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INTRODUCTION

This book is one in a series on the prospect for nonabelian electrody-
namics. This book takes a somewhat different path than the previous
texts. It starts out with the nature of nonabelian electrodynamics as
a classical field theory. In this sense it it similar to previous books
on the subject. However, in chapter 6 this book explores the quan-
tum electrodynamics of this nonabelian field. From there matters
concerning field theory are explored. These include the unification
of this nonabelian field theory with the weak interaction, and fur-
ther with the impact this may have upon theoretical understanding
of superstrings and quantum gravity. These developments are based
largely on the theoretical prospect that electromagnetism and the
weak interaction share a duality. The subject of duality in physics
evolves into a central theoretical topic in chapter 10. This is largely
unexplored territory in previous texts written on the subject.

While the classical field is exhibited in the first five chapters, later on
the nature of the classical field is questioned. Tt turns out that there
are a number of surprises in store. While no definative conclusion
is drawn, the question is raised as to whether the B(®) field truly
exists as a classical field. Tt is possible that it exists purely as an
effect due to vacuum symmetries. This conclusion is suggested by
the electroweak unification model developed in chapter 8. If this is
the case then various nonHamiltonian operators in quantum electro-
dynamics, such as squeezed state operators, can be demonstrated to
have a more fundamental basis in field theory.

One major thrust of this book is that nature may well have surprises
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in store that evade current physical understanding. It was commonly
stated that classical mechanics was a closed subject until chaos the-
ory came to the forefront in 1979. A similar situation may be the
case with electrodynamics which, at least classically, is regarded as
a matter of engineering. With this in mind it is suggested that the
reader have an open mind to the possibility that nature may have
departures from some of our rather canonical knowledge.

There have been a variety of reactions to the suggestion that electro-
dynamics is more fundamentally nonabelian. These reactions range
of hostile shock to excitement. One of the more compelling rea-
sons to consider this possibility is that the standard model of elec-
troweak interactions must be of the form SU(2) x SU(2) instead of
SU(2) x U(1). This indicates that the electroweak field is a field
that involves the duality between two physical fields. This has the
exciting prospect that gauge field duality is something that can be
experimentally explored. One further development is that soliton
wave equations for photons, as with the case of nonlinear optics, can
be derived without a strong appeal to phenomenology. While none
of this proves the case, for a theory can not be proven with theory,
it does give pause for some degree of consideration of the possiblity.

[t is then intended that the reader should be one with the willingness
;0 consider physical possibilities outside of the their canonical knowl-
>dge. If a reader is unwilling to do this then they might consider not
‘eading beyond this introduction. However, science is filled with in-
itances where nature is found to exhibit structure that is beyond
tandard theory.

CHAPTER 1
INTERACTION OF ELECTROMAGNETIC
RADIATION WITH ONE FERMION

1.1 LORENTZ ELECTRON

The interaction of electromagnetic radiation with one Lorentz elec-
tron is classically and nonrelativistically described with the electron

kinetic energy,

Ty = —l—p ‘P, (1.1.1)

2m

where p is the momentum and m is the mass of the electron. In
a classical electromagnetic field the momentum is modified to make
it gauge invariant. This requires that p is replaced by p — eA,
where e is the charge of the electron and A is the classical vector
potential of the electromagnetic field. This vector potential is in
general a complex valued quantity[1-3]. The kinetic energy of the

classical charged particle in the field is therefore,

T = —l—(p — eA)-(p — eA™). (1.1.2)

This result is typical of many textbooks on electromagnetic radiation.
There are four terms in general in this kinetic energy: the free kinetic
energy, two terms that depend on A, a first order term,

T, = ——(p- A" + A-p), (1.1.3)
2m

and a term second order A,
2

T, = —A . A", (1.1.4)
2m
The average over many cycles in the field leads to (p- A) = 0 and
the average kinetic energy is then
T = + LA (1.1.5)
= omPP 2m ) ’
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It is standard in electrodynamics to disregard the action of A - A*.
Yet in some nonlinear optical physics products of fields exist. Based
upon this observation this condition is relaxed and the consequences
of this quadratic term in the potentials are examined.

The standard procedure with electromagnetism as a gauge theory
posits a relation between the vector potential A and the magnetic
induction B:

B = Vx A (1.1.6)

If the vector potential is written as a plane wave A = Agek T — wt)
the term second order in A may be expressed as

e?c?

T, = 5—B- B, (1.1.7)

where c is the speed of light and w is the frequency of the radiation.
We define the polarizability as

e2

T (1.1.8)

Maxwell's equation in vacuum may be employed to give the usual
expression for the energy associated with the electromagnetic field,

T, = aE - E". (1.1.9)

With this form of the electromagnetic energy the zeroth Stokes pa-
rameter is introduced as

So = E-E*, (1.1.10)
so that equation 1.1.9 assumes the form

Ty = aSe. (1.1.11)

Interaction of Electromagnetic Radiation with One Fermion 5

This product defines the average interaction energy between a clas-
sical charged particle and the classical electromagnetic field.

There are fundamental problems inherent in this theory. For exam-
ple the interaction energy (1.1.4) is not invariant under the usual
classical gauge transformation [4-6]

A > A+ Vy (1.1.12)

where x is a scalar function. Equation (1.1.12) leaves the electric
and magnetic fields, F and B, invariant, but shifts the value of the
interaction energy and the Stokes coefficient Sy, when the latter is
expressed according to A - A*. Paradoxically, if Sy is expressed as
E . E it is trivially seen to be gauge invariant by the invariance of
the field E and E*. Yet by E = 8A/0t we see that this Stokes
parameter may be associated with A-A*. It is known that this Stokes
parameter is a gauge invariant observable proportional to the beam
intensity in any polarization; and in circularly polarized radiation we

have,
So = £S5, (1.1.13)

where
S3 == —i|E x E*| (1.1.14)

is the third Stokes parameter. However, the third Stokes parameter
does not appear in equation (1.1.11), and again A X A* is not gauge
invariant where as £ x E* and B x B* are gauge invariant. This
is despite the fact that if A is a plane wave, a solution of the vac-
uum d’Alembert equation, with A X A* proportional to £ x E* and
B x B*. In the theory the classical Lorentz electron the classical
electromagnetic field Newtons's Third Law in not obeyed (1-8). The
latter is known as the radiation reaction problem. The replacement
of pby p — eA is a method that produces the Lorentz force equa-
tion from the Euler-Lagrange equation. This is usually regarded as
sufficient empirical proof of its effectiveness. Nonetheless, this linear
procedure of adding eA to the linear momentum suffers from the
above drawbacks.



In general optical phenomena are nonlinear[9], and in general p is
replaced by a Taylor series in all odd powers of A. In surmountable
problems with the linear theory start to occur at the level of the
Stokes paranieters, as just demonstrated, because the latter are non-
linear in the field and potential compoments. The Stokes parameters
were proposed in 1854, several years before the Maxwell equations
were proposed, which implies that Maxwell’s equations amount to
a linearization of the general theory. To be more consistent the
equations of classical electrodynamics appear to be more generally
nonlinear. This implies that the background gauge symmetry should
be extended from the linear U(1) symmetry to a nonabelian one.

These simple arguments show that all is not well with contemporary
electrodynamics, either classical or quantum. The problems all stem
from the use of a particular gauge symmetry for electrodynamics; the
U(1) gauge symmetry that describes rotations on the complex valued
circle[10]. They are insurmountable in U(1) gauge theory, but not
in some other gauge symmetry which is nonlinear and nonAbelian.
The purpose of this books is to propose that electrodynamics can be
developed as an O(3), symmetry gauge theory inwhich there exists
a fundamental vacuum component, which we label as B®)[11, 12]
in the complex circular basis ((1), (2), (3)). Here the field theory
is called O(3), as a generic name, for the theory is really a bro-
ken SO(3) theory. This theory involves the internal U(1) symmetry
with an additional axial symmetry. Within nonabelian gauge theo-
ries there are a number of electric and magnetic components of the
gauge theory, where these components are determined by the Lie
algebra of the field symmetry. In a gauge theory with 3 internal
components there will exist three vector potentials. Ordinarily one
would think that if there are three forms of the electric and magnetic
fields that two of these carry electric charges, while one is neutral.
This question is addressed later on in this book, where the charged
vector potential are demonstrated to for the gauge potentials A(1)

and A(2) with A®®) = AM*. This is later demonstrated to elim-
inate the existence of charged photons, and to equate the internal
gauge directions with the external directions in space. From this
result, this gauge symmetry the Stokes parameters Sp and S3 are
self consistent physical quantities when expressed according to the
vector potential, since they transform covariantly under a change of
gauge[10]. In this gauge theory the third Stokes parameter becomes
direction proportional to B(3), which demonstrates that the latter
is a physical observable. The existence of B follows directly from
the existence of circularly polarized radiation, as demonstrated by
Arago in 1811. The quantized equivalent of B(3) for one photons is
known as the photomagneton [13].

The most elementary illustration of the B(3) field is to rewrite equa-
tion (1.1.2) according to the Pauli matrices (10,14]. Mathematically
this procedure is equivalent to the reexpression of this equation ac-
cording to the SU(2) Lie algebra homomorphic to, or up to a double
covering to, SO(3)[14). Various texts on elementary Lie Algebra the-
ory illustrate this.procedure[15-18]. The Pauli matrices then act as
unit vectors in SU(2) with an additional rotational degree of free-
dom that defines the double covering and homomorphism. If we then
allow the momentum to have this additional degree of freedom, then
the observable energy will not exhibit any change,

1 1
- — (- . - —p.p. 1.1.15
T = 5~(a-p)lo-p) = 5=pPP (1.1.15)

and the two homomorphic representation are indistiguishable phys-
ically. As the classical electromagnetic field, with an SU(2) repre-
sentation, is expressed in a gauge invariant manner the field kinetic
energy is
1 *
T = —o-(p — ecA)o-(p — eA"), (1.1.16)
2m

and new terms exist that are physical observables. These turn out to
be very useful for NMR and ESR applications, as they persist from



classical to quantum electrodynamics. As yet the empirical evidence
for this is incomplete.

1.2 RADIATION INDUCED ELECTRON AND PROTON
SPIN RESONANCE

The simplest development of equation (1.1.16) is the most illustra-
tive. The average kinetic energy from equation (1.1.16), which in-
volves the averaging over cycles and the elimination of first order

terms, is
2

1 e
TY = ——»p. —_— . *
(T) 5P P + 5 ¥ Ao A (1.2.17)

and the interaction energy determined by the homomorphism with

SU(2) is,
2
€
T = o Ao A
(Thsv@) = 5—0-Ac-A (1.2.18)

The rules employed by Dirac in 1926 [19] determine that this energy
term is

2
e . .
(Tsve) = %(A'A* + io0- A x A7), (1.2.19)

which demand the existence of a term proportional to ic A x A*.
The classical interaction differs from its homomorphism, as seen in
equation (1.1.4), and is expressed as

(Tsv@) = a(Se — S30.-k). (1.2.20)

The unit vector k is thus defined along the z axis. The third Stokes
parameter S3 then appears as a manifestations of A x A*, which
exists as a result of circularly polarized radiation.

Now the energy term that results from the SU(2) homomorphism,
which contains an elementary kinetic energy term plus a self-
interaction term involving the field potentials, is:

6,2
Tint = i—o- A X A" (1.2.21)

This term can been seen to be relevant to ESR and NMR. This
interaction term is similar in form to the interaction of a charged
spin with a magnetic field, where the magnetic field is determined

hy A x A*

The existence of electron spin resonance is deduced by the equality
between the interaction term 7T5,: with the energy of a photon in a

probe beam hw;qs,
Tint = hwres- (1222)

By using the equation for electromagnetic intensity or power density
I(watts em™?):
1 = SpBo? (1.2.23)
Mo
where sy is the vacuum permeability, it is easily deduced that the
electron resonance occurs at the frequency(20]:

Wres
Vres = = (

27

eupey I 2 1 ]
)-w—z = 1.007 x 10 R (1.2.24)

2rhm
By adjusting 1/w? the resonance frequency can bet tuned to the in-
frared or visible range compater to the MHz range of magnet based
ESR[21]. This leads to an increased resolution of several order of
magnitude with great potential advantages. Similarly, the NMR res-
onance frequency from equation (1.2.22) is

2 I
= Gerec I 1.532 x 10% —. (1.2.25)

v
res ge2mhm w?

where g, = 2.002 is the electron g factor and g, = 5.5857 is the
proton g factor. The increase in resolution acheived by this method
is comparable with a similar improvement of the electron microscope
over the optical microscope.
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1.3 THE B®) FIELD

The B® field is defined from the O(3), symmetry gauge theory as
3y . _.E
B® .= _1,EA<1> x A (1.3.26)

in the basis ((1), (2), (3))[22.23], whose unit vectors are related to
their cartesian counterparts by

1
(1) — (2)* = —(2 — 71} (3) P
[ = € = (2 17), € = k, 1.3.27

and so are natural descriptions of circular polarization. Therefore
the radiatively induce frequency from equation (1.3.26) is

Vres = —47fma, .B®, (1.3.28)
This has the same form as the description of a resonance fre-
quency in a static magnetic field. As previously demonstrated
Ax A" = AM x AD is not gauge invariant under global or local
U(1) gauge transformations, so B®) is not a physical observable un-
der this gauge theory. However, A x A* is proportional to E x E*
and equivalently the third Stokes parameter, which is an empirical
observable. This means that the U(1) gauge theory that must be
replaced by a theory based on a nonabelian symmetry group. Since
S0(3) is the rotation group in three dimensions, and the Stokes
parameters have a rotational symmetry homomorphic to this, it is
natural to consider this group, or broken variants from it, as the
generalization of electrodynamics.

1.4 ELECTRODYNAMICS AS A NONABELIAN GAUGE
FIELD THEORY

As we have seen, the need for this development springs from a sim-
ple consideration of the interaction between the electromagnetic field
and the Lorentz electron. One of the fundamental differences be-
tween U(1) and O(3), gauge field theory is that in the latter the
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potentials enter more directly into physical constructs. The poten-
tials enter into products, which result from the nonabelian nature
of the field, that define a physical field. The structure of the O(3),
gauge theory represents a return to the original concepts of Faraday
and Maxwell. The natural philosophy of the classical electromagnetic
field as developed by Heaviside and others of the late nineteenth cen-
tury crystallized the theory into four differential equations known as
the Maxwell's equations. In S.I units they are:

V.-B =0 (1.4.29)

vxE+ B _ (1.4.30)
ot

V.D = p (1.4.31)

VxH =3+ %?. (1.4.32)

and are respectively the Gauss, Maxwell, Coulomb, and Faraday
laws. In this system of equations the electric displacement vector D
is related to the electric field £, and the magnetic induction B is
related to the magnetic field H by,

D = ¢F = & + P, B = py(H + M), (1.4.33)

where P is the polarization vector defined in a medium, and M is
the magnetization of a material. The electric field is defined to have
units of volts m™!, the electric displacement has units of Cm™2,
the charge density p Cm™3, and the polarization has the units of
the electric displacement. With the other two Maxwell's equations
the magnetic field has units of Am™! and the magnetic induction
has units of T or Wb m™2. The electric permativity and magnetic
permeability have the values

€ = 8.854188 x 10712C%2J"1m!
po = 4m x 1077 Js2C2m ™t (1.4.34)

equations (1.4.29) and 1.4.30) are combined into the homogeneous
Maxwell equations, and equations (1.4.31) and (1.4.32) into the in-
homogeneous equations. The former is a Jacobi identity in the fun-
damental field E and B; which can be expressed according to the
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scalar and vector potentials ¢ and A respectively. These equations
do not permit the existence of magnetic monopoles. The quantities
that appear in the inhomogeneous Maxwell equations are D and H.
These equations allow for the existence of electric monopoles and
currents.

In manifestly covariant notation, with indices ., € {0,1,2,3} that
range over the spacetime variables ¢ = ¥ and z, the differential
operators have the form

0
i = O = (0 ) = (0, D), (1.4.35)
and with the metric g*, with signature {1, —1, ~1, —1], the differ-
ential operator 0" = ¢"”3, is defined
D s o = (8, -0 = (8" 0 (1.4.36)
(‘).’L"“ : 'ty A . . 4.

The fields are determined in this abelian case from the vector poten-
tials by
FF = 9VAF — OFAY, (1.4.37)

with components of the four vector potential defined as (¢, A). This
then defines elements of the antisymmetric field tensor F#¥. In this
manifestly Lorentz form the Maxwell equations assume the forms,

8, F* = 0 (1.4.38)

O H" = j. (1.4.39)

The two field strength tensors are related by the Hodge dual star
>perator . This determines the tensor on dual 2-chains in four
limensions by

1
HM — s — _2_EI‘VP‘TFP0_. (1440)

Jere e#¥#7 is a totally antisymmetric symbol. The magnetic fields
ind electric fields are respectively defined by the spacial components
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and mixed temporal and spacial components of this field strength

tensor by ‘ B
Bi = Eiij]k, E, = EiojFUJ. (1441)

Thus the field strength tensor F# and its dual * F#” have the com-

ponents

0 -E' -E* -EB
L El 0 CB3 —C.B2
F*"] = g2 _.B® o B! (1.4.42)

E3 ¢B? —¢B! 0

0 -c¢B' —¢B* —cB?
¢cB! 0 E3 ~FE?
cB? —EB 0 E!
¢cB® E* —E! 0

By the Hodge star duality equation (1.4.39) is the dual of the equa-
tion 9, F*” = 0 which is the Jacobi identity

[FH] = (1.4.43)

OPFMY 4 GREYP L HYFPE = (. (1.4.44)

Further, by employing the rules of Einstein summation over repeated
indices then equations (1.4.29) and (1.4.30); and equations (1.4.36)
reproduce equations (1.4.31) and (1.4.32) with the definition

o -D' -D* -D?

D' 0 -H/c H*c

H") =1 p> m3)e o —He
D3 —H%/c H!'c 0

(1.4.45)

This manifestly covariant formalism then is equivalent to the U(1)
gauge field theory that is Maxwell's equations of electromagnetism.

1.5 LIMITATION OF THE U(1) THEORY

A vast amount of empirical data has been described by equations
(1.4.29-32). The classical limit of the theory is also well known.
Ritz, for example, as argued that Maxwell's ether, a medium posited
by Maxwell, is mechanically unstable [24] and that the third law
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of Newton’s mechanics is not consistent with the radiation reaction
problem. There are intrinsic assumptions behind the comtempo-
rary Maxwell equations which are exemplified by the fact that they
are vector differential equations with no stated boundary conditions.
These equations are not due to Maxwell, but by Heaviside and his
contemporaries. This relegated the vector potential to a subsidiary
mathematical role. Within this view the vector potential, or prod-
ucts thereof, do not contribute directly to physical quantities. It is
rather their ”coboundaries,” which are independent of these poten-
tials, which are physical. Maxwell on the other hand used quater-
nionic SU(2) algebra with twenty equations where potentials entered
into physical quantities directly, based on Faraday’s argument for a
physical potential he named the electronic state. This allows the
potentials to be rescaled at will while the fields remain invariant.
On the other hand, if one takes Schwarzschild's standpoint [24}, the
modern Maxwell equations may be replaced completely by delayed
action at a distance equations that involve only the classical po-
tentials. These were argued to be just as physical as fields. The
U(1) electromagnetic theory, in contrast, employs potentials that do
not contribute directly to physical observables. However, nonabelian
field theory have commutators between potentials that contribute to
physical observables, such as the Gauss’ law for the self interaction
of gluons in quarks physics. This leads to a compulsion to develop
a nonabelian form of electromagnetism, where the potentials enter
into commutators, such as is the case with the B®) field, that are
physical observables.

Barret [25] has demonstrated that the interpretation of several physi-
cal effects relies upon a physical contribution from the classical vector
potential A*. This does not obtain in the Heaviside formalism of the
Maxwell electromagnetic field theory. There exist quantum effects
that indicate the existence of the potentials such as the effects of
Aharonov and Bohm, de Haas and van Alphen, Ehrenberg and Si-
day, and the quantum Hall effect. It is well known that in quantum
mechanics that the potential plays a role with the "reality” of wave

Interaction of Electromagnetic Radiation with One Fermion 15

functions: something that is not seen in classical U(1) electromag-
netism. This means that U(1) electromagnetism has a larger gap
between the physical contribution of potentials than one has with
nonabelian Quantum ElectroDynamics (QED).

The four Maxwell equations are linear in the fields and differen-
tial operators. They may be derived from a Lagranigian density
with Abelian symmetry through the Euler-Lagrange equations of
motion(36]. The Abelian rotation group SO(2) is the group of a
rotations in two real dimensions that is homomorphic to the U(1)
group of rotations, of the form e**, on the complex plane. Similarly
the rotation group SO(3) is homomorphic with SU(2), the group of
unitary 2 x 2 complex valued matrices. In contemporary gauge field
theory the electromagnetic field is the gauge field that guarantees in-
variance under U(1) transformations. Local gauge transformations
require that the differential operator assume a covariant form

D SA. = 0, + igA,, (1.5.46)

h

which is the minimal prescription expressed in coordinate represen-
tation rather that the momentum representation

,u:a,u,‘l'i

p,u. - p,u. - eAp,- (1547)

This covariant description of the differential operator and the mo-
mentum operator are required to preserve the invariance of the mo-
mentum as a wave function is phase shifted by local gauge transfor-
mations ¢ — exp(—ie [ A dz*)p. This entry of the electromag-
netic field into momentum and differential operators is seen with the
fundamental quantum ansatz

9 R
P“ = 'L'ha“, F = 'Lhz)?, P = ;‘V (1548)
and the application of this momentum operator onto the phase

shifted wave function, due to a local gauge transformation, demon-
strates that the momentum remains invariant. This means that the
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potentials attain a measure of physical reality as measured in a phase
shift of a quantum wave function. This is demonstrated by the
Aharonov-Bohm effect. This demonstrates that the potentials ex-
hibit a subtle measure of physical reality here clearly demonstrated
by U(1) classical electrodynamics. In gauge theories there are prod-
ucts or commutators of potentials enter into observables that are
measurable with physical units.

Here a formalism of electromagnetism is advanced where the poten-
tials enter into quantities that are, at least in principle, classical phys-
ical observables. This is done in high energy physics, where covariant
differentials have nonzero commutators, and where commutators of
potentials can define charge densities and currents associated with
the gauge theory. In this case they define the B(® field. Here the field
tensor G, is defined both on Minkowski space of four dimensions
plus an internal gauge space of three dimensions. The field tensor
and vector potentials are written according to an internal space su-
perimposed on spacetime, and where the Lagrangian is nonAbelian.
The relations between physical field and the potentials are nonlinear.
Gauge transformations are defined on various charts on the spacetime
so that parameterized motion through spacetime is associated with
a continuous gauge transformation. This results in a commutator
of differential operators that associated with a closed loop in space-
time[10]. This commutator is then evaluated on the area enclosed by
the loop according to the general Stokes' law [o_,\ w = [, dw.
A similar process leads to a Jacobi identity for any group symmetry,
an identity first derived by Feynman[10]:

DG,y = 0. (1.5.49)

The internal symmetry space((1), (2), (3)) introduces commutator
terms into the equations of Gauss and Faraday, where for indices
(1) and (2) we identify terms in a commutator as the fundamental
magnetic field:

BO® = _iga) x A® (1.5.50)
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where g is the coupling constant of the field and AW % AR = Ax
A*, with A* as the complex conjugate of A. The magnetic field
B®) is observed as the skew symmetric product of these two vector
potentials in magneto-optical experiments and, as previously demon-
strated, as the third Stokes parameter. This result suffices to demon-
strate clearly the advantages of the O(3), gauge field theory, here af-
ter referred to as simply the ”O(3); theory.” Within the U(1) gauge
field theory of electrodynamics, the "U(1) theory,” such a nonlin-
ear skew symmetric product term is identically zero. Nonlinearity
in optics is phenomenologically treated as due to atomic effects, but
ultimately these interactions are due to complex electrodynamic in-
teractions. It would then appear plausible to state that electrody-
namics must be nonabelian if it is a gauge theory that can exhibit
these nonlinear effects in optical systems.

The nature of a gauge transformation is changed fundamentally un-
der this nonAbelian generalization. In the Abelian view a local trans-
formation means that the momentum operator is transformed as,

Pu — Pu — €A, + ed,0. (1.5.51)

The same gauge transformation in quantum mechanics can be writ-
ten as,

0, + i%A,L)w = B¢ + e®) + i-;-A,ﬂp', (1.5.52)

where the wave function exhibits a phase shift 1/ = e~%. The

phase factor is just § = e [0, ®dx" evaluated along the path the
local gauge transformation occurs. This leads to the occurrence of
the term —8,® that cancels out the gauge term in the definition of
the differential. From this the basic equations of quantum mechanics,
in particular the Dirac equation and Klein-Gordon equations are then
gauge invariant.
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Canonical quantization in the Lorentz gauge 0*A4,, = 0 imposes
the elimination of longitudinal photons with the Gupta-Bleuler con-
dition:

(|0" Aulaby = 0. (1.5.53)

This is equivalent to stating that the longitudinal field is annulled
on the space of physical fields by

HAuY) = 0. (1.5.54)

yet in another gauge, such as the radiation gauge or the Landau
gauge, this choice is different. In effect the choice of the gauge is
equivalent to a particular choice of conjugate observables. This is
imposed on the quantization procedure by the addition of a gauge
fixing term to the Lagrangian density

A
L= L= (A2, (1.5.55)

where the parameter A is purely arbitrary and is set to fix various
gauge conditions: A = 1 for the Lorentz gauge and A = 0 for the
Landau gauge. Yet there is something rather troubling about this
term. While it is unphysical it does have the effect of determining
the existence of longitudinal modes. This appears to create a subtle
discrepancy with the notion that the field potentials are unobserv-
able.

The O(3), gauge theory echoes the original intent of Yang and Mills
[10] to generalize the Maxwell equations. The minimal prescription
is extended to give

(A, A®),] = gB(s),W, (1.5.56)

with the commutators

A1, AL = 14®), 40 = o (1.5.57)
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Now in the O(3), case the gauge condition reads, for the internal
indices a,b € {1, 2} as

DA™ = 0 = 0,A™ + ige"A", A, (1.5.58)

where the quadratic term in the potentials can be replaced with
A — (1/w)E*. We are left with a gauge choice that gives longi-
tudinal modes. The existence of longitudinal modes is not dependent
upon the gauge choice due to the nonAbelian term that enters into

the gauge fixing term.

In this O(3); gauge theory the covariant derivative and minimal pre-
scriptions are structure in such as way that equation (1.5.49) becomes

D,G%, = 0; a € {1, 2, 3}, (1.5.59a)

and since é’;‘“, = ¢*°[A%,, A°,] the Hodge star dual operation gives

the Jacobi identity

(A% (A%, AS]] + (A1, (A%, A% + (A%, (A%, A%]] = 0.
(1.5.59b)

Further with the prescription that A% = 0, an issue discussed at
greater length later, we have the associated equation for the B ®)

field and the cyclicity condition:
B x B® = ;OB (1.5.59¢)

Equations (1.5.59) are the basic set of field equations for O(3); non-
Abelian electrodynamics. It can be seen that the cyclicity condition
equation (1.5.59¢) is identical to equation (1.5.57). Further, equa-
tions (1.5.59) for a = 3 determine that B® is an irrotational and

time independent field
OB®)
ot

Equation (1.5.59a) with @ = 1 or 2 gives equations (1.4.29) and
(1.4.30).

v x B® =9, = 0. (1.5.59d)
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There is in summary a fundamental philosophical difference between
U(1) and O(3)s electrodynamics. This can be seen in the nature
of gauge transformations. Essentially, there is no dependence upon
the existence or removal of longitudinal modes by a gauge choice in
nonAbelian electrodynamics. Further, since the algebraic indices of
0(3); electrodynamics are associated with the Stokes parameters,
they become identified with a spacial rotations. The process by
which this occurs is discussed in greater detail later. This means that
local gauge differences in O(3); electrodynamics are identified with a
frame rotations. Within this framework the B®) field is a covariant
longitudinal field that can not be eliminated by a convenient choice
of gauge.

1.6 CLASSICAL RELATIVISTIC NONABELIAN
ELECTRODYNAMICS

In special relativity the basic invariant is the interval ds?> = dt? — do?,
where do? is an infinitesimal distance in Euclidean space. This is
often expressed in a more compact for with the metric tensor as
ds® = guvdxtdz”. This interval is a measure of the proper time of an
observer in spacetime. The corresponding invariant in momentum-
energy space is the rest mass of a particle. This invariant is stated

as
pip. = me, (1.6.60)

where p* = (E, p) is the relativistic four momentum composed of
the energy E, conjugate to the timelike direction plus the momentum
conjugate to spacial direcitons p. The four momentum is covariant
with respect to the Lorentz transformations

o= AMpY, (1.6.61a)
that may be expressed explicitly as the matrix operation
FE’ ¥y 0 0 —-pBy E
A 0 10 O j
g | T 0o 01 o p, | (1.6.61b)
P By 0 0 v =

—————
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for a boost in the z direction. Here § = '1_)/c, for v as the boosting
velocity, and v = 1/4/1 — f[32. This leads to the rotation between
the p, and E components with

E' = y(E — fp:). . = v(p: — PE) (1.6.61c)

This transformation is one that leaves the square of the four momen-
tum invariant, and defines the rest mass of the particle.

We now turn to electromagnetic theory where to preserve gauge in-
variance the momentum assumes the form p* — p* — eA*. This
means that the momentum invariant is

(p* — eA*)(p, — eA*,) = m?. (1.6.62)

To derive the RFR term, we introduce SU(2) internal indices and
the Dirac matrices y#, that produces the momentum invariant

oY’ Py = mic, (1.6.63a)

where the Dirac matrices are represented as,

o 0 ag;
’y't - _ai 0 ’

Yo = (é _OI>. (1.6.63b)

In the Feynman slash notation [29] becomes
vy = m2c2. (1.6.64)

When the electromagnetic field is introduces this momentum invari-
ant is

# —ed)p — ed") = m? (1.6.65)

This is the classical relativistic expression for the interaction of a
charged particle with the classical electromagnetic field. It will be
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demonstrated later in this chapter that the quantized version of this
equation is the van der Waerden equation [30] according to a two
component spinor, rather than the four component spinor as the
Dirac equation. The term e?4*A** is a classical quantity that in the
van der Waerden equation multiplies a wave function as a simple mul-
tiplication operator. Its real expectation value is therefore e A‘A**
and appears as a classical type of variable, just as the potential does
in the Schrédinger equation written in the position representation.

The term ezA‘A‘* is expanded according to Dirac matrices as
EL L = EyFAN"A’ (1.6.66)

Now decompose the inner product according to its temporal and
spacial parts,

EP AN A" = (A — - A A" — 7+ A%). (1.6.67)
The anticommutation between Dirac matrices
I v 1 Yoy
") = 59", (1.6.68)

and the representation of the Dirac matrices in equation (1.6.63b)
are used to decompose this product into

LY = E(AA" — A A" —io-Ax A*).  (1.6.69)

From this classical description of the relativistic motion of a charged
particle in a magnetic field we arrive at the RFR term; which is the
same as what obtains in the nonrelativistic limit,

~iefg- A x A* = ¢2A%;, (1.6.70)
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1.7 RELATIVISTIC QUANTUM DESCRIPTION

We start with the standard correlation between classical variables

and quantum operators:
p* — RO, (1.7.71)

where these operators replace the classical variables in equation
(1.6.63). This results in the van der Waerden equation of motion
[30]. By our previous discussion of the correlation between classi-
cal variables and quantum operators, we see that the momentum
operator has the component form

19
c Ot

19

pt = ih(zﬁ’ —

V), p = ih(=%, V), (1.7.72)
when these quantum operators replace the classical variables in equa-

tion (1.6.63) we arrive at the wave equation

m-c

h2

(Y 0,)(1v" 0, )y = 1h. (1.7.73)
When written in component form this wave equation becomes the
equation for the two component spinor 7 as decribed by Sakurai[30]

) m2c?

h2

10 . t 0 .

. (1.7.74)

The electromagnetic field is then introduced into equation (1.7.73)
with covariant differentials. With this procedure we regain the clas-
sical term e # 4 as deduced by the Dirac equation in ref. [31]. The
Dirac equation may be produced from the van der Waerden equation
by standard methods [30], and this classical term emerges within the
Dirac equation.
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1.8 NONRELATIVISTIC QUANTUM DESCRIPTION

Before demonstrating the RFR term within this domain it is in-
structive to consider the nonrelativistic Schrodinger equation with
a constant, or fat, potential A, and to derive NMR and ESR. It is
not necessary to use relativistic quantum physics to derive NMR or
ESR as demonstrated in the following discussion. The Schrodinger
equation for a free particle is:

= zh%

Hy = ih (1.8.75a)

which is the eigenvalued equation for a stationary wave function
Hy = Eif. (1.8.75b)

The Hamiltonian operator is

H=2L 1 (1.8.76)

under the substitution of the classical momentum variable by quan-
tum operator p — —ihV, and where V is the potential energy
in position coordinates. In the presence of a static magnetic field,
represented by a time independent and real valued magnetic vector
potential A, the Hamiltonian becomes[27]:

1
H=—(p + eAd)? + V + eA. (1.8.77)
The cross term in the quadratic part of the Hamiltonian operates on
a wave function according to,
h h
p-AY = =V (Ay) = =((V-Ay + A-(Vy)). (1.8.78)

1

If the Coulomb gauge
V-4 =0, (1.8.79)

is employed this cross term gives
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p-AY = E,A (Vy) = A-p. (1.8.80)
i
For constant magnetic fleld we may write the vector potential as
A = %B X T, (1.8.81)

which for a constant magnetic field oriented in the z direction means
that )
A = §B(a'j — yi). (1.8.82)

The Hamiltonian terms H() and H® may be written for
Ye = —e/2mand L = r X p as

HY = 4 L-B = —-m-B
HD = £ 4 (1.8.83)
2m

Here L is the orbital angular momentum and 7, is the geomagnetic
ratio, and m is the magnetic dipole moment. The Hamiltonian H(!)
gives the orbital Zeeman effect and H(? is a second order suscept-
ability term.

The above static magnetic field calculation, and as a result A2 is not
proportional to 1 /w?, which implies that the ground state perturba-
tion term is not zero[27]. In general the magnetic vector potential
is complex valued. A repeat of the above calculation for a complex
valued A we obtain two well know terms: the oscillating magnetic
dipole term and the term responsible for the optical Stark effect.
The Hamiltonian operator is the following:

= 51_?(,, —eA)-(p — A") + V + edp, (1884
m

which may be broken out into distinct terms as:

1

2m

2
H=—p —2ReAd-p + —A-A" + V., (1.8.85)

2m.
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where

1
ReA = E(A + A"). (1.8.86)
The oscillating dipole term is
HY = —m.B, (1.8.87)

and the optical Stark effect is given by the second order phase inde-
pendent ternm:

2
€
H® = oA AT (1.8.88)

With phase averaging over many cycles of the electromagnetic field
the first order term disappears, but H®) is real valued and nonzero.
The optical Stark effect is well know empirically [32]. In perturbation
theory the ground state term

E® = (0|H@)0), (1.8.89)

which is again nonzero, and the optical Stark effect term are propor-
tional to 1/w?.

