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SOME NOTES ON THE SOLENOIDAL BELTRAMI EQUATIONS
(Barrett and Grimes, pp. 228 ff).

This is
VxB=kB
VeB=0
Note that this is satisfied by:
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VxB® =x BY; V.B" =0 (1)




AIAS Authors 323

Simularly:
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VxB® =xB?; V-B® =0 (2)
Similarly:
VxB® =0, V.B® =0. (3)
CONCLUSION

The field BY, B®, B® are solenoidal and Beltrami, and it is clear that this does not mean that B,
B® and B® are everywhere constant.
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THE CORRECT INTERPRETATION OF V x B® ANDV.B®
This is:
VxB® =-igVx(A®xA?)
VeB® =—igV+(4 x 4A®)
which shows that B®) is not everywhere constant, because A" x A? is not everywhere constant. Specifically:
1
V.B® =—ig I:A(z) -(V x A(”)—A“’ -(V x 4@ )]
= —ig(A(z’ B® —A(”-B(z’)
=0

It is clear that 4® = A" are defined as propagating fields, and so B® is a propagating field that exists if and
only if A® x A® exists, at a phase number © 7 —k «Z.

2)
V x B® =ig[A“)(V-A‘”)—(V-A‘”)Am +(A(2)-V)A“) —(A“)-V)A‘z)]
=0
3)
%?: —ig%(A(” x A®)
= -zg( - x A® + A® 04 J
ot





