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Abstract

The itinerant oscillator model for translational stochastic motion
in molecular and atomic fluids is developed using a Morli continued
fraction representation of the velocity autocorrelation function Cv(t).
The initial generalised Langevin equation is solved in terms of the
velocity probability density function and the van Hove self correlation
function GS(E,t). These are then compared with their equivalents
derived independently from molecular dynamics and experimental sources.
In particular Cv(t) is compared with velocity a.c.f's computed from
an atom=atom intermolecular potential using molecular dynamics methods
for four different interatomic separations. The non-Gaussian charac-
teristics of the p.d.f.'s above are investigated using simulations of
a.c,f.'s of moments of v such as the a.c,f. of kinetic energy. It is
concluded that some form of rotation /tramslation coupling is needed

in order that the initial equation may be made more realistic.
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Introduction

The itinerant oscillator model for motion in atomic flulds and
uncoupled linear motion in molecular fluids was developed by Sears1 in
1965 following some speculations by Frenkelz. Unfortunately, Sears's
paper 1ls mathematically unsound, as was pointed out by Damle et a13,
In this article we shall use a Mori continued fraction representationA
of the velocity autocorrelation function, Cv(t), to model the :thermal
translations of atoms (and molecules) as described by an initial
generalised Langevin equationS. By use of the Mori continued fraction,
itinerant oscillation, i.e. molecular or atomic translations describable
by damped oscillations about some equilibrium position which itself
diffuses slowly through the bulk fluid can be followed analytically.

The initial equations of motion are based onr pastulates that the
random velocity QQ and force 99 in the system are both Gaussian.
This is checked directly against molecular dynamics results using the
recently developed atom~-atom algorithm of Tildesley and Streett6 to
compute Cv(t) and the a.c.f. of force QE = mi}, CF(t); together with

those of moments of v up to the fourth power.

The self part of the van Hove correlation function7 (Gs(r,t)) is
b

evaluated and compared with the experimental neutron scattering results

8(a)

of Dasannacharya and Rao on liquid argon, and the theoretical

Cv(t) is compared with the computer simulation of this function for liquid
8
argon carried out by Rahlman (b). This is a good check on internal

and interexperimental consistency, since Gs(r,t) can be expressed in

9

terms of Cv(t) using Kubo's second fluctuation-dissipation theorem
By evaluating the speed a.c,f, (that of Lxl) and that of the direction
of velocity using the atom-atom algorithm, it fs shown that a constant
speed approximation is valid in treating translatiomal properties of

fluids, confirming the results of Berpe and Harplo for co.
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Theory

We assume that the uncoupled, linear motion of the centre of
mass Of an atom or molecule of mass in an ensemble of such bodies is

governed by the generalised Langevin equation:
2(&) n jxk(i:—'cﬁx(ﬂ&’f = ﬁ(a/'“ oM
o
wh.ere /S(t) is a projected force defined by:
K(X) = <§(k)'§(°3>5%? ~ 2)

Since ( 'g-(kB * N Lo)ﬁ =0 by definition, we have:

o £
C,() = ~ | kK- () dn, ©

and further, since K is itself an autocorrelation function (eqn, (2));

it may be shownlo that:

r
AK\—l(kE = - (l(r\ (‘k-‘ft)‘(\\ﬂ('t)&,t
oL

Jo

(&)

where n = 0,..~. .., N are positive integers, By definition,

K. (&) = Cv(t). No inter-mode coupling (e.g. translation and rotation
in molecules), or cross~correlations {describable by Gd(f.’t)’ the
distinct part of the van Hove function) are accounted for in eqns,

(1) = (4)-

The series (4) 1s a continued fraction ir Laplace space (p),

E\,(?>= C\;<°> = CV("B = ... (5)
er Rl pr e
ERNND
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If now this series is trupcated with the assumption that:

<) = o) wp (- NE), ©

~
the resulting expression for Cv(p) is:

Zu((ﬂ = f’ J“\)) r .
ol t g \!Jre(\c,ﬂ»r G YIS

We note that this is formally identical with the solution for Cv(t)

N

of the following equations which are precisely those stochastic

differentials11 needed to describe the physical process of itinerant

oscillationlzz

m.ci\'\/l‘(k> * Y’\‘YJV\(*B—N (o(>Lo\/ "V‘z (8)
- = ““.jff\ (*:)

(9)

meay {§) 'rmko@(fy—f\!J =2

(¢ (") = Mh \(" (°> ) (10)
(D= 2.

