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Abstract: Two homomorphic ‘versions of the non-Abelian
equations of electrodynamics are*developed and their- advan-
‘tages discussed over -the received Maxwell-Heavisidé equa-
tions. The internal gauge field symmetryin these equations is
respectively SU(2) and O(3), signifying, on the ;Ea.utlzed lev-
‘el, three electromagnetic bosons, ‘and on the ‘classical level,
- thre¢-components of the: electromagnetic field, right and lefi-
‘circularly polarized ((1)!and (2))-and longifudinaily polarized-
(3). The reduction of these equations to the Maxwell-Heaviside.
equations is discussed in terms of the coupling constant of the
- mop-Abelian covariant derivatives. The development-of these
equations follows the original intent and logic of Yang and
Mills in 1955 to generalize pure classical electrodypamics.

1. Introduction

The origin of non-Abelian gauge theory can be traced to a
paper by Yang and Mills [1] in 1955 whose intention was to
generalize pure classical electrodynamics. The non-Abelian
theory of electrodynamics was developed by Barrett [2-5]
and Harmuth [6-8]. Following the logic of the Yang-Mills
equations, Barrett produced [2] field equations which gen-
eralize the received Maxwell-Heaviside equations, whose
gauge symmetry is U(1) {9]. Later, Evans et al. [10-20]
developed a set of field equations, again following the log-
ic of Yang-Mills, but in the homomorphic O(3) gauge sym-
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metry. In this paper, some advantages of these equations are
discussed over the received U(1) view of classical electro-
dynamics which leads to the Maxwell-Heaviside equations
if the coupling constant in the U(1) covariant derivative is
set to zero. This procedure means that, in the Maxwell-Hea-
viside equations, there can be free-fields, i.e. fields decou-
pled from their source. This is cause without effect, (field
without source), so the concept of free-field (zero coupling
constant) is a violation of causality. It is shown that in the
non-Abelian, generalized, form of electrodynamics devel-
oped by Barrett [2-5] and by Evans et al. [10-20], the
coupling constant of the covariant derivative is always
present in the field equations. This means that the SU(2) or
O(3) symmetry electromagnetic fields described by these
equations are always coupled to their source, an electron,
even though this be distant from the field to quasi-infinity.
If the coupling constant is set to zero in both the Barrett and
Evans et alia equations, the Maxwell-Heaviside equations
are recovered. In general, however, the structure of the equa-
tions both in SU(2) and O(3) form is non-linear and non-
Abelian, with non-zero coupling constant. The only case in
which the coupling constant disappears is when there is no
radiation, in which case we recover the familiar equations
of electrostatics and magnetostatics, both from the equations
of Barrett and those of Evans et al.

In section 2, we discuss the structure of the Barrett field
equations and the way in which they reduce to the Maxwell-
Heaviside equations. In section 3, the discussion is repeat-
ed for the homomorphic equations developed by Evans et
al. Finally, a discussion is provided of the question of cau-
sality in pure classical electrodynamics.
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2. Barrett field equations

The conventional U(1) symmetry Maxwell-Heaviside equa-
tions were generalized to SU(2) gauge symmetry Yang-
Mills field equations for pure classical electromagnetism by
Barrett [2]. In Barrett’s notation, the field equations of elec-
tromagnetism become:

V.-E=Jy—ig(A-E—E-A) 1)
9E _ yxB+J+iglAg El—ig(AXB—BxA)=0
at (2)
V-B+ig(A-B~B-A)=0 ?3)

V><E+%lti+iq [4g,Bl+ig(AXE-ExA)=0. (4)
which are the SU(2) gauge symmetry versions of the Cou-
lomb, Ampere-Maxwell, Gauss and Faraday laws respec-
tively. Here. Barrett uses condensed tensor notation for the
magnetic field strength E and magnetic flux density B. The
symbol J, is the charge density ad J is the current density.
The symbol g is the coupling constant in the SU(2) covari-
ant derivative [2-5] used to generate the above equations.
The SU(2) symmetry gauge theory developed by Barrett [2]
means classically that there are three polarizations, left and
right circular, and longitudinal. After quantization, there are
three gauge bosons. Detailed arguments for adopting this
structure for electrodynamics are given by Barrett [2, 3]. We
wish to point out in this section that these equations allow
for the existence of a topological magnetic monopole in
the SU(2) version of the Gauss Law, a monopole given by
ig(B-A—-A - B) where A - B —B - A is a Noether current
[2]. The extra charge density in the Coulomb Law is also the
coupling constant g multiplied by a Noether current —i (A -
E—-E-A). _

