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TOPOLOGICAL EXPLANATION OF THE SAGNAC AND
MICHELSON EFFECTS

ABSTRACT

The Sagnac and Michelson effects are explained using the topological magnetic field B® from the
non-Abelian Stokes Theorem applied to classical electrodynamics. Conventional Maxwell-Heaviside theory
can explain neither effect. The Sagnac formula with platform in motion is obtained as a gauge transformation.

INTRODUCTION

A phase difference is seen in the Sagnac interferometer {1-5} with platform at rest, and this shifts
according as to whether the platform is rotated clockwise (C) or anticlockwise (4). In the Michelson
interferometer, a phase shift is observed by the recombination of two beams at a beam splitter after reflection
from two orthogonal mirrors {6-8}. In this paper, both effects are explained using a topological magnetic field
in classical electrodynamics through the use of a non-Abelian Stokes Theorem {9,10}. In Section 2, it is
shown that the conventional Maxwell-Heaviside theory does not explain the observed Sagnac or Michelson
phase shifts and in Section 3, a topological explanation is given for both effects. The Sagnac formula is
derived straightforwardly as a non-Abelian gauge transformation.

FAILURE OF THE MAXWELL-HEAVISIDE THEORY

The vacuum d’Alembert equation is invariant under motion reversal symmetry (7); parity inversion
symmetry (P); and gauge transformation. It is also metric independent {9, 10}. The Maxwell-Heaviside
equations have the same properties in the vacuum. These equations are invariant under a U(1) gauge
transformation in general gauge field theory {11}, and such a procedure adds a random phase to the
electromagnetic phase. The C loop is generated from the 4 loop in the Sagnac effect by the T operator. In the
Michelson interferometer, the beam traveling from mirror to beam splitter is generated from the beam
traveling from beam splitter to mirror by the P operation, which for normal incidence and for a perfectly
reflecting mirror, is equivalent precisely to reflection.

These invariance properties of the d’ Alembert and Maxwell-Heaviside equations in vacuo mean that
exactly the same equations describe the 4 and C loops in the Sagnac effect, with exactly the same solutions,
including phase. There can be no phase difference with platform at rest, contrary to observation {1-5} and
the Maxwell-Heaviside equations fail to describe the Sagnac effect with platform at rest. The equations are
invariant to rotation {9, 10} and also fail to describe the Sagnac effect with platform in motion.

The equations are similarly invariant under P, and for perfect normal incidence and perfect reflection,
there is no phase shift in the Michelson interferometer, contrary to observation {6-8}. The phase arriving back
at the beam splitter from either arm is exactly the same as the original phase, and this result is independent
of the length of either arm of the Michelson interferometer. Moving one mirror with respect to the other has

" no effect in the Maxwell-Heaviside theory, obviously contrary to observation {6-8}.

These are two major failures of the Maxwell-Heaviside theory, invariant under U(l) gauge
transformation {11}.
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The results described in section 2 are due to a major failure in the underlying U(1) gauge symmetry
{11} of conventional Maxwell-Heaviside electrodynamics. If we adopt an O(3) gauge symmetry, {12} the
Sagnac effect becomes a round trip in Minkowski space-time described by a non-Abelian Stokes Theorem.
It is convenient to adopt the notation given by Broda {13}:

. i ’ I i /
Pexp(zcj') A (x)dx J:P E[_[Fij(x)dx /\dx’j (1)
08=C N
where P denotes path ordering, and P’ surface ordering. The field tensor is described by:
F,=0,4,-0,4,-ig[ 4,4, ] @)
and the gauge potential is a connection of the form:
A =A°T® (3)
with O(3) commutation relations:
I:Ta,Tb:,:igabcTc (4)
Eqn. (1) can be reduced straightforwardly to the form:
(-fr)szZ—(j)szZ =g(-fr)B(3)-dS (5)
1 2 s

which is P and T negative. The integrals on the left hand side are path ordered, and on the right hand side
appears a surface ordered area integral over the magnetic field B®{12, 14-23}, which is topological in origin.
The coefficient g is a coupling constant between source and field, and, in this classical theory, has the units
of K/A® where K is the wavevector, and A the magnitude of the vector potential related to the magnitude
of B® = B9 by B? = kA©,

Eqn. (5) gives the phase seen experimentally in the Sagnac effect. From the definition of B® in the
underlying O(3) gauge theory, we obtain:

(-f)szZ - ('f)szZ = g(-f)B(”-dAr

c A .8 6)
=x’Ar

where Ar is the area of the Sagnac loop. This result is independent of the shape of the loop and is a number,

independent of whether the observer is on the platform, as in the Michelson-Gale experiment {24}, or off it.

The underlying O(3) gauge theory is gauge covariant, and an observable phase shift is generated by
reorientation in the internal gauge space, which in this case is the physical space of three dimensions
{11 - 23}. As aresult, a rotation of the platform is a gauge transformation, which results straightforwardly
in {23}:

O ->0tQ (7)
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using the rules of O(3) gauge transformation. Here £2 is the angular frequency of rotation of the platform.
Using eqn. (7) in eqn. (6) gives the extra phase shift (4 - C) seen in the Sagnac effect by rotating the platform:

40 QAr

Abyc=—7— @®)
c
Using A ¢ = wAt, we obtain the well known Sagnac formula {1-5}:
4Q Ar
At, » =— 9
C

which has been verified experimentally to very high precision {24}. The O(3) theory provides a precise
explanation, the U(1) theory fails completely.

The Michelson effect is similarly given by eqn. (5), where the path ordered integrals on the left hand
side are P negative, equal and opposite, and generate the observed phase shift. Moving one mirror with
respect to the other increases Z in one arm, generating the well known Michelson interferogram, the basis for
the contemporary Fourier transform infrared spectrometer.

DISCUSSION

In the underlying O(3) gauge field theory, the topological magnetic field B® is defined in the
complex basis (1), (2), 3)) {12} as:

B®" =_ig4"® x A® (10)

and is directed longitudinally in the axis of propagation of the light. It is the fundamental spin {14-22} of the
electromagnetic field and its theory has been well developed {12-22} recently. In the Sagnac effect, the
ordered surface integral is P and T negative, and the surface is the area of the Sagnac loop, as observed {1-5}.

In the Michelson effect, the area integral is P and T negative and defined by the phase difference on the left
hand side.

It is concluded that an O(3) gauge theory applied to classical electrodynamics gives a precise
explanation of the Sagnac and Michelson effects, while a U(1) gauge theory fails completely in both cases.
This suggests strongly that classical electrodynamics is in general a non-Abelian gauge field theory {12-22}.
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