In this set of equations m is the mass of the atom or molecule

-

whose coordinate is q and which 1s surrounded by a diffusing 'cage' of
such particles whose centre of mass 1s at q; and whose total mass is m;,
~—

The inner particle m is harmonically bound at a frequency €¢J, to the
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diffusing cage with a restoring force constant K (o). We note that

= q. There is a retarding, frictional force \fq, acting on the
{

~ e~

diffusing cage due to its surroundings, and W; (t), which is represented

Faad

by a statistical Wiener processlz(c), is the force on the cage caused
by random collisions of the Brownian type. Equs. (8) - (11) give a

physical meaning to the abstract truncation represented by eqn. (6).
From the inverse transform of egn. (7):
CE) = KBy /Y v (DY
= 1 (gosf,%i"+ (0(|+l 01235\“#0
VA0 f
e
2 2
0= —= Qo (_Cil + }5 j)
da (3«7 — o2 - )
and ——d\t;(})—da

of eqns. (8) and (9), i.e. the denominator of eqn. (7), for a negative

oA

(12)

where

are the roots of the secular determinant
discriminant., TFor a positive discriminant, Cv(t) 1s a sum of three

real exponentials, These roots may be related to K,(o), K; (0), and

“g by Cardan's formula.

The Gs(r,t) Function

The self van Hove correlation function may be evaluated by considering

eqn, (1) in the form:

(0 [0 (Dac = (D

where r = v, the velocity of the tagged inner particle of mass m.

(13)

Now
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G (r,t) is the probability of finding this particle at r at time t given
S =

~

that it could be found at r = 0 when t = 0.

N~

In Laplace space, eqn. (13) becomes:

Flo- <oy s THBRT
We have: f P ( ?j“+ < ( PB)

A (o RS - /<,\1LD~,\1(0} 2
! [‘7 o NGIO NI,
- T (&)) (15)

—

so that

5 -

p—

(1) ~ (D -
DERIOENIOERAS
v rﬂ,(*) & (i‘*’b Az (16)

™ @

1) !

is the solution of eqn, {(13).

Since /& is a Gaussian variate (but noh—Markovian)g’ls,

[l

probability distribution of r is a Gaussian also:

% (,{U‘ﬁ)f\(@) v () 5 1)

Cor TPl T IO
ﬂa«@m\& GL N

To obtain Gs(r,t) we must average over all initial v(o) values, so that:
f and A~

(r(i)’f>=[ 2 TIQQ{F[,MLGH;]

2 g

the




In eqn. (17), B(*§ = < \3(£> ° :é (*)> which we relate

-1
to \ v(t) as follows, Using eqn. (2):

b
60 = 38T f

m

(o]

so that:

Ly - T L IR D]

-
Using eqn. (15), and the fact that l v(o) = 0:

EREGANGINENIS

h B t‘ .
o(k) = ﬂg’\\QLP\;kB& = P\/(ﬂj.

(18)

Eqn. (18) 1links Gs(r,t) directly to Cv(t). In classical Brownian
14 _ Pt
motion™’, C {t) = R

n ) - (1=
_apt
") = kT (a@t PPl %>)

npt

s SO

in agreement with the calculations of Uhlenbeck and Ornsteinls.
In our case the equlvalent expressions for B(t) and r](t) are
v

more unwieldy, They are, for itinerant oscillation: ‘
- ——d\t_( x, St ’*’)
F«U’) :Iot\—-e msﬁqu S

s oe, (1= epd'&)] ,

x /
j L) Kle-e Y () deds ]
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where

o = et
() +P3(41*F>

@ l o\ 43 :
rg(Qo?Jr Ji) )

Xy = F(OI?\L(L)-)
&;(Q&.+ ol a)

r

So that J \\1 %> ()l_
-~ - t c,:;s 1_
- X Li‘ _f,i‘&)( f

PRI
d, ><~P>S*\*>) +3‘a<i_+€_2—|>]‘
d, +>

However, Gs(r,t) is easily computed given K, (0), K, (o) and \{ obtained
from a non-linear least-mean-squares fitting16 to a simulated Cv(t),

or a simulated CF(t).

Velocity p.d.f.