The other two Noether currents, A X B —B x A, and
A X E —E x A appear in the SU(2) version of the Ampere-
Maxwell arid Faraday Laws. The other extra terms that
appear are the commutators [Ag, E] and {A, B] of a scalar
potential A, and magnetic flux density B and electric field
strength E. Barrett carefully develops his theory from a
number of physical arguments based on physical effects in
nature [2, 3], and applies it successfully to the Sagnac effect
with platform in motion. The development of equations (1)
to (4) is therefore carefully reasoned on physical grounds.
The Barrett field equations are developed on the classical
level, and are equations of pure electromagnetism, so the
indices of the SU(2) vector potential imply three polariza-
tions as argued already. After quantization, three gauge
bosons appear.

There are two ways in which the SU(2) field equations
reduce to the U(1) field equations of Heaviside and Max-
well: if the coupling constant g is zero, or if the Noether cur-
rents and commutators [Aq, E] and [Aq, B] are both zero. In
either case, we are left with equations in Maxwell-Heavi-
side form, but where the symbols £ and B denote matrices.
(If they denoted vectors, then A - E—E - A would always
be zero.) Therefore Barrett uses condensed matrix notation,
which originates in the SU(2) form of the gauge theory he

uses. Setting g = 0 therefore results in matrix equations
which look like the familiar Maxwell equations. Inside these
matrices, there are three field components, as in vector nota-
tion, but arranged in SU(2) matrix form.

It is clear that the process of setting the coupling con-
stant g to zero is equivalent to setting the Noether currents
to zero, and to setting the commutators [4,, E] and [A,,
B] to zero, because none of these quantities exist in the
Maxwell-Heaviside theory. However, the process g =70
reduces the SU(2) covariant derivative to an ordinary
derivative, and this violates the principles of special rela-
tivity and gauge theory whenever there is source to field
coupling, such as the coupling of an electron to a radiat-
ed classical electromagnetic field. The only limit in which
g = 0 is the electrostatic limit, where there is an electron
present, but no radiated field such as an electromagnetic
field. Then the Maxwell-Heaviside equations reduce to
the familiar equations of electrostatics, the Coulomb,
Gauss and Ampere Laws without the Maxwell displace-
ment current. This procedure becomes clearer and easier
to understand if the Barrett equations are written in their
homomorphic O(3) form, and this is the subject of the next
section.

3. Non-Abelian field equations of Evans et al.

These are Yang-Mills equations applied to pure classical
electromagnetism using the O(3) group for the internal
gauge symmetry. They are again a development of the orig-
inal Yang-Mills equations and have been tested extensively
for self-consistency [10-20] and against available, data,
both on the classical and quantum levels. In their most con-
densed form, the Yang-Mills equations of pure classical
electromagnetism look like the homogeneous and inhomo-
geneous Maxwell-Heaviside equations (which have a U(1)
internal gauge symmetry):

D,G*'=0 (5)
D, H"=]J". (6)

However, the familiar field tensors G*¥ and H*Y become
vectors in the internal gange space of O(3) symmetry,
homomorphic with the internal SU(2) symmetry used by
Barrett [2, 3]. The ordinary derivatives of the Maxwell-
Heaviside equations are replaced by O(3) symmetry
covariant derivatives denoted D,,. The four-current is also
a vector in the O(3) symmetry gauge space whose basis is
((1), (2), (3)). The indices (1) and (2) indicate right and
left circular polarization, and (3) indicates longitudinal
polarization on the classical level. Therefore the geomet-
rical indices (1), (2) and (3) serve as the internal indices
of the gauge space. This was not realized by Yang and
Mills (1] and a similar idea led to the Barrett field equa-
tions [2, 31.

