SOME NOTES ON DIFFERENTIAL GEOMETRY

Notation

$$I_1 = \oint_C F_x dx + F_y dy + F_z dz = \oint_C F \cdot dr$$

$$I_2 = \oint_{S} G_x dy \wedge dz + G_y dz \wedge dx + G_z dx \wedge dy = \int G \cdot dS$$

The line and surface integrals are called chains, and the object integrated is called the differential form. Form are dual to chains.

$$C_0$$
 0 - chain = point

 C_1 1 – chain = line

 C_2 2 - chain = area

 C_3 3 – chain = volume

 C_n n- chain

The boundary of an n-chain is an n-1 chain. The boundary of an area is a line; the boundary of a line is two points.

The boundary operator = ∂ , and maps C_n onto C_{n-1} .

$$\partial C_n = C_{n-1} \tag{1}$$

Some chains have no boundaries. The surface of a sphere is a 2-chain with no boundary. A closed line like a circle is a 1-chain with no boundary. Closed chains are called cycle, and denoted Z_n .

$$\partial Z_n = 0 \tag{2}$$

 Z_n is the kernel of the mapping (1).

A closed surface B_2 is the boundary of a volume, and a closed line B_1 is the boundary of an area; so:

$$B_n = \partial C_{n+1} \tag{3}$$

$$\partial B_n = 0$$
 (4)

 B_n is the image of the mapping (1).

The boundary of a boundary is zero:

$$\partial^2 = 0 \tag{5}$$

A chain which is a boundary is closed.

In Euclidean spaces, $Z_n = B_n$, but in general these are closed chains which are not boundaries, so:

$$Z_n \supset B_n$$
 (6)

On the space of a circle, S', the circle itself is not the boundary of any part of the space, because the two dimensional area is not part of S', which is one dimensional.

The integral of a form over a chain is a number:

$$\int_{C_n} \omega_n = \int_{C_n} f_{i_1, \dots, i_n} dx_{i_1} \wedge dx_{i_2} \wedge \dots \wedge dx_{i_n} = \text{number}$$
(7)

A 1-form ω_1 is integrated over a line (1-chain), so in 3-D, space is of the form Adx + Bdy + Cdz.

$$\omega_2$$
, 2-form, $f dx \wedge dy + g dy \wedge dz + h dz \wedge dx$
 ω_3 , 3-form, $F dx \wedge dy \wedge dz$
 $dx \wedge dy = -dy \wedge dx$; $dx \wedge dx = 0$ etc.

Exterior Derivative Operator

$$d\omega_n = \omega_{n+1} \tag{8}$$

$$d(Adx + Bdy + Cdz) = \frac{\partial A}{\partial y} dy \wedge dx + \frac{\partial A}{\partial z} dz \wedge dx + \frac{\partial B}{\partial x} dx \wedge dy$$
$$+ \frac{\partial B}{\partial z} dz \wedge dy + \frac{\partial C}{\partial x} dx \wedge dz + \frac{\partial C}{\partial y} dy \wedge dz$$
$$= \left(\frac{\partial B}{\partial x} - \frac{\partial A}{\partial y}\right) dx \wedge dy + \left(\frac{\partial C}{\partial y} - \frac{\partial B}{\partial z}\right) dy \wedge dz + \left(\frac{\partial A}{\partial z} - \frac{\partial C}{\partial x}\right) dz \wedge dx$$

This is

$$\nabla \times \mathbf{F} \quad \text{if } \mathbf{F} = A\mathbf{i} + B\mathbf{j} + C\mathbf{k}$$

$$d\mathbf{F} \equiv \nabla \times \mathbf{F}$$
(9)

Similarly, if

$$\omega_2 = f dx \wedge dy + g dy \wedge dz + h dz \wedge dx$$
$$d\omega_2 = \left(\frac{\partial f}{\partial z} + \frac{\partial g}{\partial x} + \frac{\partial h}{\partial y}\right) dx \wedge dy \wedge dz$$

If $W \equiv (g, h, f)$;

$$\nabla \bullet \mathbf{W} = \frac{\partial g}{\partial x} + \frac{\partial h}{\partial y} + \frac{\partial f}{\partial z}$$
 (10)

