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NON-ABELIAN FIELD THEORY APPLIED TO ELECTRODYNAMICS:
DEVELOPMENT OF THE FIELD EQUATIONS

ABSTRACT

The theoretical and experimental limitations of conventional Maxwellian field theory are discussed
in terms of contemporary gauge field theory. An O(3) internal gauge symmetry is used as the basis for novel,
non-linear, field equations of electrodynamics. The Maxwell-Heaviside equations can be recovered as
particular solutions, together with a novel equation of motion for a fundamental, topological, magnetic field
which magnetizes matter in the inverse Faraday effect, and which is derived rigorously from the topological
magnetic monopole. The Coulomb, Gauss, Ampere-Maxwell and Faraday laws are given in the higher
symmetry form of electrodynamics implied by the inverse Faraday effect and by the existence of the various
topological phases. In this form of the field equations of electrodynamics, the potential is no longer an
arbitrary mathematical construct, but is physically meaningful. The novel topological magnetic field implied
by the field equation can be observed directly in the topological phases and in magneto-optical effects. Some
consequences for quantum electrodynamics are discussed.

INTRODUCTION

The Maxwell-Heaviside field equations are gauge field equations whose internal gauge symmetry
is U(1) {1-3}. This choice of gauge group symmetry is based on the assumption that the non-linear part of
the commutator of covariant derivatives that defines the gauge field tensor is always zero under all conditions.
However, there are several ways of showing that this assumption does not hold in general. For example, the
ordinary Stokes parameter, S,, that defines circular polarization on the classical level {4, 5}, is proportional
in the vacuum to the conjugate product or commutator of potentials A x A°, which in a circular basis ((1), (2),
(3)) can be written as 4 x A® {6-9}. This result is incompatible with the assumption A x A" =? 0 which has
to be made so that the Maxwell-Heaviside equations are equations of a U(1) symmetry gauge field theory.
A second example is the inverse Faraday effect {10}, which is magnetization due to the same conjugate
product A x A" of circularly polarized electromagnetic radiation. Magneto-optic effects, in general, rely on
the existence of a non-zero conjugate product A x A" which, in the vacuum, is proportional for plane waves
to the conjugate product of electric fields E x E" = ¢’B x B". Here, c is the vacuum speed of light and B is
the magnetic flux density, B =V x 4. A third example is the existence of the topological phases {11-14}
which can be shown to be due to an area integral over a non-zero commutator of potentials, equal to a line
integral through a non-Abelian Stokes theorem.

The observation of a non-zero A x 4" in these effects is incompatible with the assumption 4 x A" =
0 made in deriving Maxwell-Heaviside electrodynamics from general gauge field theory.

These phenomena indicate that the potential on a classical level has a physical significance. The rules
of gauge transformation cannot be applied because these randomize the observable 4 x A’ the reason being
that in the U(1) electrodynamics, a random quantity is added to 4 under gauge transformation, and the
complex conjugate of this random quantity is added to A". The topological phase effects {15} are,
furthermore, essentially Aharonov-Bohm effects, again suggesting that the potential has a physical, gauge
covariant role incompatible with its meaning in Maxwell-Heaviside electrodynamics as a mathematical
subsidiary. Barrett {16} has pointed out several other effects in which the classical potential is a physical
observable, and has presented evidence for the existence of a topological magnetic monopole in
electrodynamics.
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In general gauge field theory, it is natural to address these fundamental self-inconsistencies with a
different internal symmetry group, one which allows for the existence of a non-zero commutator of potentials
through a choice of covariant derivatives {17}. Since 4 x 4" is the signature of circular polarization in the
third Stokes parameter, it is natural to choose the symmetry group O(3), the rotation group. The choice of
covariant derivatives defines the field tensor in Section 2 of this paper. Section 3 then derives the
homogeneous and inhomogeneous field equations of O(3) electrodynamics. The homogeneous field equation
is a Jacobi identity first derived by Feynman, {18} and both the homogeneous and inhomogeneous parts are
identifiable with Yang-Mills theory {19}. It is well known that the latter set out to generalize electrodynamics
in 1954, essentially through the introduction of the covariant derivative. Section 4 writes out the field
equations in full and shows that they are homomorphic with the Barrett field equations, written in SU(2)
symmetry {16}. They are respectively the Coulomb, Gauss, Ampére-Maxwell and Faraday laws written in
an O(3) symmetry rather than the usual U(1) symmetry. The Gauss law, for example, allows for the existence
of a topological magnetic monopole and the field equations in general allow for the existence of a topological
magnetic field {20}, defined by a non-zero commutator 4 x 4", This topological magnetic field (B®) is
therefore directly observed in the Stokes S, parameter, the inverse Faraday effect and other magneto-optical
effects, and in the topological phases. The field equations are non-linear, but under certain conditions can be
linearized to three field equations in indices (1), (2) and (3). The two linear field equations in (1) and (2) are
Maxwell-Heaviside type equations, while that in index (3) governs B®, a constant of motion. Being a
topological field, it does not give rise to Faraday induction, as observed empirically. Section 5 gives a
rigorous derivation of the topological magnetic field B® from the topological magnetic monopole, and their
observation is discussed in the Sagnac effect and interferometry. Finally, a discussion is given of some of the
consequences of these field equations in nonlinear optics, quantum electrodynamics and unified field theory.

