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A GENERAL THEORY OF NON-ABELIAN ELECTRODYNAMICS

ABSTRACT

The general theory of gauge fields is used to develop a theory of electrodynamics in which the
fundamental structure is non-Abelian and in which the internal gauge field symmetry is O(3), based on the
existence of circular polarization and the third Stokes parameter. The theory is used to provide an explanation
for the Sagnac effect with platform at rest and in motion. The Sagnac formula is obtained by considering the
platform in motion to be a gauge transformation. The topological phases can be described straightforwardly
with non-Abelian electrodynamics, which produces a novel magnetic field component for all types of
radiation, a component which is proportional to the third Stokes parameter. The theory provides a natural
explanation for the inverse Faraday effect without phenomenology.

INTRODUCTION

Radiation always contains the third Stokes parameter, which is proportional to the conjugate produce
{1-5} of complex vector potentials 4 x 4D, The third Stokes parameter characterizes circular polarization,
and all other polarizations can be thought of as combinations of circular polarization. For example, linear
polarization is a mixture of half right and half left circular polarization. Therefore a self consistent theory of
radiation, or electrodynamics, must consider the fact that A’ x 4® is always non-zero. In this paper, we
develop a theory of electrodynamics in which this basic requirement is fulfilled self-consistently within the
framework of general gauge field theory {6, 7} and demonstrate its advantages through a novel explanation
of the Sagnac effect with platform at rest and in motion. The additional phase shift observed in the moving
platform is derived from a gauge transformation of the non-Abelian gauge field theory. In Section 2, the
structure of the novel non-Abelian electrodynamics is derived from a closed loop in Minkowski spacetime,
leading to a satisfactory description of the third Stokes parameter in terms of a novel magnetic field B® which
is self-dual and does not give rise to Faraday induction. In Section 3, considerations of gauge transformation
in the O(3) internal gauge symmetry of the electrodynamic theory are given and in Section. 4, the
electrodynamical theory is applied to an explanation of the Sagnac effect. In Section 5, the theory is applied
to the topological phase using a novel non-Abelian Stokes theorem, and in Section 6, to a novel explanation
of interferometric effect in optics.

DERIVATION OF THE ELECTRODYNAMIC THEORY

Electrodynamics can be derived from gauge theory by using a round trip with covariant derivatives {8}.
Such a procedure is valid for any internal gauge group symmetry and electrodynamics can be derived in
consequence for any internal gauge group. A general multi-component field vector ¥ is acted upon by an
operator which transports the vector around a closed loop using the theory of infinitesimal generators. The
result of the trip around the closed loop is expressed as:

W " _ eLxelye—ixe—in (l)
The four exponentials in this expression are operators which can be expanded in a Taylor series. To second
order, the series takes the form:

ix iy

e“e¥e e =l-(xy—y)+x*+y + ..., 2)
The object zy - yz is a commutator of operators. For example, if x and y denote Lorentz boosts, {8} it can be
shown that the commutator leads to the Thomas precession. In general, the commutators are determined by
group theory {8} and the method is valid for all groups.



150 . Journal of New Energy Vol.4,n03

In order to recover a theory of electrodynamics from this powerful general approach, the symbols x and
y are defined as follows:

x:—:Dpr“,

v €))
y=D Ax’,
where D, and D, are covariant derivatives and where x* and x" are four-vectors in Minkowski spacetime {8}.

The covariant derivatives can be defined in any gauge group symmetry and can be expressed in the shorthand
notation {8}

D, =0,-ig4,, 4)
using Egs. (2) and (3):

y'=(1-[D,,D, JAx*Ax* + D, D°Ax, Ax* + D, D° Ax, Ax" + .. )y )

The effect of the journey around the closed spacetime loop represented by eqn. (5) is defined by the way in
which the covariant derivatives enter into the expression {8}. To second order, the closed loop journey ends
in a commutator containing covariant derivatives (xy - yx) and quadratic products containing derivatives (x*

and 7).