The solution of eqn. (1) is:

E(¥>fzﬁt£>g C;(Eli({>

. f c\!(r_@f(f)o\rc



so that it is possible to obtain the probability distribution function

Q(y\(%}) v (e 1)

y YR aslzol
A AY) ‘ m ) (19)
ey - 2=

- 2 - GO

Yh

It is possible further to test any non-Gaussian property of
10
P(v(t), v(o); t) by molecular dynamics computations™ of a.c.f.'s of
moments of v, such as the kinetic energy a.c.f. This is done below,
—

Eqn. (19) is illustrated in the appendix,

Computation.
The Newton equations for 256 dumbell molecules constrained
initially on an OL-NZ type lattice are solved by the predictor-

corrector method with a time-~increment of about 5 x 10-*5 secs., The

atom Lennard-Jones parameters G:‘*L and O are always those for nitrogen,

so we have a 'real' molecule only when the interatomic distance d*
(in the reduced units of Tildesley and Streettﬁ) is 0.3292. The

thermodynamic stabllity of the system is judged on criteria such as

17

the constancy of the total pressure, calculated by the virial theorem

and the total internal, or configurational, energy per molecule, Mean

square force terms were calculated with 1600 time steps and ensemble

(time and number) averaging, The first few hundred time steps are

403
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unstable and are rejected in forming any average. The stability of

the computed a.c.f.'s was judged by comparison of runs using 200 and 400
steps, Generally 400 were sufficient since these functions decay
rapidly in comparison. Using the two-centre potential builds on an
anisotropic repulsion core, while the dispersive part is cut off at
about 3.2¢, so that the whole is representative of geometrical and
electrostatic anisotropy. The computations were carried out via the
Aberystwyth-U,M.R.C.C. CDC 7600 link in approximately 20 minute segments

of real time,

Results

The atom-atom computed force, velocity, speed, and direction of
velocity a.c.f.'s are shown, in fig.(l) along with the l.m.s. best fits16
for the force (mv) a.c.f.'s calculated from eqn.(12) with Kq(0), X; (0)

and \K as variables (see table (1)). Velocity spectra are compared

TABLE 1

Parameters for l.m.s. best fit to Molecular Dynamics Data on CF(t)

d* Ko (o) K; (o) \Y
0.1 56.5 313.9 38.6
0.3 47.8 263.3 29.1
0.5 80.6 213.3 21.4
0.7 127.9 250.6 30.8

l(o(‘) 5 \’(\(0‘3] MA‘}Y adx \h rzaduuz,‘} V\Nh'
The results are at a reduced number density p* = 0.64, and a

reduced temperature of T* = 2,3,
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Figure (1)

interatomic separation, d*, of Q.1.

—— (2) Simulated velocity a.c,f.

simulated CF(t).

(b) d* = 0.3; (e) d&* = 0.5;

Abscissa:

—— (3) Simulated velocity-direction a.c.f.

K; (0), \q parameters estimated by fitting CF(t)'
(@) a* = 0.7.

time steps / 200.

(8) — (1) Atom-atom simulation of the force a.c.f. CF(t) for a reduced

— (4) Simulated speed a.c.f., the horizontal line is at 8/(3y).

(1) 1l.m.s. best fit of the itinerant oscillator to the

-——= (2) Cv(t) (itinerant oscillator), calculated with the K,(o),
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10 .
(a) — (1) Berme and Harp~ computed velocity a.c.f. for CO.

— (2) Computedlo, normalised velocity power spectrum.

— — — — (1) Itinexant oscillator l.m.s. best fit to the velocity a.c.f.

— - —— e —

{2) Corresponding normalised velocity power spectrum,
Ordinates: L.H.S.: C(t); R.H.S.: CV(OO)/CV(o)

Abscissae: top: time/ps; bottom: freq./THz

(b) —— Rahman Cv(t), simulatedg(b) for liquid argon.
— — — (1) Itinerant oscillator, best fit,
-—-——-(2) CF(t) estimated from the Cv(t) best fit.

Ordinate: C(t); Abscissa: time/ps.
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with those simulated by Berne and Harplo (on carbon monoxide), and
Rahman (on argon)a(b) in figs. 2{(a), 2(b) and 2(c). It may be shownlo’18
that at constant temperature, K,(o) is propational to the ensemble mean
square force, << F:r;> , and in fig.(3), the simulated (atom-atom)
<::f:a:> is plotted against K,(o) obtained by fitting CF(t). The two
functions are normalised at d* = 0,3, The overall trend 1s similar,

but Ky{o) increases the more rapidly as d* lengthens (i.e, the more

anisotropic the intermolecular potential becomes). Similarly K; (o)
, a * 19\{ .
is related both to ¥ and to ¥ , and to the classical ﬁ .