THE FIELD TENSOR

Electrodynamics can be derived from gauge theory by using a closed loop in Minkowski spacetime
{17}: a round trip with covariant derivatives. Such a procedure is valid for any internal gauge group
symmetry, and electrodynamics can be derived in consequence for any internal gauge group. A general,
multi-component, field vector ¥ is acted upon by an operator which transports it around a closed loop using
the theory of infinitesimal generators. The result of the trip around the closed loop is expressed as:

ix iy

y' =e"ee

—ix iy

eMy. (hH

The four exponentials are operators which can be expanded as a Taylor series. To second order, this takes the
form:

ix iy

e“e”e ™ e? =1-(xy—yx)+x*+y*+ ... . )
In order to apply this general theory to electrcdynamics, the symbols x and y are defined by:

x =Dqu“
D Ax" e
Y=L,

where D,, and D, are covariant derivatives and where x* and x” are four vectors in flat, Minkowski, space-time
{17}. The covariant derivatives can be defined in any gauge group symmetry and can be expressed in the
short-hand notation {17}:

D, =0, -igd,. (3)

Using eqns. (1) and (2):
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y'=(1-[D,.D, |Ax" Ax’ + D, D* Ax,Ax* + D,D*Ax,Ax" + ... ). @)

To second order, the closed - loop journey gives a commutator containing covariant derivatives, i.e. xy - yx,
and quadratic products such as x* and y*. The field tensor of electrodynamics is given by the commutator, and
can be expressed as:

G, =0,4,-08,4,—ig| 4,.4,] (5)

in terms of the potentials 4,. The field tensor is part of the commutator of covariant derivatives [D,, D,],
derivatives which obey the Jacobi identity for all group symmetries:

Z[Dp,[DH,DV]]EO. (6)

The Jacobi identity is the homogeneous field equation {17}, which is therefore also an identity. These are
well known results of gauge theory, and electrodynamics is usually recovered by assuming that the internal
gauge symmetry is U(1), giving the usual four-curl:

Guv = ap A - Q,AP )
linear in potential.

This process is however, self-inconsistent as discussed in the introduction. It is more self-consistent
if an O(3) symmetry is used for the internal gauge space. In the complex representation of space, with basis
((1), (2), (3)), that part of the field tensor quadratic in the potential is non-zero if the internal gauge space has
O(3) symmetry {20}. The field component thus defined is the topological {21} magnetic field:

B®" = _igd® x A® )

where g is a proportionality constant {20}. This is a physical field component in the vacuum, giving rise to
observable effects when field interacts with matter, for example, one electron. The inverse Faraday effect,
for example, is due to a non-zero 4 x A? | and therefore to magnetization by B®.