1.9 SCHRODINGER EQUATION WITH INTRINSIC
SPIN

To describe intrinsic spin of the electron or proton in nonrelativistic
quantum mechanics, the method described by Sakurai [30] is used.
The Hamiltonian in the absence of the electromagnetic field is:

1
H = %(a-p) (e-p) + V. (1.9.90)
The equation of motion is the nonrelativistic Schrédinger-Pauli equa-
tion:
H+yy = Enp. (1.9.91)

In the presence of a static magnetic field the Hamiltonian assumes
the form

1
H=—0o-(p+ ed)o-(p + eA”) + V, (1.9.92)

9
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which can be expanded as

1 .
H=—(pp+ic-pxp)+
2m

2—8—(p-A* + A-p+ilc-pxA + o-Axp)+
m

2

—(A- A" + i0-AxA"). (1.9.93)
2m
The effect of the magnetic field on the half integer spin of the electron

or proton, the source of ESR and NMR, is seen through the following

term: ¢
Hiy =i—o-(pxA + Axpl

2m
= i%a . ((V x A + (Vi) x A + A X Vw) (1.9.94)
eh
= 5o B)y.

This is the famous ”half integral spin” term usually attributed to the
quantum relativistic Dirac equation in its nonrelativistic limit. The
existence of ESR and NMR therefore depends on the correspondence
between classical variables and quantum operators, and so it is a
purely quantum effect. For one electron is the part of the Zeeman

effect[30], and gives the nonzero ground state energy:
h

£2 (0] - BJ0) (1.9.95)
m

BV =
2

in perturbation theory{27].

The nonrelativistic Schrédinger-Pauli equation (1.9.91) therefore
gives an explanation for the Stern-Gerlach experiment and the
anamalons Zeeman effect in the nonrelativistic limit by essentially
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replacing the momentum p with o - p by the method given by Saku-
rai[30].

With complex valued A in equation (1.9.92) the RFR term is ob-

tained:
2

€
Hppp = i—o0 - A x A*. (1.9.96)
2m

This is classical and real valued as it is obtained with out the replace-
ment p — —ihV. Using the SI relation between beam intensity
and |A|?, we obtain from equation (1.9.96):

poce? I

Hrrr = —— 20 (1.9.97)

which gives the familiar result for the RFR term as the matrix valued
term along o, and proportional to 1/w?. In perturbation theory there
exists the nonzero ground state term:

2

. € *
HRFR = ’L%(OIO’- Ax A |0> (1.9.98)

The fundamental nonAbelian relation of O(3); gauge theory
G = ;& .
BY = —1hA x A (1.9.99)
means that the RFR term may be rewritten as:

EM = Z(0jo- BO)0), (1.9.100)

eh
™
which defines the fundamental interaction between the fermion half
integral spin and the B®) field.

-

1.10 RESONANCE CONDITIONS IN RFR

Resonance occurs under the condition:

82023(0)2

hwres = ‘)’)’TDI. 12 !

(1.10.101)
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where wre, is the angular frequency of the probe electromagnetic
field. For an electron the resonance frequency for the electron in
Hertz is therefore given by(31]: '

I
Wres = 1.007x1028E. (1.10.102)

For a proton the g factor is 5.5857, while for the electron it is 2.002;
and the mass of the proton is 1836 times that of the electron. The
proton resonance in RFR is therefore[20]

I
Wres = 1.532x1025;}7. (1.10.103)

The theory can be tested under ideal condition with the use of an
electron or proton beam, and the dependence of the resonance fre-
quency of 1/w? should be detected empirically. In the absence of
such data there are few experiments in the literature which can be
used to test equation (1.10.101). Pershan et al [33] in their empir-
ical demonstration of the inverse Faraday effect show the presence
of a term proportional to io - E x E* in perturbation theory; a
term which was observed empirically in rare earth doped glasses at
low temperature. Warren et al. [34] report sub Hertzian shifts in
molecular liquids subjected to irradiation with a circularly polarized
argon laser at 528.7nm, 488nm, and 476.5nm with a power density
of 10w/em?. Under these condition the resonance frequencies from
equation (1.10.103) are 0.12, 0.10 and 0.098Hz. However, the data
by Warren et al. [34] are probably artifactual, or at best heavily
influenced on their own admission by heating or noise, because they
did not find the expected alignment of spins by a circularly polarized
laser[35]. The latter phenomenon has been dramatically confirmed
by Brown et al. [36] with a krypton ion laser of about the same
intensity as Warren et al. [24]. Brown et al. [36] report clear evi-
dence for alignment of spins by a circularly polarized laser through
the Fermi contact mechanism in IIT V semiconductors by tuning the
laser according to optical selection rules. Other RFR mechanisms
have recently been suggested theoretically [37]: these are essentially
variations of the original theme [38]. Under the right condition, as
defined by Brown et al.[36], Optical NMR (ONMR) produces an
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enormous increase in sensitivity of many order of magnitude over
ordinary NMR. A similar dramatic improvement in resolution is ex-
pected from RFR[31], utilizing the 1/w? dependence. To test these
effects electron and proton beam data are needed to test the simple
theory developed here without the complicating noise effects due to
sample choice or heating effects.

1.11 CHEMICAL SHIFTS IN NMR

Another potentially useful feature of RFR is that it is site selec-
tive. The chemical shift pattern is however dependent on a different
molecular property tensor than NMR. This was found by Harris and
Tinoco [39] with time independent perturbation theory. The spec-
tral fingerprint in RFR is therefore usefully different from NMR, and
provides in principle a high resolution, site specific resonance tech-
nique. Brown et al. [36] have already demonstrated site specificity
in ONMR [40-43] down to the level of quantum dots. This is a dra-
matic demonstration of the enhancement possible with the use of a
circularly polarized laser in NMR and ESR, as originally discussed
[31].

The calculation of the chemical shift in RFR is straightforward [39].
Harris and Tinoco considered the second order perturbation energy
(SI units):

E = ZW, (1.11.104)

n hwon

with the perturbation Hamiltonian:

1
H = 5 (P + e(A + AN))? + V. (1.11.105)
where 1
0
Ay = 23 TN X T (1.11.106)

is the vector potential [27] due to the nuclear magnetic dipole mo-
ment my. The perturbation term relevant to the RFR chemical

Interaction of Electromagnetic Radiation with One Fermion 31

shift is the single photon off resonance population term (39]. which
is by far the dominant chemical shift term:

i
M2hWon

3
E = i—— > (0lp - Aln)(n|An - 4°]0) + cc. (1.11.107)

The electric dipole moment is defined [39] by:

Olpln) = me (0lp}n). (1.11.108)

"on

The vector relations:
i(p X (M x 7)) - (Ax A%) = i(p- A)((my x7)- A7) =
i(p- A")((my x7)- A), (1.11.109)
and
px (pyxr) = (u-r)my — (p-my)r (1.11.110)

demonstrate that expression (1.10.107) may be written a:

2

€
- (ifg A x A 111111
E C(72m‘7 % ) ( )
where
— Ineo =0 1.11.112
¢ = LS S 0jupn) - (0] 510) (11L112)

Here my = gn(e/4m)ho, and equation (1.11.111) This defines the
RFR chemical shift factor or shielding constant. It depends upon the
novel molecular tensor in equation {1.11.112), where this is novel in
the sense that it is not the same tensor that defines the chemical shift
in NMR [27] through the well known Lamb shift formula. Its order
of magnitude in the first approximation is around 10~%; roughly the
same as in NMR. The complete RFR spectrum from the protons
in atoms and molecules is therefore, from equations (1.11.111) and
(1.11.112):

2
Tint = io—(1 + ()o- A X A*, (1.11.113)
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and is site specific by the site specific nature of C.

1.12 CLASSICAL DERIVATION OF THE INVERSE
FARADAY EFFECT

Consider the effect of an electromagnetic field on a proton or electron,
treated here as classical particles, in a circular orbit with

v =wxr, L =rxp (1.12.114)

where w is the angular velocity, r is the radius of the orbit and v
is the tangential velocity. The tangential momentum is p and the
orbital angular momentum is L. The energy of the particle is:

1
B = oI = ;ﬂ—:]rxp], (1.12.115)
and so
p’ 4
L = = = = 12,
w|L| I wrp, T — (1.12.116)
If we use the minimal prescription in the form [44] then:
p = €A, p* = eA*, (1.12.117)
from which we obtain:
A E
r= 2= 2 (1.12.118)
mw mw

"This is equation (1) of reference [44] in the nonrelativistic limit, and
is the simplest way to derive the orbital inverse Faraday effect. Its
angular momentum magnitude is:

p2 82 E2

L = — = — 1.12.
mw w3 (1.12.119)
and the energy is
B = tu = £F (1.12.120
T oY T o 12.120)
As a result equation (1.12.119) may be written as
2
L =i—A4x4* (1.12.121a)
mw

1
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in complex notation. The vacuum definition of B®) we arrive at the
orbital angular momentum as:
L = _fh BB

mw

(1.12.121b)

The energy of the inverse Faraday effect for one orbiting classical
electron or proton is then:
eh (3
E = ——|BU)], (1.12.122)
2m

The form of this energy is the same as that of the Zeeman effect, but
the spin component is missing. The latter can be reinstate by using
the classical interaction energy:

1 *
E = —0o-(p + eA)o-(p + eA”)

2m
2

=i—AxA" 0+ ..~ —L6g.B® 4 (1.12.123)

— _S.B(a) +

m
The total energy is thus
E = ——(L + 25)-B®, (1.12.124)
2m

which is the same as the expression for the complete Zeeman effect,
most often due to a static external magnetic field.

Finally, relativistic correction can be applied to this calculation. As
an example the relativistic momentum

p = ymv, (1.12.125)
and the relativistic expression for the kinetic energy
T — E = yma? (1.12.126)
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The relativistic corrected orbital angular momentum is then:

1 2 2
J=—(T-E =~ 3 (1.12.127)
w myw

which is given in reference [44].
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CHAPTER 2
THE FIELD EQUATIONS OF CLASSICAL
0(3)» ELECTRODYNAMICS

2.1 INTRODUCTION

In this chapter the classical field equations of O(3); electrodynam-
ics are given in the basis ((1),(2),(3)) suggested by the empirical
existence of circularly polarized radiation at the foundational level.
The structure of the equations is such that the covariant derivative
of the rotation group, O(3)s, replaces the ordinary derivative in the
Maxwell field equations (U(1) electrodynamics) and vectors and ten-
sors in Minkowski spacetime are written as vectors in the internal
gauge space ((1),(2),(3)). As a result the equations become intrin-
sically nonlinear, and give the fundamental field component B ®) in
the vacuum [1-8]. The classical field equations of electrodynamics
become structured within a nonAbelian field theory [9,10] with an
internal O(3), gauge symmetry. These equations support a physical
interpretation of field potentials similar to Faraday’s original concept
of the electronic state {11]. The U(1) field theory given in chapter
one is a particular solution of the O(3)s theory, which therefore gen-
eralizes the former to a nonAbelian gauge field theory, one which is
far richer in structure and physical content [12].

2.2 THE O(3), FIELD EQUATIONS

The basic field equations of classical O(3); electrodynamics are
(chapter one):

D.G* =0 (2.2.1)

D HM™ = J¥ (2.2.2)
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where the four current components are defined by:
Jo = (p@), J(a)/c).a €1{1,2,3} (2.2.3)

and where the field tensors have SI units as defined in chapter one.
The bold symbols in eqns. (2.2.1) and (2.2.2) are vectors in the inter-
nal gauge space with O(3), symmetry. The algebra of these vectors
is developed as in ordinary vector algebra, where there are dot and
cross products defined by differential operators in three dimensions.
Therefore a symbol such as J* in eqn. (2.2.2) is a three vector in
the internal O(3); symmetry gauge space. Each component of the
vector is itself a four-vector in Minkowski spacetime as given in eqn.
(2.2.3). The algebra of the four-vector components is developed as
in ordinary four-vector algebra of special relativity, using covariant-
contravariant algebra and Einstein summation over repeated indices
[13,14].

2.3 BASIC S. 1. UNITS

The basic S.I. units of the quantities appearing in O(3), electrody-
namics are the same as in U(1) electrodynamics, and some of the
most commonly used units and fundamental quantities are given as
follows, in which the bold symbols are the observable vector quanti-
ties as in U(1) electrodynamics.

Electric field strength, E : Vm~! = J{C~lm~!
Electric displacement, D : Cm—2 < ctbeat
Magnetic flux density, B: T = Wm™2 = JsC~'m—2
Magnetic Field Strength H : Am~! = Cs~lm™!
Magnetic vector potential 4 : JsC~lm™!

Polarization P : Cm™2

Magnetization M : Am~! = Cs~lm™!

Charge density p: Cm™3

Current density J : Am~2 = Cs'm™2

Vacuum permittivity ep : = 8.854188 x 10~12J1C2m 1
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Vacuum permeability pp : = 47 x 1077Js2C2m ™!
Electronic g factor g: = 2.002319314

Dirac constant A : = 1.05459 x 210_34,]3

Fine structure constant o : = £ = 0.007297351
Speed of light in vacuo, ¢: = 2.997925 x 103ms~!
Elementary charge e : = 1.60219 x 1071°C
Electron mass m, : = 9.10953 x 10~31kg

Proton mass m, : = 1.67265 x 10" kg

Bohr magneton ug : = 2;:: = 9.27408 x 10~ JT1

2.4 THE O(3) VACUUM EQUATIONS

The homogeneous O(3), field equation in the vacuum is the Feynman
Jacobi identity [12], eqn. (2.2.1), an identity which can be expanded
as: )

(O + glAu, )0 G* =0 (2.4.4)
where the vector potential is defined as in chapter one, and where
g is a factor with the units of 1/Wb (inverse of the magnetic flux);
a factor determined [12] by dimensionality and not to be confused
with the electron’s g factor, which is dimensionless. Therefore:

Dy = 0 + 9lAu, ] (2.4.5)

is the covariant derivative in an O(3), symmetry internal gauge space
[12]. It is a derivative that is Lorentz covariant in special relativity, or
equivalently flat Minkowski spacetime. This derivative stems from
Yang-Mills field theory as applied to elementary particles [15,16];
the most successful formulation of gauge field theory in the twen-
tieth century. The prediction and empirical verification of quarks,
for example, is based on a Yang-Mills theory with internal gauge
symmetry SU(3), a nonAbelian symmetry like O(3) [12].

2.4.1 THE COEFFICIENT g IN THE VACUUM

If we define the coefficient g in the vacuum to be the inverse of the
elementary fluxon (magnetic flux of one photon):
e K
= - = — 2.4.1.6
9= 3 T 2w ( )
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we recover the B Cyclic Theorem in the vacuum [1-8]:
BW x B = BOBO* et cyclicum (2.4.1.7)

where B(", B(®) and B® are components of the vacuum magnetic
flux density of the electromagnetic field: and where B(®) is the mag-
nitude of B®); and we also recover the quantization condition[1-8]:

p = he = A (2.4.1.8)

where p is the linear momentum magnitude of the photon. Therefore
eqn. (2.4.1.8) is also a minimal prescription in which p is replaceable
by eA®), where A©) = B /k, with k the wave-vector magnitude.

The charge quantization condition is a straightforward result of
Planck quantization as follows. The energy of one photon is, from
the correspondence principle [17-19]:

1
hw = —BO?y, (2.4.1.9)
Ho
where V' is the quantization volume. The magnetic flux density car-
ried by the photon is:
1R

B _—
Ae’

(2.4.1.10)

where A is the quantization area and where /e is the magnetic flux
carried by one photon, the fluxon in Wb and a fundamental constant.
From equations (2.4.1.9) and ( 2.4.1.10):

1,V

T an ( kA2 )
where a is the fundamental fine structure constant of quantum elec-
trodynamics [12]. The ratio on the right hand side of equation
(2.4.1.11) is therefore a constant of nature. If we consider the area
A to be the determinant of the wave-vector [20-23]:

(2.4.1.11)

A= — (2.4.1.12)
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we recover equations (2.4.1.7) and (2.4.1.8), which conversely imply
equation (2.4.1.12). The photon is the quantum of energy hw, which
is proportional [1-8] to €2 and is C positive, where C(e) = —eis
the charge conjugation operator. The presence of e in the vacuum
means that the electromagnetic field in O(3), electrodynamics is C
negative, and so influences a charge in a receiver. The charge e
also occurs in the vacuum in U(1) electrodynamics as discussed by
Jackson [14] for example. An electron accelerated to approach ¢
produces an electromagnetic field, and so both electron and field
must be C negative. In elementary particle physics, the photon
is a C positive particle, and this is the same in O(3), and U(1)
electrodynamics, both classical and quantum.

The B Cyclic Theorem [1-8], equation (2.4.1.9), does not occur in
U(1) electrodynamics and is a non-linear, nonAbelian vacuum rela-
tion between field components. Within a factor B it is a Lorentz
covariant angular momentum relation [1-8] in relativistic quantum
and classical field theory. Using equations (2.4.1.8) and (2.4.1.11) it
is equivalent to the fundamental definition of B () in O(3) electro-

dynamics:
B®* — _i%A(l) x A, (2.4.1.13)

and so B® does not occur in U(1), or field theory according to
Maxwell's equations(1-8].

2.4.2 THE O(3), FIELD TENSOR IN THE VACUUM

Equation (2.4.1.16) is part of the definition [1-8] of the O(3), field
tensor in the vacuum:

lG(l);w = 9* Ak _ grAMY _ g AP APV (2.4.2.14)
c

with cyclic permutation of indices (), a = 1,2,3. The magnetic
part of equation (2.4.2.17) is [1-8]:

LW = uHM* = v x A" _ i%A@) < A®
r
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lew = o H®* = ¥V x A@x _ 'i—;Z—A(g') x AY  (2.4.2.15)
C

lew - o HG* = v x A® _ %A(U x A®)
[

The meaning of the vector potential A(3) is made clear through con-
sideration of SU(2) x SU(2) electroweak theory, developed in chap-
ter 8. It is important at very high energies, those in a large hadron
collider, because it produces a very massive boson which is charac-
teristic of the SU(2) x SU(2) theory. In O(3), electromagnetism it
is a constant, producing a classical field momentum eA®). There
can therefore be radiation reaction in O(3) electrodynamics and in
consequence a classical Compton effect.

Conservation of linear momentum in the interaction of field
and Lorentz electron means that eA(®) is changed, and since
A = BO)/k the frequency of the field is changed, as observed in
the Compton effect [25]. The correspondence principle means that
eA® = hk  where A® is the magnitude of an effective A®) that
can be defined to give B®) = ¥ x A,(z:’})f. It will be demonstrated
later that the A(® field corresponds to a massive photon at high
energy that does not contribute to physics at lower energies. In U(1)
electrodynamics there is no A®), no classical Compton effect and no
correspondence between the quantized photon momentum #x and
the classical field momentum, e 4(®).

In O(3); electrodynamics the relation between the magnetic field and
the magnetic vector potential is therefore non linear in the vacuum.
If we take a particular solution (Section ( 2.5)) of the nonabelian
field equation ( 2.2.1) in such as way as to give Maxwell’s equations
for indices (1) and (2) we find that:

BY = Vx AW — iZ4®) x 4®) (2.4.2.16)
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B® = vx A® _ 7:%,4(90 x AD (2.4.2.17)

BG® — v x4® _ 7;%,4(1) x A® (2.4.2.18)

However, since A®) is latter demonstrated to correspond to a mas-
sive field that exists on only very short lengths, its curl is zero, and
so the B® field is given by equation (2.4.1.13), which is non-zero.
Plane wave solutions for A()) = A()* self consistently leads back
to the B Cyclic relation (2.4.1.7) and to equation (2.4.1.13). It is
emphasized that this is a particular solution, in general, the vacuum
field tensor is always non-linear with respect to the vector potentials
in O(3) electrodynamics.

The self magnetization in the vacuum:

M® = Lpg® (2.4.2.19)
o

is absent from U(1) electrodynamics and together with the self po-
larization, equation (2.4.2.28), leads to a minute correction in the
g factor of the electron, the Lamb shift, and the Casimir effect in
O(3)p quantum electrodynamics (chapter 6): corrections which start
to occur at fifth power in the fine structure constant. Therefore the
precision of quantum electrodynamics will have to be increased sub-
stantially before we can observe these minute effects. The current
precision of quantum electrodynamics (QED) ¢annot be used to as-
sert, as has unfortunately become customary, that QED is a U(1)
gauge theory. On the classical level O(3)s electrodynamics contains
a vacuum magnetization (2.4.2.20) which does not occur in U(1)
electrodynamics:

M® wum = —iihA“) x A®). (2.4.2.20)
When the O(3), field interacts with one electron equation (2.4.2.21)

becomes the inverse Faraday effect, in which g of the vacuum changes
its value to a factor g’, obviously with the same units. The gauge
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symmetry of the theory remains the same: O(3). The inverse Fara-
day effect is therefore:

/
M®pp = —ifj—A(l) x A® (2.4.2.21)
0
where g’ can be defined as in chapter one from the minimal prescrip-

tion in O(3)s, using the complex vector potentials 4 = A1) and
A* = A® (Section (1.12)).

The discerning reader will have realized that as soon as A becomes
complex, the theory becomes an O(3); gauge field theory, and there
is a link between this deduction and the existence of ordinary circular
polarization, discovered in 1811 by Arago.

The inverse Faraday effect, which has been observed on numerous
occasions [26], shows that when there is field matter interaction elec-
trodynamics is an O(3), gauge theory, or alternatively a sub theory
of a higher order nonAbelian gauge field theory such as one with
SU(3) symmetry. The reason is simple, A x A* = A1 x 42
is identically zero in a U(1) gauge field theory, which is Abelian
and linear [12]. The process of field matter interaction is therefore
summarized simply by:

Gvacuum — g'ﬁelds/matter. (2.4.2.22)

Clearly, B® of the vacuum is an empirical observable of the inverse
Faraday effect when there is field matter interaction. As discussed
in chapter one, the third Stokes parameter of the vacuum field is
oroportional to B® and to M ®) in the vacuum (in the absence of
natter and material sources), so in O(3), electrodynamics, the exis-
ience of ordinary circular polarization is sufficient to demonstrate the
xxistence of B®) in the vacuum through the fundamental definition
f the O(3), gauge field tensor in equation (2.4.2.14). In vacuum
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electrodynamics considered as a U(1) gauge field theory, all non-
linearities such as 4 x A* = A1) x A? are axiomatically zero, so
the third Stokes parameter is then defined by auxilliary assumptions,
because it is proportional directly to A x A* in the vacuum (chap-
ter one). The U(1) gauge field theory of electrodynamics therefore
does not allow the existence of circular polarization in as consistent
a manner. Circular polarization was discovered by Arago in 1811
and explained by Stokes in 1852 several years before the proposal by
Maxwell of a set of twenty quaternionic equations.

These became the ”Maxwell equations” of chapter one only after
considerable simplification by Heaviside and his contemporaries. The
Heaviside Maxwell equations were put into covariant form at the
turn of this century, during the development of special relativity, a
form linear in the potential. In 1955, Yang and Mills developed a
gauge field theory in which the field tensor can be non-linear in the
potential, and the electrodynamics developed in this book shows that
the conjugate product A x A* needed to describe ordinary circular
polarization appears automatically from gauge principles if and only
if the internal gauge symmetry is not U(1). In this book we evaluate
some of the numerous consequences of using an O(3), internal gauge
symmetry.

Specifically, the third Stokes parameter is:

S; = i|E x E¥|, (2.4.2.23)

and using the scalar vacuum relations:

E©® = BO = 40 (2.4.2.24)

we obtain:

S; = w?A® x AB)| = w2%|3(3)*| (2.4.2.25)



46  Classical and Quantum Electrodynamics and the B®) Field

in O(3), electrodynamics. In U(1) electrodynamics, A1) x 4@ g
zero and so in this setting we would have:

S3 =0 (2.4.2.26)

axiomatically. However, S3 is an observable, it is the basic signature
of everyday circular polarization [27], and so U (1) electrodynamics is
axiomatically less satisfactory on empirical grounds. The existence of
circular polarization, and thus of S, is sufficient to demonstrate the
existence of B(®) in the vacuum in O(3)p electrodynamics. In U(1)
electrodynamics the third Stokes parameter is axiomatically zero and
U(1) electrodynamics is incapable of explaining circular polarization
from the first principles of gange field theory. The reason is that those
first principles assert that A x 4@ jh a 7 (1) gauge field theory
is axiomatically zero without auxilliary conditions. The existence of
the B® field eliminates the radiation reaction problem with U(1)
electrodynamics. The field tensor in a gauge theory is in general a
commutator of covariant derivatives, which in general is non-linear
in A. It is this non-linearity that gives rise to the third Stokes
parameter and circular polarization. This ties circularly polarized
radiation with physical corrections of electrodynamics. If we remove
the non-linearity (use U(1) gauge field theory) we remove circular
polarization as a source for these corrections.

Equation (2.4.2.14) also produces the electric field part of the tensor
in vacuo:

oAM
po = 247 040
ot
)
2O — "’%_ — igA® A0, (2.4.2.27)

The E® field is zero (1-8], and there appears to be no empirical
evidence for such a field component at low electrodynamic energies.
This result is captured by an SU (2) x SU(2) electroweak theory, and
is outlined in chapter 8. There are vacuum polarization terms:

P(a) = ——igCEDA(O)A(a), a =1, or?2, (24228)
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which for plane waves self consistently gives the results:

)
EM = aj; — igwAM

)
E® _ Qf;T — igwA®. (2.4.2.29)

Therefore in O(3), electrodynamics the field tensor in the vacuum is
conveniently summarized as:

D® . = E® + PO, (2.4.2.30)

2.5 REDUCTION TO MAXWELL’S EQUATIONS

The O(3), field equations (2.2.1) and (2.2.2) reduce in a straight-
forward manner to Maxwell’s equations in indices (1) and (2) by
choosing particular solutions. First consider the homogeneous field
equation (2.2.1) and its particular solution:

8,G@m = 0 (2.5.31)

[4,, G = 0. (2.5.32)

Equation (2.5.31) gives a complex conjugate pair of homogeneous
Maxwell equations:

8,GP* = 0,0 = 1or2, (2.5.33)

and the equation:
8,G®m = g (2.5.34)

It can be shown that equation (2.5.32) gives the B Cyclic Theorem.
self consistently[1-8] if B() = B(®* i a plane wave (solutions of
equation (2.5.33 ). Eqn. ( 2.5.34 ) gives the result in vacuo:

8BB)

pats

=0 (2.5.35)
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and so there is no ”Faraday induction” due to B®) as ohserved em-
pirically [28]. The latter is an obvious result because there is no
"Faraday induction” due to the conjugate product A() x A® of
third Stokes parameter. The equation of Faraday induction is equa-
tion (2.5.33).

The particular solution (2.5.31) gives the Maxwell equations (2.5.33)
and therefore the Faraday and Gauss Laws, together with equation
(2.5.34) which shows that B®) is a constant of motion. The so-
lution (2.5.32) gives the B cyclic theorem for plane wave solutions
of equation (2.5.33). Therefore Maxwell’s electrodynamics are re-
covered together with equations for the constant of motion B®).
The theoretical structure is a nonabelian gauge field structure, so
is Lorentz covariant {12]. As described in section (2.4), the B®)
field is observable through the third Stokes parameter S3 and the
existence of circular polarization. More generally, equation (2,2,1)
should be solved numerically making as few assumptions as possible.
The Stokes Theorem relevant to this theory is the integral form of
equation (2.2.1), the original Feynman Jacobi identity. It is incor-
rect to apply the U(1) theory of electrodynamics to B®). and as a
result requires considerable auxilliary phenomenology, as attempted
recently [29].

The inhomogeneous Maxwell equations in vacuo in indices (1) and
(2) are recovered from equation (2.2.2) using the particular solution:

8,6 = g (2.5.36)

Jlaw geoe®* (4D, Glom] (2.5.37)

The inhomogeneous Maxwellian equations are:

D#G(a)l“’ —_ J(a)”‘a = 1or 2, (2538)
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and the equation for B®) is:

9,G®M = o, (2.5.39)

which in vector form is:
VvV x B® = . (2.5.40)

This is consistent with the fact that there is no E®) in the vacuum
and with the fact that B®) is a constant of motion [1-8] whose curl
and time derivative both vanish. This is why B®) is sometimes
known as the fundamental spin field of O(3), electrodynamics.

The Maxwell equations (2.5.38) give the Coulomb and Ampere-
Maxwell laws in the vacuum. The additional cyclic equation (2.5.37)
produces an energy term due to B®) which does not exist in U(1)
electrodynamics. We start by considering the current term as de-

scribed in equation (2.5.38)
E = — / JD 4@ gy, (2.5.41)

where V is the volume containing the radiation. This energy term
can be developed as follows:

E = __g_eabc/[A(b)w G(c)pr/]A(a)udV
Ho
= 9 cabe / A® (G A )4V, (2.5.420)
2,u0
and since 4® n = 0 we see that the this reduces to:
2 1
= 9 [ra0n 4@940) 4O gy = ——/B(3)-B(3)dV.
Be = - [l ADA0, 4D = -

(2.5.42b)
This is the electromagnetic energy in a volume V of radiation due to
the B®) component of vacuum O(3); electrodynamics. The parti(.:u-
lar solution (2.5.37) therefore gives this energy self consistently with
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the inhomogeneous Maxwell equations (2.5.38 ) and the equation
(2.5.39) for the constant of motion B()

Inhomogeneous Maxwell equations when there is field matter inter-
action can always be obtained by writing equation (2.2.2) as:

O, H" = —gA, x H"™ + J,* + J;*, (2.5.43)
and using the particular solutions:
o H"Y = J," (2.5.44)

L = gA, x HW (2.5.45)

Equation (2.5.44) gives the Maxwell equations for field matter inter-
action:
OH®M = J (D 4 = 1452 (2.5.46)

together with:
8, HBmw = g G (2.5.47)

and the relation (2.5.45) which gives the energy due to the interaction
of B(®) with matter, for example an electron or proton:

E3 = — /J]VA,,dV (2548)

Equation (2.5.47) governs the behavior of the magnetization due to
B®) for example in the inverse Faraday effect. If this magnetization
is phase free, then the current Jm(3) is self-consistently zero because
the four-derivative of a phase free magnetization tensor is zero. In
general (sect. 2.10) the equation governing field matter interaction
is equation (2.2.2) and the self-consistent Maxwellian point of view
emerges from a particular solution of this equation together with
equations (2.5.47) and (2.5.48).
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2.6 THE FUNDAMENTAL LAWS OF O(3)s
ELECTRODYNAMICS

The four fundamental laws of O(3); electrodynamics are similar to
the Gauss, Faraday, Coulomb and Ampere Maxwell laws of U(1)
electrodynamics and as shown in section 2.5 reduce to them under
well defined conditions. However, in general, O(3); electrodynamics
is a nonAbelian gauge field theory which considerably enriches the
content of electrodynamics as discussed recently by Barrett [30]. The
four basic laws are written out in full in this section in the basis
((1),(2), (3)) and are also given by Barrett [30] in a slightly different
notation.

The O(3), Gauss Law

The O(3), Gauss law allows for the existence of a topological mag-
netic monopole and takes the form of three equations:

v.B2* — ig([A([3) -BU)) (2.6.49b)

The particular solution discussed in Section (2.5) reduces these equa-
tions to:

V-B@* = 0,0 =1, 2 (2.6.50a)
where the square bracket on the internal indices indicates commu-
tation with respect to those indices. We recover the Gauss Law for
a = 1or2andfora = 3, and obtain that B®) there is a mag-
netic flux monopole since the divergence is in general nonzero. In
quantum mechanics we have that the electric and magnetic fields are
conjugate observables, [E, B] = ¢h with the commuation rule

(E@,, BB, = ihé;;6%. (2.6.50b)

This apparently indicates a departure from the purely classical de-
scription of O(3); electrodynamics. This appears to indicate that
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0O(3)p electrodynamics might involve pure vacuum symmetries that
are are not determined by the Hamiltonian.

The O(3), Faraday Induction Law.

The Faraday Law of induction can be developed as an O(3), gauge
field theory described by the three equations:

oBM

vxED 4 —— = —ig(cAy®B@ 1 (4@ E®)) (2.6.51a)
@, 9BD _ L WpE) 4 (4® RO
VXE® + —— = —ig(cA)"VB®) + [AT), EW)]) (2.6.51)
®
VxE® 4+ ————01; = —ig(cAPBW 1 [AD E@)]) (2.6.51c)

and the particular solution corresponding to the Maxwell theory is:

Bl
VxE(")+6 =0, fora = 1or?2,
oB®)
= 0. 2.6.
> (2.6.52)
Here commutator notation is used for simplicity in notation. For
e = 1,2 these equations are complex valued, and conjugate,
Maxwell equations of induction, and the last equation for a = 3 is

the law for the constancy of B®).

The O(3), Coulomb Law

The O(3)s Coulomb Law is given by the Poisson equations:

v.ED — €lp(x) + igA® . g6 (2.6.53a)
0

v.E® — elp(z) + igA® . gD (2.6.53b)
0

v.E® = gl' p® + igA . gD, (2.6.53c¢)
0
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This leads to the solution of which is:

v.E@ = L@, -1 2 (2.6.54)
€0

which are complex conjugate pairs corresponding to the original
Coulomb law in vacuo for p(®) = 0.

The O(3), Ampere Maxwell Law

Similarly there are three O(3), Ampere Maxwell equations:

1 9EW*
n _ = =
VxB Z o
Ly 4 94,0 BED L 4™ BO)) (2.6.550)
€ c
1 9B@+
2 _ -
VxB Z o
——I-EJ(Z) + i2(4,® B 4 J4®) EO)) (2.6.55b)
€0C c
1 BB
B _ — =
VxB Z o
L0 4 904, BO L AW, EOY), (2.6.55¢)
€0C2 c
where the vacuum solution is
. 10E®*
V x B@)* _ g =0e=12 (2.6.56)
VxB®* =
For a = 1,2 these are complex conjugate equations corresponding

to the original Ampere Maxwell laws and equation for a = 3 is the
law for the constancy of B(®). It can be seen that in reducing the
O(3), laws to the U(1) laws plus equations for B(®) we obtain the
new energy and angular momentum laws discussed in Section 2.5.
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The laws of O(3); classical electrodynamics have been given by Bar-
rett [30] in a more condensed notation, and are reproduced as follows:

V.B = iglA, -B]

OB
VxE + E = ’iq[A, E]

V-E = J, — iq[A, -E] (2.6.57)

OF .
E — VxB + J = Zq[A, B]

It is seen that the Barrett Laws and our independently derived Laws
are mathematically identical, giving conclusive evidence for the tech-
nical correctness of both approaches. This result also demonstrates
the fact that recent criticisms [31] aimed exclusively at our equations
(2.2.1) to (2.2.2) are wildly erroneous. Significantly, these criticisms
are never aimed at the mathematically identical Barrett equations
(2.6.57), revealing them to be most unscholarly as well as grossly
erroneous [28,29]. The Barrett equations contain the B®) field by
definition and can be developed [30] in a rich variety of variation
upon the theme.

2.7 THE LORENTZ FORCE EQUATION IN 0(3),
ELECTRODYNAMICS

The Lorentz force density (force per cubic metre) in O(3), electro-
dynamics is:
Fr o= Glw gla) (2.7.58)

which is a scalar in the internal O(3), symmetry gauge space. Ex-
panding eqn. (2.7.58) we obtain:

Fro= GO g) 4 g@wr @) | @ g6) (2.7.59)
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The Lorentz force due to B®) comes from the final term on the right
hand side of equation (2.7.59):

F = J® x BO — o (2.7.60)

There is in consequence no Lorentz force due to B®®) as observed em-
pirically [32]. There is however a magnetization (transfer of angular
momentum) due to B () in the inverse Faraday effect, as observed
empirically. This means that the trajectory of an electron in an
electromagnetic field is described by the first two terms on the right
hand side of eqn. (2.7.59), as in the U(1) Lorentz force equation.
There is no E® field in O(3); electrodynamics so there is obviously
no Lorentz force due to it, again as observed empirically[32].