Fig. 2(b) shows the 1l.m.s. best fit to the velocity a,c.f. computed

for liquid argon in the 864 particle simulation of Rahmans(b).

The
extended negative tail (or low frequency peak in the velocity power

spectrum) 1s not reproduced by l.m,s., fitting the itinerant oscillatoxr

Figure (2) continued

(c) — Rahman simulateds(b) normalised velocity power spectrum,
-~ — = (1) velocity power spectrum calculated from the itinerant
oscillator best fit to Cv(t) (fig.2(b)).
— — — — (2) Iltiperant ops¢illator normalised force spectrum.
Ordinate: Intensity; Abscissa: £frequency/THz.
(d) —— (1) Berne and Harplo simulated angular velocity a.c.f. for
liquid CO.
— — — (1) Best fit to (1) of the itinerant librator on a planell(c).
— (2) Shmulatedlo normalised apngular velocity power spectrum.
— — — = (2) Itinerant oscillator normalised power spectrum calculated
from fitting the a.c.f,
Ordinates: L.H.S5. C_ (t); R.H.S.‘E‘; (w)/Cw (o)

Abscigsae: Top: time/ps; bottom: “°/THz,
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0 -5 1
Figure (3)
Plot of Ky(0) and (Fa> vs d*,
a
+ Ko(0); —— <F > ; normalised at d*¥ = 0Q,3.

Abscissa: d¥*,

to the computed Cv(t). Possibly, this is due to slow density fluctu-~
ations (involving the total G(E,t» set up by coupling of different modes
of motion, for example, in molecules, the conversion of spin to orbital
angular momentum, and coup_ling with the translational modes presentzo.

The so-called 'hydrodynamic'tail is a decay from the positive side of the
Cv(t) axis, and thus cannot explain the intermediate unegative portion.

This is found again in the CO simulation (fig.2(a)) and may be discerned
(figs.1(b) and figs.l{c)) in the atom-atom Cv(t). In contrast (fig.2(d)),

the angular velocity a.c.f. and power spectrumlo for CO are fitted more



closely overall by the itinerant librator12 (tractable only in two

dimen_sions) developed recently by Coffey et allg.

The parameters obtained from the 1l.m,s. best fit to Rahman‘sa(b)
¢ (t) are used in fig,4(a) to match the mean square displacement,
v

defined by:

-
% N =2 (- (D v (D> AT

Q

(20)

and simulated independently by Rahmans(b), and also (fig.4(b)), the

8(a)

Gs(r,t) derived experimentally by Dasanmacharya and Rao using

thermal neutrons scattered incoherently and inelastically,

It is of interest to know whether the Wiener process is, in fact,

a justifiable statistical representation cof random force and velocity.
10 . .

We adopt the method™ of computing a.c.f.'s of moments of velocity and

force to investigate this further, For example, the second moment of

velocity (or kinetic energy) a.c.f.:

Cou ) = (VB> LD
should be related to C_(t) by:

Cav L%\ = }é‘ Ll + é}* C\? (%>j (21)

were the p.d.f., of velocities a Gaussian, Similarly:

()= (083te G 1Re CG0) [aue

7 (22)
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(23)

1
The functions sz(t) and C4v(t) were calculated 6 analytically using
the atom-atom CF(t) to l.m.s. optimise K,(0), K; (o) and T/ . They
were also simulated independently using the atom-atom algorithm, and

the two sets of functions are compared in figs.5(a) to 5(c).

Discussion

Classical Brownian motion, where Cv(t) decays exponentiallyls,

is jncapable of reproducing any negative parts of the computed velocity
a.c.f.'s, Further, in the classical case the mean square force is not
defined, since exp(- ﬁt) is not differentiable at the origin., 1In
contrast, oot only is <iFaj> well defined (through K,(o)) in itinerant
oscillation, but also CF(t) can be followed, by optimising K,(0), K, (o)

and \{ , as d*, the interatomic distance, is increased (fig.l).