The homogeneous equation (5) can be developed by writ-
ing out the covariant derivative in terms of its coupling con-
stant g, which has the units of the universal constant e/,
the elementary charge divided by the Dirac constant. It is
well known in contemporary gauge field theory that the uni-
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versal coupling constant g, denoted g by Barrett, couples
the electromagnetic field to the Dirac field of the electron.
The latter is the source of the electromagnetic field, and
since e/# is always independent of time and space, the elec-
tromagnetic field in Yang-Milis theory of pure electromag-
netism remain coupled. There can be no free field or source-
less region unless the coupling constant g is set to zero.
Setting g to zero is self-contradictory in Yang-Mills theory
because g = e/hiis auniversal is a universal constant. There-
fore causality is always preserved in Yang-Mills theory of
pure classical electromagnetism, the field always emanates
from a source. In the received Maxwell-Heaviside equa-
tions, there can be source-free regions where there are fields
which have no source, 1.e. cause without effect, a violation
of causality. On this point alone, it is clear that the Yang-
Mills theory 1s superior to the Maxwell-Heaviside theory.
The presence of g in the homogeneous equation (5) does
not mean that the gauge boson after quantization is charged.
The electric charge e in modern gauge field theory is both
a conserved quantity and a dynamical coupling constant,
and it appears in the Yang-Mills field as a coupling con-
stant. This dynamical aspect of g = e/# is well known to be
a consequence of the gauge principle, a key ingredient of
all modern gauge field theories [2, 3]. It is perfectly pos-
sible to apply the same principle to pure classical electro-
magnetism.

The equivalents of the Barrett equations (1) to (4) in the
((1), (2), (3)) basis are as follows.

The O(3) Symmetry Gauss law (cf. eqn. (3))

V. B(l)" = ig (A(Z) . B(3) _ B(l) X A(3)) (7)
V. B(Z)- = lg (A(3) . B(l) _ B(3) s A(l)) (8)
V-B® =ig (A0 . B® M. 4@y ©)

The O(3) Symmetyy Faraday Induction law (cf. egn. (4))

\7><E“>“+-———a%w =—ig(cAS) B® —calP B® (10)
t

. gl
Vx B +_—5’Ba =—ig (cA{" B® — ca® BN (11)
t

+AD 5 BV _ 40 gO)y

. oB®”
Vs B +@rs_ig(c%2>3(1)_c () B2 (12
t
+ AW E@ _ 4@ xE(”)

The O(3) Symmetry Coulomb law (cf. eqn. (1))

*

V,E(n*_P“) =ig(AD.E® _ED A0y (13
€o

*

V. E®* _ p(z)
€o

=ig(A(3)-E(l) __E(3J .A(l)) (14)

*

(3)
VE(S).—-‘p—g_'_—lg(A(l)'E(Z)—.E(l)A(Z))' (15)
0

The O(3) Symmetry Ampére-Maxwell law (cf, eqn. (2))
pxpn*_ 1 OB 1 g

= ’_Cg_ (AP E® _ AP ED 4ca®

x B® —~cA® x B?)) (16)

(,‘2 dt C2 &y
=B AP EV AN E® +c4®
C

x BV —cAW x B) (17)

« 1 OE®* J R ALl
pxpr LOEZ 1J
¢t ot - g

= % (A ED — AP ED 4 c4M

x B2 _ cAD gD ). (18)

If the coupling constant g disappears, or if the Noether cur-
rents premultiplied by g are zero, these equations reduce to
three Maxwell-Heaviside equations, one for each index (1),
(2) and (3). Therefore the Maxwell-Heaviside equations are
recovered from the more general Yang-Mills equations by a
self-contradictory procedure: g = ? 0. This means that the
O(3) covariant derivative is replaced by the ordinary deriv-
ative, and the dynamical aspect of g = ¢/h is lost., there can
be free fields independent of source. This is actually a vio-
lation of special relativity and the principle of gauge trans-
formation of the second kind [21].

Comparison of egns. (7) to (18) in O(3) gauge symmetry
and eqns. (1) to (4) in SU(2) gauge symmetry shows that
they are identical in structure. In egns. (7) to (18) however,
the components are written out in full in the basis ((1), (2),
(3)), so that it becomes clear that of g is set to zero, we recov-
er three Maxwell-Heaviside equations, one each for the indi-
ces (1), (2) and (3); left and right circular polarization and
longitudinal polarization. These again quantize to three
gauge bosons [20] which are uncharged photons as required.
It is well known that left and right circularly polarized pho-
tons exist in nature, and the longitudinal photon may also
exist [21] self-consistently.