There is however a linear momentum transfer due to eA®® = hx
from the field to an electron in O(3), electrodynamics. However,
this field is very short ranged and massive, and is present only under
very high energies. So the force transfer is due to the transverse
components as in U(1) electrodynamics. The Lorentz force density
F* is the same in U(1) and O(3), electrodynamics, and is defined as
[33]:

FE = 5,T", (2.7.61)
where TH*¥ is the electromagnetic stress energy momentum tensor.
The latter is clearly a scalar in the internal gauge space of O(3)s
electrodynamics because it contains the scalar energy density:

1

3
U = —SN"BWw.pgW (2.7.62)
o a=1

The extra energy density due to B (3) is the third term on the right
hand side, and so the contribution of B (3 to the stress tensor of the
field vanishes:

Tr(T®) = (B®.B® _ B®.B®) = 0 (27.63)
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a result which is consistent with the fact that B(®) makes no con-
tribution to the Lorentz force density. It follows that B(3) makes
no contribution to the Poynting vector, which is a part of TH"[32-
34]. It contributes however, a constant energy density to the field,
as in equation (2.7.62). It is evident that the derivation of the O(3),
Lorentz force equation is straightforward and in complete agreement
with empirical data.

2.8 Continuity Equation and Lorentz Condition in O(3),
Electrodynamics

The continuity equation of O(3)s electromagnetism is:
D,J* = 0. (2.8.64)

The mathematical form of the continuity equation of U(1) electro-
dynamics is recovered in the particular solution:

8, J* =0 (2.8.65a)

[A,, J*] = 0. (2.8.65b)

Eqn. (2.8.65a) gives the charge and current conservation equations:
8, J I = 0, a € {1,2,3}, (2.8.66)

and eqn. (2.8.65b) gives the energy conservation law:
E = —/[A,‘, JHdV = 0. (2.8.67)

Both laws are clearly special cases of the (O(3), conservation law
(?.8.64). If A.,, is assumed to be directly proportional to J,,[35] equa-
tion (2.8.64) implies the Lorentz condition in O(3)s electrodynamics:

D, AP = 0. (2.8.68)

Using the algebra:
[A., A" = 0, (2.8.69)

The Field Equations of Classical O(3)s Electrodynamics 57

then this equation implies eqn. (2.8.67) and also:
o.A" =0 (2.8.70)

from which we recover self-consistently the mathematical form of the
U(1) Lorentz condition:

8,A* = 0,a € {1,2,3}, (2.8.71)

2.9 Primitive Concepts, Axioms and Constitutive Relations
of 0(3), Electrodynamics

The primitive concepts [36] of O(3)s electrodynamics include the lo-
calization of field energy. As we have just seen, the tensor derivative
F*# is the same in O(3), and U(1), although the tensor itself is dif-
ferent. The problems encountered with the Poynting vector [36] in
U(1) seem to remain in O(3). However, in O(3)s, it becomes pos-
sible to treat the field momentum classically through an effective
eA® and to give a classical Compton effect as argued earlier. To
accept this representation of the field momentum requires perhaps
a slight revision of the primitive concept of charge in electrodynam-
ics. As discussed in ref. [36], charge results from the field in the
Maxwell-Poynting interpretation, and charge is an epiphenomenon
of the electromagnetic ether. In the microscopic Lorentz-Maxwell
theory fields and charges are distinct, the charge on the electron is
the source of the field. In O(3)s electrodynamics there exists the
proportionality constant g which leads to the vacuum momentum

condition
p = eA® = Rk, (2.9.72)

and so the elementary charge, the universal constant €, can exist
either in the field or on the electron. This is a primitive (first prin-
ciples) concept which is consistent with the fact that an electron
accelerated to approach ¢ becomes a field [33-37], while e remains
the same. The relation (2.9.69) also exists in U(1) electrodynamics
as argued and seems to be logically irrefutable.
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The fact that O(3)s electrodynamics is a Yang Mills gauge field the-
ory should not be misinterpreted to mean that the field acts as its
own source. The two photons, propagating at ¢ in vacuo, each carry
the fluxon #i/e, and are correlated to each other. The conjugate prod-
uct AX A* is then interpreted as giving rise to a self polarization and
magnetization, and to the third Stokes parameter S5 in the vacuum.
Since p = eAS})f = kK gives rise to a Compton effect, precisely
as observed empirically [39], the Compton effect serves as excellent
empirical evidence for O(3); electrodynamics and distinguishes it
clearly from U(1) electrodynamics. Here A®) ¢ is an effective po-
tential that defines the B® field according to B®) = V x B(3)eff.
This potential differs from the more fundamental A®). which is a
massive field that exists only on short lengths and high energy. The
exact nature of this potential is discussed in section (2.11). The
interpretation of eAf})f as a linear momentum may cure some prob-
lems with the conventional Poynting vector, which exists unchanged
on average in 0(3), electrodynamics.

The basic axioms of O(3), electrodynamics include the use of an
O(3), symmetry Lagrangian which automatically gives rise to vac-
uum energy densities due to B®) As we shall argue, there are pro-
found differences between O(3), and U(1) in respect of gauge trans-
formation and the interpretation of the potential as exhibiting prod-
ucts that are classically physical. Therefore there are major advan-
tages of using O(3), in unified field theory.

The constitutive relations in O(3), electrodynamics [36], arise as in
U(1) from the fact that the number of field equations (two) is not
enough to determine the four unknowns, B, E, H and D. So the
constitutive relations have to be introduced [36]:

D* = ¢(E)E“ (2.9.73)
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H® = _L_pw@ (2.9.74)

- )

1(B)

for a € {1,2,3}. Asin U(1) electrodynamics, the scalal" per‘rnitt.iv-
ity € and scalar permeability y are complicated tensor funfttlon.s or
functionals [36], and for non-linear media are themselves functions
in general of the field and its frequency, as in dielectri(:. sI.)ectro.scopy
[40]. Therefore, O(3)s electrodynamics gives a description of non-
linear optics through the constitutive relations. The symmetry of
the gauge theory O(3)s does not change.

The ”ether” relations [36] in O(3)y electrodynamics are:

D@ = E® (2.9.75)
H® = Lp@ (2.9.76)
o

As for Maxwell’s equations, the O(3), field equations are generally
covariant, and the invariance of the ether relations restrict the space-
time transformations to Lorentz transformations [36]. A Lorentz
frame, or covariant ether, is one in which the O(3), field equations
maintain their form and the speed of light ¢ remains constant. The
word ”ether” in this context should not be confused with the concept

of luminiferous ether [36].

Since O(3); electrodynamics reduces to U(1) electrodynamics in par-
ticular solution it is not surprising that sometimes the two are closely
related. The O(3)s electrodynamics also reduce straightforwardly to
Lehnert’s electrodynamics {41] where:

v
0,G" = Jyac - (2.9.77)
In other words Lehnert assumes a non-vanishing charge-current in

the vacuum Coulomb Law, so our equations (2.5.36) and (2.5.37) are

modified to:
O“G;IJ/ = J¥
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5" = geolAu, G*) (2.9.78)
JV = JVSOUTCC + J]V.

Eqns.. (2.9.74) reduce O(3)s electrodynamics to Lehnert electrody-
namics by generating the vacuum B®) energy £ = — f J1¥A,dV.

2.10 THE INVERSE FARADAY EFFECT

’I“he inverse Faraday effect [1-8, 26, 42] cannot be described self con-
s1s.tently with U(1) electrodynamics, because the latter denies the
existence of the conjugate product A() x A®). A description (Sec-
tion (1.12)) in terms of the minimal prescription leads back to a
non-.zero A A® the signature of O(3), electrodynamics. The
particular, formally Maxwellian, solutions (2.5.46) do not allow for
Fhe existence of the longitudinal current J()”, the signature of the
inverse Faraday effect, which is empirically observable magnetization
in axis (3) by a circularly polarized electromagnetic field. Taking
Fhe particular solution leading to the formally Maxwell equations
?nconsistently removes the inverse Faraday effect, another sign that
1t cannot be described from first principles in a U(1) gauge theory
of electromagnetism. For a consistent first principles description we
need the unabridged equation (2.2.2). The latter is expanded in the
basis ((1), (2), (3)) as 1-8:

(a)uv _ a)v . a c)pv
O HOM = J@v | jgeabe[g®)  F() ]. (2.10.79)
The constitutive relation:
HOW = (g@m (2.10.80)

may be used to demonstrate that:

1
HG* — _ gl
B (2.10.81)
If we define (cf. eqn. (2.4.2.21):

HO® = ;9 40) « 4@
o : (2.10.82)
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then we find that ,
Jd =2y (2.10.83)
1
We can write equation (2.10.79a) as:

O#H(l)'w* = g L A g (2.10.84)

where the transverse current:
AT = ge[AD,, GO (2.10.85)

causes a signal in an induction coil due to the vacuum B @) field
appearing in G(3#¥_ This is the inverse Faraday effect as observed

empirically [1-8, 26, 42].

The explanation of this effect in U(1) electrodynamics relies [1-8,
26, 42] on the clearly self-inconsistent introduction of A x A@)
phenomenologically. This procedure violates the fundamental U(1)
gauge condition that A1) x A(®) be everywhere zero under all condi-
tions. As shown in chapter (1), 4() x A®) in the vacuum is propor-
tional to EMW x E®) and so to the third Stokes parameter. There-
fore the U(1) theory cannot describe the third Stokes parameter in a
completely consistent manner. In consequence circular polarization
defined without reference to A x A* and results in an inconsistency
that, is removed by dropping the term A - A* term in the Hamiltonian
for a particle interacting with the field. In O(3)s electrodynamics,
the inverse Faraday effect and third Stokes parameter are described
in a straightforward manner through the vacuum B ®) field, which

does not exist in U(1) by definition.

Equation (2.10.79a) can be developed using the result:

AJ(])V* — 692[14(2)#, [A(l)p, A(Z)u”
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— 2 v
= eg?|aAPD 2 a7, (2.10.86)
The coupling constant may be written as

_ K _ W
g = 400 = m, (2.10.87)

and may be used to demonstrate that

y 7(2)r € 2 v
6T = —-w AP, (2.10.88)

Now write the four-current for one electron as:

s 7(2)r € v
oI = Wp@) , (2.10.89)

where m is the electronic mass, V the sample volume and p(2»
The electronic energy-momentum vector, defined through the O(3)s

minimal prescription:
2)v v
P = eA®r, (2.10.90)
From eqns. (2.10.88) to (2.10.90):
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By defining the one electron susceptibility as[1-8]:

e?c?
X = =3 (2.10.92)
then the permattivity is found to be:
- X
= ay (2.10.93)

This result is self consistent because the inverse Faraday effect can
b‘e described through the same susceptibility y by using the relativis-
tic Hamilton Jacobi equation [1-8] for one electron in the classical
electromagnetic field. The current AJ®)” is due to the field induc;ad
transverse electronic linear momentum as described in section (112)
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The field equations of O(3)s electrodynamics give a self consistent
and complete description of this process without phenomenology. In
U(1) electrodynamics, the inverse Faraday effect can be described
only after the phenomenological (1-8. 26] introduction of E x E*.

Consider next the development of equation (2.10.79c). From equa-

tion (2.10.80):
(r)ILH(Ii);w* — 0‘ (21094)

and so
JjBr = —ig{A(l),“ H(Z)‘”’]‘ (2.10.95)

(Equation (2.10.94) follows from the theoretical and empirical find-
ing that &B(3)/0t = V X B® = 0.) In equation (2.10.95) JOW is
an induced current (not a source current), and as we shall see, it is
induced in the inverse Faraday effect in a self consistent manner.

Now consider the constitutive relation:

H(Z);LV — EG(Z)I“” (21096)

and the definition:

—1'G(2)I“/ - (I)VA(z)I‘ _ (')I‘A(z)" — 'ig[A(S)“, A(I)V] (21097)

[

with
[A(l)w [A(Z)I" A(l)"” = 0. (2.10.98)

Set v = 3 in equation (2.11.95), to obtain:

JB33 = 20cAM) x BO), (2.10.99)

which is a polar current induced by the non-linear cross product
AW x B® . The B? field is

B® = v xA4® (2.10.100)
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the polar current is equal to the axial current of the orbital inverse
Faraday effect (cf. Section (1.12)):

62

T3 = igeek AW x A@) = (2.10.101)

mwV’

Therefore J(3)* is the axial magnetization current due to B(®)* for
one electron. This axial current is inversely proportional to the fre-
quency. The fact that the axial and polar currents are equal means
that the electron transcribes a chiral (helical) trajectory, involving
simultaneous translation and rotation in general[43].

There is no longitudinal source current in equation (2.10.79) for
a = 3 because the source current of circularly polarized radiation is
necessarily transverse, the charge in the source goes around a circle
about the (3) axis. The source does not move forward along the (3)
axis and there is therefore no polar source current in the (3) axis, the
longitudinal axis. As the angular velocity of the charge approaches
zero the source stops radiating, and we obtain O(3), electrostatics,
in which:

E = E,i = EV = E@+ (2.10.102)

SO
EVxE®D = ExE* = 0. (2.10.103)

There is no radiated B® field in O(3), electrostatics because there
is no radiation associated with the third component of the gauge
algebra. For this reason O(3), electrodynamics has really a broken
O(3) symmetry. The issue of broken symmetry is discussed in section
8.5. The lack of radiation in the 3-sector of the gauge theory means
that the Coulomb Law of O(3), electrostatics is:

V-D =0 (2.10.104)

where D is real valued and is defined in the z axis, perpendicular to
the 2 = () axis.

The Field Equations of Classical O(3)p Electrodynamics 65

Note carefully from equation (2.11.102) that the gauge symmetry of
the Coulomb Law, eqn. (2.11.104), is still O(3),. It shows that there
is a longitudinally, z directed, static electric displacement between

one static charge and another.

Similarly, the Ampere Law of O(3); magnetostatics is:

VxH = J, (2.10.105)

where H is a static magnetic field strength perpendicular to the.cur-
rent density J. So H is directed in z if J is directed in z t'angent‘lally.
Clearly, H is not radiated and should not be confused w1th' radiated
B of O(3); electrodynamics. The static H is th.e cu;‘l of a( 2\;ector
potential, while B (3 is always defined through —igAM x A

The Gauss and Faraday Laws of O(3), magnetostatics and electro-
statics are also O(3), gauge field equations respectively:

V-B =20 (2.10.106)
and
OB
= —— 2.10.107
VX E TR ( )
where
D = eD; B = pH. (2.10.108)

Note that in eqns. (2.10.104) to (2.10.108) Maxwell’s displa(.:ement
current is absent and there can be no explanation of the inverse
Faraday effect, an effect of a radiated field, from a source on an
electron in a receiver. These equations are the empirically observable
laws of electrostatics and magnetostatics, and are O(3), gauge field
equations. We can develop equation (2.10.79), with = 2, to show
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th.:at it leads to Ohm’s Law, which becomes derivable from the first
principles of O(3)s gauge field theory. '

From a consideration of:

3 ¢ v
[A® gs, AP, A7) = o, (2.10.109)
the induced current from eqn. (2.10.79) for a = 2 is:
ATO = igela®) ., G

= igefA®) opp, (0¥ AW _ grAM)Y)) (2.10.110)

Wl?ere v = 1or 2, and where we sum over repeated . For v = 1
this procedure results in the following relation between scalar com-
ponents:

AT = _ikep@N (2.10.111)
and since E®)! is complex, AJM hag a real and physical compo-

nent. This Ohm'’s Law, i.e.:

J = oE, (2.10.112)

where the conductivity for one electron is:

e2

mewV’

(2.10.113)

T'his is a conductivity resulting from the interaction of radiation
with one electron, which is driven in the transverse direction by the
Fransverse field component E(®)1. In this situation the conductivity
is related to the susceptibility and permittivity:
o= Yo = X
c 3V
In the static limit w — oo, for finite € the static permittivity
tends to zero. In the static limit the wavelength becomes infinite
so V should be thought of as becoming infinite. More generally’

(2.20.114)
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dielectric spectroscopy [40] shows that the permittivity is a complex
function, related to the power absorption coefficient of spectroscopy,
and that the real static permittivity is finite for zero frequency. The
imaginary part of the permittivity (dielectric loss) is zero at zero
frequency and shows a dispersion, for example the Debye relaxation
process[40]. The Drude model of conductivity in metals [14] leads to
a result identical with equation (2.11.113) (Jackson’s [14] equation
(7.89)), except that w is replaced by the complex valued function
g — iw, where g is a damping factor. In a tenuous plasma, or in the
ionosphere, equation (2.11.113) is identical, within a factor i, with
Jackson's [14] equation (7.90). Therefore to have predicted these well
known empirical effects from first gauge field principles is something
of a triumph for O(3)s electrodynamics. In U(1) electrodynamics
they have to be modeled.

It follows also that Ohm’s Law and the inverse Faraday effect for one
electron are closely related, and this can be illustrated by considering
v = 2in equation (2.11.110) as follows. For v = 2:

T2 = ige(Ages sV E®? — cAgss¥BAY)  (210.115)

and the first term on the right hand side is ohmic, the second is part
of the inverse Faraday effect.

2.11 THE EFFECTIVE A®) POTENTIAL,
PHOTOELECTRIC AND COMPTON EFFECTS AND

RADIATION REACTION

The fundamental gauge field theory of O(3)s electrodynamics leads
to the longitudinally directed vector potential A®) | which appears
in the vacuum field tensor definition in equation (2.4.2.15 ). However
this potential also does not exist in O(3); electrodynamics, due to
the vanishing of E®) = 0A® /9t. However, one may define an
Ag)f as an effective potential that defines B B) = Vx Ag})f. This
effective potential may be defined as:

AB) o = ¢(f AW + gA®) (2.11.116)
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where c is a constant, and A®), £f is a one form, and by default also
AWM and A® . The application of the differential operator d to this
one form leads to the equation

dA®) .z = c(df A AD 1+ dgA AD)|;, 0

= (0;fAD; + 8;gAP)dz? A ds'. (2.11.117)

Then if f and g are forms of Bogomolny functions that give the gauge
potentials A1), = 8,9, A®),; = 5, f, we have

dA® ;. = %[A(’)i, A® )dz A do. (2.11.118)

Then for ¢ = 2e/F this effective potential defines the B®) potential.
This component Af})f does not appear in U(1) electrodynamics but
has substantial advantages in particle-field theory as developed in
this section.

In U(1) electrodynamics the linear momentum of radiation is the
average flux of energy, originally due to Poynting, a well accepted
but nevertheless paradoxical concept which sometimes goes astray

(38}
(p) = ec/E x B*dV. (2.11.119)

The average momentum as defined above is proportional to beam
intensity. The conjugate product E x B* removes the frequency
and so (p) is not linearly proportional to frequency as in the Planck
Einstein quantization of radiation [44] into photons with energy and
linear and angular momenta. The photoelectric and Compton effects
[44] for example lead to the quantum theory, but are paradoxical in
classical U(1) electrodynamics. The problem of radiation reaction
[14] is paradoxical with the classical setting itself, because it leads to
runaway, nonNewtonian, solutions in the Abraham Lorentz equation
[14, 36] . It is suggested that O(3)s electrodynamics removes these
paradoxes from field theory.
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In O(3)s electrodynamics there exists a free space (i.e. vacuum)

linear momentum:
p(3) — eA(3)eff, (2.11.120)

which is longitudinally directed as required, i.e. is directed in the
propagation axis of the radiation beam. The momentum (2.11.129)
is defined through the minimal prescription applied to the b_ean} in
the vacuum, and the elementary charge e is a universal, C' negative,
constant of physics. It is also the charge on the proton. The classical
momentum (2.11.120) becomes:

p® = cA® ;. = hx, (2.11.121)

through Einstein quantization: the photon momentum as propor-
tional to the frequency as observed in the photoelectric and Comp-
ton effects. As argued in Section (2.4.1), equation (2.11.121) is also
the self consistent result of the O(3), symmetry gauge field theory.
The result in equation (2.11.121) has a manifestly covariant form:

P — eA(3)/ueff = hxt

1
A p = —(Ass, cA®)opy). (2.11.122)

It is well known [14,36] that the energy-momentum of radiation in
U(1) electrodynamics is defined through an integral over the te'nsor
T# and for this reason is not generally covariant. To make it so
requires the use of special hypersurfaces as attempted for‘example
by Fermi and Rohrlich [36]. The root cause of this problem is Poyn.t—
ing’s Theorem [14,36]. The O(3), energy momentum (2.11.121), in
contrast, is generally covariant.

The problem of radiation reaction [14,36] leads in U(1) electrody-
namics to the Abraham Lorentz equation in which the radiation re-
action force is not Newtonian equation of motion. It has unphysical
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runaway solutions [14.36], because the force is proportional to the
time derivative of acceleration, a problem addressed by Abraham,
Lorentz and Poincare among many others throughout the twentieth
century. In O(3), electrodynamics the linear momentum eA® is
classical and constant (conservation of momentum) until the radia-
tion interacts with an electron as in the Compton effect [44]. Upon
interaction the frequency of the scattered radiation is found to be dif-
ferent from that of the incoming radiation. In O(3), electrodynamics
this is explained by the fact that action and reaction are equal and
opposite and that force is the rate of change of linear momentum.
In this case:

dA(3)l‘e AV
F@nr _ e_df_ff = e‘; 8,A®n (2.11.123)

The derivative can be written according to its symmetric and
antsymmetric parts, where the former vanish to obtain that

FOR _ gV,,E”"" BB, (2.11.124)

where BG)? — e"”"((’)"AS;)f” - 0"A£3f)f'/). This equation is a form
of the Lorentz force equation. If this is equated to the frequency
through equation (2.11.122) we see that this is equal to dx/dt, which
means that a change of linear momentum means a change of fre-
quency through Planck Einstein quantization. Further, this equality
implies that the total momentum of the electromagnetic wave plus
the electron is a constant. There is precise correspondence (the Prin-
ciple of Correspondence [44]) between linear classical momentum and
quantized linear momentum as in equation (2.11.121). Note that
both classical and quantized momenta are directed longitudinally as
observed in the photoelectric and Compton effects and in the Lebe-
dev effect [1-8]. Note that there is no such correspondence in U(1)
electrodynamics because the average momentum (p) from Poynting’s
Theorem can never be proportional to frequency with the classical
electrodynamics. The reason for this is that the conjugate product
E x B removes any frequency dependency. For this reason there is
10 classical explanation [44] of the Compton and photoelectric effects
n classical U(1) electrodynamics.
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The photoelectric effect is the emission of electrons from metals upon
ultraviolet irradiation[44]. Above a threshold frequency the emission
is instantaneous and independent of intensity. Below this threshold
frequency there is no emission however intense the radiation. This
cannot be explained in classical U(1) electrodynamics, because beam
energy is proportional to intensity in the Poynting Theorem, and not
to frequency as observed. In classical O(3), electromagnetism the
phenomenon is explained in a straightforward manner by following
the information:

E = ecAy® = hex (2.11.125)

and in Planck-Einstein quantization the constant of proportionality
is &, which turns out to be the most fundamental universal con-
stant in physics. The concommitant momentum relation, equation
(2.11.121) is shown empirically in the Compton effect as argued al-
ready. Equation (2.11.121) means that above a threshold frequency,
there is enough energy in the photon to cause electron emission as
observed and discussed for example by Atkins{44]. All of the energy
and momentum of the photon are transferred to the electron in a
collision above a certain threshold frequency because at this point
the potential energy responsible for keeping the electron in place is
exceeded. Atkins explains the phenomenon simply and decisively in
terms of simple Newtonian logic[44]. If we attempt to apply this logic
to (p) in equation (2.11.119), the Poynting momentum of classical
U(1) electrodynamics, there is no threshold frequency possible on
the classical level, because (p) cannot be proportional to frequency,
and we lose correspondence with the quantum theory, in which the
momentum of the photon is proportional to the frequency as required
empirically in the photoelectric effect. The mean Poynting momen-
tum (p) and beam energy are both proportional to beam intensity,
but the data in the photoelectric effect show that it is independent of
beam intensity. The momentum p® = ¢A®) ¢/ of classical O(3),
electrodynamics is not proportional to intensity, it is proportional
to frequency through the gauge equation (2.4.1.6) which also leads
to the B Cyclic Theorem [1-8], the fundamental angular momentum
relation of O(3), electrodynamics. In the latter, Planck-Einstein
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quantization is straightforward.

In the Compton effect in O(3), electrodynamics the observable
change of wavelength [44] is:
2 ¢AY n2?

eff
—L Ay st , 2.11.126
— 0S8N > ( )

AN =

where Ag is the wavelength of the incident beam, m the electron mass
and 6 the electron scattering angle. If equation (2.11.121) is applied
to this result we recover the quantum description of the Compton
effect.

The concept of A(3)eff can also be used to suggest a way out of
the Dirac paradox [45], in which Dirac maintains that as long as we
are dealing with transverse waves we cannot bring in the Coulomb
interaction between particles. Dirac suggested the use of longitudinal
waves, but in O(3)s electrodynamics there is a force given by equation
(2.11.123) whenever the beam interacts with an electron. This gives
a longitudinal force with a change of wavelength as just described in
the Compton effect. This is not a Coulomb force however since E(®)
is zero in vacuo (there is no electric equivalent of the inverse Faraday
effect).

Similarly A®), £7 can be used to suggest a way out of the de Broglie
paradox [46], which points out that momentum and energy trans-
form differently under Lorentz transformation from frequency, de-
spite Planck-Einstein quantization. This paradox led de Broglie to
postulate the existence of empty waves, which have never been found
in nature [46]. It is therefore suggested that the Lorentz frequency
transform always be applied to eAy® = fuw/c because this mo-
mentum is proportional to frequency empirically. For momentum of
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a particle traveling at the speed of light, the momentum pertains ei-
ther to a massless particle, classically indeterminant, or infinite for a
massive particle, unless it is always interpreted as being a constant #
multiplied by w/c. This obviously exists empirically at the speed of
light. The energy must evidently be interpreted in the same way, i.e.
as a constant multiplied by frequency. The Lorentz transform ap-
plied to frequency produces the aberration of light as usual in special
relativity[14]. In this interpretation there is no de Broglie paradox
and no need to postulate the existence of empty waves[46].

2.12 SUMMARY

We have argued that classical O(3); electrodynamics produces ex-
planations from first gauge field principles and without paradox of
the following: 1) third Stokes parameter in the vacuum, through
the modulus of B®) ; 2) the inverse Faraday effect, through B® ;
3) Ohm's Law; 4) photoelectric effect, through A® ¢ ; 5) Comp-
ton effect, through A(®)_¢;: 6) radiation reaction problem, through
dA® ;¢/dt; 7) that the energy momentum four vector eA® s of
radiation is generally covariant; 8) the Dirac paradox; 9) the de
Broglie paradox; 10) the vacuum B () field; 11) the vacuum A®);;
potential. .

In the U(1) version of classical electrodynamics we have the following
difficulties: 1) the third Stokes parameter contradicts the gauge field
principle employed A1) x A® = 0and is phenomenological and pre
Maxwellian (1852); 2) the inverse Faraday effect is phenomenological
and contradicts the gauge field principle A x A = 0in U(1); 3)
Ohm’s Law is phenomenological; 4) there is no classical photoelectric
effect; 5) there is no classical Compton effect; 6) radiation reaction is
non-Newtonian and unphysical; 7) the energy momentum vector of
radiation is not covariant in general; 8) the Dirac paradox remains;
9) the de Broglie paradox remains; 10) there is no fundamental spin
angular momentum, proportional to the B ®) field; 11) there is no
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fundamental linear momentum, e 4©), f5
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CHAPTER 3
ORIGIN OF ELECTRODYNAMICS IN
THE GENERAL THEORY OF GAUGE FIELDS

3.1 CLOSED LOOP IN MINKOWSKI SPACETIME

Electrodynamics can be derived from gauge theory by using a closed
loop in Minkowski spacetime 1: a round trip with covariant deriva-
tives. Such a procedure is valid for any internal gauge group sym-
metry and electrodynamics can be derived in consequence for any
internal gauge group. The basics of this process are simple: a gen-
eral field, such as a quantum wave function, % is acted upon by an
operator which transports the vector around a closed loop using the
theory of infinitesimal generators. The result of the trip around the
closed loop is expressed as:

W = ePee~ Wy, (3.1.1)
where o/ differs from v if z, 2/, y and 3’ are path variables that

noncommuting transport gauge connections as they occur at different
regions of spacetime.

The four exponentials in this expression are operators, which can be
expanded in a Taylor series. To second order the series takes the

form:

€eWe ™ e = 1 4 i(z + y) —i(z' + ') + O((z,%)?) (3.1.2)
Ifweletz' = z 4+ dzandy = y + dy where dz = dzD,, and
dy = 0y*D, then the operator on the wave function can be written

as
eeVeT " e™W = 1 4 i5(z* + y*)D., (3.1.3)
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where D,, are covariant derivatives and z* and y* are distinct four
vectors in Minkowski (flat) spacetime 1. The covariant derivatives
can be defined in any gauge group symmetry and can be expressed
in the short-hand notation (cf. Chapters (1) and (2)):

D, = 0, — igA,, (3.1.4)
a notation which is illustrated later in this chapter. Now if we let
the variables z#* and y* are variables connected by the parameters 7
and A as y*' = y¥(1 + 0AD/dA) and with D/d\ = (dz”/d\)D,,
and similarly # = z#(1 + é7D/dr), the phase shift in the wave
functions may be written as

¥ = (1~ (3a"0y” — 626c")(D,, D,] + O(dz"))y (3.1.5)

The effect of the journey around a small closed spacetime loop that
encloses the area element dz#dy” — dz”éx* represented by equation
(3.1.5) is defined by the way in which the covariant derivatives enter
nto the expression [1]. If A, is the electromagnetic potential, then
the electromagnetic field is the commutator:

GW,, = 8,40, — 9,4®, _ ige®e[a®), 49]  (3.16)

where g is a universal constant, the ratio of e to . The field (3.1.6) is
part of the commutator of covariant derivatives (D, D). The Jacobi
identity:
Z [Dpv [D,L, D,,]] =0 (3-1-7)
P(puv)

follows, and is obeyed identically by the commutator Dy, D] for
any gauge group. Here P stands for permutation of the indices.
This Jacobi identity is the homogeneous field equation for any gauge
group. In general relativity it is the Bianchi identity [1]. These are
well known results of modern gauge field theory. Our purpose in this
opening section is to show that the gauge group of electromagnetism
has to be a non-Abelian group such as SO(3), or here a broken 0(3),
in order to obtain self-consistently the homogeneous field equation
and the first and third Stokes parameters from this general gauge
field theory, which we have truncated at second order in the Taylor
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series (3.1.2). A theory to higher order in the Taylor series gives
non-linear field tensors and equations. These are largely unexplored,
but in a simply connected region they correspond to "boundaries of
boundaries” that vanish. Most generally, these equations must be
solved numerically and this process can be carried out in any gauge
group. These remarks show how little we know about electrodynam-
ics, a subject which is currently asserted to be derivable from a U(1)
gauge group only, and whose field equations are asserted arbitrarily
to be linear in vacuo. In general, they are non-linear to all orders
in all internal gauge group symmetries and the process is always
Lorentz and gauge covariant. The theory clearly conserves the sym-
metry CPT [13] on quantization, together with C, P, T, CP, PT and
CT for all field types and gauge groups.

Taking the O(3)s, rotation group, symmetry for the internal gauge
symmetry of the general theory applied to an electrodynamic vector
potential the field tensor becomes equations (2.4.2.15) of 'chatpter 2
[1-12]. One of the components of the tensor is the magnetic field:

B®»* — _i%Am x A®, (3.1.8)

which in this gauge symmetry exists in vacuo, where the third Stokes
parameter becomes proportional to its modulus, equation (2.4.2.25).
Therefore the third Stokes parameter is contained within the defini-
tion of the field tensor, and is therefore contained within the com-
mutator of covariant derivatives. The quadratic product of covariant
derivatives contains the zero order Stokes parameter:

Sy = EV.E® = 240 . 4O (3.1.9)
and so an O(3), internal gauge group symmetry produces the result:
So = %53 (3.1.10)

as required in circular polarization, and as given in equation (1.1.13).
The Jacobi identity (3.1.7) becomes the homogeneous field equation
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(2.2.1) of O(3)s electrodynamics. The field tensor is generally co-
variant (1] as is the theory as a whole. Note that some major fea-
tures of O(3); electrodynamics have been obtained simply and self-
consistently by considering a closed loop in Minkowski spacetime,
equation (3.1.1).

If we try to apply this method to U (1) electrodynamics, the B(®3)
field vanishes along with the third Stokes parameter, S3. The field
tensor becomes a scalar in the internal, Abelian, gauge space:

G'®,, = 9,4, - 9,A,, (3.1.11)

and the Jacobi identity (3.1.7) reduces to the homogeneous field
equation:
9,GVWm — ¢ (3.1.12)

in which there are components B(Y) and B(® but no B®. The B
Cyclic Theorem is undefined. The quadratic product D, D does not
produce the zero order Stokes parameter Sy, unless it is implicitly
assumed that the vector potential is a complex quantity. This im-
plicit assumption, however, leads us back to an O(3), internal gauge
space, because A := AM and A® := A The zero and third
order Stokes parameters are undefined in U(1). These are attributed
to Stokes (1852), and are purely phenomenological parameters. At
that point in time the Maxwell equations were unknown, and vector
algebra undeveloped. The use of a U(1) gauge group symmetry for
electrodynamics leads to an internal inconsistency, because of the
occurrence of A1) x 4(2)

3.2 GAUGE TRANSFORMATIONS
The rotation of the general field 4 takes place as follows:
Y = Sy, (3.2.13)

and is a special case of the closed loop or round trip represented in
equation (3.1.1). In special relativity both S and ¥ are functions of

Origin of Electrodynamics in the General Theory of Gauge Fields 81

o# [1]. and the derivative:
oY = 0u(Sy) = SOy + $0.S (3.2.14)

in consequence is not covariant because it does not transform under
S in the same way as the field itself. There is an extra term %0, S on
the right hand side of equation (3.2.14). The concept of gauge trz.ms—
formation enters into field theory through the use of the covariant
derivative as follows:

D' = SDuib, (3.2.15)

where

D'y = 0, — igA'y, (3.2.16)
with 9,5 = ig(A’y — A,). Equation (3.2.15) is covariant and has
the same algebraic form as the original equation (3.2.13). In con-
sequence of the introduction of A’, as defined in equation (3.2.16),
gauge transformation is a frame transformation in which A, changes
its value to A’,. It can be shown that:

A, = SA,S! - é(O”S)S‘l. (3.2.17)

If S is constant then A, transforms into A’, according to:
-1
Ay = Ay = SALS

(9,8)871=0. (3.2.18)

and so the second term on the right hand side of equation (3.2.17),
known as the inhomogeneous term, is a direct consequence of our use
of a covariant derivative in field theory. The only occasion that equa-
tion (3.1.18) will obtain is when the connection is completely ”flat”
or constant and S corresponds to a global gauge transformation that

occurs everywhere.