The commutator gives the field tensor {8} in any gauge group, and products such as x? contain field
components to higher order, and this process gives us an ever more accurate theory of nonlinear
electrodynamics and nonlinear optics systematically from first principles. The latter are very fundamental to
modern physics. v

If 4, is the electromagnetic potential, then the electromagnetic field is
G,, =0,4,-8,4,-ig[4,.4,], ©6)

where g is a universal constant, the ratio of e to % . The field (6) is part of the commutator of covariant
derivatives [D,, D ). The Jacobi identity

>[Dp,.[D,.D,]]=0 %

follows and is obeyed identically by the commutator [D,,, D ] for any gauge group. This Jacobi identity is the
homogeneous field equation for any gauge group. In general relativity, it is the Bianchi identity {8}. These
are well known results of modern gauge field theory. Our purpose in this opening section is to show that the
gauge group of electromagnetism has to be a non-Abelian group such as O(3) in order to obtain self-
consistently the homogeneous field equation and the first and third Stokes parameters from this general gauge
field theory, which we have truncated at second order in the Taylor series (5). A theory to higher order in the
Taylor series gives non-linear field tensors and equations, currently unexplored. More generally, these
equations must be solved numerically and this process can be carried out in any gauge group. The current
approach to electrodynamics is to assert that it is a linear theory based on a U(1) gauge group, and this loses
a substantial amount of information. In particular, the third Stokes parameter is undefined in this procedure.
In general, gauge theory shows that the equations of electrodynamics are non-linear to all orders in all internal
gauge group symmetries and the process is always Lorentz and gauge covariant. The gauge theory conserves
the fundamental symmetries of nature.
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Taking the O(3), rotation group, symmetry for the internal gauge symmetry of the general theory
applied to an electrodynamic vector potential, the B component {9-14} emerges in the vacuum as

B = —i%A(l) x AP, )

so B® is proportional to the third Stokes parameter. The latter is contained within the definition of the field
tensor and is therefore contained within the commutator of covariant derivatives. The quadratic product of
covariant derivatives contains the zero order Stokes parameter:

S, =EV+E® =0?4%.4® ©)
and so an O(3) internal gauge group symmetry produces the result
S, =%£8,, (10)

as required by the existence of circular polarization and the third Stokes parameter S,

If this method is applied with a U( 1) internal symmetry group, the B® field vanishes along with the
third Stokes parameter S;, which is obviously counter-indicated by data (the existence of circular
polarization). The field tensor becomes the familiar scalar in the internal, Abelian, gauge space:

G,(UQ)=0,4,-0,4,, (11

and the familiar homogeneous field equation is obtained:

8,G*(U(l)) =0. (12)

Although these equations are widely known and accepted, they are self-inconsistent because they imply a zero
S, in gauge field theory. In order to obtain a non-zero S, self-consistently, the existence of the B® field must
be postulated. Inter alia, B® is a fundamental field observed in the third Stokes parameter, and in circular
polarization. In ficld matter interaction B®’ is observed in magneto-optical effects {9-14}.

GAUGE TRANSFORMATION
The rotation of the general multi-dimensional field ¢ takes place as follows {8}:
y' =Sy (13)

and is a special case of the closed loop or round trip represented in eqn. (1). In special relativity, botk S and
Y are functions of x*, and the derivative

0y =0,(Sy)=359,y +yd,S, (14)
in consequence is not covariant, because it does not transform under S in the same way as the field itself.

There is an extra term on the right-hand side of eqn. (14). The concept of gauge transformation enters into
field theory through the use of the covariant derivative as follows:

Dywy'=8D,y, (15)
Where

D,=0,-igA,. (16)
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Equation (15) is covariant and has the same algebraic form as the or1gma1 eqn. (13). In consequence of the
introduction of A’ as defined in eqn. (16), gauge transformation is a frame transformation in which A
changes its value to A It can be shown that

g i -
=SA4,S ‘—EGPSS g (17)

If 4, did not change to 4, we would have:
r - -1
A,=4,=54,5",

18
9,557 =0, o

and so the second term on the right-hand side of eqn. (17), known as the inhomogeneous term, would vanish.

If we adopt an O(3) internal gauge symmetry for electrodynamics and consider a rotation about the Z axis,
then

S =e', (19)

where J, is the O(3) rotation generator {15} and & is an angle of rotation, an Euler angle. In other words,
gauge transformation resulting from a rotation of the field #, is a physical rotation through a finite angle a
The potential function in the O(3) gauge theory is defined {8} as

A, =J°4], (20)

where repeated indices are summed over as usual. For a rotation about the Z axis, it can be shown
straightforwardly that this O(3) gauge transformation results in:

1

z z

A, > A, +Eapa. 20
In the next section, we use this result to explain the Sagnac effect.