If ω is a p form and C is a p+1 chain, then:

$$\int_{\partial C} \omega = \int_{C} \partial \omega \tag{11}$$

For example, if $\omega_1 = F_x d_x + F_y d_y + F_z d_z$

$$\int_{\partial A} F_x dx + F_y dy + F_z dz$$

$$= \int_{A} \left(\frac{\partial F_{y}}{\partial x} - \frac{\partial F_{x}}{\partial y} \right) dx \wedge dy + \left(\frac{\partial F_{x}}{\partial z} - \frac{\partial F_{z}}{\partial x} \right) dz \wedge dx + \left(\frac{\partial F_{z}}{\partial y} - \frac{\partial F_{y}}{\partial z} \right) dy \wedge dz$$

i.e.

$$\oint_{\partial A} A \cdot dl = \int_{S} \nabla \times A \cdot dS \tag{12}$$

Application of Eqn. (11) to a Circle

A circle is a closed chain and is a cycle, so:

$$\int_{\partial Z_1} \omega = \int_0 d\omega \tag{13}$$

The integration of ω over a circle results in a surface integration where the surface has shrunk to a point. Therefore:

$$\oint_{\partial Z_I} \omega = \int_0^1 d\omega = 0 \tag{14}$$

For Integration over a Circle

$$\oint_{\partial A} A \cdot dl = \int_{S} \nabla \times A \cdot dS = 0$$
 (15)

This is the Stoke theorem used in U(1) electrodynamics.

The Holonomy:

$$\gamma = \exp\left(i\oint_{\partial A} A \cdot dl\right) \tag{16}$$

is the same in the Sagnac effect for A and C loops, and so $\Delta \phi = 0$. There is no phase difference for platform at rest for any A in U(1). The only possible explanation of the Sagnac effect is non-Abelian in nature.

The Non-Abelian Stokes Theorem

This is described by Broda in Barrett and Grimes p. 498 ff. It is expressed as a holonomy equation:

$$P\left(i \oint_{\partial S = C} A_i(x) dx^i\right) = P' \exp\left(\frac{i}{2} \int_{S} F'_{ij}(x) dx^i \wedge dx^j\right)$$
(17)

where P denotes path ordering, P' denotes surface ordering and F'_{ij} is a path dependent curvature:

$$F'_{ii}(x) = U^{-1}(x,0);$$
 $F_{ii}(x)U(x,0)$ (18)

where U(x,0) is the parallel transport operator along the path l in the surface joining the base point 0 of dS with the point x, i.e.:

$$U(x,0) = P \exp\left(i \int_{t} A_{t}(y) dy'\right)$$
 (19)

Here:

$$F_{ij} = \partial_i A_j - \partial_j A_i - i \left[A_i, A_j \right]$$
 (20)

where

$$A_i = A_i^a T^a;$$
 $T^{a+} = T^a;$ $\left[T^a, T^b\right] = i f^{abc} T^c$

Application to Interferometry

We have:

$$A_{\mu} = A_{\mu}^{(1)} e^{(1)} + A_{\mu}^{(2)} e^{(2)} + A_{\mu}^{(3)} e^{(3)}$$
(21)

$$G_{\mu\nu} = G_{\mu\nu}^{(1)} e^{(1)} + G_{\mu\nu}^{(2)} e^{(2)} + G_{\mu\nu}^{(3)} e^{(3)}$$
(22)

We consider a line integral in the internal space:

$$\oint_{\partial S} A_{\mu}^{(1)} de^{(1)} + A_{\mu}^{(2)} de^{(2)} + A_{\mu}^{(3)} de^{(3)} = \oint_{\partial S} A_{\mu}^{(3)} de^{(3)} = \oint_{\partial S - C} A_3(x) dx^3$$

The integration takes place over a circle with a line perpendicular to the circle. Therefore:

$$\oint_{\partial S} \left(A_{\mu}^{(1)} de^{(1)} + A_{\mu}^{(2)} de^{(2)} \right) = \oint_{\partial Z_{1}} \left(A_{\mu}^{(1)} de^{(1)} + A_{\mu}^{(2)} de^{(2)} \right) = 0$$

The Sagnac effect is therefore described by:

$$P\exp\left(i\oint_{\partial S=C}A_3(x)dx^3\right) = P'\exp\left(\frac{i}{2}\int_{S}F'_{12}(x)dx^1 \wedge dx^2\right)$$

The right hand side can be expressed as:

$$P' \exp\left(\frac{ig}{2} \int_{S} B^{(3)} dAr\right)$$

and the left hand side as:

$$P\exp\left(i\oint_{\partial S=C}\kappa_z dZ\right)$$

General Result

Interferometry and Optics are described by:

$$P \exp \left(i \oint_{\partial S = C} \kappa_z dZ \right) = P' \exp \left(\frac{ig}{2} \int_S B^{(3)} dAr \right)$$

and this is a major triumph for O(3) electrodynamics.