This procedure is valid for any gauge group in Minkowski spacetime.
We illustrate the general equations in this section with reference to
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the U(1), O(3), and SU(2) gauge groups. The inhomogeneons term,
also called the pure gauge term, is responsible for the Aharonov-
B911111 effect [1,14] in regions where the original A, is regarded as
of no physical significance by an experimentalist. This suggests that

(19)7'(0,5) S has the physical effect as a phase shift. In the U1)
gauge group the rotation generator S is defined by:

SU(I) = GM), (3.2.19)

Vfihere ¢ is a parameter representing the angle through which the
fl.eld is rotated by S within the internal space of the complex valued
circle. This means that in the U(1) group:

h
A, = A, + ;0“45. (3.2.20)
The spacial part of the connection is seen to transform according to:

A
Ao A- Y (3.2.21a)

and the temporal component transforms as

A® 4 4@ 4 ho¢ (3.2.21b)
€
The magnetic field in U(1) electrodynamics is defined by:
B = Vx A, (3.2.22)

and so the function ¢ in the gauge transformation (3.2.20) can be
chosen arbitrarily without affecting the value of B by the identity
.VXVQS = 0. In classical U(1) electrodynamics the potential is there-
fore reduced to an arbitrary mathematical quantity, where products
of the potentials are not admitted in Lagrangians and Hamiltonians,
and for this reason it is difficult to assign to it a physical meaning.
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This was Heaviside's original intention [15] in reducing the com-
plicated and numerous quaternionic field equations of Maxwell to
the relatively simple vectorial form given in equations (1.4.29) to
(1.4.32) of Chapter 1. These became known as ”Maxwell's equa-
tions”. Therefore the potential function, in classical and quantum
U(1) electrodynamics, has slightly different interpretations. Usually,
it is stated that the potential is physical as a phase shift, due to the
parallel transport of a vector potential around a loop, in the quan-
tized theory. The analog of this in the classical theory is absent. This
interpretation may be unsatisfactory as argued recently by Barrett
[15]: for example he describes the use of a physical potential with the
classical setting for the topological phase effect and Aharonov Bohm
effect among several others. We encounter a conflict when we use the
»traditional” U(1) gauge group, in that the classical gauge potential
is unphysical, while within quantum theory the gauge potential is
involved with phase shifts of quantum wave functions.

In the O(3) gauge group (and other non-Abelian gauge groups such
as SU(3)) this classical-quantum distinction can be made to disap-
pear[16]. If the internal space of gauge transformations is a physical
rotation, where the fields produce products of the gauge potential,
then a classical analog exists. However, for the weak and strong
forces the short range of the interaction prevents a classical ana-
log from being physically real. These products enter into, ideally
within classical field theory, in the field equations. The O(3)s group
is the rotation group in three dimensions and A, has physical con-
sequences on both classical and quantum levels. This appears to
be more commensurate with the Correspondence Principle between
quantum physics and classical physics [17] and as argued also by
Barrett [15]. There is an Aharonov-Bohm effect due to the inhomo-
geneous term, which also leads within nonabelian theories into highly
developed areas of field theories, not available when the gauge group
is U(1), involving instantons, solitons and vortex theories [1].
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3.2.1 GAUGE TRANSFORMATION IN THE O(3)
GROUP

In this section equation (3.2.17) is worked out in the O{3), gauge
group, reduced to a rotation about the Z axis. In this case:

§ = e (3.2.1.23)

where J, is the O(3)s rotation generator about the z axis by an angle
of rotation. In other words a gauge transformation resulting from
a rotation of the field ¢ is a physical rotation through an angle «,
which is not the same described in the U(1) gauge group. That there
are similar U(1) transformations of the A() and A® field indicates
that this gauge theory is a broken O(3), gauge theory. The O(3)s
algebra is broken due to the vanishment of the A®) field, but this
theory is still generically called the O(3)s theory of electrodynamics.
As a result, O(3), electrodynamics involves the addition to the U(1)
symmetry the rotation around the z axis defined as:

§71 = emthe (3.2.1.24)

and the Taylor series:

S =1+ iJ.a — %J}’a2 + 0(c®)

1 0 0 0 1 0 o -1 0 0
= 0 1 0y +dal -1 0 O} + 5T 0 -1 0
0 0 1 0 0 O ) 0 0 0
cosa  sina 0
= | —sina cosa 0 ). (3.2.1.25)

0 0 1

These are the 3 x 3 matrix representation of the O(3)s group operator
S. Its inverse is found through:

a o ~a (3.2.1.26)
which results in
cosa —sina 0
57! = [ sina cosa 0 |. (3.2.1.27)
0 0 1
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It is then apparent that S§.S -1 = 1 and defines a diagonal matrix

as required.

The calculation of the inhomogeneous term in the O(3)s gauge group

proceeds simply after noting that o = a(z*). This gives:
Oucosa = —sinad,a, Oysina = cosald, o
—sina  cosa O
QS = —cosa —sina 0 | O.a. (3.2.1.28)
0 0 1

It follows that 0,5 vanishes if 0, & vanishes, which illustrates how
a constant phase change that occurs globally has no influence over
physics. The potential A, is defined through the O(3) group gen-
erators are {1]: A = Foao, 52129)
where repeated indices a are summed over as usual. For a rotation
about the z axis:

Ay = J A%, (3.2.1.30)
where the placing of z as an upper or lower index is not significant.
Thus, for a z axis rotation:

A, = A%, (3.2.1.31)

(= D]
o=
[ e ]

where the components of A%, are interpreted as scalars in the O(3)s

internal space of the gauge theory. The inhomogeneous term is there-

fore: . J
——(8,5)87! = Zdua, (3.2.1.32)

g g

that vanishes if @ = const for a global gauge transformation. Since

the Euler angle o always depends on and y in general, and since

by definition:

10 0 0 a
gt = (ct, =, ¥, 2), O = ('5(7);, oz 0y —5;) (32.1.33)
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the object J,a is in general non-zero in flat Minkowski spacetime.

To illustrate this we write:
9,887 = iJ,0,a. (3.2.1.34)

The Aharonov-Bohm effect in O(3), electrodynamics can be inter-
preted as a physical rotation, treated classically, corresponding to
the usual quantum interpretation [1]. The scalar g is the same in
both U(1) and O(3), gauge theories and was discussed in Section
(2.4.1).

Using the matrix method it follows from elementary methods that:
SA.S7' = A, (3.2.1.35)

so the overall result of gauge transformation in O(3), electrodynam-
ics is: .
AT, —» (A%, + 58"a) Iz, (3.2.1.36)

which corresponds to the transformation of the gauge connection by,

1
A% = (A%, + Ea,ta). (3.2.1.37)

3.3 THE SAGNAC EFFECT

The Sagnac effect is an interferogram that is created by an apparatus
that recombines two beams sent around a closed physical loop (opti-
cal fiber) in opposite directions, anticlockwise (A) and clockwise(C).
An interferogram is an intensity pattern [18-20], where the intensity
at each point is proportional to the phase difference between two
interfering (i.e. combining) beams of light. If there is no electromag-
netic phase difference in the two beams there is no interferogram.
In U(1) electrodynamics the electromagnetic phase is arbitrary [21],
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there is gauge invariance, the field is described completely by the
field tensor. In the Sagnac interferometer, there is no phase differ-
ence between beams A and C, see figure 3.1, no intensity or polariza-
tion difference if there is no net gauge transformation due to parallel
transport of the field vectors around the loop. Therefore, U(1) elec-
trodynamics cannot describe the Sagnac interferogram without local
gauge transformations. When the platform on which the interferom-
eter is built is under a rotation, the interferogram changes. In this
section it is shown that O(3)s electrodynamics explain the Sagnac
effect when the platform is at rest, and explain the Sagnac effect
(motion of the platform) through equation (3.2.1.37) of O(3), gauge
transformation, a physical rotation. The Sagnac effect with plat-
form in motion is a Doppler effect given in O(3)s electrodynamics by
a change of frequency of the electromagnetic radiation:

w— wt (3.3.38)

where (! is the angular frequency 0a/dt, or equivalently by the
change of the Euler angle with time.

The explanation of the Sagnac effect in general is given by a compar-
ison of two closed loops, in opposite directions in Minkowski space-

time.
e—:’x' P
e A & o’ C e’
e e
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These loops are illustrations of equation (3.1.1). The two loops are
described as follows:

ha = €TeTWeTmety, (3-3.39)

Yo = e VelTeWeT Iy, (3.3.40)

where 1 is the quantum wave function that describes the phase
e~ BT = v a5 the field is transported around the loop in the two
directions within the Sagnac interferometer. The displaccment of the
field along the z and y directions is given by:

oz = 6z"D,, by = Sy*D,. (3.3.41)

For simplicity let us define 6.4, = 4&xtéy* — 6”6zt as a
small area, with the orientation in of the A loop, within the Sagnac
interferometer. A summation over all these areas produces the total
area A" 4. The opposite orientations of the A and C loops results
in A4 = —AM = A" .. Using equation (3.1.2) it follows that
the phase shifts between the two loops are equal in magnitude but
opposite direction:

A 4Dy, D] = —A™¢[D,, D,). (3.3.42)

The covariant derivatives for the A and C loops may be defined in
either U(1) or O(3) electrodynamics. In U(1) electrodynamics, the
potential A4, is a determined by a scalar in the internal gauge space,
and in consequence the covariant derivatives result in potentials that
commute. The commutator of potentials vanishes in U(1) and from
equation (3.3.42) we have that the two commutators are restricted
to the case that [A,, A,] = 0:

G,m/ = a,uAy/ — ayAH- (3343)

At this point we need to compute the interference from U (1) elec-
trodynamics. This is given by the modulus square of the total wave
function

T = (1/2)(sha + ). (3.3.44)
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Further in general we exponentiate the phase shift according to
"y _iAF G,
da — A G pe — e A G, (3.3.45)

where the difference in the sign is due to the different area orien-
tations. We write A*”G,, = AG and we have a more compact
notation. From here the modulus square of the wave function is
then , , . .

[0 = (1/4)(koal” + [c|® + ¥a™be + Yc™va)

= Lo 4 erac | emmAcyp (3.3.46)
4

= %(1 + cos(2AG)Y|2 = cos®(AG)|y|?,

and this is the interference effect in a rather compact notation. This
interference occurs in the U(1) case as well as the O(3)s case. In
the U(1) case this is the standard Michelson-Morley t.yp.e of resuljt..
However, commutators of potentials in the 0O(3)p case Wll-l result‘ in
departures from the U(1) case. Further, if the apparatus is rotating
the Euler angle and J, will induce further angular dependent terms

not captured by U(1) electrodynamics.

Within O(3), symmetry internal gauge space. When W(f move from
r to ¢ + dr on loop A the axes of the internal space’s frame are

rotated [1,14] this gives rise to:
dpa = igJo A% datp = id6y. (3.3.47)

When we move from z to & — dz in loop C the rotation is in the

opposite sense, giving rise to:
dpc = —igJ*A®dziy = —idop. (3.3.48)
Then with di/1 = idé we then have that

pa = 5% po = e $ (3.3.49)
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as evaluated around the loop in both directions. The Stokes law lets
us to evaluate the line integral as

—i j{ 46 = / AAMF,, + ig / dAM[A,, A, (3.3.50)

where F,, is the abelian field tensor that results from A(1) p and
A(z)“ and the commutator is the O(3);, contribution that results
from commutation of these two potential fields. The departure due
to O(3)s electromagnetism is the commutator part of the field tensor
generated by loops A and C.

Let Y 4.v(1) and Ye.u(1) be the shifts in the wave function due to the
abelian portion of the field strength tensor evaluated around the A
and C loops respectively. We then have that the wave functions are
phase shifted around the two paths by

Ya = eMavn). Yo = e o) (3.2.51)

where ¢ = f dA*[A,, A,]. Then the evaluation of the interference
of the wave function around the interferometer, in the same manner
as arrived at in equation (3.3.46), gives the O(3)s departure from the
Michelson-Morely result

(9% = %(l + cos(29)) W12 = cosgly’)?, (3.3.52)

where ¥ = 1/2(%4 + 9¢) and [/[? is the interference due to the
contribution from strictly U(1) terms. From equation (3.3.47) when
J®) = 0 the nonabelian contribution to the phase shift vanishes, as
[J* J®] = e®<Je. This is an additional term to the interferometric
shift that is predicted by O(3), electrodynamics.

When the platform is rotated about the z axis perpendicular to the
plane containing loops A and C, a shift in the fringes of the inter-
ferogram is observed [18-20]. In O(3)s electromagnetism this phe-
nomenon is explained through an application of equation [3.3.52],
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i.e. is explained by a nonabelian gauge transformation, i.e. a physi-
cal rotation of the de Broglie wavefunction. Taking the index p = 0
in the gauge transformation of the potentials

1
A%y = A%+ ana, (3.3.53)

and the connection to the momentum
eA?, = hw/c (3.3.54)

indicates that a gauge transformation induced by @ = 8a/0t tl.lat
there is a Doppler shift due to the rotation of the platform depen('img
on the direction of the platform rotation (clockwise or anticlockwise):

w > w £ Q (3.3.55)

The effect is also an optical Aharonov Bohm effect, where f,he
Ahronov Bohm phase shift exhibits a time dependen'c.y. Using
k = w/c we find that the elecromagnetic phase is shifted by an

amount equation (3.3.51):

A« 2 da (3.3.56)
[

The standard equation for the Sagnac effect is obtained from this
general result by using the identity [21]:

7{(2 xr-dl = 2QA (3.3.57)
where A is the area enclosed by the loops 4 and C. We obtain:

A= %fk x 7 -dl. (3.3.58)

If we use the smallest possible unit for r, the wavelength of the
radiation 7 = \i, we arrive at:

7{ a = 24 (3.3.59)
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Using this result in equation (3.3.56) gives the standard expression
[21] for the Sagnac effect with a platform rotating at an angular

frequency §2:
404

cA

It is worth pointing out that this effect is dependent upon the angular
velocity of the platform and the frequency of light as

Ap =

(3.3.60)

A x wl. (3.3.61)

Therefore the Sagnac effect with rotating platform is recovered in
O(3)s electrodynamics as a Doppler effect of the rotating platform
caused by a gauge transformation, or optical Aharonov Bohm effect.
In U(1) electrodynamics the products of the four-vector potential
are disallowed and the derivation of the Sagnac effect with rotating
platform is obscure [21] unless concepts are used which fall outside
the usual domain of definition of special relativity. In 0(3)y electro-
dynamics we are working within standard special relativity and the
role of time on and off the platform is always defined by the structure
of generally covariant gauge field theory. The speed of light in this
derivation is the universal constant ¢, and we do not use the concept
of time dilation, for the tangential velocity v << ¢, and the effect
is described by a gauge transformation.

3.4 OBSERVATION OF B® IN THE TOPOLOGICAL
PHASE

Simon [22] has shown that the topological phases [23-27] are equiv-
alent to a gauge potential in parameter or momentum space, and
in general are due to parallel transport in the presence of a gauge
field. They are therefore features specific to a nonAbelian gauge field
theory. The Pancharatnam phase (23] arises from the cycling in the
polarization state of light while keeping the direction of the beam
of light fixed. It has been observed [28-31] in different types of in-
terferometry, and has several distinguishing features when compared
with the dynamical phase [32]. The Berry phase [24] arises from a
cycling in the direction of the beam of light so that the tip of the
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spin vector of a photon in the beam traces out a closed curve on
the sphere of spin directions. For example, there is a change 1n)the
plane of polarization of a beam of light sent through an optical fiber

wound on a cylinder.

Pancharatnam demonstrated that a phase difference bet:,ween 'two
differently polarized beams of light arises when they int..erfe.re. Light
waves do not interfere when they have orthogonal polarlzatlops, .and
interfere to a maximum extent when they have the same pOlaI‘lZa‘.tIOI.l.
The intermediate case gives rise to Pancharatnam’s phase, which is
related [32] to Berry’s phase. The Pancharatnam (P) phase depends
only on polarization while the usual dynamical phase has a Wave'
length dependence. The P phase does not depend on the change of
the optical path, unlike the dynamical phase, and there are several
other differences which are empirically verifiable [32].

In this section it is shown that the topological phase' is proportional
in free space to the B () field through the non Abeh.an St(?kes The-
orem associated with the Wu Yang phase. The starting point of the
demonstration is the following relation between the P phase and the

Wu Yang phase [15]:
y(P) = ——y{ A, dzt, (3.4.62)
R

in which the de Broglie equivalence states the wave particle duality:

% = 71%) (3.4.63)

Using the non-Abelian Stokes Theorem [15] produces the topological

phase difference:

; © < w o (3.4.64
(P) = 5 / /A 0y — DA, + ixlAy, AL)do™, (3460
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and this contains an area integral over a commutator of potentials
(which is of course zero in U(1) electrodynamics). In equation 3.4.64)
the internal indices are implied. When considering the cycling mo-
tion of the electromagnetic field vector as it propagates in free space,
this commutator is proportional [33] to the B® field in the required
O(3)» gauge theory of electrodynamics. Therefore the P phase con-
tains a term directly proportional to the area integral over B(3),
which is the magnetic flux. The P phase is then:
€

AY(P) = (B + B®). 4 (3.4.65)
where A is the beam area. Here there is the contribution to the phase
by the ordinary magnetic field plus the B®) field. For two beams
of opposite circular polarization the phase contribution from B®
to P phase is zero, because B(®) is equal and opposite for opposite
circular polarizations [34]. For a light beam that travels through
the loop the contribution by the standard magnetic field B can be
set to zero if the length of the loop is an integer multiple of the
wavelength of the light. In this way the average contribution from
the oscillating field is zero. Consider a beam that orbits the loop
a multiple number of times. Even if the length of the loop is not
an integer multiple, then it may be arranged so there will be some
n traverses of the loop where effectively the average contribution of
the standard magnetic field will average to zero. For two beams of
the same circular polarization the B® contribution to the phase is
maximized, as is observed; and for intermediate cases the vector sum
of the two B fields is used.

If we choose a beam made up of one photon, the magnetic flux carried
by it is % and so:

Ay(P) = £1, (3.4.66)

the P phase is 1 for one sense of circular polarization, and -1 for the
other, and is proportional to the photon helicity [15]. Without the
use of O(3), electrodynamics, (parallel transport in an O(3), internal
gauge space) this topological phase cannot be related to B®3), and is
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undefined. This is a conclusive demonstration of the limits of U(1)

electrodynamics.

When the phase change equivalent to Berry's phase [35] is observed
by winding a fiber on a cylinder, there is a topological phase due to
the B®) field generated in the direction of the axis of the ﬁber.by
longitudinal vector potentials (cf. Section 3.3). The angle of rotation
in the plane of polarization of light is:

2
Af (%)2//[14,“ A)doa™ = V|BO)|, (3.4.67)

where V is a Verdet constant. The Berry phase is then a topological
number that is induces by the B(®) field. These results are straight-
forward deductions from the Wu-Yang phase applied to the photon
using the wave particle equivalence (3.4.63). Using this method the
dynamical phase can also be deduced, as in Section (3.3). .The topo-
logical and dynamical phases therefore have their origins in the Wu-
Yang phase and in the de Broglie equivalence (3.4.63) for the photo.n
and wave in free space. They are expressions of the wave and parti-
cle dualism of light and all matter. In explaining the Sagnac effect
in Section 3.3 the non Abelian dynamical phase was deduced from
the Wu- Yang phase and shown to be the cause of the interferogram
with this particular interferometer at rest. This deduction can be
reinforced as follows, using the fact that the non Abelian dynamical
and topological interpretations of the Wu-Yang phase are expressions
of de Broglie’s wave particle dualism, and therefore have a common

origin.

The B Cyclic Theorem of O(3)s electrodynamics states that:

BMW x B = {BOBE»* (3.4.68)
and using this result in equation (3.4.63) it follows that:
Icosé = —BOBG)*, (3.4.69)

Ho
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where we have used the definition of the vector cross product:

BW x B® = BO?0o5(5 + 7/2)e®" (3.4.70)

More generally, Pancharatnam [23] deduced that:

Icosd = /I, I, P, Pycoss (3.4.71)

from a consideration of the intensity pattern of two interfering beams
of intensities I} and I and elliptical polarizations P, and P,. The
object Png is the angular distance [32] between P, and P, on the
Poincaré sphere and & their phase difference. The P phase was then
shown to be proportional to a solid angle on the Poincare sphere
through Pancharatnam’s Theorem (23,32). A simplifirf of the ge-
ometry is where we consider two co-axial circularly polarized beams.
The P phase is then seen through equation (3.4.69) to be determined
by the B® fields of the two beams. If for example the circular po-
larization of the two beams is opposite, the P phase is zero. If the
circular polarizations are the same, the P phase is maximized, and
intermediate elliptical polarizations give intermediate P phases.

The existence of the P phase has been demonstrated empirically
on the one photon level [36,37] and therefore these recent experi-
ments serve as a direct demonstration of the existence of B® for
one photon - the photomagneton operator introduced in 1992 (38].
Experiments demonstrate [32] that the P phase exists in all types of
interferometry, and that a non Abelian phase change due to a change
in optical path difference (for example in Michelson interferometry
[32] is the same precisely as that induced topologically. This is a
straightforward consequence of the non-Abelian nature of the Wu-
Yang phase and of the de Broglie duality, equation (3.4.62). The P
phase is deduced from the area integral of the non-Abelian Stokes
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Theorem (equation (3.4.63)):

A(P) = 0 = i [ [IDy Do, (3.472)

and the dynamical phase is deduced from the line integral of the

same Theorem:
YD) = wp = 'éng‘de". (3.4.73)

For example, the dynamical phase difference of the well known Young
interferometer (two slit experiment) is deduced from the W'u-Yang
phase by replacing £ in equation (3.4.65) by & JA® . Straight forward
algebra gives the well known Young interferogram:

Re(Ad) = Pcos(27r(% +n)), (3.4.74)

and this result is applicable to the photon, electron, neutron, atoms
and all particulate matter. This possibly suggests that tbe phot.qn
is also a particle with material properties similar to massive parti-
cles, as originally suggested by deBroglie. The empirically obser:vable
[32] topological P phase, equation (3.4.72), in the same experlr.nent
(Young interferometry) is deduced from the nopAbehan area '1nte-
gral of O(3)p electrodynamics. This integral is directly prop?rtlonal
to a topological magnetic monopole [15]. The recent empirical 0'{)-
servation of the topological phase in Young interferometry [15] is
therefore an observation of the topological magnetic monopole [15],
or magnetic flux due to the B®) field.

Note carefully that the topological P phase cannot be defined witho'ut
the area integral over B® and this area integral does not e?ust
in U(1) electrodynamics. As shown by Simon [22] the.topologlcal
phase is generated by a round trip with nonAbel.lan, for eXfimple
O(3)s covariant derivatives. In U(1) electrodynamics we obtain the

dynamical phase:
$o = K-T (3.4.75)
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from the line integral of the Wu-Yang phase, but as argued in section
3.3, this phase is insufficient to describe the Sagnac interferogram
with the interferometric platform at rest. For a complete description
of Young interferometry, O(3), electrodynamics are essential.

Dultz and Klein [32] have recently given a useful summary of the
differences between the topological (P) phase and dynamical (D)
phase. The P phase is achromatic, and depends only on polarization.
The D phase is chromatic and path and frequency dependent. The P
phase is non-additive in the optical path, ; unlike the D phase. The
P phase is unbounded, and is changed by the state of polarization.
The D phase is bounded in a finite range of . Beam coding in
the P phase occurs in unseparated beams (for example the Sagnac
interferometer), while separate beams are always required for the
D phase. Both phases occur in the one photon case [36,37] and
have been observed empirically [32] in the Sagnac, Mach, Zehnder,
Michelson and Young interferometers.

Therefore interferometry, and all physical optics, are more generally
branches of O(3)s electrodynamics. This conclusion can be illus-
trated by considering as in Section 3.3 the Sagnac effect as a phase
difference generated by equal and opposite Wu-Yang phase differ-
ences between loops A and C. Replace 7 by 4%y using equation
(3.4.63) and integrate around the A and C loops with the B® field
projected on the loops:

B® .dry = kAO|k|
B®) - dro = —kAOYk|. (3.4.76)

These are equal and opposite inO(3), electrodynamics, but do not
xist in U(1) electrodynamics. These integrals generate equal and
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opposite nonAbelian dynamical and topological phases in. loops A
and C: phases which do not exist in U(1) electrodynamics. The
phase difference observed with the Sagnac platform at rest can be

shown simply from this analysis to be:

Rep = cos(2w*A[® + 2mn), (3.4.77)

where A is the area enclosed by loops A or C and w is the angular
frequency of the light beam from the Sagnac beamsplitter. When
the platform is rotated at an angular frequency 2, there is a Doppler
shift as shown in Section (3.3), so w in equation (3.4.77) is replaced
by:

w > wx L (3.4.78)

For w >> § the difference in phase interference generated in the
Sagnac interferometer with platform at rest and in motion is there-
fore the well known classical result:

A(Re) ~ cos(dwQA/c® £ 2mn), (3.4.79)

which is an approximation of:
A(Re) = cos(2(20Q + Q?)A[c? £ 2mn). (3.4.80)

When the platform is spun very quickly, the result (3.4.80) may pro-
duce observable departures. In this explanation of the S‘agnac effect
the equal and opposite topological phase due to B (3) fields appear
in an axis perpendicular to the plane of the loops A ar‘ld C, together
with a topological magnetic monopole and a topological Phase, all
stemming from the commutator [Dy, D] in the integrand of the area
integral of the non-Abelian Stokes Theorem (3.4.72). The commu-
tator is zero by definition in U(1) electrodynamics. All these effe.ects
are inter-related and the B() field is associated with a topologlca:l
magnetic monopole whose origins are similar to t}le well known 't
Hooft Polyakov monopole in non Abelian gauge field theory 1. AG
argued in Section 3.3, there is no phase difference in the Sagnac .m-
terferometer in U(1) electrodynamics, and so there is no explanation
for the observed interferogram with platform at rest. In O(3)s thfzre
is an explanation which can be developed simultaneously according
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to an O(3), dynamical phase or an 0(3), topological phase induced
on a quantum wave function as represented by equation (3.4.63).
When the platform is rotated, an O(3)s gauge transformation occurs
as argued in Section (3.3), leading to a Doppler effect and to the
classical result (3.4.79), an approximation of equation (3.4.80).

The Michelson interferogram can be explained in O(3); electrody-
namics in the wave interpretation (dynamical phase) by noting that
the phase differences generated in arms X and Y by a round trip
from beamsplitter to mirror and back are:

Apx = emp(kﬁ(ﬁfodX)

K
Ay = ezp(k-A(—O) 7{ Ade). (3.4.81)

In general these phase differences are not the same, and so the
Michelson interferogram is observed by moving one of the mir-
rors. The corresponding topological phase, observed recently in the
Michelson interferometer [32] is given by the difference of B®) fields
in arms X and Y, a difference generated in the particle interpretation
from the difference of area integrals:

A(A¢) = co.s(%(B(3)x ~ B®y) & 2mm). (3.4.82)

In order to observe this phase difference, which is equal [32] to the
dynamical phase difference, the polarizations in axes X and Y must
be adjusted without moving either mirror of the interferometer. This
is accomplished using polarizers as reviewed by Duitz and Klein [32.].

In U(1) electrodynamics it is not possible to obtain a Michelson
interferogram without moving one mirror. In O(3)s, if the solid angle

Origin of Electrodynamics in the General Theory of Gauge Fields 101
in Pancharatnam’s theorem is denoted (g, the P phase difference is:

Ap = exp(iQo),

O = i f{ Dydet = i / / [D,. D,)do*”, (3.4.83)

and is given by a difference in B® fields in X and Y induced by
a polarizer with fixed mirrors. 1t is emphasized that in U(1) elec-
trodynamics, there does not exists this topological phase difference
in Michelson interferometry. This is because the beams in X and Y
always exhibit no phase ditference due to B®) at the beamsplitter.
Specifically, the U(1) phases at the recombination point at the beam-
splitter is sum to e2FA for all beamsplitter to mirror path lengths
in X and Y. Here we are using the compact notation of equation
(3.3.44). The reason for this is that the contribution to the phase in
X and Y always vanish as follows:

Apx = SHFAT g [ A%dn) _ ¢

Aoy = GFAY Sl [ A g

JT = JU = 0. (3.4.84)

In conclusion therefore the Pancharatnam phase is related to the
B®) field of O(3)s electrodynamics through the non-Abelian Stokes

Theorem:
p = ij{’D“dx“ = i//[D”, D,)da"", (3.4.85)

The observable phase change is then determined by de Moivre’s The-

orem: »
Ap = e = cos{ly + isiny, (3.4.86)

where upon it becomes clear that is indeed an angle - an an-
gle in Minkowski spacetime, or in other words a solid angle on the
Poincare sphere. The most important point to bear in mind is: the
empirically observed features of the P phase (and the Berry phase)
cannot be deduced theoretically unless the Stokes Theorem (3.4.85)
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is non-Abelian, with covariant derivatives that give rise to the B®)
field in the special case of circular polarization:

b

€ €
0 = —B® . 4 = 2 = —
T % A By

(3.4.87)

The P phase is therefore directly proportional to B®) and is the
ratio of the magnetic flux & to the elementary fluxon, ¢ = &

P

Ith.erferometry and physical optics depend on the existence in vacuo
of the B® field for one photon. The B® field is observed empiri-
cally as the topological phase.

3.5. THE NONABELIAN STOKES THEOREM AND THE
ELECTROMAGNETIC PHASE

I.n O(3)s electrodynamics the nonlinear electromagnetic phase is de-
fined through the non-Abelian Stokes theorem:

y =i }{ D,dat = i / / D,., D,)do*", (3.5.88)

where
D, = 0, — igA, (3.5.89)

s a covariant derivative. The quantum operator correspondence is:
7:041. = Pp/h = Kp, (3590)

mnd the electromagnetic field is:
i
Gp,l/ = E[Dua Dp,] = OVA“ - Op,Ay/ - 1g[Ay. A.“']' (3591)

(he phase is therefore:

7 = f (Ku + gAu)dzt = g / / Guudo™.  (3.5.92)
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The left hand side is a line integral and the right hand side an area
integral over the electromagnetic field tensor: they give the dynami-
cal and topological phases respectively [34]. The line integral is equal
and opposite for loops A and C by definition: over any closed curve,
the line integral clockwise (or in one sense of direction) is always
the negative of the line integral anticlockwise. As we have argued,
this is the basis of the Sagnac effect and of interferometry in general,
leading us to reject U(1) electrodynamics in favor of a non-Abelian
electrodynamics such as O(3)s.

The limitations of U(1) (Heaviside Maxwell)} electrodynamics are
abundantly exemplified when we trace the electromagnetic phase
around the A and C loops of the Sagnac effect with platform at
rest. The U(1) phase contains a dynamical phase plus a topologi-
cal phase due to the magnetic field B(12) that project through the
solenoidal area:

yoay = Keat + i / / (O A, — 0,A,)da*”. (3.3.93)

If the Sagnac loops A and C are in a plane perpendicular to the Z
axis, the wave-vector is in general:

K = Kxi + Kyj. (3.5.94a)

r = At + Yj. (3.5.94b)
The phases in the 4 and C loops, if there is no net parallel translation

of the magnetic fields, are respectively:

74 = wi

and are identical. There is no phase difference for a rotating plat-
form, contrary to observation [32,36]. The only way of addressing
this problem within U(1) symmetry is the ad hoc introduction of
a random phase difference, an essentially unsatisfactory procedure
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which follows the phenomenon and is therefore not based on first
principles. By definition of the U(1) gauge:

[Ap, A] =0, (3.5.96)

and both sides of equation (3.5.88) vanish after averaging over many
cycles. The U(1) covariant derivative cannot be used to give a satis-
factory definition of this electromagnetic phase associated with the
Sagnac effect.

In the O(3), gauge theory it is of key importance to realize that the
potential contributes, as a product, to physical observables on the
classical level. Tt is defined through the rotation generators of O(3),
39]: '

A, = JUA%,, (3.5.97)

where:
[(J'h 7% = i? (3.5.98)

is an angular momentum commutator relation within . It follows
that the area integral of equation (3.5.88) is:

Y4 = 7c = —ig® / / (Al A% )do™ (3.5.99)
and if the loops A and C are circular we can write:

AlQ)
V2

Laser beams sent around optical fibers A or C therefore generate
equal and opposite projections of

A = A" =

(it + j)e*t. (3.5.100)

B® = _igA x A*, (3.5.101)

onto the area that encloses the loop.

Origin of Electrodynamics in the General Theory of Gauge Fields 105

This is a topological magnetic field with a monopole defined by
Stokes law and the divergence of the field. It is essential to under-
stand that this magnetic field does not exist in Heaviside Maxwell
electrodynamics, and is therefore fundamentally different from a
static magnetic field. Analogously, a topological phase is funda-
mentally different from a dynamical phase [34], and it contains a
term that is numerically computed through the non-Abelian Stokes
Theorem. (A line integral is equal to an area integral but the in-
tegrals are local and global in nature.) An additional feature in
the non-Abelian Stokes Theorem is that there is an internal vector
space, so if the area integral points in a given direction, so must the
line integral. Some practice is needed to become accustomed to this
property, in the usual Abelian Stokes Theorem, as applied in U(l)
electrodynamics, the internal vector space is missing. In the Sagnac
effect, for example, the area integral reverses sign for loops A and C
so must be an axial vector perpendicular to the plane of the loops,
i.e. an axial vector in Z. Therefore the line integral is also an axial
vector in Z. The magnitude of this vector is the same for left and
right hand sides (line and area integrals). If the constant g is k/AO
the difference in the area integrals for A and C is:

2
Ay = 224 = 24 (3.5.102)
(84

and the observable phase shift of the Sagnac effect with platform at

rest is:
A¢ = cos(Ay £ 27n), (3.5.103)

a topological phase difference. It is numerically equal to the dynam-
ical phase difference

A = co.s(j{fc.d'r' + 27n) (3.5.104)

obtained from the line integral on the left side of the non-Abelian
Stokes Theorem. This line integral is zero in U(1) electrodynamics
for connection coefficients that have zero parallel transport around
the loop. This is a vector in the axis perpendicular to the Sagnac
plane. Such a concept does not exist in Heaviside Maxwell electro-
dynamics and is the root cause of the Sagnac effect. Some care must
be taken in the interpretation of equation (3.5.99).



When the platform is set in motion there is an O(3), gauge trans-
formation, a physical rotation about Z which produces the result:

K, > K, + d,a (3.5.105)

as we have seen. This feature is specific to O(3), electrodynamics.
Taking the ;1 = 0 index of equation (3.5.105) produces the ob-
servable phase shift of the Sagnac effect when the platform is set in
motion:

2
ADy = (@ + Q) — (0 -~ )4 = Su0A (3.5.106)
¢ c?

This phase shift has been observed to a precision of one part in 1020
[38]. It cannot be explained with U(1) electrodynamics [39].

The Sagnac effect with platform in motion is the same to an observer
on and off the platform [38], so is a Lorentz invariant phenomenon
to a very good approximation. The observed phase shift does not
depend on the shape of the loops, or on the way in which the platform
is rotated - offset rotation produces the same result [38].