EXPLANATION OF THE SAGNAC EFFECT

When the well-known Sagnac interferometer is set up on a static platform, a phase shift, or interferogram,
is observed, even though there is no path difference between radiation propagating clockwise (C) or
anticlockwise (4). The phase shift cannot therefore be described with U(1) gauge field theory, but as shown
in this section, it can be described with O(3) symmetry gauge field theory in which there occurs {16} a real-
valued phase factor

bc =—b,=g_Adx* =-ig*[[[ 4, 4 Jdo* (22)

from a non-Abelian Stokes theorem {17}. The latter arises in turn from parallel transport around a loop in
Minkowski spacetime with O(3) covariant derivatives {18}. The four-potential 4, is a rotation generator in
the internal gauge space as defined by eqn. (20). The factor g is by dimensionality IdA“’) where Kis the wave-
vector magnitude and A the scalar magnitude of A4, Therefore, the phase shift obscrved in the Sagnac
interferometer with platform at rest is, from the area intcgral in eqn. (22):

2

Ap =2xAr =22 A4r, 23)
c



AIAS Authors

153

where Ar is the area enclosed by the loop. The observable phase change, or interferogram, is the single valued
function

Ad =cos(Ad £ 2n n); (24)
where @ is the angular frequency of the light and ¢ is the vacuum speed of light.

The rotation of the Sagnac platform is well known to induce an extra phase shift which U(1) gauge field
theory(Maxwell-Heaviside theory) cannot explain {19}. In O(3) electrodvnamics, the explanation of the extra
phase shift is straightforward if we consider the rotation of the Sagnac platform to be a gauge transformation
described by eqn. (21).

Consideration of the ¢ = 0 component of this equation gives

o —o>0x0, (25)

(04
where © = —a-—- is the angular frequency of rotation of the platform. From eqns. (23) and (25), we obtain,
t

with platform in motion,

Ad = C%(co + Q) Ar (26)
and
AAD = J_r4°°?2’4r 27)
if
Q<o (28)

Equation (27) is the well-observed phase shift when the platform is set in motion in the Sagnac effect {19}.
Since w~ 10" rads™ and 2 ~ 10 rads™, condition (28) is true to an excellent approximation. The result (27)
is frame and gauge invariant and the Sagnac effect is observed empirically to be independent of whether the
observer is on or off the platform, i.e., a frame invariant {20}.

THE TOPOLOGICAL PHASES IN O(3) ELECTRODYNAMICS

The electromagnetic phase in O(3) electrodynamics is given by {20}
= B
¢ =exp (Cﬁ D, dx )

=exp([[[ D, D, Jdo ™),

a closed loop with covariant derivatives in Minkowski spacetime. The line and surface integrals of this non-
Abelian Stokes theorem involve O(3) covariant derivatives with potentials defined as in eqn. (20), where

(29)

PAPAEIA (30)

Therefore dx* is a line element in Minkowski spacetime and do#* is an element of hyper-surface on the
Poincaré sphere. The closed loop (or round trip) in spacetime generates the free electromagnetic field:
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G, =i§[Dp’D\)]- G1)

Theorem (29) incorporates in one novel equation the Maxwell-Heaviside and Wu-Yang phases {20}. The
former appears from the fundamental de Broglie (wave-particle) dualism of quantum mechanics:

ap =—iK,,

32
D =—i(K“+%AP), G

m

and the Wu-Yang phase is part of the covariant derivative. The complete 0(3) electromagnetic phase is
therefore summarized by the integral of the electromagnetic field tensor over the hyper-surface on the

Poincaré¢ sphere:
/]
=exp| —i—||G, do " | 33
§=exp( 12 [ G0 ) o

where the field tensor contains a non-zero commutator of potentials:

. e
G,, =0,4,-0,4, —IE[A“,A‘)] (34)

The only non-vanishing (non-oscillatory) part of this integral is the topological phase
e e
= —] — —_— wo
) exp( lhﬂ ’h[AwAv]dU ) (35)

This does not exist in the Maxwell-Heaviside theory, because the latter is an Abelian gauge theory of U(1)
symmetry, unable therefore, to describe the empirically observable topological phase. These concepts are well
established in non-Abelian gauge field theory in general {20} but do not occur in the Maxwell-Heaviside
theory, whose linear Abelian nature prohibits the description of the non-linear, non-Abelian, topological
phase.