In the definition of the field tensor of the Yang-Mills the-
ory behind eqns. (5) and (6), there appears an extra longitu-
dinal field:

B =-ig AV xA®) (19)

which [10-20] accounts from first gauge principles for the
existence of the conjugate product AV x A® of complex
vector potentials responsible for the fundamental existence
of circular polarization, through the third Stokes parame-
ter [20] and for the existence of magneto-optical effects
such as the inverse Faraday effect [2, 3]. These phenome-
na add to the list supplied by Barrett [2, 3] of phenomena
not described by the Maxwell-Heaviside equations. There
are many other advantages [10-20] of the non-Abelian
theory over the Abelian theory of pure classical electro-
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magnetism. The evidence for the former is by now
overwhelming, as deduced both by Barrett [2, 3] and by
Evans et al. [10-20].

We note that if g is set to zero in eqns. (7) to (18), the
Noether currents premultiplied by g also disappear, because
these currents are specific properties of the non-Abelian
nature of the theory, and setting g = 0 reduces the non-Abe-
lian theory to three Abelian equations whose solutions are
such that the Noether currents are zero. Therefore the theo-
ry is self-consistent and homomorphic with Barrett’s equa-
tions (1) to (4). Significantly, the Barrett and Evans et al.
equations were derived independently using entirely differ-
ent routes to arrive at the same conclusion. They are also of
course inherent in the Yang-Mills theory of 1955 when
applied to pure classical electromagnetism.

Therefore both the equations of Barrett and of Evans et
al. are logical consequences of the use of g as a dynamical
coupling constant in contemporary gauge field theory. The
equations are isomorphic and essentially contain the same
information, O(3) being the covering group of SU(2).

In the limit of electro-statics and magneto-statics, the
dynamical Noether currents premultiplied by g disappear,
and the complex vector potential reduces of a real valued
vector potential. the dynamical B field disappears because
the conjugate product A x A® disappears, and the Max-
well-Heaviside equations are recovered in standard form
[20). They reduce to the standard Gauss, Coulomb and
Ampere laws of electro-statics and magneto-statics and the
Maxwell displacement current vanishes.

4. Discussion

The coupling constants ¢ and g that appear respectively in
the Barrett and Evans et al. equations are a consequence of
the general gauge principle which is central to contempo-
rary particle/field physics. The charge e is conserved, and
associated with it is the electromagnetic field. The coupling
constants ¢ and g are dynamical aspects of the theory and
do not imply that the electromagnetic field is charged, or that
the photons from the quantized field are charged. The equa-
tions of Barrett, or those of Evans et al., are infact the cor-
rect form of the Maxwell-Heaviside equations in contempo-
rary gauge theory. There are many physical indications {2,
3, 10-20] for this conclusion, and for the incompleteness
{2, 3] of the Maxwell-Heaviside equations. The coupling
constants g or g appear in S.I. units of e/, but in general are
variable. They depend on the material field upon which the
covariant derivative is acting. Covariant derivatives can
appear in a theory to any power when acting on a compos-
ite field, such as ¥ of the Dirac field, but the coupling con-
stant is zero when the covariant derivative acts on { yof the
Dirac field..

In deriving the Barrett or Evans et al. equations, the covar-
jant derivative acts on the electromagnetic field itself, and
the coupling constants g or g are in units of e/A. As shown
elsewhere [20], this gives a satisfactory description of the g
factor of the electron to within ten decimal places, and of
the Lamb shift in hydrogen to within 17 Hz. The use of

Yang-Mills concepts in electrodynamics enriches the sub-
ject considerably [2, 3, 10-20], allowing for example
instanton solutions, and new explanations for effects such
as the Sagnac effect [2, 21] which the Maxwell-Heaviside
theory has difficulty in describing [2].

In this paper, we have pointed out that the Barrett equa-
tions and those of Evans et al. are homomorphic, and reduce
to the equations of electro-statics and magneto-statics in the
appropriate limits,
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