The explanation for these observations in O(3); electrodynamics is
:hat if we take the difference of the Lorentz invariants:

Ly = (K, + O.a)(K"* + Oua) (3.5.107)
L; = (K, — Oua)(K* — Oua), (3.5.108)

ve find that
A =1L — L, = 2(0,aK" + K*0*a), (3.5.109)

nother invariant. If we assume that the space part of J,a is very
mall, we find that:

4082
A = (3.5.110)

c2

is a Lorentz invariant as required. The Sagnac effect is the same on
and off the platform as observed with great precision [38]. This is a
direct resilt of O(3), electrodynamics in Minkowski spacetime.

In order to demonstrate the topological origin of the Sagnac effect it
can be proven as follows that it is a special case of the Tomita Chiao
effect [40]. First write equation (3.5.106) as:

w [V
AAy = 47r§(z), (3.5.111)

using ? = v/Rand A = 7R% AsQ) — wand @ — w:
AAy — 4. (3.5.112)

Now rewrite equation (3.5.99) using A = 7R*>;w = v/R; Q = w;
¥ — c to obtain:
A"YA—C - 2. (3.5.113)

The limits (3.5.113) describes a platform so that if it is regarded
as massless then this describes a laser beam sent around an optical
fiber loop A. (The limit (3.5.112) is the difference in A~y for lasers in
loops A and C.) The topological phase of the Tomita Chiao effect,
regarded as a Pancharatnam phase, is given by 40:

1 2w p
= F- 1l — ——————xo—]d%, 3.5.114
v==53/ ( )it (3.5.114)
and so
Yoo — Fmoand Aya_c — 27 (3.5.113)

when p — 0. Here p is the length of a helically wound optical fiber
of radius R. The limit (3.5.115) is that in which the helix reduces to
the circle of the Sagnac effect. The latter is therefore a topological
phase measured by interferometry. The Tomita Chiao effect is the
same (global) topological phase picked up by rotation of the phase of
polarization of linearly polarized light propagating through the fiber.
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Both equations (3.5.113) and (3.5.115) can be written as
A = 27r%B(3>-A~ (3.5.116)

where
$ = BO .4 (3.5.117)

is the magnetic flux due to the topological magnetic flux density
B®). For one photon [2-12]:

Py = (3.5.118)

h
Z.
Equation (3.5.111) illustrates the fact that the phase shift in the
Sagnac effect is area independent, and this is observed in the Michel-
son Gale experiment, where the area enclosed by the loop is much
smaller than the Earth’s area. The Michelson-Gale effect is due to
the Earth’s diurnal rotation, v being the Earth’s surface velocity.

The only difference between the well known Michelson Gale and
Michelson Morley experiments is that the laser beam in the former
encloses an area on the earth’s surface. In the Michelson Morley
experiment the beam is sent in opposite directions in one arm of a
Michelson interferometer. In one direction the Earth’s surface moves
at v and in the other at —v. This movement can be thought of as
that of a rotating platform and is therefore an O(3), gauge transform.
The relevant phase difference with platform at rest in the Michelson
interferometer is generated by a journey from the beam-splitter (0)
to a mirror (A) and back to the beamsplitter:

A o
Afy=/ k~’r+/ k-r:](k-'r, (3.5.119)
o A

A o
/ k-r = —/ k-r (3.5.120)
o A

where
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and on reflection at A:
k - —k. (3.5.121)

This then results in:

Ay = j{k-r. (3.5.122)

The journey of the wave-vector around the Earth’'s diameter can be
described as:

1 = @ - ——k(O)(i' et (3.5.123)

k T+ e, 3.5.123
V2 7 '

where k(®) = w. Soifw — w + Q asin the Michelson Gale or

Sagnac effect then the relative change in K(® is ~ Q/w = 10722,
This seems to allow for the possibility of an extremely small effect
in the Michelson Morley experiment.

3.6 LINK BETWEEN B CYCLIC THEOREM AND THE
NONABELIAN STOKES THEOREM

In this final section of chapter three a link is proposed between the
B cyclic theorem and the non-Abelian Stokes theorem. Start with
the B cyclic theorem in the form:

BO* = —iA—’(i))—A(l) x A® (3.6.124)
and use the relation:
B©® = kA0, (3.6.125)
so that .
kAOE = -iﬁ/ﬂl) x A®rR?. (3.6.126)

Without loss of generality it is possible to multiply both sides of this
equation by the area of the space and so that:

kAVoRk = i—_-nR?. (3.6.127)
Therefore it is deduced that
TReAO (k- R)k = B®) . Ak. (3.6.128)
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This expression can be integrated to give the non-Abelian Stokes
theorem in the form:

27rxA<“>7§R.dR = //B(3)-dA. (3.6.129)
Finally, let:
1 A
R = - = —
== 5 (3.6.130)

and multiply both sides by ¢ = oy to define the phase:

K
vy = 27rj[h-dR = m//B“)-dA. (3.6.131)

The line integral must be evaluated along a closed path as indicated
in figure 3.1. A closed curve is therefore a helix along the propagation
axis (Z axis). The circumference of the helix remains 27 R. The line
integral starts at the origin O and proceeds around the helix back
along the propagation axis from A to O. Off the Z axis the line
integral is zero. Integration around a circle for example gives:

j‘{ dl = — /0 27r.sin(t)dt + /0 27rco.9(t)dt. (3.6.132)

The line integral along the off axial helix is formed from:

27 2w
7 = —i/ sin(t)dt + j/ cos(t)dt (3.6.133)
0 0

which is zero for all ¢.

The line integrals for all r (along the Z axis) are defined therefore
hy:

= 2%_?{ k-dR = —2%_?{ Kk-dR, (3.6.134)
AO OA

and it is these line integrals that give the phenomenon of Michelson
nterferometry. As soon as the concept of line integral is introduced,
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the area integral follows, and the non-Abelian Stokes theorem links
together the dynamical and topological phases. In terms of the vector
potential:

vy = 27rgj{A(3)~dR = g//B(3)-dA. (3.6.135)

As the helical path closes to a circle:
R = 0; k = oo, (3.6.136)

and the line integral becomes indeterminate. The situation is then
that of the Sagnac interferometer.
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CHAPTER 4
NONLINEAR PROPAGATION IN O(3),
ELECTRODYNAMICS: SOLITONS AND INSTANTONS

4.1 LIMITATIONS OF THE U(1) THEORY

Barrett [1] has discussed the limitations of the U(1) theory when it
comes to the calculation of propagation velocities. Group velocities
in U(1) are almost always larger than the speed of light for radio
frequency transmissions through the atmosphere, and under certain
conditions derivations imply a transmission rate of information equal
to zero. Barrett also points out that the U(1) theory cannot always
calculate the propagation velocity of signals with bandwidth prop-
agating in a lossy medium. Finally, sinusoidal or linear signals are
always used in U(1). Tt is demonstrated [1] that the Harmuth ansatz
2-5 allows these calculations to be made. The Harmuth ansatz de-
scribed by Barrett as occurs in three stages. 1) A mapping of the
Heaviside Maxwell U(1) equations into a higher symmetry SU(2)
form. 2) Solutions for the propagation velocities. 3) Mapping the
solved equations back into U(1) symmetry, removing thereby the
magnetic monopole.

In this chapter the O(3), field equations are used to accomplish the
calculation of propagation velocities, but without mapping in and
out of SU(2) symmetry. The O(3)s gauge symmetry is used in all
situations, and allows the propagation velocities to be calculated
satisfactorily, thus demonstrating another major advantage over the
U(1) form of electrodynamics. This can be accomplished by iden-
tifying the internal gauge space with the ((1),(2),(3)) representa-
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tion of space, a representation based on circular polarization itself.
(All other polarizations are constructed from circular polarization,
so the basis is fundamental.) The quantities appearing in the Har-
muth field equations can therefore be identified with their equivalents
in the O(3), field equations, and the O(3), equations can therefore
be used straightforwardly to calculate propagation velocities using
Harmuth’s method. The net result is a clear advantage over U(1)
electrodynamics.

4.2 IDENTIFICATION OF THE HARMUTH AND
0(3),FIELD EQUATIONS

We id.entify terms in Harmuth and O(3), equation by equation, start-
ing with the Gauss law, which is equation (2.6.49) in O(3)s. In the
Harmuth equations this has the representation 1:

V-B = pn, (4.2.1)

where p,,, is a phenomenological magnetic charge density which is
assumed to vanish [1] in the vacuum (source free condition). In the
O(3)s Gauss Law, equation (3.6.49), component (3) is perpendicular
to (1) and (2) by definition, so the Law becomes:

V-BM =0, v.B® =9 (4.2.2a)

V-B® = jga). g, (4.2.2b)

The topological magnetic monopole or instanton construct exists if
and only if the current term proportional to [A(Y), B(?)] is non-zero
In the vacuum however, B() = V x AM and if AD is a plane:
wave this current term vanishes, leaving the O(3), Gauss Law:

v.BM = v.B® = yv.B® _ (4.2.3)

.Therefore there is automatic agreement with the Harmuth equation
in the vacuum, in that the topological magnetic monopole does not
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exist in the vacuum. Under other conceivable circumstances a mag-
netic monopole of this type may exist in O(3)» electrodynamics.
Equation (4.2.3) is consistent with the B Cyclic Theorem:

B x B® = ;B BB) (4.2.4)

There is a clear difference, however, between the philosophy of Har-
muth and the systematic development in this book of O(3), electro-
dynarnics, in that an embedding of U(1) in SU(2) and back again
is not used. This means that Harmuth still appears to accept U(1)
electrodynamics as the fundamental electrodynamics, whereas the
development in this book takes O(3); electrodynamics as being fun-
damental.

The Faraday Law of induction extended phenomenologically by Har-
muth by using a magnetic current density proportional to

I, = cA,®BED) 1 (4@ E®) (4.2.5)

in equation (2.6.51) is demonstrated. This is the Faraday law of
induction in O(3)s electrodynamics. Harmuth assumes that this
magnetic current density obeys a magnetic Ohm’s law through a
magnetic conductivity which is assumed to be non-zero in free space
as described by Barrett [1], pp. 56 ff. Therefore we must investi-
gate the circumstances under which such a term can exist in O(3)s
electrodynamics in order to calculate propagation velocities using
Harmuth's method.

The Faraday law of induction is regained from O(3)s electrodynamics
in the form:
aB(l)*

if the magnetic current density (4.2.5 ) vanishes. Otherwise the Law
is in Harmuth’s form, which allows a much richer variety of solutions
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[1] and allows a calculation to be made of propagation velocities
where the U(1) symmetry field equations fail [1-5]. These are good
reasons to accept equation (2.6.51) as the Faraday law of induction
without attempting to map it back into U(1) form. The Faraday
law in the familiar form (4.2.6)is retrieved from equation (2.6.51) by
using particular solutions as follows. The potentials must be of the
form:

ADe — (0, A(l))’ Ar2) (0, A(Z))’ ABe (0, 0) (4.2.7)

so that 4g® = 0. The E® field is zero [6], so in order for the
current (4.2.5) to vanish:

cA® B = AB) x O, (4.2.8)
a result which is consistent with
¢cB® = kx E®, (4.2.9)

which is consistent with equation (4.2.6). This procedure loses the
advantage developed by Harmuth [1-5] of being able to calculate
Propagation velocities as described already. Only the unabridged
form (2.6.5) retains this important advantage. This is precisely the
point being illustrated; O(3) electrodynamics has advantages over
U(1) electrodynamics and it serves no purpose to map the 0O(3)s
fstructure back to the U(1) structure. This mapping loses information
in general. The difficulty of course is that those long used to the
Faraday Law in its U(1) form will find the O(3); form to be at first
unfamiliar. Tt is nevertheless rigorously founded in gauge theory,
illustrated in earlier chapters. The most general solutions of equatioﬁ
(2.6.51) and (4.2.5) must be numerically solved.

4.3 STRUCTURE OF THE 0(3)) AND HARMUTH-
BARRETT FIELD EQUATIONS

The Harmuth-Barrett field equations were originally developed by
Harmuth and shown by Barrett [1] to be Yang Mills equations. The
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method developed by both Harmuth and Barrett consists of map-
ping, or embedding, the original U(1) field equations into an S U(2)
symmetry and back again into U(1) symmetry at the end of the cal-
culation. The O(3); field equations developed in this book apply in
all situations and are regarded as the fundamental field equations
of electrodynamics and electrostatics. This is a philosophical step
further than Harmuth and more in the spirit of the work of Barrett
[1]. The structure of the O(3) field equations is given as follows in
a vector form. The homogeneous equations include:

vV.-BO* = p (4.3.10)

aBM)

v x EO* &+ + JoU* = o, (4.3.11)

where pm has the units of magnetic charge density (JsC~'m™%).
Those of magnetic current density are (JC~'m~2%). There are two
other equations with the structure of equation(4.3.11) for indices 2)
and (3). By comparison with Barrett’s equation (5.3.6) it is seen
that the homogeneous O(3), and Harmuth-Barrett field equations
have the same algebraic form. The magnetic charge density pm is
given by:

pm = igAD . B, (4.3.12)
and the magnetic current density by:
I, 0% = ig(cA, B E®@ 4+ [4® BO)). (4.3.13)

In general these quantities are not zero, but they vanish in spe-
cial cases. For example when B(!) = B (2)* is a plane wave and
A = A®@* ig defined in the transverse gauge. In this case the ho-
mogeneous field equations (4.3.10) and (4.3.11) decouple into equa-
tions in indices (1) and (2) which look like the usual Faraday Law
of induction, and into B®) equations as discussed in chapter (2). In
electrostatics the magnetic charge and current densities are zero and
the B®) field also vanishes.

More generally however, it is important to note that the non-linear
equations (4.3.10) and (4.3.11) are regarded as the equations that
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must be solved for the field quantities appearing in them. They
control the form of the electromagnetic field in the vacuum, showing
that there are three components, in indices ((1), (2) and (3)).

In Harmuth’s method, on the other hand, as described by Barrett
(1], the philosophy is different. A magnetic current density is added
to the Gauss Law phenomenologically, but this is essentially a calcu-
lational device, putting the field equations into a transitional SU(2)
symmetry. After completion of a calculation the SU(2) symmetry
is removed. This is a needless complication if it is accepted that
the O(3), equations are more self consistent than their U/(1) coun-
terparts, as argued in this monograph in many ways. Nevertheless,
the work of both Harmuth and Barrett in this context is pioneering,
and of great merit. The O(3); electrodynamics allows for the exis-
tence of pn, and Jy, under well defined circumstances. These may
perhaps include those reviewed by Barrett [1], Tellegren’s gyrator,
the experiments by Mikhailov on the Ehrenhaft effect. The Heavi-
side Maxwell, or U(1), electrodynamics does not allow these effects
to exist, yet they are observed repeatably and reproducibly [1]. The
importance of the work of Harmuth and Barrrett has been to draw
attention to their existence, and to attempt to address the problem
within U(1) gauge theory. It seems almost certain that electrody-
namics, aas with the case of gauge theory in general, is far richer
than supposed in the nineteenth century when Heaviside devised
the equations known in all the textbooks as the Maxwell equations
(1.4.29). The O(3), symmetry electrodynamics is just one example
of this likelihood using a particular basis ((1), (2), (3)) based on cir-
cular polarization as it manifests itself in the third Stokes parameter
and the inverse Faraday effect. In other words the internal gauge
space in O(3), electrodynamics is a an internal space that carries
physical consequences, in complex representation ((1), (2),(3)).

In the Harmuth method there is a covering space and a physical
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space, and this idea is carried over into Barrett’s work [1]. What a‘ll
three approaches have in common (Harmuth, Barrett and O(3)s) is
the existence of products between physical potentials that can con-
tribute observable physics. In the U(1) electrodynamics of Heaviside,
the potential does not contribute such physical observables. By us.ing
physical content derived from potentials in O(3)s electrody.nanncs,
topologieal explanations can be found for phase effects, as discussed
in ehapter three, and that alone is strong support for an O(3) sym-
metry theory on a fundamental level in classical and also in quantum
electrodynamics (see later chapters of this monograph).

For those highly mentored in the Heaviside electrodynamics this is a
very difficult step to take, but nevertheless it seems reasonable and
fruitful because it leads to more self-consistency and a great deal
more information. It brings instanton theory into electrodynamics

as just described.

The structure of the inhomogeneous field equations in O(3)y electro-

dynamics includes:
v.-DO®* = p, + pr, (4.3.14)

1)
oDy + JOr 4 gD (4.3.15)

v x HO* =

where pr is an extra electric charge density and Jr an extra electric
current density. Again, this structure is regarded as the fundamental
one to be solved for all the field quantities appearing in the equations.
The two new quantities are defined (chapter 2) by:

pr = igA® . DB (4.3.16)
Jr* = ig[A®, H®), (4.3.17)

and the equations must be solved in general without approximation.
In the special cases developed in chapter (2) they reduce to more
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familiar forms. However, they must be in their unabridged form to
describe the inverse Faraday effect, as described in section (2.10). If
they are artificially reduced to a form resembling Heaviside’s electro-
dynamics they lose the ability to describe this well known magneto-
optical effect. By reference to Barrett's equation (5.3.6) [1] it be-
comes clear that the inhomogeneous O(3), equations (4.3.14) and
(4.3.15) have the same form as the Harmuth-Barrett equations when
these are mapped into this higher symmetry.

On this classical level constitutive relations are needed in O(3), elec-
trodynamics as explained in Chapter (2), where Ohm's Law was
derived from first principles. Harmuth also introduces a magnetic
Ohm’s Law in his transitional symmetry. In O(3), electrodynamics
the electric and magnetic Ohm Laws are:

ogEW* = JpUr 4 ig[A(z), H(3)]
o HV* = g (0 — ig[A®), EO)] (4.3.18)

where the last term on the right hand side of the first of equation
(4.3.18) we identity as Jr{"*. These are direct consequences of the
existence of the non-linear currents.

4.4 LINK BETWEEN THE 0(3), EQUATIONS AND THE
SINE GORDON EQUATION

The procedure developed by Harmuth [2-5] and reviewed and ex-
tended by Barrett [1] can be used to reduce the O(3), equations to
a set of sine Gordon equations. This is an important link because
the sine Gordon equation has soliton solutions and topological cur-
rents which do not exist in U(1). We start with the vacuum O(3),
equations in their general vector form [1-5]:

VXE =~ 4 Jn = 0, (4.4.19)

VxH — — — J — Jr = 0. (4.4 2M
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B = wH, D = E, Jo, = 0nH, J + Jr = 0nE, (4.4.21)
and generalize to an O(3), field component such as:

(')E(l) E(l)

— szEM = 0 (4.4.22)

VxHY — ¢

v xEM + eoaH + opHY =0 (4.4.23)

These equations can be put into the form of a sine Gordon equation
by using components of the curl of the fields for a photon propagating
in the z direction [1-5]:

(1)
M, (V x EM), = _a_Ei_

(4.4.24)
Oz z

(Vx HY), = —
The difference in sign between the two vector curls in equation
(4.4.25) is needed to obtain the correct d'Alembert equation from
a limit of the sine Gordon equation [1-5]. Using equation (4.4.24) in
equations (4.4.22) and (4.4.23) we arrive at:

(1) (1)

a%i + EOGE;}Q + opEy") =0, (4.4.25)
(1) .0

__.‘r”fr; + el 2t onH,M = 0, (4.4.26)

a result attributed to Harmuth [2-5]. Now differentiate (4.4.25) with
respect to Z:

2 (1) g, og,)
c?gfyz_ 4 60_0%(5 - ) + o= = 0. (4.4.27)
Z L

Similarly now differentiate (4.4.26) with respect to t:

(1) (1)
o2 H," Q(OEy )+ GmOIng = 0. (4.428)

KO e ot\ 0z
From equation (4.4.26) in equation (4.4.27):
1)

) e oH,!
0°H, + e—a—(———aE’J ) - UE(HU B; + UmHy(l)) = 0.
02* 0z \ ot ’ (4.4.29)
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Now assume a solution such that:

(1)
22y - 2aml (4430

then from equation (4.4.28) in equation (4.4.29):

02Hy(1) 1 02Hy(1) oH,M

2 T @ g = (e00m + pooE) 0; + aEamHy(l).
‘ (4.4.31)

If 0,, = op = 0 we recover the d’Alembert wave equation in vacuo

and a plane wave for the component Hy(l). This result is consistent
with the fact that 0., and og vanish for plane waves [6], and if a
transverse gauge is assumed for the potential 4(1) = A@)x

As shown by Harmuth [1-5] equation (4.4.31) is a sine Gordon equa-
tion. This is seen if we write 7, = 0, (H(Y,) and 05 = a(HM,)
as a power series in the field H(l)y then the right hand side isya
power series, which can be a sum of cos(ﬁHy(l)) and sin(6H,™M).
A choice of the sine solution leads to a Sine-Gordon equation ’

o/, 1 9°H,
022 2 o2

= asin(fH,"), (4.4.32)

which is conveniently normalized using Hy = Hy(l) /H© to obtain:

O*Hy 1 8°Hy .
ol 2 = asin(fHy), (4.4.33)

This equation is one of a set of sine Gordon equations for different
(.‘.omponents of the O(3), field. The reduction has been illustrated
for one component Hy(l).

The 'properties of the sine Gordon equation are well known [1-5,7]
and in general if electrodynamics is described by such an equation
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it becomes a much richer subject. Since B®) is a solution of the
O(3)s field equations it is also associated with an infinite number of
conservation laws, or symmetries, of the sine Gordon equation. Soli-
ton wave equations have an infinite number of symmetries, and the
topological index associated with the B®) field is then associated
with these symmetries. Apart from the solutions of the latter dis-
cussed by Harmuth [2-5] and Barrett [1] there is an infinite number
of constant solutions of the form:

Hy = —;n = 0, £1, £2, ... (4.4.34)

as discussed by Ryder [7]. If we accept the hypothesis of O(3)s
electrodynamics these solutions are electrodynamic solutions which
do not exist in the Heaviside Maxwell model. If the vacuum is defined
as a classical field configuration of zero energy the solutions (4.4.34)
show that the vacuum is degenerate [7). The sine Gordon equation
also gives solitons, which is a solitary wave in electrodynamics which
moves along the propagation axis without changing size or shape,
and therefore without dissipation 7). The solitons appear if and
only if the parameters g and o, are non-zero.

Most real world physics involves approximations of exact theories.

With this in mind we now Expand the function y = sin(8Hn)
with a two variable Taylor series about the point zo = (2o, to), We
find that: )
Hy(z, t) = =sin”ly
(2, 1) 5
OH 1 0?’H
= Hy(a to) + (2 = 20) 5 (20) + 572 = PP =55 0) + oo

or conversely,

t 9 e
Yy Z([)’(z - zp) gzN(zo) — %ﬁs(z — z)? O;N (20) + .- )

= (4.4.36)
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where the sum includes the z and ¢ components. Therefore, when
z = zy + 6z
Yy = ofi(z — %)0.H,, (4.4.37)

and Wi.th 0:Hy ~ H,/(z — z) we see that aff ~ 0go.,. This
result implies that o in the sine-Gordon model is proportional to a
mass term as discussed by Ryder [7].

Start with the sine Gordon equation for the scalar component of the
electromagnetic field in the form given by Ryder’s eqn. (10.1):

#p 10
=L - ?af_f = asin(fg), (4.4.38)

in naturalized units with ¢ = 1. The soliton solution is of the form
4
d(z. t) = Ztan—l(efﬂf), (4.4.39)

which is a solitary wave which moves without changing shape or size.
The Lagrangian in Ryder’s reduced units is

SN - @) v e
with a potential energy chosen so that the constant solutions
¢ = 2—(}?, n =0, £1, £2, ..., (4.4.41)
have V' = 0. The potential energy may be written as:
V(g) = %(1 — cos(bg)), (4.4.42)

where there is a particle mass m = ab and a self-interaction coupling
parameter. Therefore it follows that in O(3), electrodynamics t.her:
is a ”particle mass” proportional to VOECG 5. Tt follows from the soli-
ton solution of the sine Gordon equation that there is a conserved
topological charge and current. Examples of topological charges and
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currents in O(3); electrodynamics are given in the basic equations
(2.6.49) and (2.6.51). Since each sine Gordon equation of the form
(4.4.33) is also an equation of O(3), electrodynamics the properties
deduced from the former are also properties of the latter. The sta-
bility of the soliton solutions is a consequence of topology in each
case because the equations are non-linear.

The B®) solutions of the O(3), equations can be considered to be
a vortex line [8], and O(3)s gauge theory does indeed support one
non-trivial vortex. The O(3), field equations also give a non-trivial
topological magnetic monopole as given on the right hand side of
equation (2.6.49). This is clearly not a point magnetic monopole.

4.5 INSTANTONS

Instantons are minimum action solutions of the self-dual Yang Mills
equations [1,7}. In order to explain these abstractions in terms of
electrodynamics this section is initiated with a discussion of duality
in U(1) and O(3); electrodynamics. We start with the familiar field
tensor of U(1) electrodynamics. The dual tensor is [7]:

- 1
Fev = §€’L’,apFa'p (4543)

where

E;Lua'p = _Ep.upa' (4544)

Therefore, in contravariant-covariant notation with naturalized units

[7): L . -
F9 = 9*Bk F" = &E7;

Fu = Ikgk O = QLB (4.5.45)
There is a field duality in U(1) symmetry which can be expressed as

[9-10]:
E - B. -B —» E (4.5.46)
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Instanton theory, based upon field dualism, considered in Euclidean
spacetime results in computational simplicity. Here the coordinate
system is:

LTy euel = (331, T3, T3, 5134). (4‘5.47)

The dual tensor in euclidean spacetime is:

~ 1
F,u,)/ = §E[LV(7PFUP) (4548)

with
€1234 = 1. (4.5.49)

The first step towards the construction of an instanton theory for
electrodynamics is therefor to construct the field tensor and its dual,
and it is helpful to illustrate this procedure firstly by reference to
U(1) electrodynamics. The coordinates are such that:
A;L = (Als Az, As, A4) a;l, = (817 027 831 04)» (4550)
and in the abelian case:
Fu, = 0,A, — 0,A,. (4.5.51)
For convenience of illustration denote:
Ap = (Ao, A1, Az, A3); Oy = (Do, 01,02,85),  (4.5.52)
so that the euclidean field tensor is:
F = ¢9kpk pOi — Oiigi (4.5.53)
The euclidean dual tensor is:
~ 1
F[LI/ = §6y1/apFap7 (4554)

and using the rule:

€123 = 1, €o132 = —1, (4.5.55)

Nonlinear Propagation in O(3);, Electrodynamics: Solitons and Instantons 129

and further permutation symmetry, the dual of the Euclidean field
tensor is the dual of the Euclidean field tensor is:

Fi = ikgk po - Slupd (4.5.56)
So the Euclidean field duality is:
EFE - B, B - E. (4.5.57)

In Euclidean spacetime the electric-magnetic field duality amounts
to an equality.

These considerations can be extended to O(3); electrodynamics by
defining the field tensor as:

3
F* = Z Fotr et (4.5.58)
a=1
so the duality in Minkowski spacetime for O(3), electrodynamics is:

E* - B* B* —» —E“ (4.5.59)

The nonzero field tensors for the (3) components are the antidiagonal

elements:

0 0 0 —EB),
0 0 —B®), 0
3
=1 9 BO®, o 0
E®, 0 0 0
0 0 0 —BG),
. 0 0 E®), 0
F3IH/ — 0 _E(s)z 0 0 ) (4.5.60)
BB®), 0 0 0

The field components appearing in these tensors are defined in O(3},
gauge field theory by

G(S);m — 01/A(3)l‘* — 01‘A(3)”* — ig[A(l)“’ A(Z)u]‘ (4561)
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and if we assume a particular solution [12]:

A2 — (0, A(LZ)), AB (cA(O), A(B)), (4.5.62)
it follows that:
BG»* — —igAM ><A(2)_, E®* — o (4.5.63)

Therefore, the magnetic component is real and physical and the elec-
tric component has no real or imaginary part. This result is consis-
tent with the fact that there is an observable empirical magnetization
due to the B®) component, but apparently no known effect of E®).
However, a zero E®) is the result of choosing the vector potentials
according to equation (4.5.57). This choice of vector potentials leads
to a duality of the form:

0 0 0 0 0 0 0 —-B®,
0 0 -—B®, o . 0 00 O
0 B®, 0o o0 0 00 0 ’
0 0 0 0 B®, 00 o0
(4.5.64)
which can be summarized by [9-12]:
10B®)
(3) bl =
V x BY + o 0. (4.5.65)
This equation is unchanged if
B® - B® (4.5.66)

and so B®) is self-dual. There is never any ”Faraday induction” due
to B®,

However, the use of a rigorously zero E®) is not compatible with
the existence of instantons in electrodynamics, for instantons to exist
requires a pure imaginary E® [9-12]. To prove this result the O(3)s
field tensors must be set up in the required Euclidean spacetime:
0 —E} —E$ —E$
F@ ] = | B 0 Bs/c —Bj/c
e E} —-Bj/c 0 Bt /c
E$ Bj/c —Bf/c 0

(4.5.67a)
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0 —-B? -B3 —Eij
(e Bt 0 Bife -—Bjjc 4.4.67b
{F;(u/)] = B;a —Eé‘/c 0 Eil/(, ( . )

B Egjc —Efjec 0

In order to obtain instantons [7) we must use the self dual condition:

F® et = F (4.5.68)

preuch
which means that in Euclidean spacetime:
E@, o Bl

E@, - B, (4.5.69)
E@W, 5 B@,,

fora = 1, 2,and 3. Translating this result into Minkowski spacetime

roduces:
7 B0, o B0, . iBW, S BO,

—E®, 5 B®, —E®, » B9, (4.5.70)
’I:E(B)z — B(3)z!

which is consistent with transverse plane wave for indices 1 and 2:

(0) .
B0 = B = Z=(i - ig)e:
(0) .
B0 = o = B 4 e, (4.5.71)

V2
and for index 3:
B®, = B®;, E®, = —EO, (4.5.72)
Therefore, the real part of E (3) is zero, and the imaginary part of

B®) is zero. The observation of electrodynamic instantons will there-
fore be an indication of the existence of a real B (3) and an imaginary

E®:.
B® — B®®) = BO E®) = _{E®® = —E©. (45.73)
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It would be wrong to conclude that because E®) ig imaginary it is
unphysical, because it is needed for the instanton. a physical pseudo-
particle obtained from the self dual Yang Mills equations. Therefore,
the potentials in equation (4.4.42) must be chosen so that they give
a pure imaginary E®), rather than a rigorously zero E®. This ad
hoc method might exist in much more rigorous form. If however we
adopt the usual rule in electrodynamics that a pure imaginary field
component is in itself unphysical, the self-duality of B®) still follows
because equation (4.5.45) is still correct. These concepts arise from
the O(3), symmetry adopted for electrodynamics and concomitant
Yang Mills equations.

4.6 HIGHER ORDER SOLITON EQUATONS

The following is an illustration of how the B® field results in the ex-
istence of pseudoparticles that are magnetic monopoles. Physically
these particles are similar to electron holes in solids and mathemat-
ically are instantons.

We start with an SU(2), SO(3), or the broken S0(3) as O(3), field
theory in R, where the metric is regarded as Euclidean. Later a
discussion of this solution in Minkowski space with the metric signa-
ture [1, —1, —1, —1) will be given. The field strength tensor Fe,,
carries the Euclideanized spacetime indices i, v that can be decom-
posed into the temporal parts and the spacial parts 0, i € {1, 2, 3}.
In addition there is the Lie algebraic index a € {1, 2, 3}. These
indices give vector components in the internal 3-sphere isomorphic to
the Lie algebra SU(2). The field tensors F “uv are then nonabelian
and obey Yang-Mills theory. This definition of the field tensor is
composed of terms that are purely spacial and those that mix tem-
poral and spacial parts:

Faij — ajAai _ aiAaj + Z'gEabc[Abt‘, ch]

Fq = 0;A% — 8pA% + ige®®[Aby, A%). (4.6.74)
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We consider the source free Yang-Mills equations
O"F°,, + €*[A™ F°,.] = 0 (4.6.75)
in its spacial and temporal decomposition
F; + ([AY [ Fo5) + (AP, Foy)) = 0, (4.6.76)

and ‘ 4
azFaDi + Eabc[Abt ,FCOi] = 0. (4677)

These field strength tensors define a topological charge by the action

1 Ly
n= gz d*zF Fe,,. (4.6.78)
The field strength tensor contains self-dual and antiself-dual compo-
nents. The dual field strength tensor is *F%,, = %e#,,.opF“"P.
The self-dual and antiself-dual tensors may then be written as
Gi“,,,, = F%,, + xF?%,, and the action is

1 apyv —a
n = 8_17T_2 d4mGﬂ:awGﬂ:a“V + Eﬁ dArGterr g s (4.6.79)

where the bound is obtained for self duality.

Now we consider the stress energy to be smooth and vanishing at
infinity. This means that the gauge potential at infinity is a pure
gauge transformation, where if g is a map between different charts
9ap : U, — Up then the gauge potential is

A%, = ie®gbd,g° ). (4.6.80)

This gauge potential then defines a map between the three sphere
and the group SU(2). This mapping between the three sphere and
SU(2) can be shown to be given by,

Izy + ioc-z2 |,

m(zx) = — T = 3 + 22, (4.6.81)
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which means that the gauge potentials are of the form
A%y = ia(r)e“bcmb(:c)(?“mc'l(at). (4.6.82)

This form of the potential is similar to the form presented by Uhlen-
beck and further gives a correspondence between the Stokes indices
and the internal group on the base space. By using the Yang-Mills
equations this gauge potential can be shown to have the explicit form

7'2

A, =y =m(z)8,m! (z). (4.6.83)

r2 + 1l
where the components of the gauge potential on the spacial subsur-
face in R? determine the nature of the Lie indices according to our
map. The form of these gauge potentials is then suggests that the
logarithm of a function defines them in the manner of a Bogomolny
theory [13]

A%, ="9,logd". (4.6.84)

By using the Pauli matrices explicitly we find that the gauge poten-
tials are then

A = (b4, 3, —$2)97",
Az = (—¢3, ¢a, $1)d7",
Az = (d2, —¢1, da)p™?, (4.6.85)
As = —(¢1, ¢2, —¢3)9p7"

A substitution into the field equations illustrates that these give a
solution only if they satisfy the Klein-Gordon equation

90,4 = 0. (4.6.86)

A solution that only depends upon the 4 distance reduces this equa-
tion to the form

¢ 3dg
7zt o =0 (4.6.87)

which has a solution that is a charge 1 instanton. An examination
of the equations for the vector potentials reveal that O(3), electro-
magnetic theory obtains when ¢, = ¢ = 0 in this self dual case.
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This is since in the case of the O(3)s electrodynamics A?’# = Oon
the physical vacuum.

Now we take the field equations for O(3), where we transform to
polar coordinates that mix A; with Az so that

A1 = Agcosb + r" 1 Aysing, Ay = A,sind — 1~  Aycost. (4.6.88)
The gauge fields then assume a form in cylindrical coordinates
A(f) = (0~ 61) 62))

AZ = (Clv 0) 0)»
Ar = (G, 0, 0), (4.6.89)
b = (0. (I'l, (I:’g)

With an analysis with the O(3), field equations we find that if de-
fine the variables 1 and f that we have the rather simple looking
equations
$ = [T = =G,
@y = —r7 7O,
& = —rf7rop = rly, (4.6.90)
& = rf7of,

with some further calculations these equations can be reduced to the
differential equation

E(O?E + r'0.E + 0,°E) — ((0:E)* + (6,E)*) = 0, (4.6.91)

where E = f + 1. This differential equation is the Ernst equa-
tion for an axial-symmetric spacetime. This differential equation is
has solutions that are vortex and antivortex solutions for solitons.
This equation is also associated with problems for axially symmetric
spacetimes in general relativity. This differential equation is solved
through prolongation techniques and Backlund transformations [14].
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As this book is not a mathematical methods text, these techniques
are not discussed.