The O(3) field tensor written out in full is:

GV =cu H" =cV xAY —icgd® x AP
G? = cp HY' = eV x A" —icgd™ x 4 ©)
G = cp H =V x A —icgd™ x AP

where c is the speed of light in vacuo, L, is the vacuum permeability, and H is the magnetization/polarization
vectors of the O(3) symmetry electrodynamics. There are several differences between the U(1) and O(3) field
tensors, the main one being that the O(3) field tensor is quadratic in the potential. If A" = 4® is a plane wave
in the radiation zone, the three physical magnetic field components are given by {20}:

B(l) =V x A(l) — _igA(z) x A(3)

B? =V x A? =-igq® x 4V (10)
B® =V x A =—igq" x 4®
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When A® is a constant, we recover eqn. (8). The proportionality factor g is definable in the vacuum through
the duality {20}:

ed'” = hx (D

where 4© is the scalar magnitude of A and where x is the wave-vector magnitude. The ratio of the Dirac
constant 7 to the elementary charge e is the magnetic flux carried by the photon in the vacuum {20}. Special
relativity {22} shows that two charges e co-moving at ¢ do not interact and so there is no photon photon
interaction in the vacuum due to /i/e.

When there is field matter interaction, the constant g changes its value so that {20}:

g—+g'=%g (12)

where u is the permeability of the substance with which the field interacts. The magnetization of the inverse
Faraday effect, for example, is:

M®(IFE) = ——l—g'A”) x A® (13)

Ko

Therefore the inverse Faraday effect is described from first principles in O(3) electrodynamics,
whereas in U(1) electrodynamics, it does not exist from the field equations without the phenomenological
introduction of AY x 4® in constitutive relations. Such a procedure violates the assumption made in deriving
U(1) electrodynamics from gauge field theory, that terms such as A® x 4@ vanish.

When AV = 4@ is a plane wave, the third Stokes parameter defining circular polarization on a
classical level is {20}, in the vacuum:

S, =-in’ AV x 4? (14)

where @ is the angular frequency of the radiation. The linearization of the gauge field to eqn. (7) therefore
removes the ability of the U(1) theory to describe the Stokes parameter, another severe selt-inconsistency.
In general, these self-inconsistencies appear whenever the optical phenomenon under consideration depends
on features such as 4P x 4@ which are quadratic in the potential. The fundamental reason is that the
electromagnetic field is recovered from the underlying gauge field theory by discarding all terms non-linear
in the potential. This procedure leads to the four-curl (7) and conventional, U(1), electrodynamics re-
introduces non-linear terms when needed, as in the third Stokes parameter or in the inverse Faraday effect.
Not only is this procedure self-inconsistent, but it also loses information, because the MacLaurin series (4)
is truncated at the linear term.

THE FIELD EQUATIONS

The homogeneous field equation of electrodynamics, considered as a gauge ficld theory with O(3)
internal symmetry, can be derived in the same way as the field tensor, by considering a closed path in
Minkowski space-time. This theorem was first demonstrated by Feynman {17} in the context of high energy
physics. The closed path gives the Jacobi identity (6). Using the relation between the generalized field tensor
of electrodynamics {17} and the commutator of covariant derivatives:
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G, =—[D,.D,] (15)
g
the Jacobi identity becomes the homogeneous field equation;
ARV
DG =0 (16)

which is also a Jacobi identity for any gauge group symmetry. In O(3) symmetry, the covariant derivative is
defined in terms of O(3) rotation generators, and the field tensor G'*" is a vector in the internal gauge space.
If the gauge symmetry is U(1), eqn. (16) becomes the homogeneous Maxwell-Heaviside equation {17}.

The inhomogeneous field equation can be derived similarly and is:

D H" =J" (17)

where H* is a magnetization/polarization tensor and J" is a four-current. In O(3) electrodynamics, both H*
and J" are vectors in the internal gauge space. Using the complex basis ((1), (2), (3)) {23} for this internal
space, we can write each component in this space of the four-current:

. ; J(i)