Figure (&)
(a) Plot of mean square displacement.
2
- <: [}r(t)\:> calculated from the itinerant oscillator fitting

to Rahman's Cv(t).
8(b)

() Mean square displacements computed independently by Rabman
]
Ordinate: <:[Xr > /& Abscissa: time/ps.
(b) Plot of Gs(r,t) calculated for the itinerant oscillator from fitting
the Rahman Cv(t) function.

~

Ordinate: Gs(r,t)/K‘3; Abscissa: r//x



{a)

(c)

As d* increases, both CF(t) and Cv(t) become more markedly
oscillatory, such being the case also for the a,c.f, of the velocity
direction, while in contrast the speed a.c.f, (that of \\/ l ) consis-

tently and quickly decays to its theoretical long time value of 8/(37%).



The similarity between C (t) and the a.c.f. of velocity direction
v
favours theories with a constant speed approximation, as was pointed out

by Berne and Harplo, who first suggested this type of simulation.

Knowing CF(t) analytically means that Cv(t),(fYXrg(t£>
ngf,t) may be calculated and compared with those independently computed
or measured experimentally. 1In figs.l(a) ~ 1(d) this is done for
Cv(t), and it can be seen that there is a consistent small difference
between the simulated Cv(t), and that calculated from the optimised CF(t),
although the main features are similar. At d* = 0.3 and d* = 0.5 there

are indications of negative long time tails in the simulated Cv(t).

Figure (5)

(a) Kinetic energy a.c.f.'s
— (1) d* = 0.1;
- (1) a* = 0.3; atom-atom simulation.

— (2) d* = 0.5;

——-- @ & =o0.1
(2) d* = 0.3 itinerant oscillator, calculated from
(3) d* = 0.5 fitting CF(t).
4y d* = 0.7

The horizontal line represents the Gaussian limit.
Ordinate: C(t); Abscissa: reduced time units,
(b) As for (a), C
(c) <:F (&)F (o)\>> (:F (0;>> atom~-atom potential,
(1) &* = 0.1, (2) d* = 0.3, (3) d* = 0,5,

Ordinate: c¢(t); Abscissa: time steps.

413



414

This tail is well defined for CO and argon, and causes low frequency
peaks in the velocity power spectra which are not reproduced by

itinerant oscillation as treated analytically in this paper. Damle et
al? forced an agreement with Rahman's velocity spectrum with a six
parameter model of itinerant oscillation with two friction coefficients,
two fluctuating forces, ﬁ and B, and thus two memory functions corres-
ponding to (::é(t),'é(o)i> and <f1§(t).§(o)t> respectively, the latter
being assumed to be exponential, or Gaussian. In either case two
parameters were needed for their definition, Taking this flexibility
into account there is doubt as to whether the peak in the velocity power
spectrum of argon may indeed be followed by a process of uncoupled

linear motion, as suggested by Damle et al,, or whether it is Insufficient
to consider ngz,t) as being entirely unaffected by chagges in Gdgf,t),

as suggested by our results. Both our treatment and that of Damle et al,

neglect the cross-correlation in the total velocity c.f., as distinct

from the auto c.f, This is tantamount to a neglect of intermolecular
dynamical coherence, embodied in Gd(r,t), which is the probability of
finding another particle at r given there was one at the origin initially,
and whose long range part in a liquid at equilibrium can be thought of

. . . . 2
as being due to spontaneous macroscopic density fluctuations 2.

. . . 2
Light and neutron scattering experiments 3 are interpretable

generally in terms of the sum

(e G- L Glenle, b

where the time dependent particle density n(r,t) is given by:

n (i)l‘s = ? S<£”£tu->> )
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and it is never straightforward to separate Gs(r,t), usually estimated
on a molecular basis, from Gd(r,t), estimated on a hydrodynamic basis,
However, by use of incoherent, inelastic, neutron-scattering data from

8(a)

liquid argon at 84,5 K, Dasannacharya and Rao were able to deduce
ngf,t) and found it to be a Gaussian within experimental error,

The Rahman simulation of Cv(t) is carried out at 94.4 K, but it is
instructive to compare ngi,t) calculated from the itinerant oscillator
fitting to Cv(t) at 94,4 K with the Gssf,t) estimated at 10 K lower.