If the potential function ¢ describes a potential of the form
V(I#]) = a(]¢* — 1) then this leads to a broken SU(2) type of
physical model. This is in chapter 8 in connection to the unification
of electromagnetism and weak interactions.
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CHAPTER 5
PHYSICAL PHASE EFFECTS IN
0(3)» ELECTRODYNAMICS

5.1 PHASE EFFECTS

In chapter three topological phase effects were developed in terms
of O(3), electrodynamics. In this chapter the theory is extended
to physical phase effects, namely the radiatively induced Aharonov-
Bohm; Josephson and quantum Hall effects. The key to the existence
of all these effects is the radiated object A1) x A®) through which
the B®) field is defined. This object, known in nonlinear optics [1-3]
as the ”conjugate product”, originates in foundational gauge theory.
It is the from the covariant derivative of the potential. This product
is demonstrated empirically by the existence of circular polarization;
magneto-optical effects; topological phase effects; and the optically
induced physical phase effects such as that of Aharanov and Bohm,
first observed with a static magnetic field. Therefore the fundamen-
tal nature in gauge theory of A1) x A?) is key to the development
of the whole of O(3), electrodynamics. There are two other fun-
damental issues raised by this realization, the first is under what
circumstances is the potential in electrodynamics a physical object,
having a measurable effect; and the second is the reduction of O(3)s
electrodynamics to electrostatics, whose laws are well verified em-
pirically, and where there are no radiative effects by definition, so
A x A disappears. These two questions must be answered sat-
isfactorily before we can discuss the optically induced phase effects,
which are the topic of this chapter.

In the received view of non-linear optics [1-3] the object A1) x A
is introduced empirically, as first suggested by Pershan [4] in his de-
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scription of the inverse Faraday effect. The introduction is made
within the confines of abelian gauge theory, whose gauge symmetry
is considered to be U(1), homomorphic with SO(2). This abelian
and linear gauge theory is the linear Heaviside-Maxwell theory of
electrodynamics as we have seen in earlier chapters. The non-linear
conjugate product A x A* is considered within the current U(1)
theory to be an operator, but an operator which is not propor-
tional to a field component. Without the phenomenological introduc-
tion of A() x A the Heaviside-Maxwell theory cannot describe
the inverse Faraday effect. The third Stokes parameter (chapter
one), which describes circular polarization, and predates the origi-
nal Maxwell theory, is also described phenomenologically because by
definition, AM x A® is zero in any abelian gauge theory [5]. In
O(3)s gauge theory on the other hand A x A® is an intrinsic
part of the field tensor and defines the physical and gauge invariant
field component B®) an observable quantity. Therefore, in 0(3)s
electrodynamics B®) and AM x A® become parts of gauge the-
ory at a fundamental level. In U(1) electrodynamics A x A®) is
phenomenological and B is undefined.

The fundamentally important object in O(3), electrodynamics is
therefore A1) x A, which arises from a covariant change in po-
tential by transport around a closed loop in Minkowski space-time
(chapter three). The observable A(!) x A(?) signals the existence of
an O(3), symmetry covariant derivative in this closed loop, or round
trip [5] by parallel transport. The use of a U(1) covariant deriva-
tive would result in A x A(® = 0 by definition, contradicting
empirical data. There must be recourse either to a different gauge
symmetry such as O(3), or to phenomenology. The introduction of
AN x A® however, without the introduction of B®) is a clear
violation of gauge theory. The origin of A() x A® is to be found
therefore in a holonomy of O(3), symmetry gauge theory, a covariant
derivative, or a type of difference, in potentials at different points in
spacetime. We shall argue in this chapter that under an O(3), gauge
transformation A x A induces an optical Aharonov-Bohm effect
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[6-10]. It is seen in chapter three that this type of gauge transforma-
tion suggests a topological explanation for the extra phase shift seen
in the Sagnac effect when the platform is rotated. So the Sagnac
effect was shown to be an optical Aharonov-Bohm effect. Changes
in potential, through the object A®) x A(?), are responsible for the
Sagnac effect. If this is accepted, O(3) electrodynamics will have
been shown to be able to explain an effect whose origin in U(1) is
a mystery [11]. The fact that it is differences in potential that are
physically significant is of key importance, because of the analogy
with the well known tenet on dynamics that difference in potential
energy is the only measurable.

Ryder [5] emphasizes the physical effect of the potential in electro-
dynamics in a slightly different way by defining it as the difference
in value of a field vector after it has been transported around a
closed loop with covariant derivatives. The commutator of covari-
ant derivatives defines the field. This again means that it is the
O(3), symmetry covariant derivative of a potential that gives rise to
A x A The latter is non-zero if and only if the gauge symmetry
is non Abelian, for example O(3), . The major oversight in contem-
porary gauge theory is the incorrect assertion within gauge theory
that A1) x A is zero in the electromagnetic sector. This is why
gauge theory mistakenly attributes a U(1) or §O(2) symmetry to the
electromagnetic sector. In consequence a lot of information is lost
despite the fact that a U(1) sector is regarded almost as axiomatic.
In later chapters of this book we will begin the task of developing
unified field theory with a non-Abelian electromagnetic sector, of
symmetry SU(2) homomorphic with SO(3). This will be seen to
have immediate observable consequences in the first subject area ad-
dressed, electro-weak theory of symmetry SU(2) x SU(2) rather than
the standard symmetry U(1) x SU(2).

In O(3)s electrodynamics A" x A is gauge covariant, and is a
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physical observable. The reason is with the fundamental nature of
the vacuum itself. The object AV x A transforms homogeneously
in general as can be seen once the differential is made O(3), covariant.
Since A(V) x A(?) is by definition proportional to a field component
that transforms homogeneously, the B®) component, an additional
constraint equation appears, one which allows the existence of the
optical Aharonov-Bohm effect. These properties of O(3), electro-
dynamics are developed in Section 5.1 and depend on the fact that
AM x A® is a physical object. The 0O(3), gauge transform rules
give rise to the infinitely degenerate Yang Mills vacuum, a highly
structured vacuum, and to the existence of instantons in electrody-
namics, as argued in chapter four. The vacuum in contemporary
gauge theory is therefore a structured entity that depends on the
symmetry adopted for the gauge theory. The Aharonov-Bohm effect
is supported [5] by U(1) or O(3), gauge field symmetry, but not by
SU(2). The reason is to be found in topology.

Since A x A®) is well defined within gauge theory of O(3)p sym-
metry it is an object that is well defined within standard special
relativity. Therefore B(®) is also so defined, and propagates at c
in the vacuum along with B() = B()* Within this framework,
vecB®) is an object not well defined in instantaneous action at a
distance theory. If the photon is massless for the sake of argument,
B®) propagates at ¢ with A1) x A®) and with the third Stokes pa-
rameter that defines circular polarization. Since other polarizations
of light can be built from circular polarization B®) is a foundational
field component that exists in a one photon beam [6-10]. This is
true if and only if the covariant derivative in electrodynamics is an
O(3)» symmetry covariant derivative, originating in this view in the
existence of circular polarization itself. The latter is-used to define
[6-10] the ((1),(2),(3)) basis.

It should be realized, however, that in contemporary gauge field the-
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ory 5] the covariant derivative plays a role for all gauge symmetries,
including U(1) [10]. The general gauge field theory for any gauge
group defines the field through the commutator of covariant deriva-

tives, giving [10]:
G;l.u = [D;u Du] (511)

where the commutator is non-zero in general. The connection, or
potential, A, is defined in general through the gauge group sym-
metry. The field tensor is covariant within some gauge group, and
so the general gauge theory is compatible with special relativity for
all gauge group symmetries. The field tensor G,v is also covariant
with respect to the Poincare symmetries of special relativity. In the
general theory [5], the homogeneous field equations are:

DG = 0 (5.1.2)

for all gauge group symmetries, including U(1), with their particular
structure constants. The covariant derivatives are defined as:
e

= Au- (5.1.3)

D, = 0y + 1

Therefore the homogeneous field equation in general is:

€

hA,L)C’”’ =0, (5.1.4)

(O + i

and reduces to the corresponding U (1) Heaviside-Maxwell field equa-
tion if and only if we adopt the particular solutions:

8,G" =0 (5.1.5a)
A,G" = 0. (5.1.5b)

In vector notation equation (5.1.4b) implies the Abelian relations:
A-B =0 (5.1.6a)

AxE =0 (5.1.6b)

which are compatible [10] with transverse plane wave solutions in
the vacuum. Therefore the same interpretation must pertain to the



142 Classical and Quantum Electrodynamics and the B(3) Field

vector potential in all gauge field symmetries, differences between
potentials are observable, and these differences are always generated
by covariant derivatives. Otherwise the gauge theory is not a local
gauge field theory [5] and so is not a theory of special relativity.
This is a more precise way of discussing the role of the potential in
classical field theory than simply abandoning it as a mathematical
artifice. In the textbooks, U(1) gauge transformation is developed by
adding a gradient function to the original vector potential, and then
taking the curl to give a magnetic field. It is concluded that since
the curl of a gradient function is always zero, the gradient function
itself can be arbitrary. More precisely, in U(1) gauge theory the
gradient function is the four derivative of an angle which depends on
z# through special relativity. This four-derivative is responsible for
the Aharonov-Bohm effect due to a static magnetic field, and so it its
difference around a path is not an arbitrary function. It determines
a physical observable in regions where the original static magnetic
field is absent [5].

The reduction of O(3); electrodynamics to electrostatics must there-
fore be considered carefully before proceeding to the optically in-
duced equivalent effect due to A() x A@). The laws of electrostatics
and magnetostatics, and the original Aharonov-Bohm effect are well
verified empirically within the context of a U(1) symmetry gauge
field theory which must therefore be a well-defined limit of the 0(3)s
symmetry electrodynamic theory. The difference is that A(1) x 4(2)
2xists in electrodynamics, and vanishes in electro-statics.

T'hese consequences obtain by writing equation (2.2.1) in its compo-
1ent form:
a“(’;(l)uw- — ig[A(z)“. G'(3)”"]

8GO = §g[A®, G (5.1.7)
8 G@mr = jo1a)  G@w),
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When the (3) component is zero these equations reduce to:

8,GMm = 9,GOm = 0 (5.1.8)

and X
(AW, G@m) = o. (5.1.9)

A solution of equation (5.1.8) is:

é(l),ul/ — é(z)l”’ (5110)

which means that the field tensor is real valued. Equation (5.1.9)
gives two vector equations:

AV . B® _ 4@ .M (5.1.11)

and
AV x E@ = 4@ x () (5.1.12)

which are satisfied by plane waves.

The absence of a (3) component means that this rotational field
component of the electromagnetic field about the Z axis does not
exist. This leaves only X(¢) and Y (¢) components of the vector po-
tential. These are the real valued scalars A, and A,. The third
Stokes parameter, expressed as proportional to AW x A? hasno
nonlinear magneto-optical effects. The Maxwell displacement cur-
rent is abelian and there are no nonlinear effects from radiation. In
this limit:

AW = A®), (5.1.13)

and the vector potential is a real function. This is a consequence of
the fact that AV x A® is zero and that there is no B® field. In
the static limit the potential are written in general as:

A = Ai + Ayj, (5.1.14)

i.e. as a vector in a two dimensional space (a plane) with orthonormal
basis vectors ¢ and j. Rotation of the vector in this plane through
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an angle A are characterized by the group SO(2), homomorphic with
the group U(1).

Gauge transformations act as unitary transformations of wave func-
tions and are therefore [5]:

Y = ey, ¢ = yreth, (5.1.15)

In the situation where the gauge transformation is local, or depen-
dent upon coordinates the overlap of a wave function defined at dif-
ferent points in space gives:

P (x)p(z +6z) = P (x)ePMp(x) ~ ¢ (2)(1 — xPIAY().
(5.1.16)
Now invoke the rule:

P, = ik0, + €A, (5.1.17)

in equation (5.1.16) requires the usual gauge transformation [5] in
order for momentum to be a gauge dependent quantity:

h
Ap = Au + Z0uA (5.1.18)

that describes the Aharonov-Bohm effect due to a static magnetic
field. This procedure gives a conserved charge [5] and current
through the Noether Theorem and the action is invariant under the
U(1) symmetry gauge transform (5.1.15). In the case where there
are local gauge transformations the angle A is a function of z* [5].
This is the root cause of the Aharonov-Bohm effect due to a static
magnetic field, because the derivative J,A must be non-zero. As
we shall see, this is also the case in the optical Aharonov-Bohm ef-
fect, which needs an O(3), symmetry transform for its description
(Section 5.1) because it is a dynamical effect. The gauge transform
with A a function of z* is a local gauge transform. If A were not a
function of the rotation represented in operator form by equations
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(5.1.15) and (5.1.18) would take place at the same time at all points
[5]. This is a global gauge transformation.

Therefore electro-statics can be considered as a special case of O(3)s
electrodynamics for global gauge transformations when quantities
with index (3) are zero, and quantities with index (1) are equal to
those with index (2). These conditions restrict the symmetry to a
sub-symmetry of O(3)s, a subsymmetry which can be identified as
U(1), homomorphic with SO(2). The laws that appear under this
sub-symmetry are the usual Coulomb, Faraday, Gauss and Ampere
Laws. The Maxwell displacement current is zero, for global gauge
transformations, because there is no radiation, and vice versa. The
four laws of electro-statics and magneto-statics are thus determined
by the equations:

0,G9 =0, HY = J7 (5.1.19)

in the static limit. These equations represent a special case of O(3)s
symmetry, a special case which can be characterized as having a U(1)
sub-symmetry because A1) x A?) is zero.

Therefore electrodynamics and electro- or magneto-statics can be
considered as having an overall O(3), symmetry which depends on
the existence nonlinear radiation of circular polarization. The lat-
ter defines the complex basis ((1),(2),(3)) [6-10] which is used as
the basis for the internal space of the O(3), symmetry gauge field
theory that O(3)s electrodynamics represents. There are no point
magnetic monopoles because of the structure of equation (5.1.19).
There are topological magnetic monopoles as discussed in chapter
three, and there are solutions to the field equations of O(3)s electro-
dynamics which do not exist in the Heaviside-Maxwell theory. Some
of these are summarized in chapter four. Higher order non-linear
optical effects can be described within O(3), electrodynamics with
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constitutive relations, or more rigorously by extending to higher or-
der terms the Taylor series in closed loop in Minkowski space-time
that gives rise to the O(3), field tensor. The potentials in 0(3)s
electrodynamics will, however, always be defined in terms of a sum
of O(3), rotation generators. Higher order non-linear optical effects
will arise from tensor products of these potential components.

5.1.1. THE OPTICAL AHARONOV-BOHM EFFECTS

The existence of O(3); electrodynamics, implied by the existence of
the conjugate product A1) x A in radiation in the vacuum (the
third Stokes parameter) means that there are Aharonov-Bohm effects
due to radiation rather than to a static magnetic field. As described
in chapter three, these are closely related to the topological phase
effects [11], which can be traced to an integral over the radiated B®
field. In general there are radiative Aharonov Bohm effects due to
BW, B® and B®). These are analogues of the equivalent effect due
to a static magnetic field [5], analogues which exist because of the
rules of gauge transformation in O(3), rather than in U (1). These
radiated or optical Aharonov-Bohm effects can be detected by phase
shifts, and as developed in the following sections, there are similar
effects of radiation which are also physical phase effects, the theme of
this chapter. One of these phase shifts is observed when the platform
of a Sagnac interferometer is rotated, the 0(3), gauge transformation
(chapter three) is identified with this rotation.

The difference between an O(3), and a U(1) gauge transformation
is that in O(3), there are three components of the vector potential
that must be transformed, and each transtormation is accompanied
by a distinct inhomogeneous term [5,10]. The gauge transformations
for AV and A can be represented by:

AW 5 AW L g 4@ 5 42) 4 42) (5.1.1.20)

where a{l) and a(® denote inhomoge
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tion of the cross product A x A® therefore generates four terms

in general:

AN x 4@ 5 A A®D 4 oW x 4@ 4 4D xa? 4 aVxa?®.

(5.1.1.21)
However, the rules of gauge theory [5] show that the same tre.m.sfor—
mation applied to B @) produces B (3) itself, without any {jlddltlonl:ll
terms. This result is demonstrated later in this chapter with matri-
ces. Therefore B®) is gauge invariant, i.e. does not change w}}en
the gauge transform is applied to it. The process of gauge tran?fo.r—
mation can therefore be thought of as a rotation about the axis in
which B® is defined. Since B®) is unchanged, it continues .t.o be
equal to A x A® and it can be demonstrated that there is the

additional constraint equation:
a® x A® 1 AW xa® 4 oM xa® =0. (51122

In regions where A1) = A®) is zero the term a = a® 1s non-
zero, and so there is a new Aharonov-Bohm effect due to radiation.
There is a phase shift [5] in interfering electron b'eams due to a
laser placed between the cavities of a Young'int:erfero.meter.. The
laser generates an analog to the static magnetic field of jche orl.gmal
Aharonov-Bohm effect. Later in this section the order of magnitude
expected from such an effect will be estimated.

In order to understand the nature of gauge transformation in n(;n—
i { > consider a rotation of a
Abelian gauge theory we can for example con

field 9 in SU(2) symmetry:

Y = exp(io a/2)y, (5.1.1.23)

where o, is a Pauli matrix component and « an Euler angle. The
potential four vector transforms under the field rotation (5.1.1.23)

as:

A/ = SAATY - %(aﬂ)ss—l (5.1.1.24)
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and is defined in SU(2) as:
Ay = A%0%)2 = A7,07)2. (5.1.1.25)

Therefore, a gauge transformation in SU(2) is the direct consequence
of rotating the field geometrically. Equation (5.1.1.24) is the basis
of the Aharonov-Bohm effect and instanton theory. In SU(2), A,, is
put into the form of a Pauli matrix:

_ [ A%.)2 0
A, = ( 0 —Azu/2> (5.1.1.26)
and the gauge transformed A®, can be evaluated as follows:
o
A = A — %(')“a (5.1.1.27)
giving the result:
1
A%, = A%, + Eapa’. (5.1.1.28)

which explains the Sagnac effect as in chapter three.

Therefore, in non-Abelian field theory gauge transformation is a ge-
ometrical process. We illustrate such gauge shifts in the small angle
limit. In the O(3), basis the gauge rotation can be represented as
the action of the matrix:

1 Ay 0
14+4J-A=|—iA; 1 0]}. (5.1.1.29)
0 0 1
in vector notation:
W o= 1+ iJ A, = @ = Ay, (5.1.1.30)

Where 4 is a column vector of ¥, 12, 3. Now apply formula
(5.1.1.24) with:

SA, = exp(iJ -A)A, ~ A, — A XA, (5.1.1.31)
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to obtain:

1 _
A = (A, — J-AxA, + EOH(JA))S 1 (5.1.1.32)

where

s =edA =1 174+ 0(4%. (5.1.1.33)

Therefore we have the gauge transformation in its standard form:
1
A = A — Ax A, + E(’)“A + ..., (5.1.1.34)

and the gauge transform differs from the U(1) counterpart [5]. For
Z axis rotation

Ax A, = A3AnT — AzAput (5.1.1.35)

and
Al,ul = A,ul + A3A,u2

AI,uZ = A,u2 + ABA;LI
1
Alys = Aus + EQLAa, (5.1.1.36)

which is a geometrical result emphasizing the fact that there are
three gauge transforms possible, of A,1, Au2, and Ags.

The same general equations of non-Abelian gauge field theory ap-
ply in O(3), symmetry. The vector potential transforms inhomoge-
neously as in equation (5.1.1.24) and the field transforms homoge-

neously:
G = SGuS7". (5.1.1.37)

The potential four vector is defined as a sum over rotation generators:

A, = JUAY,, (5.1.1.38)
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which is a sum that is equivalent in the basis ((1), (2), (3)) to:

3
Ap = Y AW el (5.1.1.39)

a=1

The field tensor is similarly defined in this basis as:
3
G,uu = Z G(a);w- (51140)
a=1

The inhomogeneous terms (8,S5)S™! are responsible for the non-
abelian Aharonov-Bohm effects and if J, is the infinitesimal rotation
generator about Z this term gives the (3) component :

¢ J.

—(8,8)87! = Z),a. 5.1.1.41
g( 1 5) Pz ( )
The transformation of the gauge potential A%, is therefore:

1
A%y = A%+ 58,11::, (5.1.1.42)

as used in chapter three.

Therefore in non-Abelian gauge field theory the term a() x a(® in
equation (5.1.1.21) is accompanied by the term (1/g)0,.a in equation
(5.1.1.42).

Finally, in this Section we illustrate with matrices the basic proper-
ties that the field tensor transforms homogeneously and the vector
potential inhomogeneously. The field tensor, in general gauge field
theory, is defined using a Taylor series, one term of which (chapter
three) is a commutator of covariant derivatives. The field tensor
transforms homogeneously according to equation (5.1.1.37) and if
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B®) is defined in the Z axis the process of gauge transformation
about Z leaves B® unchanged. This deduction is illustrated as
follows using matrices in O(3), symmetry. The B () field itself is
defined from the basic G,,,, as follows [5]:

G;Lu = é[Dy, Dl‘]‘ (51143)

Define the component matrices of 4,, in the basis ((1),(2), (3)):

G®,, = 8,40, — 0,40, — igla®, A®,] (5.1.1.44)

SO
GO, = igaM,, 4@ . (5.1.1.45)

This is equivalent to the vector form:

B®* — _jgAM) x A?), (5.1.1.46)

It is easily demonstrated that rotation about the Z axis leaves B ®)
unchanged. Given the rotational matrix

cosa sina 0
O = | —sina cosa 0 |. (5.1.1.47)
0 0 1

so that the field is unchanged by rotation B’ = OBOT about the
7 axis. The same process for the potential results in the character-
istic inhomogeneous term, and results in a change in the potential
components due to the rotation. For example, if:

0 0 O
AN, = AW o 0 —i (5.1.1.48)
0 72 0
then
0 0 —18INnaQ
sAM, 571 = AW | 0 0 —icosa |. (5.1.1.49)
18tna  1COSQ 0
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It is easily checked that the commutator [SA(N,S-1, 4D, 5-1]
is a Z axis rotation, thus confirming the geometrical nature of the
gauge transformation. The latter changes A1) and A2, but leaves
AN x A® invariant, confirming that B®) remains equal to the
conjugate product, and confirming the existence of the subsidiary
condition (5.1.1.21).

"The inhomogeneous terms for a Z axis rotation of A(Y) and A(® can
be evaluated through:

. L
AW, = 540 571 E(((?“S)S—l)m, (5.1.1.50)

. - i
AP, = 54@ g-1 _ 5(((9},5)5—1)(2). (5.1.1.51)

However, for a Z axis rotation it is known that:
_ta.915-1(0) — & —1y2) _ Iz
g(( WS)STH)Y = E(((?“S)S ) = ?0“01, (5.1.1.52)

anzd so the commutator of the inhomogeneous terms, labeled (V) x
a(.) in equation (5.1.1.42), is zero. The only optical Aharonov-Bohm
effect for this type of gauge transformation therefore contains:

z z JZ
A 1Y _) A 19 + ?0’[‘@, (51153)

which as argued in chapter three is responsible for the Sagnac effect.

5.1.2 PHASE SHIFT OF THE INVERSE FARADAY
EFFECT

The order of magnitude of any non-zero optical Aharonov-Bohm ef-
fect can be estimated from the phase shift expected in the inverse
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Faraday effect due to the conjugate product A1) x A(). The mag-
netic field induced in a bulk sample in the inverse Faraday effect is
given for a gas of electrons [12] by:

B®* — = igf A x AP (5.1.2.54)

where the factor ¢’ is given by:

. _]\z o€

= . 1.2,
g V 2miw (5.1.2.55)

Here N/V is the number of electrons in a sample volume V; y the
permeability in vacuo; e the charge on the electron; m the electron
mass and w the angular frequency. Using the nonAbelian Stokes The-
orem, the change in phase in the electronic wave function expected
in this form of the inverse Faraday effect is:

AS = g'//B(S)-A. (5.1.2.56)

An order of magnitude estimate of the magnitude of the phase shitt
is then obtained. For a sample That contains N/V = 10? electrons
per cubic meter, and for an intensity and angular frequency corre-
sponding to a pulsed Nd YaG laser, the factor g’ is 2.5x 107CJ1s7 1
which compares with e/A = 1.5 x 10’*CJ~!s~! as used in the in-
teraction of a magnetic field with an electron. Therefore, this type
of optically induced phase shift is eight orders of magnitude smaller
than the magnetically induced equivalent, even when using an intense
laser pulse. Therefore, if geometry allows an optical Aharonov-Bohm
effect from equation (5.1.1.21) due to aM x a? | it is much smaller in
magnitude than the equivalent effect due to a static magnetic field.

In a simplified view of the standard U(1) based Aharonov-Bohm
effect [5] the observable shift in a fringe pattern due to interfering
fermion matter waves is attributed to a change in phase:

A6 = —p-r, (5.1.2.57)
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where p is the non-relativistic limit of the fermion linear momentum
at a point 7 in three dimensional space. The phase Ad is an action or
angular momentum divided by the quantized unit of action or angu-
lar momentum, h. The intrinsic angular momentum of the fermion
does not appear [12] because S is a relativistic concept. Reinstating,
A produces the spin phase of the fermion:

5 = %5(3).0(@, (5.1.2.58)

which exists due to topology. There therefore exists a phase shift
in the inverse Faraday effect, which is due to the interaction of the
conjugate product with the intrinsic spin of the fermion. Following
Talin et al. [13] we can write the field fermion interaction energy E
in the form:

E = w] = wS§, (5.1.2.59)

which originates in the conservation laws of angular momentum J
and energy. Here § has the units of action [13]. The energy of the
photon is hw by definition, and this is the limit in which J has been
replaced by h, the quantum of action or angular momentum of an
electromagnetic or matter wave. In the presence of an electromag-
netic field the spin phase of one fermion shifts by:

E

A = —,
hw

(5.1.2.60)

which is the action E/w generated by the field-fermion interaction
divided by f. This indicates that Ad will exist in discrete units. This
is the change in energy E caused by fermion-field interaction divided
by the quantum of energy, hw. Alternatively, the phase change can
be viewed [12] as J/h, i.e. as the change in angular momentum J
generated by the interaction of the fermion and the field divided by
k. If there is no interaction energy or interaction angular momentum,
no phase shift exists, and vice versa. For one fermion the change in
phase is,

o2

Ad = 1
z‘)’l""’rl/.l

a® . AW x AP, (5.1.2.61)
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and is proportional to the conjugate product. The phase change is

expressible as:

elepy T
y = —]. 5.1.2.62
Ao :F( 2mh w3) ( )

These considerations can be developed for the gauge transformed
AW x A® | giving the optical Aharonov Bohm effect [12], assuming
that there are circumstances under which the product a® x a®
in equation (5.1.21) is non-zero. In both types of inverse Faraday
effect we use the non-Abelian Stokes Theorem to show that for a flat

connection:

AS = ¢ }f Audet = g7 / / A0244 (5.1.2.63)

5.2 PHASE SHIFT OF THE OPTICAL JOSEPHSON
EFFECT

The optical Josephson effect is a physical influence by means of a
phase change 14 producing a circulating current

J = sinAd, (5.2.64)

in a superconductor junction. The phase change for these flat con-

nections is: (I> . " )
y = — = — BB . A (5.2.65
Ao ® R //

from the non-Abelian Stokes Theorem and is another example of a
physical influence due to B®) that is not present in abehap elec-
trodynamics. The optical Josephson effect is therefore the inverse
Faraday effect. It occurs in a superconductor, due to a pl?ase factor
in the junction gap of a Josephson junction. The origin of the phase
factor is the conjugate product AW x A®) Tt is another example



[1]
2]

[3]
[4]
[5]
[6]

156  Classical and Quantum Electrodynamics and the B®) Field

of the effect of the conjugate product. which sets up a magnetic flux
in a superconducting ring.

5.3 PHASE FACTOR OF THE OPTICAL HALL EFFECT

Finally, in this chapter we discuss the optical Hall effect. Here the
magnetic field of the ordinary Hall effect is replaced by a circularly
polarized electromagnetic field generating the phase factor due to
AM x A®) in non-Abelian gauge field theory. The optical Hall
effect can be observed in principle in a modified Wien filter, which
is used [15] to observe phase shifts in the original Aharonov Bohm
effect to high precision. The electric force on the electron is balanced
by the magnetic force when the Wien filter is compensated [12].
Hasselbach et al. [15] have discussed the role played by the electric
and magnetic Aharonov Bohm phase shifts in such as device. The
magnetic field in the conventional Wien filter causes an Aharonov-
Bohm phase shift due to the difference in magnetic flux enclosed by
the two coherent electron beams. Therefore, when the Wien filter is
modified to replace the static magnetic field by a circularly polarized
electromagnetic field, there will be an optically induced Aharonov-
Bohm effect if the term a(!) x a® is non-zero. There might also be
a quantum analogue of this effect.
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CHAPTER 6
QUANTUM ELECTRODYNAMICS
AND THE B®) FIELD

This chapter is a discussion of the nonrelativistic O(3), quantum
electrodynamics. This discussion covers the basic physics of U(1)
electrodynamics and leads into a discussion of nonrelativistic O(3)s
quantum electrodynamics. This discussion will introduce the quan-
tum picture of the interaction between a fermion and the electromag-
netic field with the B() magnetic field. Here it is demonstrated that
the existence of the B3 field implies photon-photon interactions. In
nonrelativistic quantum electrodynamics this leads to nonlinear wave
equations. Some presentation is given on relativistic quantum elec-
trodynamics and the occurrence of Feynman diagrams that emerge
from the B are demonstrated to lead to new subtle corrections.
Numerical results with the interaction of a fermion, identical in form
to a 2-state atom, with photons in a cavity are discussed. This con-
cludes with a demonstration of the Lamb shift and renormalizability.

6.1 INTRODUCTION TO QUANTUM
ELECTRODY NAMICS

One of the oldest subjects of physical science is electrodynamics. The
study has its early origins in the study of optics by Willebrord Snel-
lius and the studies of magnetism by William Gilbert in the sixteenth
century{l]. It took nearly three centuries for the theory of classical
electromagnetism to reach fruition with Maxwell{2]. This grand syn-
thesis at first appeared to solve the most fundamental questions of
the day, but an historical retrospective shows that it posed as many
questions as it solved. The resolutions to these problems were found
in the theory of special relativity and in quantum theory. The first of
these was an answer to the problem of what is the speed of an elec-
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tromagnetic wave on any given reference frame and the second was
a resolution to the blackbody radiation problem. The latter solution
advanced by Planck assumed that light existed in discrete packets of
energy that were emitted and absorbed([3]. This initiated the study of
the interaction between quantized electromagnetic waves and matter
with discrete quantized energy levels. This theory is called quantum
electrodynamics.

The formalism of quantum electrodynamics may appear arcane to
the uninitiated, but in reality it is based on rather simple concepts.
The first of these is that the radiation field is described by a set of
harmonic oscillators. The harmonic oscillator is essentially a spring
loaded with a mass or a pendulum that swings through a small an-
gle. The pendulum has an old history with physics that began with
Galileo. Early in the formalism of quantum mechanics this was a
system examined and quantized. An analysis with the Schrédinger
wave equation leads to some complexities with recurrence relations
and Hermite polynomials. However, with the Heisenberg formalism
the quantum theory of the harmonics oscillator reduces to a sim-
ple model with evenly spaced states that have an associated energy
(n + 1/2)hw. Here the number n corresponds to the number of
photons with angular frequency w = ck in the system. For n = 0
we see that the absence of photons predicts that there is still an en-
ergy associated with the vacuum. This nonzero value for the ground
state of the harmonic oscillator has been a source of controversy as
well as profound physical insight. A second assumption that is often
made is that these photons exist within a cavity. This allows for a
simplification of the meaning to counting modes. The third concept
is that atoms that interact with these photons also have energy lev-
els. The simplest example would be atoms with two states. Here an
atom that absorbs a photon can only do so by changing its internal
state from the lower state to the excited state, and an atom can emit
a photon only by changing its internal state from the excited state to
the lower state. These atomic interactions with the electromagnetic
field will change the photon number by +1.
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How does one proceed to take the classical theory of electromag-
netism, or Maxwell's equations, and cast them in a quantum me-
chanical context? It is best to start with the definitions of the electric

and magnetic fields:

1 0A
= — - —-— 6.1.1
E c Ot ( )
and
B = VxA. (6.1.2)

The quantity A appears in these equations and is the vector potential
of electromagnetic theory. In a very elementary discussion of the
static electric field we are introduced to the theory of Coulomb. It
is demonstrated that the electric field can be written as the gradient
of a scalar potential E = —V¢, ¢ = kg/r. It is also demonstrated
that the addition of a constant term to this potential leaves the
electric field invariant. Where you choose to set the potential to zero
is purely arbitrary. In order to describe a time varying electric field a
time dependent vector potential must be introduced A. If one takes
any scalar function x and uses it in the substitutions

A' = A — kVx, kK = constant, (6.1.3)
¢ = ¢ + 'y%, ¥ = constant, (6.1.4)

it is easy to demonstrate that the electric and magnetic fields are left
invariant. This means that the analyst can choose the form of the
vector potential in an arbitrary fashion. This is defined as a choice
of gauge that is described by either writing an explicit form for the
vector potential or by writing an auxiliary differential equation. As
an example we may then choose

A(r,t) = Ape exp(i(k-T — wt)), (6.1.5)

¢ =0,
which is equivalent to stating that V- A = 0. It is then fitting that
the Maxwell’s equations are presented as they are invariant under all
possible gauge transformations

. oD OB
VXH=]+T,VXE=—Q‘,
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V-D =p,V-B =0, (6.1.6)
D =¢¢FE + P =¢E, B = yH+ M) = H.

The connection to quantum theory is made with the recognition that
this transformation changes the phase of a wave function of a particle
that interacts with the electromagnetic field:

P o e X, (6.1.7)

The equation that describes the interaction of a nonrelativistic elec-
tron with the electromagnetic field is the Pauli equation,

m% - %(a (p - EA))(U. (p - EA))t/} + ey (6.1.8)

where the last potential term is dropped in U(1l) electrodynamics.
Now consider this equation under the phase shift ¢y — e~

Vi = V(eTX) = e™XVy — iVyeXp,
= e™X(V — iVx)¢. (6.1.9)
This means that the generalized momentum operator is
. €AY\ i €
(a (p — ZA))I,L’ 5 eX(a-(p — RVx — z,4))7/;. (6.1.10)

which recovers the above gauge transformations for A as

A — A — (e/c)Vyx so the quantity in equation (6.1.10) is gauge
invariant.

We have our first connection between quantum mechanics and elec-
tromagnetism: a local phase shift in a wave function is coexistent
with a local gauge transformation in the vector and scalar poten-
tial for the electromagnetic field. So far nothing has been changed

Quantum Electrodynamics and the B3) Field 163

with the formal description of the electric and magnetic field. This
is good news, for this means that the electromagnetic field can be
described by the classical equations of Maxwell. This can be stated
that the probability amplitude for the absorption or emission of a
photon by an atom is equal to the amplitude given by the absorption
and emission of an electromagnetic wave described by the classical
electrodynamics of Maxwell's equations. This statement must be ac-
companied by the stipulation that the classical wave is normalized.
Then energy density of the wave is fw times the probability per unit
volume for the occurrence of the photon, and the classical wave is
broken into two complex components e~** and et that represent
the phase of an absorbed and emitted photon. These phases will,
by the first stipulation, be multiplied by the appropriate probability
amplitudes for absorption and emission. This sets us up for an ex-
amination of the semiclassical theory of radiation and its interaction
with quantized atoms.

