A SIMPLE REFUTATION OF THE MAXWELL-HEAVISIDE THEORY: NORMAL REFLECTION

Maxwell-Heaviside Theory

Normal reflection from a perfect mirror is equivalent to parity inversion, under which:

$$\omega t - \kappa Z \xrightarrow{P} \omega t - \kappa Z$$
.

There cannot be a phase difference upon reflection, which is counter-indicated by interferometry.

O(3) Electrodynamics

Normal reflection is correctly described by the non-Abelian Stokes theorem:

$$\oint \kappa \cdot d\mathbf{r} = g \iint \mathbf{B}^{(3)} \cdot d\mathbf{A} \mathbf{r}.$$

There is a phase change upon normal reflection which is observed by interferometry. We have:

$$P(\oint) = -\oint$$
; $P(\kappa) = -\kappa$; $P(r) = -r$
 $P(g) = g$; $P(\iint) = \iint$; $P(B^{(3)}) = B^{(3)}$;
 $P(Ar) = -Ar$.

This is one of many known counter-examples to the Maxwell-Heaviside theory.