The general theorem (29) can be developed for one photon using the wave particle momentum dualism:

hk =eA", (36)
where A® is the scalar magnitude of a longitudinal, phase free, vector potential peculiar to O(3)
electrodynamics {20}. It is again undefined in the Maxwell-Heaviside theory and in consequence, this theory
violates Newton’s third law in radiation/matter interaction such as the Compton effect. In O(3)
electrodynamics, the Compton effect is understood straightforwardly {20} from the correspondence of the
quantized momentum for one photon, ik, and its classical equivalent e4”. The latter does not exist in the

Maxwell-Heaviside theory. If we restrict consideration to a plane wave propagating in the Z axis with a beam
cross section defined in the XY plane, we obtain from eqn. (36):

A dx’ =-i”—jE@[Al,Az]dc”, (37)

whence it is easily shown that the magnetic flux in vacua is

® = B Ar =-iff [T"((E[AI,AZ]CJG’2 (38)
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and originates in the o'’ component of the hypersurface on the Poincaré sphere. The physical origin of the
magnetic flux is the interference between the (1) and (2) ( complex conjugate) components of the circulariv
polarized beam. These exist on the single photon level, and so the topological phase for one photon originates
in the latter’s B® field. We have therefore demonstrated the physical origin of the topological phase {21},
which is physically distinct from

the dynamical phase.

The magnetic flux carried by one photon is

o=
€

) (39)

and so 4 becomes the helicity {22}

h=%+1 (40)

for a plane wave in circular polarization propagating in Z. This result is self-consistently regained from Eqs.
(37) and (38) as follows:

K (41)
Ker==+].

Therefore the topological phase is governed by the B® field in various forms of interferometry {22}. For
example the Pancharatnam phase {22} is distinguished experimentally by the fact that it is achromatic and
depends only on polarization; is non-additive (has no » dependence), is unbounded (depends on cyclic and
therefore periodic changes in the state of polarization) and be observed in unseparated beams. The dynamical
phase in contrast is chromatic, additive, bounded and needs separate beams in interferometry in order to
become effective. The P phase and concomitant B® field arise from cycling in the polarization state of light
while keeping the direction of the beam fixed, and are equivalent to a gauge potential in the parameter or
momentum space. They are due to parallel transport in the presence of a gauge field of O(3) internal
symmetry and are equivalent to an optical Aharanov-Bohm eftect. The Berry phase is related to the P phase
and can be observed in a Faraday effect due to BY, the rotation of a plane of polarization of light transmitted
through a fiber wound helically on a cylinder {23}. This phenomenon is due to cycling in the direction of a
beam of light so that the tip of the spin vector of a photon in this beam traces out a closed curve on the sphere
of spin directions {24}.

The fundamentally non-Abelian nature of these phenomena means that the Maxwell-Heaviside
equations become:

DuGN“U =0,
D .H" =J",

where the field tensors G** and H"" and four-current J# are vectors in the O(3) symmetry interna! gauge
space. A systematic development of these equations of 0 (3) electrodynamics is given elsewhere {25}, The
key importance of the topological phase is that it indicates conclusively the empirical existence of the Evans-
Vigier field B® of the photon. The latter does not exist in the Maxwell-Heaviside theory, whose field
equations are written in a scalar (U(1)) internal gauge space. In this space, the commutator defining the P
phase in eqn. (35) is zero by definition. The O(3) gauge group is preferred to the SU(2 ) group because the
latter is simply connected and does not support an Aharonov-Bohm effect or topological phase {23-25}
because the mappings are deformable to a constant map. The O(3) group is doubly connected and supports

(42)
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the Aharonov-Bohm and topological phase effects. The O(3) group is homomorphic with SU(2) but is its
covering group.