We have that the electromagnetic field is described within a box.
This means that the number of states per unit volume is dependent
upon the number of discrete modes per volume k|2(27)°Alk|. This
can easily be carried over to the continuous version if we let the wall
of the cavity separate to arbitrary distances. The density of states
is then k2(2mc)?(dkdQ)/hdw. This describes the density of states
that are available for an atom to interact with. We then have that
it we have an atom in the state i; that it may then enter into the
state 1f, with respective energies F; and Ey. The probability per
increment in time is proportional to the transition probability for
this event times the density of states. Assume that the time over
which this transition occurs is far larger than the periodicity of the
electromagnetic field. The transition probability is then proportional
to the modulus square of the vector potential when averaged over
many periods of the field. This then gives the Fermi Golden Rule[4]:

A 2
S Proby oy, = h—TzrlAlz(wz/(ch)S)dQ. (6.1.11)
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All we need to do is to estimate the average of the potential. To
do this the form of the electric and magnetic fields are used in the
normalized energy density of the electromagnetic field
1 - 1 A%?
=hw = —(|E|? ) = ——n 112

B =t = (B T BP) = -, (611
which gives the averaged potential as A = /8nhic?/w this gives us
the transition probability per unit time

2 2w

A

This gives us an order of magnitude estimate for this transition. It

assumes that the potential is absorbed or emitted with no regard to

its components e** and e~*"*. As such this can only be regarded as
arather crude estimate. However, we are beginning to make progress
in our understanding of how electromagnetic fields interact quantum
mechanically with atoms.

Returning to equation 2, we express this according to the matrix
element U;; that will be determined explicitly,

A 2
A—fProbd,'._”/,f = h—gUiflzwz/(chPdQ. (6.1.14)
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This matrix element is the expectation of a time dependent pertur-

bative or interaction Hamiltonian, V. = e**U(r),
Up = /de’r'(/;}V'gbi. (6.1.15)
Since the Pauli-Schrédinger equation is of the form 'i,h%f = Hi)
we may write the wave functions as ;5 = €*Z/*/"9(0);5. We then
have the transition matrix element written as,
(Fy — E)t i
Usi = /d3r1/;(0)}U(r)1!1(O)iemp(zU—h—z)— + 'Lwt). (6.1.16)

The initial and final states of the system are E; — Fhw and Ey. We
expect that the interaction occurs where E; — hw = Ey. This
means that we may set the phase equal to zero and interactions that
are slightly off resonant are ignored, and

g / Prp(0)3U () p(0).. (6.117)

The interaction Hamiltonian can be extracted from the Pauli Hamil-
tonian plus a dipole interaction Hamiltonian

- ) i(p - EA)?' lo xoliuay B

2m c 2me
1, e 2
= —p° — — A A- — —o-VA + A-A
i — (B vhepjisdy Imc?
+ —e-h—a-VA. (6.1.18)
2me

The second and third terms are the interaction terms that couple
the atom, here modeled as a two-state system with Pauli matrices,
to the electromagnetic field. We consider the momentum to be the
operator p = %V and consider this operator as not only operating
on the vector potential but on the wave function. Hence we find that

V x A = ik x eAeT — wit,
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p-A = A.-(p + kk). (6.1.19)

This leads to a more complete form of the interaction Hamiltonian

Usi = —ﬁA/dard)}(O)(p-e + e-p — iho-(k x e)e™ ) (0).
(6.1.20)

This result is an exact expression for the transition matrix element.
Physically we have a dipole interaction with the vector potential and
a dipole interaction with the magnetic field modulated by a phase
factor. The problem is that this integral is difficult to compute. An
approximation can be invoked. The wave vector has a magnitude
equal to 1/A. The position r is set to the position of an atom and is
on the order of the radius of that atom. Thus K-r ~ a/\. So if
the wavelength of the radiation is much larger than the radius of the
atom, which is the case with optical radiation, we may then invoke
the approximation e’*T ~ 1 + ik-r. This is commonly known as the
Born approximation. This first order term under this approximation
is also seen to vanish in the first two terms as it multiplies the term
p-e. A further simplification occurs, since the term o - (k x €) has
only diagonal entries, and our transition matrix evaluates these over
orthogonal states. Hence, the last term vanishes. We are then left
with the simplified variant of the transition matrix,

Upi = ——4 / ¢°rg3(0)p - e4:(0)

Up = —%A(flph') ‘e (6.1.21)

The element py;-e = |pys;|cos(#), where 6 is the angle between these

two vectors. However this angle is m/2 different from the coordinate -

angle evaluated in d°r = r2drdsin(8)d¢, so we set 6 — 6 + m/2
This means that the transition probability per unit time assumes the
form

2 us 2m
Uy = _l(i) A/ / Ipsi - e)*sin®(8)r2dods.  (6.1.22)
0 0

h\me
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Recognizing that ps; = imwry; and performing the integration we
find that

A 4e?u®

—P. L = -——rs 6.1.2

AtP"—’J 3 he 2 |Tf| ( 3)
As a final side note, the term a = % ~ 1/137 is the fine structure

constant for the electromagnetic interaction. This is a dimensionless
quantity that gives the interaction strength between photons and
charged particles.

So far we have the transition probability per unit time. What is
measured is the transition probability over a given time as measured
from a statistical ensemble of identical systems. A quantum opera-
tor, O,p evolves in time according to the Schrédinger equation

m"’%’" = [H 0. . (6.1.24)

For the matrix U;; defined at a time t, we have the solution to the
Schrodinger equation with this initial condition

. T )
aii(t) = —% /0 Pty (t)e P Rt (6.1.25)

The use of the symbol a;; is to indicate that this represents
the absorption of a photon by an atom. Further, the matrix
U;j(t) = e~™'U,;;(0). and when placed substituted into equation
(6.1.25), we arrive at an expression for a;;(t). Now when a,;(t) is
multiplied by its complex conjugate we have:

4s5in%(AT/2h)

N [U5(0)]2, A = E; — E; — hw. (6.1.26)

lai|* =
This gives the probability for the absorption of a photon with a
frequency w traveling along a particular angle pair in spherical co-
ordinates. This must then be integrated over by the solid angle df2
and evaluated.



168 Classical and Quantum Electrodynamics and the B Field

So far considerable progress has been made. We have a fairly reason-
able understanding of how the electromagnetic field interacts with
an atom, and have in hand an expression that gives the transition
probability for the absorption and emission of a photon by an atom.
This expression has been demonstrated to be remarkably accurate
in its description of the interaction of light with atomic structure.
Additional features may be included to account for the permutation
symmetry of various photons that interact with an atom. Explicit
consideration may also be given for the probability that the atoms
may also emit a photon once in the excited state. These considera-
tions can be found in many texts on guantum electrodynamics.

What has been presented here is a semiclassical theory of U(1) quan-
tum electrodynamics. Here the electromagnetic field is treated in a
purely classical manner, but where the electromagnetic potential has
been normalized to include one photon per some unit volume. Here
the absorption and emission of a photon is treated in a purely per-
turbative manner. Further, the field normalization is done so that
each unit volume contains the equivalent of n photons and that the
energy is computed accordingly. However. this is not a complete
theory, for it is known that the transition probability is proportional
to n+1. So the semiclassical theory is only appropriate when the
number of photons is comparatively large.

6.2 A BRIEF INTRODUCTION TO DIFFERENTIAL
FORMS

Differential forms are a particularly convenient method for examining
physics problems. A p-form, where p is less than the dimension
of the space considered, is an object that that is formed from the
antisymmetric product of basis elements that are 1-forms

w = wj gdr' Adz? A AdzE, (6.2.27)

where there a p differential 1-forms dz*. A basic property of 2-forms
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composed of two 1-forms is

drt Adx? = —da? Adz. (6.2.28)

In general the wedge product between a p-form and a g-form is

ahf = (-1)PTTIgA o (6.2.29)

The operator d is called a boundary operator that acts on a p-form
to give a p + 1-form. Since d is essentially a 1-form we have, by the
antisymmetry of wedge products of 1-forms, d> = 0, which is often
interpreted as stating that the "boundary of a boundary vanishes.”

The simplest example is the action of d on a 0-form or scalar,

dé = @;diz = §;pd'r.
ort

(6.2.30)
where the components associated with the 1-form define the standard
gradient. The next example is the action of the differential form on
a 1-form

dw = dw;dz’ A dxl. (6.2.31)

The antisymmetry between exchange of 1-forms means that the inter-
change between the indices i and j is antisymmetric so the component
of this 2-form is 3(d;w; — O;w;) which defines the curl operation in
a space of three dimensions. This procedure can go further.

A further property of forms is that of duality. Given an n-
dimensional space with a p-form, for p < n, it is easy to show
that there exists an (n — p)-form that is dual to this p-form. To
demonstrate this we write this p-form according to equation 8. Now
the basis of this p-form dz* A dz? A ... A dz* defines a p-dimensional
cube in the n dimensional space that is dual to an (n—p)-dimensional

cube since

*dr' AdzI A . ANdzF = €7F L dr™ A da™ AL NdeT, (6.2.32)
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where their are n — p differential 1-forms that comprise the right
hand side. The symbol * is called the Hodge star duality operator.
The term €%, . acts on the component of this p-form to give a
component that has (n — p) indices.

A moments reflection reveals why the standard vector operation
work. In the case of V X A = B we have an operation that inputs
a vector and gives back a vector. In reality we have dA = F, that
is a two form. However, this differential 2-form is dual to a 1-form
whose components, in three dimensional space, defines the magnetic
field as a vector.

A final discussion is on the generalized Stokes law. It is presented

here without proof as
/ w = /dw, (6.2.33)
a8 s

where S is a subspace with boundary 8S in the space considered. In
the case that S is a two dimensional disk in 3 dimensional space we
recover the standard Stokes law, and in the case it is a 3 dimensional
ball in 3-space we recover the Gauss law. These are standard tools
in electromagnetism.

6.3 THE PHYSICAL BASIS FOR NONABELIAN
ELECTRODYNAMICS

The earliest study of electromagnetism was with optics. The earliest
observations were the most elementary: an inverted image could be
seen through a raindrop hanging from a leaf. This particular study
was not academically studied extensively during the middle ages,
but did become of interest to glass makers during the great age of
cathedral building in Europe from the 11** to the 14** centuries.
During this period glassmakers perfected the art of forming glass
with the right staining that would display a brilliant light through
cathedral windows. Sophistication grew to the point that windows
along the naive of a cathedral would display various stations of the
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cross at Lent before the feast of Easter with colors and imagery that
reflected the crucifiction of Jesus Christ according to the Gospels.
Along with this sophistication, came a growth in the knowledge of
the refractive properties of glass. It was found that images could be
found focused on a plate through a glass of an scene distant from
the glass. This information was used to attempt to grind lenses
that would correct the myopic difficulties that some people suffered
from. Of course only those with the financial resources could afford
to employ these services.

The subject reached a measure of academic importance with Wille-
brord Snellius (1591-1626). He spent years working on the principles
of optics involved with the process of vision; apparently the need for
corrective eye wear was a growing market, and somebody had to find
a complete understanding of how optics could assist the physician.
In his treatise Di Optrice he laid down the first law of optical re-
fraction. He recognized that the angle of incidence, with respect to
the normal of a material surface, that a light ray hit a medium was
related to the angle at which that light ray went through the trans-
parent medium. So the paths of light outside and outside the glass
with respect to the normal were related to each other by a constant
later called the index of refraction. This ushered in the law of sines.
He further went on to derive equations for curved thin lenses, based
on this principle that were able to determine the position at which
an image would form. This is the elementary lens maker’s formula
learned in first year physics.

The theory of light reached its second step forward with Huygens,
who demonstrated that light was a wave that obeyed various diffrac-
tive properties[5]. Of course there later came Faraday and then
Maxwell who brought in the complete theory of classical electro-
magnetism. The wave aspect of light tended to eclipse the older
geometric optical view of light intellectually. However, the art of
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geometric optics grew into a very refined art. Before the advent of
computers, it required dozens or hundreds of human ” computers” to
complete the calculations required to characterize a particular opti-
cal system of lenses. The issue of refractive optics appeared to be in
a sort of state of completion and was a matter of ”simple calculation”
that could be done by a machine.

Reality is not so simple. Suppose that the index of refraction de-
pends upon the intensity of the light, or in a modern setting the
electromagnetic fields, that pass through it. Suddenly we are con-
fronted with having to revise our notion of the index of refraction:
it is not necessarily a constant. Snellius had to compute the paths
of rays that passed through a thin lens by considering the geometry
in the curvature of a lens. Today nonlinear optics is a study that
has to consider the variable index of refraction that was dependent
upon the field strengths of the optical radiation being transmitted.
This has become an important issue in the modern world. Optical
fibers that transmit information as pulses of light are developed to
transmit shorter pulses so that the date transmission rate can be
increased. An optical fiber with a constant index of refraction has
serious limitations. The radiation transmitted will reflect off the
sides of the fiber, but at various angles. There will then be a spread
in the optical pulse as it travels down the optical fiber since various
photons will be reflected at slightly different angles. However, an
optical fiber that has an index of refraction that is dependent upon
the field strength will tend to ”bunch” these photons into a single
stream and thus eliminate this unfortunate problem.

The laws of electromagnetism are based upon the theory of gauge
fields. The electromagnetic vector potential defines components of
a gauge connection 1-form. This gauge connection defines a field
strength two-form

dA = F. (6.3.34)
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In general this emerges because the differential operator d is gauge
covariant when it acts on a section of the bundle, or physically when
it acts on a wave function d — d + q¢A. The application of this
covariant differential operator twice on a function gives,

(d + gA)A(d + gA)yy = DADY
= g(dA + gA AA)p. (6.3.35)

If the gauge connection is abelian then the term eA A A van-
ishes by the antisymmetry of the wedge product. This means that
D% = qdA+. This is an example of an abelian gauge theory,
defined according to that vanishing of commutators between gauge
potentials.

In general gauge theories are such that there is more that one par-
ticular gauge potential or connection coefficient A®, where a is an
index that spans a Lie algebra, such as SU(2) and SU(3), so that
gA® A A’ is in general nonvanishing. The gauge theories for the weak
and nuclear interactions are such nonabelian gauge theories. Phys-
ically the occurrence of these antisymmetric terms means that the
gauge vector boson, the analog of the photon, carries a charge asso-
ciated with the field sources. This causes the field lines, analogous
to the electric and magnetic field lines, to attract each other. Thus
the field lines between two particles, that are themselves sources of
the field, tend to clump into a tube like structure. If the coupling
constant, the term analogous to the electric charge, is very large this
tube becomes a very tightly bound structure. In the case of quan-
tum chromodynamics (QCD) there mesons consist of two quarks as
sources of the field lines in such a flux tube of field lines, and baryons
consist of three quarks that sit in a bubble or bag of such self confined

field lines.

Such field theories are in general difficult to obtain real solutions
from. These difficulties have two sources. The first is that in QCD
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you have three quarks in the bubble, and such 3-body problems are
not exactly solvable. This is further compounded by the fact that
the virtual quanta are themselves carriers of the various charges and
so one essentially has a many body problem as one computes higher
order perturbative Feynman diagrams. The second is that if the
coupling constant is strong then the perturbation terms in the ex-
pansion contribute equally to all orders. This means that in general
one has to compute an infinite number of such perturbation terms
to determine anything about the theory. Fortunately, in the case of
QCD a process called quark antiscreening implies that at sufficiently
high energies the quarks behave more freely as the coupling constant
is renormalized to a smaller value and this problem is ameliorated.
This does mean that nobody knows precisely how to compute the
problem of a proton in free space with no interactions with other par-
ticles. Lattice gauge methods have been written as algorithms and
run on computers and approximate answers have been garnered.

Electromagnetisin is considered to be an abelian gauge theory. This
is most often expressed according to Maxwell’s equations. This the-
ory is remarkably successful, but is called into question when one has
nonlinear optical and electromagnetic systems. This occurs when
electric permitivities are themselves a function of the electric field.
So this term, most often treated as a constant, contributes some
term that is a function of the electric field to some power greater
than one. It is standard to consider these effects as phenomenology
associated with atoms within the medium. However, one can view
the occurrence of these atoms as effectively changing the electro-
magnetic vacuum, and so this physics is ultimately electromagnetic.
These nonlinear terms then have the appearance as the magnitude
of the elements of the 2-form gA A A. This is suggestive that elec-
tromagnetism may in fact have a deeper nonabelian structure.

An illustration of this fact comes from the nonlinear Schrédinger
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equation. This equation describes an electromagnetic wave in a
nonlinear medium, where the dispersive effects of the wave in that
medium are compensated for by a refocusing property of that non-
linear medium. The result is that this electromagnetic wave is a
soliton. Suppose we have a Fabry-Perot cavity of infinite extend in
the x direction that is pumped with a laser [6][7]. The modes allowed
in that cavity can be expanded in a Fourier series as,

E(z,y,2,t) = > E(&,t)pmnl(y, 2)e7 " + hec. (6.3.36)

The fundamental wave equation to emerge from Maxwell's equation
is ) )
2
(02 - zz—at)E(x,t) = SOP(z,1) (6.3.37)
If we input the mode expansion into this wave equation we arrive at
the wave equation

. c
10“‘,' = —%038 - wgP(x,t)
+ inhomogenous driving and dissipation terms. (6.3.38)

We will ignore these inhomogenous terms. The polarization vector is
going to have contributions from the linear electric susceptibility and
the nonlinear electric susceptibility due to the nonlinear response of
the atoms,

P = xi&(z.t) + xnl€*€. (6.3.39)
With an appropriate redefinition of constants we arrive at the fol-
lowing wave equation for the propagation of field &,

(0 = ———02E — wyn|EPRE. (6.3.40)
2ko

The solution to this cubic Schrodinger equation is £ = & sech(xz)e™”,
where Kk = ko+/n|E|? which is a soliton wave.

It is noted that the derivation of this equation involves the phe-
nomenological concept of the nonlinear response of the atoms. This
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equation is derived based upon the standard abelian theory of elec-
tromagnetism, which is linear, and where the nonlinearity obtains by
imposing nonlinear material responses. The physical underpinnings
of these nonlinearities are not completely described. This soliton
wave corresponds to a diphoton, or photon bunches.

It is then advanced that electromagnetisin is expanded into a theory
with 3 vector potentials and the conjugate product that determines
an additional magnetic field,

B® - f_;iA(l) x A2 (6.3.41)

AW is the complex vector potential field and A = A= of
the electromagnetic field. This additional magnetic field B(® has
been described through the physics of fermion resonance, and with
empirical evidence for this magnetic field as given by the optical
conjugate product A1) x 42 [8]. This magnetic field may enter
into Dirac’s theory of the electron so that the interaction of a fermion
with this field is

Eing = ——0o® . BO). (6.3.42)

A complete derivation involves a complete expansion of the Pauli
Hamiltonian and the recognition that for the two complexified vector
potentials A™ and A that one has the term

(0-A)2 = A-A" + ic- A x A™. (6.3.43)

This ansatz tends to conform to various data, and as will be later
pointed ont gives predictions of various nonlinear optical effects as
well as vortex effects and photon bunching.

This 3-magnetic field has some striking effects. Tt is easy
to see that there are the complex valued electric fields
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g2 — %‘%(1'2) wA1?) So we then see that the magni-
tude of the optinal conjugate prodnct is then 7/w? for T = |A x A*|
defined as the intensity of electromagnetic radiation or optical beam.
An exact expression for this magnetic field is then seen to be

epoe 1
Foow?

where the constants are evaluated with SI unites. This has some
rather aggregious consequences. For visible light this effect is
quite small. For a beam of 10watts/cm? at the visible wavelength
A = 500mnm the magnetic field is on the order of a nanotesla.
However, for a 10 MHz radio frequency wave this magnetic field is
14.5 megatesla. This apparently is a way of generating rather large
magnetic fields without the need of massive electromagnets.

B® — e® = 5723 x 1_017-1-2-.3(3), (6.3.44)
W

The occurrence of the nonlinear Schrédinger equation is then a fairly
generic result. For the A(!) potential we have the magnetic field that

is easily seen to be
BW = Vx AW £ Z(4® 4+ AD)x 4D, (6.3.45)

The last term vanishes since the A®) photon is found to be very
massive in an examination of this approach to electromagnetism em-
bedded in an extended standard model. These issues will be dis-
cussed later. This photon decays away and so the A®) potential is
very short ranged ~ 10~!7¢m and is of no consequence to quantum
optics. Let V x A1) = Bf()l). Now compute Maxwell's equation,
where D = V + (ie/h)(A) + A?)is a covariant form of V
ie

DxB!' = VvxB{" + g(A(l) + A®)x BV, (6.3.46)

where VxB®) = 0. Now compute Dx D x B! to find the covariant

wave equation,

2
DxDx BY = V2BV + (£) (140 + |4 P)B;Y. (6:3.47)
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Now use [A(1Y)] = (1/k)|B1-?)| to find
e \2
DxDxBY = v2BM 4 2<k_ﬁ) IBVEBY.  (6.3.48)

Now DxDx BV = (1/2)D2E") /6t? which means that we arrive
at the nonlinear equation

D2 E)
o2

Now we write the same Fourier of expansion for the electric field and
write everything according to the magnetic field intensity H = -IIB
and we find with the case that (e/h)A4y ~ w the amplitude fixed to
the wavelength as is the case for some solitons, for Gaussian packets,
we arrive at the same cubic Schrodinger equation:

25(1) N g —
vZBM 4 2(kh) IBORBM = ¢ (6.3.49)

¢ 2 i OHD

FOEHO 4 2 OO < _é‘%— (6.3.50)
The solution to this equation is Asech(kx)e™*® which is a soliton solu-
tion. In the case where we have nonlinear optics and the occurrence
of the cyclic electromagnetic fields the Maxwell’s equations for the
propagation of an electromagnetic wave are covariant and then give
rise to soliton wave equations.

The difference this derivation has in comparison to the previous
derivation of the nonlinear Schrédinger equation is that the non-
linearity is more fundamentally due to the nonabelian wave function
rather than from material coefficients. In effect these material coef-
ficients and phenomenology behave as they do because the variable
index of refraction is associated with nonabelian electrodynamics.
Ultimately these two views will merge, for the mechanisms on how
photons interact with atoms and molecules will give a more complete
picture on how nonabelian electrodynamics participates in these pro-
cesses. However, at this stage we can see that we obtain nonlinear
terms from a nonabelian electrodynamics that is fundamentally non-
linear. This is in contrast to the phenomenological approach that
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imposes these nonlinearities onto a fundamentally linear theory of

electrodynamics.

6.4 THE QUANTIZED U(1) AND 0(3)s
ELECTROMAGNETIC FIELD

The electromagnetic field is quantized as a set of harmonic oscillators.
Maxwell's equations, and the resulting wave equations, are described
by partial differential equations that formally have an infinite number
of degrees of freedom. Physically this means that the electromagnetic
field is described by an infinite number of harmonic oscillators, where
one sits at every point in space. The modes of the electromagnetic
field are then completely described by this ensemble of harmonic

oscillators.

The harmonic oscillator has a long history in physics. Galileo no-
ticed, starting as a youth who watched a chandelier swing in the
cathedral at Pisa, that a mass attached to a light weight string ex-
ecuted swings through a small angle with a period that was inde-
pendent of the mass. This oscillation was completely understood
with Newton's laws by Robert Hooke. The Hamiltonian for this one
dimensional system is

1
H = §(p2 + w?g?), (6.4.51)

where p and ¢ are the momentum and position variables of the sys-
tem. Quantum mechanically these variables are replaced by quantum
operators p — p and ¢ — §. These variables are combined to
form ladder operators known as the lowering and raising operators,
more often called absorption or annihilation and emission or creation

operators,

1 1 ,
a = w§ + 1p), at = (wq ~ ip). (6.4.52)
\/2hw( 1 P) Vv 2hw )

These operators allow for the description of the quantum harmonic
oscillator that is very parsemonous. The quantum harmonic oscilla-
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tor has evenly spaced eigenstates and the state of the system may
be changed according to

aln) = valn = 1), a'ln) = Va + 1|n + 1). (6.4.53)

It is easy to see that the number operator is written as N = afa
that are diagonal with respect to the eigenvalues N|n) = n|n) and
also define the energy levels for the system since the Hamiltonian is

H = tw(N + %) = tw(ala + %) = fw(n + %) (6.4.54)

A curious aspect to this is that the n = 0 state is one that has a
nonzero energy %hw.

Now consider an ensemble of harmonic oscillators in three dimen-
sions. Each of these harmonic oscillators has a different frequency

w = |k|c, their own hamiltonian and raising and lowering operators
1 R = 1 1 . =
a = m(qu + Pg). ap = \/%—w(qu — ip). (6.4.55)

We then have a description of an infinite number of harmonic oscil-
lators with every possible mode at every point in space. The electro-
magnetic field is quantized in a cavity with a volume V by defining
annihilation and creation operators by redefining these raising and
lower operators as

a —>,/h a*-»,/h ' (6.4.56
k 460Vak’ k 4€0Vak' o )

This allows for the expansion of the vector potential into spacial
eigenmodes

h : ,
- 4 1 —ik-r ik-r
A = Ek VQweVe(ake — aret™T). (6.4.57)
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Here ¢ is the electric permativity and w is the frequency of the eigen-
modes. The abelian magnetic field is then defined by

A .
B = ;MQwekae(a{,e”k'r + agetkT). (6.4.58)

and the electric field is defined by

h —ik. ik-
E = ;\/%)evew(ale T+ ae’®T). (6.4.59)

This is the abelian theory of quantum electrodynamics as a free field
uncoupled to charged particles and fermions.

Since there is a nonabelian nature to this theory we return to the
nonrelatistic equation that describes the interaction of a fermion with
the electromagnetic field. The Pauli Hamiltonian is modified with
the addition of a B(®) interaction term [9]

2

Hpw = H + -2%(0'-14)(0’-:4*), (6.4.60)

which may be rewritten according to the algebra of Pauli matrics
e? (
2m

Hgo = —(A-A + ic- A x A%). (6.4.61)

If we write this interaction Hamiltonian according to creation and
annihilation operators we find that this term can be written as

_ 4dme?he?

Hps = —— E (w;lIa;’cak + Z(wkwk_q)‘l/20(3)-n(azak—q + ’lkal_q))-
% q

int m
(6.4.62)
This interaction Hamiltonian describes the exchange of a photon
that results in the change of the spin of the fermion. This process is
equivalent to the absorption of a photon in the atomic state transition
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i — j and the absorption of a photon in the atomic transition
e

Normally one does not worry about the free Hamiltonian term %BZ,
but in the case of the B®) field this luxury is not afforded to us.
This term is written according to the field operators as,

> (alpganl_gar)- (6.4.63)

kK q

e
HB(a) - 2wq60V
This term is crucial to the concept of nonabelian electrodynamics.
Essentially it describes the interaction between four photons. It de-
scribes the absorption of photons with the modes k + ¢ and k' — ¢
and the emission of photons with the modes k& and &’. Physically
this is a process where two photons mutually interact and exchange
momenta. A classical analog of this process is to think of two pho-
tons as possessing B(®) fields that are mutually coupled. This is one
aspect of nonabelian electrodynamics that is different than standard
electrodynamics. An analogous situation occurs with gluons in quan-
tum chromodynamics. Here gluballs can exist which are self-bound
states of gluons that are mutually interacting. The nonabelian elec-
trodynamic effect is far simpler since there is no issue of confinement,
but the situation is one where photons can interact. This effect is
what is a part of the |#|?# term that counters the dispersive ef-
fects of an electromagnetic wave as governed by the nonlinear or
cubic Schrédinger equation. This is a form of self-focusing or photon
bunching that results from this form of mutual interaction between
photons.

6.4.1 NUMERICAL RESULTS

This Hamiltonian was numerically examined by the authors. The
problem is of considerable difficulty to be solved analytically, and
so numerical methods were employed to understand the evolution of
a system that obeys this Pauli Hamiltonian with the B® magnetic
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field. To perform the numerics it is necessary to consider only a finite
number of possible photon modes. The minimal number to consider
is two possible modes where k2 = 2k; and where the can be twice
as many photons in the k; mode as in the k2 mode. Further, the
difference in energy between these modes is set equal to the energy
difference between the two spin states of the fermion. The next
more complex situation to consider is with the modes k3 = 3k
and k2 = 2k;. Here the k; mode can have up to 6 photons, the
ko mode can have up to 3 photons, and the k3 mode can have 2
photons. Again the energy difference between these modes is set
equal to the energy required to flip the spin state of the fermion. Tt
was this second choice that was numerically examined. To set up

this algorithm one start with the wave function ¥(r,t) = (r|¢) for

the state vector

) = 3 (Clnyna,ng, +)e”Omtanatnstiolting ny ng, 1)
n),n2,N3

+ C(ny,n9,ng, —)e'i(3"1+2"2+"3_%“’)t)[nl, ng,ng,—). (6.4.1.64)

These amplitudes have photon indices that have a maximum
C(7,4,3,%), which includes the vacuum state for each mode, and
where these indices give the vacuum at ni153 = 1. This state
vector enters into the Schrodinger equation

ih%[d;) = Hp). (6.4.1.65)

This must be computed for each of the finite number of states con-
sidered. This results in a set of differential equations for each of
the amplitudes C(ny, n2, n3, £) that are found by equating terms
according to equal state vectors. This set of coupled differential
equations is not written explicitly here, but they can be found by
the reader without intellectual difficulty, but with some measure of
algebraic work.

To start this study it is best to start with the simplest situation with
only one n; photon that interacts with the fermion. In this problem
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there will be no interaction that can couple this photon with the n;
and n3 photons by conservation of energy. On physical groinds we
expect that this process will be a modified Rabi flopping[10]{11]. A
numerical examination of the probabilities for the spin up and spin
down states yields the resnlt in figure 6.2. The fast Fourier transform
(FFT) of the spin state is illustrated in figure 6.3. This roughly has
the 1/w type of spectrum that is typical of the RFR effect. The
quantum oscillation of the &1 photon state is similarly the expected
result illustrated in figure 6.4.

An examination of the system that initially starts with a k; photon in
a cavity with the fermion in the spin up state illustrates that the spin
executes more of a nutating oscillation. The FFT of the spin state
has the typical 1/w spectrum, on a gross scale, but with a stair step
structure that is found to recur in many of these numerical exercizes
This reflects the fact that the amplitudes of these quantum nutations
are do not repeat with each oscillation. An examination of the &
photon oscillation reveals a pattern that is regular in periodicity, but
irregular in amplitude. This oscillation involves amplitudes for the
generation of 1 and 2 photons with this mode. These results are
illustrated in figures 6.5-8

The quantum oscillation of the |2); state is also regular in periodic-
ity, with the occurrence of "half beats” and ”quarter beats” in the
oscillation, but irregular in amplitude. Since the photon is coupled
to the fermion it is apparent that this beating phenomenon is the
result of the stairstep structure seen in the Fourier transform. This
randomness also appears for all times in the dynamical evolution. It
is apparent that the decay of the fermion state and the |1}, state
generates the state [2),. Similarly a system that obtains for a sys-
tem that starts out with 2 photons in the k; mode gives generically
similar results, illustrated in figures 6.9-12. There does not exist any
generation of k3 photons.
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This state of affairs continues as we inecrease the number of initial
photons. An example is the case where we start out with 2 photons
with the k; miode and 1 photon in the &, mode. The probability for
the spin up and the spin down states is illustrated in figure 6.13. The
frequency of mode transition has increased significantly. Further the
randomness in amplitude values has markedly increased. The oc-
currence of maxima is still periodic, but the large maxima occur
randomly with these periods. It is apparent that there is an emerg-
ing stochasticity in the occurrence of these oscillations. The Fourier
transform of the spin states, figure 6.14, reveals the same stair step
structure on top of the 1/w frequency trend. However, each of the
steps is marked by the appearance for other peaks within these steps.
This will be seen as an important component towards a phase tran-
sition in quantum oscillations. The probability for the occurrence of
photons in the k; and 2k modes, in figures 6.15-16, similarly reveals
an increasingly rococo structure in the time domain. Here the vac-
uum state probability is also included. What is interesting is that we
begin to see the occurrence of photons with the k3 modes in figure
6.17. This is even though we did not start out with these photon in
the initial state. This process indicates that the Hamiltonian term
in equation 6.4.63 couples the k3 modes with the other modes and
generates photons there. The probability of finding a k3 photon is
quite small, but finite.

We now consider the case where there are 2 k; photons and 2 kp
photons in the cavity with the fermion. The spin of the fermion
executes a set. of oscillations, with some gross measure of recurrence,
that appear comparatively random and then abruptly settle into a
new set of oscillations that exhibit serious departures. The final state
appears to have little resemblance to the quantum oscillations found
just after the initial conditions, figure 6.18, and the self similarity
of the Fourier transform, figure 6.19, appears to be breaking down.
Similarly the probabilities for the occurrence of photons exhibits a
similar dramatic change in its dynamics, as illustrated in figures
6.20-22.
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The k; photons end up primarily in the n = 6 state and the ks
photons end up primarily in the n = 3 state. There is also a sig-
nificant probability for the occurrence of a n = 1 photon state in
the k3 mode. In effect we have produced photons with a higher
frequency from lower frequency photons. By considering the ener-
gies of these states and their probabilities there is an over all energy
conservation. What is of primary interest is that the final quantum
oscillations exhibit behavior that is utterly independent of the initial
conditions. This has the appearance of a transition in behavior that
is accompanied by the increased occupation of states with the ks
modes. This process is governed by the Hamiltonian term in equa-
tion 6.4.63. This Hamiltonian term is quartic and it, along with the
quadratic Hamiltonian (equation 6.4.62) act as a sort of Landau-
Ginsburg potential, or a ¢* type of field in the Higgs mechanism,
that induces a transition in the behavior of the system. An exami-
nation of the Fourier transform of the spin oscillations, figure 6.18,
also demonstrates that there is a near complete breakdown in the
staircase structure to the spectrum. This staircase is been broken
into a group of peaks representing certain oscillation frequencies that
have a degree of self-similarity. However the staircase appears to be
replaced this self-similar grouping of frequencies that correspond to
a birfurcation in the frequency spectra of these quantum oscillations.

This trend continues as we increase the occupation numbers. In the
case that initially we have 4 k; photons and 2 k3 photons we have
the same generic behavior, illustrated in figures 6.23-27. Further if
the occupation numbers are still increased, in the case below ny, =
5,m%, = 3, and ng, = 1 it is found that this transition occurs more
rapidly. At this point the staircase in the frequency spectrum for the
quantum oscillations has turned into a set of recurrent peaks. These
final results are contained in figures 6.28-31.
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6.4.2 DISCUSSION OF THESE RESULTS

A physical description of this process is probably best given by
an analogy with the onset of turbulence as given by Landau and
Hopf{12][13]. A Hopf bifurcation involves the introduction of new
fundamental frequencies in a system. In a classical mechanics set-
ting a cycle, with a certain frequency, as represented by a circle is
"blown up” into a torus with a new frequency determined by a cy-
cle that corresponds to the circle that is topologically distinct from
the original circle. A succession of such blow up produces a set
of frequencies wy,wsy,...,w,,.... In the limit that there are an infi-
nite number of such new frequencies, the classical system transitions
into chaotic behavior. It appears as if this quantum system is ex-
hibiting such a set of frequency bifurcations. This can be seen with
the comparison of the FFT between the ny = 0,n; = l.ng = 0,
ny=2,mny =2,n3=0and n; = 5,n3 =2 n3 = 1 cases. Here the
stairstep spectra is replaced by a repeating set of frequency spikes.
This appearance has the suggestion that chaos is involved with this
phase transition.