Eqns. (16) and (17) are more self-consistent than the Maxwell-Heaviside equations because the field tensor
(Section (2)) defines AV x 4@ from first gauge field principles. Eqns. (16) and (17) have many other
advantages as detailed in the literature {23-26}, in particular, they remove the fundamental inconsistencies
discussed already. Therefore classical and quantum electrodynamics are described by solving eqns. (16) and
(17) (or their quantum equivalents) in any given situation. A detailed example is given in this paper through
the inverse Faraday effect. Most generally, the equations can be integrated numerically. They are similar to
the Yang-Mills equations {17} in mathematical structure, and are therefore intrinsically non-linear. The
Maxwell-Heaviside equations are linear differential equations. One of the major advantages of O(3)
electrodynamics is that it defines the topological magnetic field B® observed in the topological phases {27}.
In general, the O(3) equations enrich electrodynamics philosophically as well as physically, bringing in to
the subject new concepts, such as the physical and observable topological magnetic monopole {28}
concomitant with B®, and the particle concomitant to the O(3) field: the instanton. The O(3) equations should
not therefore be considered merely as mathematical generalizations of the Maxwell-Heaviside equations.

Particular solutions of eqns. (16) and (17) exist which show their relation to the Maxwell-Heaviside
structure. Writing eqn. (16) as:

(0, +g4, x)G* =0 (19)
a particular solution can be given:

0,G* =0 (192)

A xG" =0 20)
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which linearizes the O(3) homogeneous field equation. The components of eqn. (19) i the basis ((1), (2), (3))
are:

a»G".pv(l) — auG“"“’ =0 2n

2,6"® =0. 22)

Egns. (21) and (22) are complex conjugate pairs of Maxwell-Heaviside equations while eqn. (22) is the
equation of motion of B®. In vector notation, eqn. (22) is:

8B
=0 23
= =0, (23)

which shows that B® is a constant of motion if B = B?" is a transverse plane wave in vacuo {23-26}. The
topological magnetic field B® does not behave like a static magnetic ficld or a plane wave, and does not give
rise to Faraday induction. It is observed in the third Stokes parameter, in the inverse Faraday effect and in the
topological phases, a deduction which follows from the hypothesis that electrodynamics be an O(3) symmetry

gauge field theory. It can be shown {26} that eqn. (20) self-consistently gives rise to the B Cyclic theorem
{23-26}:

B(l) X B(2) = l'B(U)B(3)'

. (24)
et cyclicum

which in the vacuum is egn. (8), a resuit which is consistent with the fact that the field tensor has O(3) gauge
field symmetry (Section 2). Similarly, the inhomogeneous equation (17) in vacuo can gives the particular

solution:
5,G* =0 (25)
v g v
J :pczA“XGu’ (26)
D

showing that the B® field is irrotational in this case:

VxBY =0, @7
Eqgn. (26) of this solution self-consistently gives rise {26} to the energy generated by B*:

En =—1—IB(3)-B(3)(1V (D

Ho

where V is the volume of radiation. It is well known that the B Cyclic theorem {23-26} is a Lorentz covariant
angular momentum relation, showing that B® is a fundamental spin of the electromagnetic field. This is
another concept that does not exist in Maxwell-Heaviside electrodynamics because of its assumption that 4’
x A? is zero, a linearizing assumption.
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STRUCTURE OF THE FIELD EQUATIONS

Eqns. (16) and (17), when written out in the ((1), (2), (3)) basis, give four laws of electrodynamics,
laws which are similar to the Gauss, Faraday, Coulomb and Ampére-Maxwell laws of U(1) electrodynamics,
although they are considerably richer, philosophically and mathematically. Therefore, we will refer to them,
for convenience, as the O(3) equivalents of these laws.

The O(3) Gauss Law

The existence of the topological magnetic monopole is demonstrated through the O(3) Gauss law:

VBV = ig(A(z’-B“) ~B® -Am)
(29)
et cyclicum.

In the particular case where B = B® is a plane wave and where B is solenoidal and irrotational, the O(3)
Gauss law becomes:

V.B" =0, (30)

In general, however, the law consists of three simultaneous partial differential equations, eqns. (29), which
must be solved numerically for the quantities appearing in them.