The results are illustrated in fig.4(b). The mean square displacement
is reproduced well, but this is in any case rather insensitive to
environmental effects on molecular motion compared with van Hove's
functions.  The overall features of the experimental GSEE,t) are repro-
duced, e.g. the itinerant oscillator decays to zero at about the same

r values for given t, but the experimental ngf,t) is always much the
larger in magnitude, The greatest difference is at t = 0.1 ps, where
Gs(r,t) (exptl.) is 27 -3 at r =0, and the itinerant oscillator about
6.5 X'J. Thereafter the two sets of curves become increasingly similar,
so that at t = 1.0 ps, ngf,t) (exptl.) is 0.25 £~3 at r =.9’ and the

—~

itinerant oscillator 0,16 A-3.

Both sets of curves are Gaussian, but Rahman demonstrated that
the simulated ngi,t) in argon displays :2: initial non-Gaussian
behaviour lasting until 10 ps. (Unfortunately, he gives none of the
ngf,t) functions themselves). In the atom-atom simulation fig.5(a)
reveals that the kinetic energy a.c.f. sz(t) is not well reproduced
analytically by fitting the simulated force a,c.f., CF(t) with the
itinerant oscillator, It seems that up to 200 or so time steps (1 ps
or so) the Gaussian limit in sz(t), 0.6, (eqn.(21)), is not reached,

and this is confirmed in fig.5(b), where the simulated ¢ V(t) does not

A
reach its equivalent limit of 0.2381 (eqn.(22)). These results show



416

up more clearly the limitations of the itinerant oscillator, and
probably of other extended diffusion mechanisms18 which neglect mode-
mode coupling in molecular motion. In fig.5(c), the a.c.f.
<fF;%t)F2(o)j> / <:Fhko)j> is displayed for d* = 0.1, 0.3 and 0.5,
and it is clear that no common, single-valued (or Gaussian) long-time
limit is arrived at among these three potentials. Thus generally,

it seems thatﬁz,'f‘(the projected force), and ngf,t) are non-Gaussian

variates, as well as being non-Markovian, even in atomic fluids. 1f

8 (b)

a convolution approximation is used to relate Gdgf,t) to Gs(r,t)

via the pair distribution function g(r):
/ / / /
G e D= (4D G (-0 1)
A ) 3 ~ SN~ ™~ ) —~

then Gd(r,t) is by implication also non-Gaussian. This in turn
has implications for polarised light-scattering bandshapes (the Rayleigh

and Brillouin peaks) since these are given essentially for point

scatterers by a knowledge of the sum Gs(r,t) + Gd(r,t), the particle
2
density a.c.f., which can be obtained theoretically “ by solving a

generalised Langevin equation of the form:

K (P> = ﬁ<°> N ,\F(\P) (24)
e L+ 4

Here A is a column matrix of hydrodynamic varlables (usually macroscopic
density, temperature, and longitudinal sound velocity parallel to the
wave vector k), F is orthogonal to A so that<</ F(F).A(of:> = 0, and
—~ - — -
24

M is a matrix of hydrodynamic and thermodynamic variables ', Here,

—

P and A are Gaussian, so that in Fougzier-Laplace space, the particle
IS~ —

density a,c.f. can be calculated as:



6 (F,) = Gl o+ Gal®, )
= <N(€L)[>>’\(%7°>>
{nlh, (8,9

0. PQ . R o 4 C. (25)

= )
=

0. ?3+ EDP3+ N pt G.

where Ay, ..., Go are functions of | and of phenomenological hydro-

dynamic and thermodynamic quantities derived macroscopically. Replacing

p by -iw in eqn.(25) gives the Rayleigh and Brillouin lines directly,
These will obviously be affected if the van Hove functions are non-

Gaussian, It is interesting also to note the similarity between the
hydrodynamic eqn, (25) and the molecular eqn, (7). This could well be
made use of in marking out the common ground between the two species
of dynamical theory: however non-Gaussian behaviour on the molecular

scale will be difficult to treat analytically.
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Appendix

In this section we will illustrate the decay of the analytical

best fit velocity p.d.f.'s and van Hove Gs(r,t) functions for d* = 0.1,

~—
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FIGURE fa.

FIGURE 6b.
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0.3, 0.5 and 0.7, and also for Rahman's argon simulation (fig.6). These
functions contain more inherent information about the many particle
dynamics than, for example, the velocity a.c.f.'s (fig.(l)) since the

latter are integrals over the equivalent velocity p.d.f.'s.
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