The adoption of the O(3) gauge symmetry for the whole of electrodynamics is therefore indicated by
the empirical existence of B® in the topological phase on the one photon-level. This course of action brings
with it several fundamental conceptual advances in electrodynamics and unified field theory (26} . The most
important of these is that electrodynamics is a non-Abelian gauge theory and this is indicated fundamentally
by the fact that a classical polarized wave is always constituted of two vectorial components, for example,
(1) and (2) in circular polarization, which gives rise to B® and the topological phase through a non-zero
commutator of potentials. Without this commutator, there is no topological phase. As soon as a non-Abelian
structure is adopted for electrodynamics, the field tensor becomes gauge covariant in the vacuum and a gauge
transformation becomes a physical rotation. In the Maxwell-Heaviside theory, the potentials are not gauge
invariant on the classical level and are not regarded as physical for this reason {27}. In the O(3)
electrodynamics, the gauge transformation of the potentials is a well-defined physical process giving rise to
a characteristic inhomogeneous term responsible for physical effects on the classical level. An example is the
Sagnac effect described in Section 4.

Another major conceptual advance is the realization in O(3) electrodynamics that the constant e, like
h, is a fundamental constant of physics that exists under all conditions, in the field as well as on the electron.
This realization straightforwardly unifies the Maxwellian concept of material charge being a result of the field
{28}, and the Lorentzian concept of the field being the result of charged matter. The fundamental de Broglie
duality {23} follows from O(3) electrodynamics and allows a simple classical explanation of the Compton
effect as well as of the topological phase in experiments such as the Sagnac effect and interferometry in
general,

INTERFEROMETRIC EFFECTS IN OPTICS

Contemporary non-Abelian gauge field theory applied to electrodynamics gives rise to a topological
magnetic monopole and a topological charge {28}, which is observable in electromagnetic phase effects such
as the Sagnac effect. These are closely related to the Aharonov-Bohm effect and exist for one photon. The
topological magnetic monopole can be defined simply as the area integral over the topological magnetic flux

density B®:

g, = -Ii— [[ B®aar, (43)

where V is a volume and Ar a cross-sectional area of radiation. The electromagnetic phase factor is as defined
in (35). Therefore the electromagnetic phase factor is directly proportional to the topological magnetic
monopole

¢ =gg,.V. (44)

The topological phase is observable in interferometry {29} on the one-photon level, and this implies again
that electrodynamics is a non-Abelian gauge field theory {30}.

The well-known phase difference that gives rise to the standard Michelson interferogram {31} is due
to B® through the non-Abelian Stokes theorem, egn. (35). In the Maxwellian theory of Michelson
interferometry, the electromagnetic phase factor is the well-known Lorentz invariant, or retarded moving
wave solution:

¢ =x, x" =ot—x-r (45)

where w is the angular frequency, X the wave-number at point r. Parity symmetry implies that on reflection
from a mirror in one arm of the interferometer, the phase factor becomes
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For the complete optical path from beam splitter to mirror and back, the phase facior is therefore always zero,
and independent of path length r. The same is always true in the other path, so there is never a phase
difference between the two beams recombining at the beam splitter and in consequence no interferogram for
perfect reflection from the mirrors. This is obviously contrary to experience, and so in Maxwellian theory,
a phase factor is added phenomenologically, and attributed to imperfections in the mirrors and so forth.

In non-Abelian electrodynamics, on the other hand, the factor becomes a linear integral of a non-
Abelian Stokes theorem with g defined {28} to be x7/4°, where A is the scalar magnitude of 4,;

b = Cj‘mpdx“ =0i-g IB‘”dAr. (47)

On reflection from a mirror, the path is reversed and the line integral changes sign together with the wave
vector K, giving the complete phase factor

¢ =(ot—2C§1<-dr:(Dt—2g_”B(3’dAr, (48)

where r is the distance from the beamsplitter to mirror. If one mirror is moved with respect to the other, an
interferogram appears as observed:

Ad = cos(2kAr 21 n), (49)

where Ar is the path length difference between the two arms of the Michelson interferometer. For radiation

consisting of many frequencies, the interferogram A @ is a sum of cosines whose Fourier transform is a
spectral function {31}.

Equation (48) means that there is a topological phase that gives rise to Michelson interferometry and
which is given by an area integral over the fundamental topological magnetic field B® {28}. The existence
of this topological phase has been well established experimentally {32}. Michelson interferometry is a
fundamental phenomenon of non-Abelian electrodynamics. The Michelson interferogram cannot be explained
in terms of Maxwellian electrodynamics without additional phenomenology. Therefore electrodynamics in
general is a non-Abelian gauge field theory because the linear, or Abelian, theory is incomplete. This
manifests itself clearly in the inverse Faraday effect {33}, due to 4Y x 4@ which does not exist in U(1)
electrodynamics and again is phenomenological.
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