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APPENDIX TWO: BREAKDOWN OF THE CONDITION
FOR NO FIELD (SINGLE BEAM)
Checking on the Whittaker’s equations:
. 1 .
E=cVx(Vxf)+Vxg; B=-—Vxf-Vx(Vxg) )
c
B=VxA, E=-Vx§ 2
1 .
LA=-Vxg+—f (3)
c
S=-cVx f-g 4)

AZ=1F; S, =—G
c

These are longitudinal components of 4, and S, which do not exist in vacuo in the received view.

For circularly polarized transverse plane waves:
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For plane waves in general (whether circularly polarized or not), the condition £ = -iB prevails, which

requires that:
—cVx f—-g=—icVxg+if
This equality is satisfied by the following relationship between f and g:
f=ig
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upon which these corollary relations are based:

=if
g——f
f=ig

Cross-check

Based on the foregoing plane wave requirement that f = ig and the definitions that f = Fk and g = Gk, the

scalar potentials F and G are related as:

F=iG
Let:
(0)
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so that
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G=—iF; F =iG
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If A, is physical, we have to prove that Gk is physical. Using the Lorenz condition:
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Checking
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This checks the paper titled “Inconsistencies of U(1) Gauge Field Theory in Electrodynamics: the Inverse

Faraday Effect”.



304 o Journal of New Energy Vol 4, no 2

Next, checking the paper titled “On the Representation of the Electromagnetic Field in Terms of Two
Whittaker Potentials”.

B=—Vx(ng)+lV><f
c
E=cV><(V><f)+V><g

Let
g—o>g+Va, Vxg-o>Vxg+Vh,

f>f+Ve, Vxf-oVxf+Vd
then B and E are unchanged. So are f and g physical or not?
Due to the mathematical identity that VxVa = 0, we therefore have :
ng-—)ng+Vx(Va)
=Vxg

A =-(Vxg)—> 4,

The transverse vector potential is physical. There is no gauge freedom in Maxwell-Heaviside theory. This
still leaves open the question of whether g and f are physical.

We know that V x g and V x f are physical under g —> g +Vaand f —> g +Ve.

Now using:
A=—V><g+—1-g'
c
A =-Vxg, A =2g
c
AA=A-A; + A, A,
|
=(Vxg)(Vxg)-—8¢
If

1
(V&) (Vxe)=—g¢ )
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then
AA=0
A=(4-4)" =0
B=(B-B)" =0
E=(E-E)"=0

Eqn (5) is one example of a condition under which g (and .. f) is physical. Under condition (5), there is no
vector potential, no magnetic field, and no electric field. The only thing present is:

A(O)

G= 5 (X —iY)e@™® (6)

oG =0 N
The real part of G is the physical part,
A©

Re(G)= \/E[Xcos((ot—KZ)+Ysin((ot—KZ)] (8)

ie.

A

©)
G= 5 [Xcos(cot—KZ)+Ys'm(cot—KZ)]

This is a propagating magnetic flux with units of weber. After canonical quantization of the Klein-Gordon
equation:

oG =0
it is found that G generates the energy:
1 e
H=—/[B*aVv
Ho
and produces photons with energy:
En=hno

which are spin one bosons, with eigen values -1, 0, +1.

G A
—=K

c W2

(Y cos¢ — Xsing)

where ¢ =t -k Z.
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An example of how fieldless G-waves can be generated is shown in Figure 1.
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Figure 1: Practical conception for a source of scalar G waves.