The O(3) Faraday Induction Law

The Faraday induction law becomes, under all conditions:

1*
Vx EM 4 oB = —ig(c OBD _ gD RO 4 4D FO 4O D )
ot 31
et cyclicum
and when B = B@ is a plane wave, reduces to:
w  OBY
VxEY + =0, i=12 (32a)
ot
oB®"
—=0. (32b)
ot
Eqn. (32a) are complex conjugate Faraday laws and eqn. (32b) is the law for the constant of motion, B®.
The Ampére-Maxwell Law
The Ampére-Maxwell law in O(3) electrodynamics can be developed as:
wv)* o pe)* ; (2 wv(3)
o.H =J"" +igd " x H )

et cyclicum
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and applies to field matter interaction. It can be illustrated with respect to the inverse Faraday effect, which
as we have argued, is self-inconsistently described with U(1) electrodynamics. Using the constitutive relation:

HPV(3) =€GuV(3) (34)
it becomes possible to write eqn. (33) as:
O HWY ="V 4 Ay 5
et cyclicum

where the transverse current

AT =ige AP x GW (36)

causes a signal in an induction coil due to the vacuum B® appearing in G**®_ This is the inverse Faraday
effect as observed empirically {23-26} and as described from first gauge field theoretical principles from eqn.
(17). On the other hand, an explanation such as this is not possible in U(1) electrodynamics because of the
self-inconsistent re-introduction of 4? x 4® phenomenologically {29} into linear field equations through
non-linear constitutive relations. The description of the inverse Faraday effect through the eqns. (33) is
developed in more detail elsewhere.

The Coulomb Law

Finally the Coulomb Law in O(3) electrodynamics can be developed as:

VED = _1_p(1)' +ig(A(2’-E(3) - E(Z).A(3))
€o (37)

et cyclicum

and contains a topological charge in addition to the point charge of U(1) electrodynamics.

The laws of O(3) electrodynamics developed in this section are homomorphic with Barrett’s
equations {30}, which are developed in SU(2) symmetry. Barrett’s equations are reproduced for convenience
below:

VeB =-ig(A+B - B-A)

oB .
VxE+—aT=—1q([A0,B]+AxE-—E><A)

(38)
VeE =J, —ig(A*E - E+A)
oE

—at—-—VxB+J=iq(AxB—BxA—[A0,E])

where his g is equivalent to our g, and where he uses Gaussian units instead of our S.1. units. However, since
SU(2) symmetry in gauge field theory does not support the Aharanov-Bohm effect, {17} the O(3) group is
the only one possible in which to develop a higher symmetry form of electrodynamics. In so doing, we
introduce into electrodynamics the highly developed concepts of non-Abelian gauge field theory in high
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energy physics {17}. Most generally, eqns. (16) and (17) can be solved numerically as coupled non-linear
differential equations, provided a constitutive relation such as eqn. (34) is introduced. Such a relation is
always needed on the classical level because there are four unknowns in eqns. (16) and (17), while there are
only two simultaneous equations.

It is always possible to reduce the vacuum O(3) laws to equations which look like the vacuum U(1)
laws by using particular solutions such as (19) and (25). These introduce cyclic relations such as (24), which
are essentially angular momentum relations of the free electromagnetic field in vacuo, and extra energy terms
of the free field, such as eqn. (28). In order to observe the effect of the field, however, field-matter interaction
must always be present, and in the inverse Faraday effect, for example, the unabridged non-linear equation
(33) is needed.

Electro-statics and Magneto-statics

There are no longitudinal source currents in eqns. (33) because the source current of circularly
polarized radiation is necessarily transverse, the charge in the source goes around in a circle about the (3)
axis. The source does not move forward along the (3) axis and there is therefore no polar source current in
the (3) axis, the longitudinal axis. As the angular velocity of the charge approaches zero, the source stops
radiating and we obtain O(3) electrostatics in which:

E=Exi=EY=E® (39)

SO
EVxE® =ExE=0. (40)

There is no radiated B® field in O(3) electro-statics, showing that the topological magnetic field is a radiated
field, not a static magnetic field. Therefore there is no topological magnetic monopole in electro-statics and
magneto-statics and the O(3) equations reduce to the empirical laws of electro-statics and magneto-statics:
the Coulomb, Ampére and Gauss laws. This result is consistent with the fact that in electro-statics and
magneto-statics, the particular solutions (19) and (25) always hold because the B field vanishes in the static
limit. Since B = B? is real in the static limit, the particular solutions (19) and (25) reduce to the laws of
electro-statics and magneto-statics as observed empirically.

