These well known difficulties of canonical
quantization of U(1) electrodynamics arise from attempts to make the assumed particulate photon
concomitant with the transverse plane waves of the received view while keeping 4, manifestly covariant. In
fact, this is a hopelessly confused theory in an area central to modern physics.

Electromagnetism in the linear, classical U(1) theory is simply an augmentation of the space-time
translation generator P, = p, / h = i, of the Poincaré group™",

PLl —>P +gA,. 29

In this view, the electromagnetic field produces only a translation in Minkowski, or flat, space-time,
in which

[P.P]=0, [4,.4,]=0 (30)

and if gauge theory is looked upon as a round trip with covariant derivatives, the above corresponds to a U(1),
Abelian group theory, with fields always linearly related to potentials. Therefore the linear, Maxwellian
electrodynamics are built on the assumption that the space-time translation generators g4, commute.

In the O(3) gauge theory on the other hand (Y ang-Mills theory>® applied to electromagnetism®® '*'%),

M (2)1 3
[A , A Bvu : 31
g
and the minimal prescription is extended to give eqn. (31) together with
M 4 {_ (2) 4(2) | _
[Av LA :I—[Av LA ]_0. (32)

From the structure of Eq. (31) the complex potentials can take on the role of space-time rotation
generators® '*' as well as space-time translation generators (eqns. (32)). The fundamental reason for the
properties (31) to (33) is that the potentials A’ and A'” are complex with two states of polarization: the
electromagnetic field is circularly polarized in general.

In this O(3) gauge theory, the covariant derivative and minimal prescription are structured in such
a way that Eq. (23) becomes

G =0, i=1,2,3, (33a)
B(l) x B(Z) - iB(O)B(3)" (33b)

and it can be shown that eqn. (33b) is identical with eqn. (31). Equation (33a) with i = 3 is consistent with
the fact that B® is time independent and divergentless,

OB
ot

V.B® =0, = 0. (33¢)

Equation (33a) with i=1 or 2 gives eqns. (1) and (2).



AIAS Authors

105

Finally, there is a fundamental philosophical difference between U(1) and O(3) electiodynamics
which can be found in the interpretation of “gauge transformation”. In the non-Abelian gauge field theory,
gauge transformation is a coordinate transformation® as in general relativity, and therefore a classical and
physical process. For example, if (3) is aligned with Z, rotation around Z leaves B® unchanged, while 4"
= A®" are rotated by a rotation matrix or generator. This is frame rotation, an O(3) gauge transformation
under which B® is invariant. More generally, the classical B® is covariant, but always physical, under an
O(3) gauge transform, or coordinate transform. A Lorentz boost in Z leaves B invariant if (3) is aligned with
Z, and so on. This concept of a physical gauge transform leads to a straightforward quantization method'> ",
based on angular momentum. For example, eqn. (33b) is a classical angular momentum relation, a relation
between rotation generators of O(3). As shown by Atkins', this type of relation produces virtually everything
in quantum mechanics. The difficulties with U(1) canonical field quantization disappear.

CONCLUSION: THE O(3) FIELD EQUATIONS

The four Maxwell equations in O(30 symmetry replace egns. (1) to (4) in the required non-linear and
non-Abelian theory of electrodynamics. They are as follows:

The Homogeneous Field Equations

DpG~ =0, (34)
The Inhomogeneous Field Equations
JV
D G" =—, (35)
K
€
with,
~ 1 oG
G" =-2—e“ pc’Gpc. (36)

In the presence of material magnetization and polarization,
HY __ gV
D H" =J". 37

These equations can be expressed in any convenient basis, such as the O(3) basis labeled ((1), (2),
(3)), based on the fact that radiation is circularly polarized, and they replace the U(1) Maxwell equations (1)
to (4). In order to progress to a unified, non-linear field theory, these equations must be the starting point for
the description of any electromagnetic phenomenon at the classical level.
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