This procedure illustrates the important conclusion that the topological field B is a property of
radiation, and that an O(3) symmetry electrodynamics consistently reduces to the laws of electro-statics and
magneto-statics. In the next section, the topological magnetic field is related to the topological magnetic
monopole.

THE B® FIELD, TOPOLOGICAL MAGNETIC MONOPOLE AND PHASE

The non-Abelian addendum of phase to the Maxwell-Heaviside theory by Wu and Yang {31} implies
the existence in electrodynamics of low energy topological magnetic monopoles. Furthermore, instantons
appear in electrodynamics as minimum action solutions of the self-dual Yang-Mills equations related to eqns.
(16) and (17). The link between B® and the topological magnetic monopole is given most simply by
considering the non-Abelian Stokes theorem {32}:

S =%<§>Apdx“ =—i§ﬂ[Au,A:]dc i (41)

where the topological magnetic monopole is defined in terms of the Wu-Yang phase, the line integral on the
left hand side of eqn. (41). In electrodynamics considered as a U(1) gauge field theory, such a theorem docs
not exist, because the commutator in U(1) theory 1s defined to be identically zero under all circumstances
{17}. It follows that the line integral and phase vanish in U(1) gauge field theory applied to electrodynamics,
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and so vanish in the Maxwell-Heaviside theory. In consequence, there is no topological magnetic monopole
or B® field in Maxwell-Heaviside electrodynamics. The line integral, or phase, is however observed
empirically as the topological phase {33}, and such an observation clearly signals the limits of Maxwell-
Heaviside electrodynamics. The mathematical structure of eqn. (41) furthermore implies the existence of the
B® field through the empirical observation of the topological phase. Conversely, B® is responsible for the
topological phase. The reason is that the commutator of potentials on the right hand side of eqn. (41) gives
the B® field directly (Section 2). There is therefore a direct link between the topological magnetic monopole,
observed in the topological phase, and B®). On the simplest level the relation is:

3)
gy =%HB(3’dAr =®7- (42)

where ®® is the magnetic flux (weber) due to B®'. For one photon this is #/e. The topological phase is
given by {30}:

b =—g4,dx* (43)

as first shown by Simon {34}. It is the result of a closed loop in Minkowski space-time using covariant
derivatives. This is essentially the same procedure that gives rise to the non-Abelian field tensor (Section 2)
and the non-Abelian field equations (Section 3). The observation of the well known topological phases {33}
is conclusive evidence for the fact that electrodynamics is a non-Abelian gauge field theory.

It follows that the topological magnetic field B® is responsible for the topological phase effects as
that observed by Tomita and Chiao {34} using a helically wound fiber. A more general theory of the link
between the topological magnetic monopole and B® will be developed elsewhere, but it is already clear, from
the simple considerations of this section, that the topological phase implies the existence of both in
electrodynamics. It may also be argued that B® gives a straightforward topological explanation of the Sagnac
effect {35}, which is essentially the Tomita Chiao effect for one turn of the fiber. It is well known that U(1)
theory has considerable difficulty in explaining the Sagnac effect.

The non-Abelian Stokes theorem (41) is a direct consequence of eqn. (8), defining B from the O(3)
field tensor. This link may be demonstrated at the simplest level as follows. Start with eqn. (8) in the form:

* K 2
B®" =i ol AV x A® (44)

and use B = k4®. Multiply both sides of eqn. (44) by 4r = TR® to obtain:

nRc APkeRk =x APRR

(45)
=BY.Ark.
Now integrate to obtain the non-Abelian Stokes theorem:
2nK A“’%j;R-dR = j j B®edAr. (46)
Finally let R = k! and multiply both sides of eqn. (46) by g = k74" to define the phase:
K
— — (3)
¢ =2n i dR = yo [[B®aar. 47)
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The left hand sides defines the non-Abelian dynamical phase over a suitable closed loop {36}, the right hand
side the non-Abelian topological phase, essentially the magnetic flux due to B®. These phases are observables
of optics and interferometry {36, 37}.

On the general level, the non-Abelian Stokes theorem defines the electromagnetic phase through:

) =iC'f)Dpa’x“ =iH[DP_,Dv:|dc H (48)
and using eqn. (15) we find that:

b= qc)(x‘1 + gAP_)dx“ = g”Gwa’c w (49)

a concept which is missing entirely from Maxwell-Heaviside electrodynamics and which was introduced by
Wu and Yang {31}. There is no reasonable doubt therefore, that electrodynamics is a non-Abelian gauge field
theory as developed in this paper.

DISCUSSION

It has been argued in this paper that the Yang-Mills equations can be applied self-consistently to
electrodynamics under all conditions, using an O(3) internal gauge field symmetry. Particular vacuum
solutions of the field equations give rise to what are essentially novel angular momentum and energy relations
between components of the complete field. The existence of the empirical observable A x 4 indicates the
self-inconsistency of the procedure used to obtain the Maxwell-Heaviside equations from general gauge field
theory, a self-inconsistency which is removed in Yang-Mills theory because the commutator of potentials no
longer vanishes. The B® component of the Yang-Mills equations is a constant of motion and is essentially
the fundamental spin of the electromagnetic field. The field equations in self-dual form have minimum action
solutions which are instantons, and allow for the existence of low energy topological magnetic monopoles
in electrodynamics. They also give a self-consistent description of the topological phase, the inverse Faraday
effect and the third Stokes parameter on a classical level. The argument for an O(3) symmetry
electromagnetic sector means that unified field theory has to be reconsidered. At present, it relies on the
assumption that the electromagnetic sector has U(1) gauge field symmetry, and so becomes self-inconsistent
because U(1) electrodynamics is self-inconsistent as argued in this paper and elsewhere {23-26}. Some work
has been completed recently on an SU(2)xSU(2) symmetry electroweak theory {38} and on a non-Abelian
quantum electrodynamics {39}, in which small corrections appear at fifth order in the fine structure constant
to the electronic g factor and Lamb shift. These are in principle observable empirically, but are very small
in magnitude. Therefore the extension from Abelian to non-Abelian in quantum electrodynamics has this
effect theoretically.

The Yang-Mills equations developed in this paper were of course originally intended by these authors
{17} as a generalization of electrodynamics, but this route seems to have been abandoned because of the
acceptance of a U(1) sector symmetry, a linear and Abelian symmetry. This paper has set out to argue the
inconsistencies in the U(1) sector symmetry and has attempted to develop the Yang-Mills equations anew by
introducing and developing the B® concept in the vacuum. This development has shown that the B® field
is responsible for the topological phases, the third Stokes parameter and magneto-optical effects. In the
vacuum, the B® field introduces new angular momentum and energy relations. In showing that the B® field
is a natural outcome of the Yang-Mills equations, the route is opened to concepts in high energy physics
which can be adapted for electrodynamics.

An important philosophical consequence is that the potential becomes meaningful on a classical level
as argued also by Barrett {30}. A clear example of this is that the B® field is defined in terms of a physically
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meaningful conjugate product A% x A® of potentials. The rules of gauge transformation in O(3) symmetry
gauge field theory must be applied to the conjugate product regarded as physical construct, and to B, a
physical magnetic field. The gauge transform then becomes a physical rotation which can be shown to be the
cause of the Sagnac effect {35} when the platform is rotated. This procedure and understanding is quite
different from the rules of gauge transformation applied to a potential in U(1) gauge field theory. In that case,
an essentially arbitrary quantity is added to the original potential without affecting the magnetic field, which
is regarded as the physical entity.

Therefore the Yang-Mills equations applied to electromagnetism. as originally intended, produce a
subject which is philosophically quite ditferent from the Maxwell-Heaviside view of electrodynamics. The
Yang-Mills equations are gauge and Lorentz covariant and conserve the fundamental symmetries, such as
C symmetry. These properties are well known because the Yang-Mills equations are foundational in
contemporary particle physics. There seems no reason why they cannot be applied, as originally intended,
to the electromagnetic sector, and systematic development in this direction is underway {26}.
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