The increased aperiodicity in quantum oscillations suggests that
these oscillations correspond classically to windings on tori that ap-
proach a torus of irrational winding, similar to the continued fraction
expansion advanced by Greene [14]. The abrupt change in behavior
indicates that there is some form of breakdown in symmetries and
a loss of quantum information. If one time reverses the computer
program after this transition the system does not behave in a time
reversed manner. The initial transient behavior is not recovered.
This appears to be a difficulty for the Schrédinger equation is a time
reversal invariant evolution equation. However, in the case-of general
relativity there are time reversal invariant equations that predict the
existence of black holes that have thermodynamic interpretations. It
appears that in the case of Schrodinger quantum mechanics there is
also a loss of quantum information. The issue of the loss of quan-
tum information is difficult to address. for it is usually associated
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with a unit of action h. Yet in quantum chaos it is quite possi-
ble that if there are exponential divergences of quantum paths that,
very small quantim fluctuations can influence the future evolution
so that quantum inforination is continnally shuffied through this unit

of action.

This preliminary study of nonabelian quantum electrodynamics in a
cavity indicates that the occurrence of the B? field means that the
Hamiltonian %(Ba)2 contributes to the dynamics of probability am-
plitudes so as to induce transitional behavior. The Hamiltonian is
similar to a quartic potential, where the value of the B3 field deter-
mines the value of the potential. Such a potential has two minima,
one where B3 = 0 and the other for a finite value of the B? field.
This determines two domains of behavior for the system. The po-
tential minima for a nonzero value of the B?® field corresponds to
states that are invariants of the Lagrangian, but not of the vacuum
state. It is at this point that the O(3), symmetry of nonabelian elec-
trodynamics is broken. An alternative viewpoint is that the energy
available is not sufficient to induce quartic photon transitions and so
the value of the B? field is frozen at a value corresponding to the
nonzero minimum of the potential. For higher energies, or more and
larger occupation numbers corresponding to photon probabilities the
symmetry of the O(3), symmetry is recovered.

At this stage it should be noted that the Fourier transforms of this
system do not indicate a divergence in the limit that w — 0. This
is in spite of the fact the Hamiltonian has a 1/w dependency. This
infrared diveregence is removed by the statistics with photons. In
these cavity examples there simply do not exist the photons with
such low energy. If the cavity were thought to expand to allow for
the modes with lower frequency then the same will occur. There will
still exist a fundamental cut off in the infrared divergence. If we let
the cavity become infinite in size then the infrared diveregence can be
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removed by the Poisson statistics of photons. O(3) electrodynamics
is therefore not divergent.

6.5 QUANTUM ELECTRODYNAMICS OF
ELEMENTARY SCATTERING

It is often retold about the genius of Einstein, Bohr, Heisenberg and
others and their contribution to theoretical physics that lead to the
modern physics of quantum theory. Sadly it is not as often remarked
that experimentalists contributed their genius towards not only this
effort, but also in the way in which nature was to be probed. The
first contribution was made by Ernest Rutherford, who demonstrated
that the atom had a nucleus by bombarding a gold foil with alpha
particles. The scattering of alpha particles in the opposite direc-
tion clearly indicated that there existed a hard central nucleus to
the atom. This was the first controlled scattering experiment. OE
Lawrence devised the first small device that would accelerate charged
particles for the purpose of measuring the scattering that resulted
when this beam of particles interacted with a target. This philosophy
continues in a wide range of experimental devices from the particle
accelerators that collide beams in the TEV range of energy to the
electronmicrograph where images of biomolecules are imaged from
Fourier transforms of the scattered patterns of electrons. This has
even lead to the recent development from IBM labs towards the imag-
ing of atoms. Scattering is the grand new experimental paradigm of
modern physics that essentially played little role in classical physics.

The study of the electromagnetic field has proceeded along the exper-
imental paradigm of scattering once its wave mechanics were under-
stood. Classical electromagnetism was initially based on the types of
experiments done by Michael Faraday with currents that ran through
wires arranged in coils. Faraday was able to demonstrate inductive
effects by demonstrating the production of transient currents in a
coil adjacent to a coil just as a current is turned on. These types
of apparatii ultimately lead to the Marconi device that employed

?
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Maxwell's equations to transmit and receive electromagnetic signals.
The development of wireless and radio occurred at the time that the
modern theoretical and experimental paradigm of physics began to
germinate. The first case of wave scattering was Rayleigh scattering
of photons with atoms, which gives the prediction of a blue sky. Here
the wavelength of the photon is much larger than the atom. Fur-
ther, wave scattering studied involved the scattering of electromag-
netic radiation with aerosol particles by Gustav Mie and the study
of atmospheric optics and the understanding of rainbows, glories and
St. Petersburg displays. One of the earliest examples of scattering
theory involving charged particles and the production of electromag-
netic radiation was the recognition that accelerated charges emitted
Bremsstrahlung (braking) radiation. This was primarily responsi-
ble for the emission of radiation due to the high energy collisions of
charged ions. This discovery lead to the X-ray machine and its early
impact on noninvasive medical diagnostics. This was one of the ear-
liest treatments of how the scattering between two charged particles
would lead to the emission of radiation.

In quantum electrodynamics the entities examined are charged par-
ticles, most often electrons, and photons. Either, one examines the
scattering between two electrons, and the subsequent electromag-
netic response plus the scattering angles of the two electrons are
measured, or the scattering between a photon and an electron in the
case of Compton radiation. With the advent of the Dirac theory
of the electron we are confronted with the negative energy state of
the positron, or antielectron. In a fully relativistic setting one must
include scattering that emits or absorbs positrons.

We then have four possible cases for the scattering of the electron
state. In all four cases we have that the initial electron state ;
is scattered into the final electron state 4y. However, these elec-
tron states can be either postive or negative, corresponding to the
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electron and positron. Further, we interpret the propagation of an
electron state of negative energy as the positron of positive energy
propagating fromn the future to the past. So we have the four cases
with i, — g

; in the past scatters to i in the future for electron scattering,
s in the future scatters to 15 in the past for positron scattering,
1y in the past scatters to 1 in the past for electron-positron pair
annihilation,

1, in the future scatters to ¢ in the future for electron-positron pair
creation.

The third of these processes was first predicted by Paul Dirac and
subsequently observed by Anderson[16].

In describing these processes we need to have a way of describing the
propagation of these fields through space and time. We have the wave
equations for these fields and we know that the wave function is the
solution to this wave equation. A propagator tells us how to promote
these wave fields from one point in space and time to another. So this
propagator must be the kernal of the wave operator. In the case of
nonrelativistic quantum theory the wave equation is the Schrodinger
equation. In the case that we introduce a perturbing potential V we
have that the wave function satisfies

(ih% - H, - V)zp = 0. (6.5.66)

The free propagator is defined for V = 0 and is the kernal for the
amplitude that evolves from r, and 7,

., 0 .
(ma - Hg(:vz))G('rl, r) = id(r — 7). (6.5.67)
The propagator for this unperturbed Schrédinger operator is

(r — m)°

1
G(r, ™) = Nea:p(Eim —

)8(t2 —t).  (6.5.68)

where ©(t; — t1) is the Heaviside function that vanishes for t, > #;

and N is the normalization factor N = +/m/2mi(t — #;). This
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propagator is 1sed to find a wave function (72, t2) given a wave
function (71, t1) at an earlier time ¢t > #;

,"[/.(1-2‘ f2) = /G('I‘l, T2, tz, t1)¢(7ll~ f,l)dsrl. (6569)

This propagator is the trivial case, but can be used to estimate prop-
agators in the case that V # 0. In general we have a propagator
that satisfies the equation

(ih-gf- — Hy — V)G’v('rl, ™) = W(r — m). (6.5.70)

In general this kernal can not be exactly computed in an analytical
manner. In practice one must then find a series approximation for
this kernal.

The complete kernal can be represented by the eigenstate solutions
to the wave functions as

Gy(m — m) = Ze_w(t" =ty () )W (). (6.5.71)

We feed the kernal for the unperturbed Schrédinger operator into
the integral

Gv('r’l - 7‘2) = GD('I‘l — 7‘2) +i/Gv(1‘1 — 1‘3)17G0(1‘2 — 1‘3)d1'33dt3.
(6.5.72)
and proceed with these interated substutions to arrive at the series

Gy(r — 1) = Gp(m —7‘2)+i/G0(7‘2—7‘3)VG0(7‘1 — r3)dridts —

//GD(T1 — 13)V(7r3)Go(rs — 14)V(74)Go(r2 — ra)dridr]dtsdts.
(6.5.73)

Since the propagator allows us to find the quantum state of a sys-
tem at a latter time this can further be used to find the probability
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transition. The amplitude for state transitions as the wave function
is propagated from 7 to 7 is then

Ap = //"#’(TZ)G(% Ty, t2. t)(my). (6.5.74)

The propagator may be expanded in a series.

We now make the leap to relativistic quantum mechanics. For a
fermion the basic wave equation is the Dirac equation

V(0. + gAY + myp = 0 (6.5.75)

Using the fact that 1%y, = «a; we can write this wave equation as
0 A

it = (a:(p - g4) + v + mp) . (6.5.76)

In the same manner a kernal exists that is the solution to the equation

8
(% —a(p—-qA)—V+ m[j)G(rl,rz) = 8(ry — m). (6.5.77)

The free particle kernal is obtained in the case that the electromag-
netic vector potential and the scalar potentials are constant and can
be set to zero. And so we define the propagator for the free particle
as the kernal that satisfies the equation,
.0
(za —a-p - m,[)‘)GO(rl, m) = & — m).  (6.5.78)

The kernal for this operator is defined by the spinor solutions to the
Jirac equation

Fo(r—m) = ) e Bl =0 (40 (m)ypl* (m) |4 + 2(r)) 02" (m)]-),

n
(6.5.79)
vhich involves a sum over positive energy and negative energy solu-
tons. The perturbed propagator is then

i(r—m) = Go(ry—m) + i/Go(Tz —rg)a- AGy(m — r3)dridty
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— //Go(rl —13)a - A(13)Golrs — ra)a - A(ra)Go(re — ra)dridrddi,

" (6.5.80)
This propagator describes the evolution of a wave function under
the infuence of the potentials c - A interpreted as the amplitude
per volume per second. The Dirac equation is a 4 X 4 matrix that
is iteratively built up from the exterior products of the spinor that
compose the wave function for the free fermion.

The simplest example is the case of coulomb scattering. In this case
we have the coulomb potential 44 = ® = e/r and the wave
functions are ¥;,2 = u12exp(p12- 7). The unperturbed propagator
is then

Glr —m) = Y e Bl =1 (4 (mp)yh0sn (1) |4 + ¥ (72)) 85 (m1)]-)-

n
(6.5.81)
This must now be expanded. The first order amplitude for the tran-
sition from the i** state to the j** state is calculated to be

2 t
aij = —i(U%oul)/e“pQ'r—e‘P""/ dtdt
0

r

¢i(E2 — Eq)t'

= —i(uzr0u1) ®(|P2 Pll)(i(Ez — El))‘ (6.5.82)
We have two integrals here. The integral over the mo-
menta is a Fourier transform of the Coulomb potential
®(lp; — p1]) = 4me?/|p. — p1]?, and the second integral gives

the same result found in the Fermi golden rule. The transition prob-
ability for this process is then given by the same density of states
argument that prob(i — j)/sec =~ |a;;|*(density of states). This
leads to the cross section for the scattering process

4¢? 2
o = -—————4d52]u270u1| . (6.5.83)

(Ipz = ml)

The calculation of the term wuzyyu; comes from the relativistic Dirac

equation. This is found to be Juzyou1|?> = |(E + m)? + p2p1]?/(E + m)>.
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The difference between p; and py is the phase given by the angle
at which the two plane waves scatter off from each other. So for

pe = pre—*%. This gives the scattering cross section
4B (1 — o?sin2(0/2))dQ) (6.5.84
g = —————(1 — v7sin A0R 9.
7 — ml 0280

This is the result for Compton scattering.

This is an illustration of how photons and electrons scatter accord-
ing to the U(1) theory of electromagnetic theory. This result just
presented is a fairly basic result involving the tree level scattering
of electrons and photons. In chapter 8 this subject will be more
completely developed for O(3); electrodynamics.

6.6 PHYSICS OF QUANTUM ELECTRODYNAMICS OF
ELECTRONS AND PHOTONS WITH THE B(3) FIELD

The electromagnetic field in full generality involves the coupling of
charged fermions with the photon field. This is the case with an
electron in a region free of photons, as well as for a photon in a region
free of fermions. An electromagnetic wave is essentially a disturbance
in the electric field that propagates away from the source. and in so
doing is associated with a disturbance in the magnetic field. So the
wave is composed of an oscillating electric and magnetic fields that
are perpendicular to each other, and where both are perpendicular
to the direction the wave is traveling. The photon is basically the
same thing, but where these fields are quantized.

Now on a somewhat deeper level these quantized electric and mag-
netic fields exist in the vacuum that is composed of virtual photons.
These virtual photons are the result of Heisenberg uncertainty fluc-
tuations in the electric and magnetic fields. These Huctuations form
the first order terms that describe the vacuum. The second order

—
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terms involve fliuctuations with electrons and positrons (I am ignor-
ing virtnal pairs of other more massive particles). Now these virtual
pairs are randomly oriented in the vacuum. However. if there is an
electric field present these virtual pairs will preferentially occur so
that the virtual charge separation is aligned, or polarized, with this
electric field. So a photon, with its oscillating electric field, will be
associated with these virtual pairs of electrons and positrons that are
polarized with the photon electric field. In the more formal language
of QED this is represented with Feynman diagrams.

In this picture it must also be pointed out that the magnetic field is
oriented perpendicular to the plane inscribed by a completely polar-
ized electron-positron pair. The virtual electron-positron accompa-
nies a virtual electric and magnetic field. The charges of the virtual
pair will separate under the influence of the photon electric field,
and the magnetic field lines of the virtual electron-positron pair will
preferentially align with the magnetic field of the photon. Let us
assume that we have the vector potentials

LA<°)(i +oif)eik T —wt = 4@ (6.6.85)
V2

We then have that the magnetic field is B('?) = ik x A(1:? and
that the electric field is E(? = 4wA®? . Now we consider the
vacuum fluctuations that surround these fields. Here we are saying
that quantum theory is the action of the vacuum on particles and
fields. This means that we have the fields B(1:? + §B(2 and
B(1:2) 1 5B(12) where the variational piece added on are the quan-
tum Huctuations. Now we have in spacetime the differential form
F = dA. This is written in spacetime as

F = F,do"Adc”. (6.6.86)

AN =

The Yang-Mills functional is defined by the integration of the wedge
product F A xF, where * is the Hodge dual star operator

8rik = / Fo Fapdz! Adz” Adz® A dz”, (6.6.87)
(M.q9)
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where k is the instanton number. Now the electric and magnetic
fields on the spacial manifold of three dimensions are E; = ¢, F'/
and B, = e;‘j,,_F‘”. With the application of the antisymmetric
symbols we find that the Yang-Mills functional is

1672k = /([E By + [0, 4Bj])d"z. (6.6.88)

This leads to the equal time commutator
[6EX(r, t), 0BY(r', t)] = hé;0d(r — #/)é(t — t'), (6.6.89)

where we have included the O(3), indices. We see that quantum me-
chanically the electric and magnetic fields are the conjugate variables,
and that the uncertainty relationship is dictated by the fluctuations
in these fields in the vacuum.

These field fluctuations in the vacuum will couple to the photon's
electric and magnetic fields. In the case of the magnetic field we will
have a fluctuation in the interaction energy that is,

0 = /o'(j-A) = /H-o‘Bdar. (6.6.90)

This fluctuation in the magnetic field can be estimated from the flux
quantization of the magnetic field ¥ = 2nh/e that is obtained from
SQUID and Josephson junction measurements. It is this term that is
responsible for the Lamb shift in the energy level of a hydrogen atom.
We may then say that the magnetic field fluctuation is the magnetic
flux quanta times the small area enclosed by the electron-positron
pair. This small area is determined by the coordinate fluctuation
of the electron and positron. This can be estimated by using the
energy fluctuation as dE = dmc?, the uncertainty relation between
the energy and time 0Edt = % and the uncertainty in the position
as ox = cot. We find that the magnetic field fluctnation is approx-
imately 5.6 x 10° gauss over a range of around 10™3¢m that occurs
for around 10~%3seconds. We see that this magnetic field fluctuation
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is quite strong. but short ranged and short lived. This means that
electromagnetic physics that is performed above the scale of 10~ 3¢em
will be effected less and less by these fluctuations as the scale of the
physics measured increases above this range. The energy at which
one needs to examine quantinm electrodynamics on this scale is above
1 Mev. It is interesting to note that this occurs at the classical ra-
dius of the electron. Figure 6.32 illustrates this polarization of virtual
electron-positron pairs due to a magnetic field.

Polarization of electron-positron pairs in the vacuum

/

virtual electron-

} fx
positron pairs \;Z;!:af magnetic

H
background
magnetic field

Figure 6.32

This can then be used to estimate the energy fluctuation in a photon
associated with the mutual inductance between the photon magnetic
field and the quantum fluctuation in the magnetic field. The mag-
netic field for a photon is given by the relationship |B] = 4nhuow,
which for a 500nm optical photon is around 3 x 10~°gauss. This
means that the virtual work done on this photon by the magnetic
field fluctuation on the scale of 10~'3¢m, is then approximately
2.13 x 108 ergs. To estimate the effect of this perturbation on an
atomic energy level requires a more complete calculation by com-
puting the expectation of this over a long time wiht the atomic ba-
sis states. This is compared to the energy of the photon which is
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6.3 x 107'% ergs. On the scale of 107 3em the electric and magnetic
field of the optical photon is literally lost in a chaotic sea of virtual
field fluctuations. A photon has to have an energy on the order of
1Mev in order for it to have appreciable effects on this scale.

Since O(3), electrodynamics predicts the existence of the B® field
this field must also have an effect on the stochastic motion of an
electron on a fine scale. Again we have fluctuations of the B®) and
the EG) fields,

ESD (r, ), 6BO(#', 1)) = Royd(r — 7')3(t — #). (6.6.91)

So far there is no evidence pointing to the existence of a classical E®
field, but it should be expected that there will exist Huctuations of
this field. We then expect that the fluctuation in the B® field will
be of the form

sB® = —E(JA“) x A® 4+ AW di(z)). (6.6.92)

Now we use the fact that the magnetic vector potentials have the
magnitude |B(?)|/Ek. So the magnitude of the B®) is then

2e
sBO® = 22 (15
|6 B % (|OBHB|) (6.6.93)

To obtain estimates we proceed with the same analysis as before.
Again we consider the fluctuations in the B®). The fluctuation in the
ordinary magnetic field in this expressionis 6 B = (7/2)(6m)?/(eh),
which again is around approximately 5.6 x 10° gauss. The magnetic
field associated with the photon, without quantum fluctuations, is
around 3 x 10~%gauss, the B field fluctuation is then around .006
gauss. So the B®) field fluctuations that result from virtual electron-
positron pairs is estimated to be ten orders of magnitude smaller than
the standard magnetic field. This B(®) fluctuations should then give
measurable contributions to vacuum QED physics in the 10 Gev
range of energy.
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This means that the vacuum contribution to the virtual B®) field
is likely to be a very small effect that will be difficult to measure.
However, it will have a contribution to some measurable physics. The
virtual energy of this fluctuation is estimated to be around 10~ 2ergs.
It is then estimated that the shift in the atomic level will be 106
that of the Lamb shift. This is a small effect to attempt to measure,
but not an impossible one.

6.7 NONRELATIVISTIC ESTIMATE OF THE B®
CONTRIBUTION TO THE LAMB SHIFT

The coupling of the radiation field to the an electron is given by the
interaction Hamiltonian

H = %/darj(r)-A(r). (6.7.94)

We used Ampere'slaw VH = j with the covariant definition of the
curl operator V. — Dx = V x + i(e/h)S; A®x. This means
that since

i(r)- A(r) = D(r) x H(r)- A(r)
= H(r)-Dx A(r) + D-H(r) x A(r). (6.7.95)

The last term is a boundary term that can be set to zero. We then
find a B® contribution to this term that is of the form

2
H = —ig—/dQ'rH-A(‘) x A@. (6.7.96)
C

This is the form of the interaction Hamiltonian that we will use
to calculate the Lamb shift [15] contribution due to the B® field.
This interaction Hamiltonian will induce the spontaneous of a photon
with wave number w = ck and the transition of an atomic state
[n) — |n’). We then examine the second order perturbation in the
shift of energy

(!, k, €| Hineln, 0)[2
AE, = ZZ( o En:t— L ) (6.7.97)

n' k,e
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where ¢ is the polarization state of the emitted photon. We will first

consider the term B = V x A, with A = Aeg, in our computation.
The matrix elements of the interaction hamiltonian is

(n' k. €| Hine|n, 0) = A3(|p X €€ x €). (6.7.98)

“202

If we let the sum over the photon numbers go to the continuum the
energy shift is then computed to by

’I
_ p - €*n, 0)]
AFE, = “ pz / B R—— (6.7.99)

where the 1/(27h)? is absorbed into A®). Now sum over the polar-
ization states and put the integral in spherical coordinates, and we
arrive at the integral in the form

_ € s [Tk (n'lp - e n)?
ABn = ——554 fo D ;E,, 5 o (67100

The integration of this leads to the result that

4 * 2 !
€ 43 [{n |P en)? . E' - E,
= l [ ——
A T p2c? Z — Eqn Ich—rrno TL(l t hke )’
(6.7.101)

which is divergent. This situation appears to be terrible, for this
means that we can not make any predictions, and that there is an
infinitely downward shift in the energy of the electron. However, this
integral is logarithmically divergent in the infrared spectrum. How-
ever, these divergences are easily dealt with. Essentially this can be
seen to be fictional, for an electron can not be scattered without an
electromagnetic field response. We recognize that the probability of
emitting a photon is dependent upon the electron current as a func-
tion of the wave number. We then reassess the dipole approximation
by writing the [(n’, ke|p|n, 0) = [(n'|p|n, 0)|?|j(k)|?, where j(k)
is the current for each wave number & divided by the total current.
This current ratio reflect the percentage of photons that are emitted
with a certain k. For a finite number of photons this will appear to
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be Poisson distribution. It we assume that the numbers of possible
photons, or the sample size of possible photons, is very large, but
where the numbers of photons emitted in reality is far less, then we
can assume that the current is |j(k)] ~ k. We then arrive at the
result that

4 *|n )2 hkc oo
B el s [{(n |p €*|n)| __hke
AEn - _,UZC2 Z n) l’n( E‘n - E?"L) 0
(6.7.102)

This integral is now ultraviolet divergent, but it is only logarithmi-
cally divergent.

This ultraviolet divergence can be removed by countering it with
a similar term that is similarly divergent. In the case of the free
electron there is an infinite term

262 2 /oo
IR dk, 6.7.103
AE, r— ;(qlplpﬂ A ( )

and this leads to the mass renormalization of the electron from the
energy shift E,- = E’_ + AE,-

1 2 2 2/00
=1 e dk. 6.7.104
Be- = lpl + 503 Al A ( )

This process will cancel the divergence that occurs in the U(1) the-
ory of electromagnetism. The analogous process that needs to be
cancelled in O(3) theory involves the coupling of the electron with
a nonlinear photon coupling
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kr + krr

» p-k  p-k-k' p-k'-k" P

B(3) Lamb shift diagram. An electron is coupled to two
mutually interacting photons.

Figure 6.33
which corresponds to the energy shift

AEEZ = 3 |(n, k.elp’lal4l0,0)
kn

1

sm miet 32' Yol |2/ k. (6.7.105)

3 m2c2ud

If we add this correction to the energy shift due to the B®) field we
arrive at the integral:

87 hie! 1 oo E. — E
AEBB Py & l 2 ( n’ n
e 3 m2c2pus hcA ;[(n el /0 dk E., — E, — hkc/’

6.7.106

This integral is logarithmically divergent. This divergence( is com)-
paratively soft and can be removed by placing an effective cut off
in the upper limit of the integration. However, this can be resolved
by recognizing that the amplitudes are going to sharply drop off for
processes that with frequencies hw > 2mc?, where m is the mass
of the virtual electron and positron. This is the scale used in the
quantum fluctuation estimates. This means that we can cut off the
integral at this value and arrive at the final result that,

8w h2et 2mc?
AEE = A3 2 ( 5 )
e 3 nﬂc?,u“ Zl 'pln)|*in B, — hke)

(6.7.107)
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To finish the calculation we use Hin) = Eq|n) and

S Pl (B — )™ = (nlp(Ho — Eu)™"pln). (6.7.108)

The momentum operator acts on (Hp — En)_1 as
p(Hy — En)™' = —(Hy — En)"’pHo, (6.7.109)

and so the action of the two momentum operators on the free Hamil-
tonian is

p(Hy — E.)™'-p = [p-[Ho, 7]l (6.7.110)

The part that contributes to this commutator is the Coulomb poten-
tial between the proton and the electron in the hydrogen atom. The
commutator with the free Hamiltonian becomes (h’e?/2)V2(1/r),
which gives a delta function that is evaluated in the matrix element
when written out by completeness as an integral over space,

R e2h?
——(n|Vi(1/r)|n) = — ry* (1' )2md(r)p(r).  (6.7.111)

For an atom in the s-state we have |[2 = 1/m(nag)?, where n is
the principle atomic number and ag is the Bohr radius. This means
that the final answer is

2

#(%)asl"(gm%lczlgn)- (6.7.112)

This effect is going to be 5.33 X 103 that of the standard Lamb shift.
This is compared with the quantum fluctuation estimate where this
type of effect is to be a fifth of this. However, the two calculations are
just outside an order of magnitude of each other. This discrepancy is
discussed later in section 8.4, where various surprises are in store on
the nature of nonabelian quantum electrodynamics. This result and
our fluctuation estimates are an indication of a problem that lies in
store. However, while this effect is small it should be detectable.
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6.8 DERIVATION OF 1/f SPECTRUM FROM
NONABELIAN ELECTRODYNAMICS

The 1/f spectrum occurs primarily in quantum electronic systems.
It is a curious spectrum that has a reciprocal dependence with fre-
quency. Further, the reciprocal nature of this spectrum means that
there is a self-similarity to this spectrum under rescaling. This self
similarity, or fractal like structure, to 1/f noise suggests that the un-
derlying process is nonlinear[15]. Curiously, it has been discovered
that 1/f noise appears in systems completely unrelated to quantum
electronics(17]. The main approach to the problem of 1/f noise in-
volves hopping transitions and the momenta of electrons that in-
teract with lattice defects. The interaction between electrons and
lattice defects can be modeled according to electron-phonon interac-
tions. Lattice defects tend to induce ”bunching,” or an aggregation
of lattice atoms[19], which causes phonons to aggregate. The physi-
cal statement advanced in this letter is that this is analogous to the
bunching of photons in a nonlinear media. The relaxation rate of
the lattice would then be analogous to the dispersion of photons.
This process is then treated as analogous to nonlinear atomic re-
sponses to photons. Essentially the occurrence of lattice defects can
be modeled in a simple manner by considering the phonon to be
nonabelian. In this letter it is advanced here that these nonlinear
phonons are basic to the physics, and that the electrons then interact
with this nonlinear bath of phonons. The physical argument is that
if electrodynamics is more fundamentally nonabelian, then optical
phonons should naturally assume a similar nonabelian form. Tn a
solid at thermal equilibrium the phonons exist in a thermal distribu-
tion and interact with electrons that exist in a distribution of states
that reflect Fermi-Dirac statistics. The longitudinal magnetic field in
nonabelian electrodynamics depends upon the frequency as ~ 1/w
and this field is involved with the interaction between the nonlinear
phonons, and with the interaction between phonons and electrons.
This then results in a parsimonious description of the interaction
between phonons and electrons that results in the 1/f spectrum of a
current in condensed matter.

ki
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Given a nonabelian nature to this theory we return to the nonrela-
tivistic equation that describes the interaction of a fermion of mass
m with the electromagnetic field. The Pauli Hamiltonian is modified
with the addition of a B® interaction term[20][9]

2
€ *
HB?.,L = %(0 . A)(U A ), (68113)

which may be rewritten according to the algebra of Pauli matrics as

2
Hps = —(A-A* + ioc- A x A*). (6.8.114)

int 2m

If we write this interaction Hamiltonian according to creation and
annihilation operators we find that this term can be written as

Bl T 4m
(6.8.115)
Here I is the unit tensor, w, is the frequency of a mode with mo-

mentum p, n is a unit vector in the direction of the B®) field,and
a;f,, a, and the raising and lowering operators for the field expanded

e? ( —17,.% -1 (3)( % 1 )
—_— E L Talap + we Yo' (alap—q +ag0p_,) )
heoV £ Wk KOk Zq 7 (2g0k—q + 2g%%_q
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in harmonic oscillator modes with momentum p. The bosonic field
is now considered to be optical phonons that have the same form
as photons in nonabelian electrodynamics. This interaction Hamil-
tonian then describes the exchange of a phonon that results in the
change of the spin of the fermion. This process is analogous to the
absorption of a phonon in the state p and the emission of a phonon
in the state p + k' and the electron state transition & — k + k'
The process is represented in the following diagram:

phoron
r4
k k-k'
electron
pri
Figure 6.35

This problem is a modification of nonabelian electrodynamics where
the interactions between photons and their interactions with charged
fermions in O(3), electrodynamics is identical in form to that of mu-
tually interacting phonons that also interact with many electrons in
a crystalline lattice. We assume that optical phonons, which involve
charge separations in the lattice, are identical in form with the non-
abelian electromagnetic field. Thus, it is assumed that the longitu-
dinal B®) field is associated with phonons. The second adjustment
that must be made is that o®) - n is replaced by the creation and
annihilation operators of the fermion field. This is initially done with
the expectation,

o)y = /'¢*(r)a(3)¢(r), (6.8.116)

with 1/; = Y r ()i, and Yl(r) = 3, ¥*(r)ibl. The opera-
tors bk, bk are the fermion raising and lowering operators that obey
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Fermi-Dirac statistics with the anticommutator {bl,bk:} = Opp
The expection of o(®) is then

<a-(3)> = a-@)ZbLbk,/dsrv/),:(’l')'l,lrk:('l'). (6.8.117)

kK

The integral collapses to a delta function, and the result is diagonal.
This means that we must generalize this expectation by considering
%(0(3)A(1) x A®). This is used to find the form of the Hamilto-
nian for the interaction of nonabelian phonons with electrons. Fur-
ther, from equation 3 we have in the second term of the interaction
Hamiltonian the frequency dependency (wkwk_q)—l/z. If we let the
summation over k — k' + %q, and restrict w, << wy this factor is
then approximated by w,;l and the summation may be replaced by
the summation over k’. This assumption means that the electrons
and phonons are weakly interacting, where the phonons transfer only
a small amount of their momenta to the electrons. This leads to the
interaction Hamiltonian for electrons and nonabelian phonons that
acts on the Fock space of states

Hp =AY (wk bly Drabar—g + Hc) (6.8.118)
k' k,p

where A is an amplitude for the process.

We now examine this problem for the case that the momentum k is
held fixed. This corresponds to a set of phonons that interact with
the electrons by this interaction with one ”input” set of phonons in
one mode. We then compute the expectation

(nk’+qgnk’~NkaNk—quBf’MInk’-{-q —1l,np +1, Ny — 1,Nk_q + 1) =

Aw;l\/nk,ﬂn;czvkzvk,_q, (6.8.119)

where n, are the number of fermions, or electrons, and N, are the
numbers of phonons. These formulae can be used to derive the Fermi-
Dirac statistics of the electrons. If we let k + ¢ — k. We can



then have the numbers of excitations, n, n/, with the modes k, k' re-
spectively. We are then concerned with the transitions between these
modes with the energy gap AE = E; — E.. If we assume that the
transition rates between the two modes are in thermal equilibrium.
This means that the Boltzmann factor f; for the probability for the
transition k — %' is the inverse of the Boltzmann factor, f2 for the
transition & — & and the rates of these transitions are the same.
These rates are then

R(k — k’) = ’l’lk(l + nk’)flpk,k’

R(k, g k) = ’l’lkl(l + nk)fzpk',k~ (68120)

This means that f;/f, ezp(AE/kT). Since Py = Py ;. the
ratio of occupation numbers is

nk(l + ’l’lkl) _
ne(l £ ng) — CTP(-AB/RT). (6.8.121)

If we assume that the occupation number is completely dependent
upon the energy of a mode w, we can perform the summation over
the occupation numbers of fermions

1
mE) = exp(E,JkT) + 1’

(6.8.122)

with E o 1/wp from the interaction Hamiltonian. Similarly, we have
the expectation of the energy is given by the Fermi-Dirac statistical
result

B = BT 71X aeneonstfoy T

(6.8.123)

This expectation for energy of the electrons then has the 1 /f curve
characteristic of noise encountered in quantum electronics. This
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curve only deviates slightly from a strict 1/f curve. It then ap
pears that nonabelian electrodynamics may be the foundation fo
the occurrence of 1/f noise in the quantum electronics of solids.
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6.9 ANALOGY FROM CLASSICAL FIELDS TO
NONABELIAN QUANTUM ELECTRODYNAMICS

It is well know that a material that is subjected to an electric field
will exhibit charge polarization. The molecules that make up that
material will be stretched slightly so that their positive and negative
charges will separate. This added redistribution of charge contributes
to the net field within this material. This will result in a redefined
effective charge. By Gauss’s law the effective charge at a radius away
from a test charge inside a medium will be less than the test charge
itself due to the opposite charges attracted to the test charge. So the
effective charge will be g.¢s = guest/€. In effect as one penetrates
closer to the inner charge the effective charge will increase.

Now the appearance of a test charge in the medium creates a ”dis-
ruption” in the medium. In other words there must be a bubble
in the medium around the charge. Deposited on the outer walls of
the bubble, inside the medium, there will be a net distribution of



228 Classical and Quantum Electrodynamics and the B(®) Field

charge that equals the test charge within. This net charge will be
maximally separated from each other as they exert an opposing force
against one another. The result is that this electrostatic repulsion
will tend to make the bubble expand. However, the net force of at-
traction between the molecules in the medium will prevent this and
the bubble will assume a radius that is in energetic equilibrium with
the medium.

We now treat this model as the being an electron in the vacuum.
The bubble represents an energetic cut off in the physics, illustrated
in figure 6.37. Just as we cut off the integral in the nonrelativistic
computation of the energy shift due to the B(®) field, the energy in-
volved with maintaining the ”tension” on this bubble is precisely this
cut off. The cut off in virtual frequencies due to the size of the bub-
ble describe electron positron pairs coupled to virtual photons below
a frequency cut off given by the scale of the bubble. Now consider
the passage of a wave function for another electron interacting with
this systemn. We treat this wave function as a distribution of charge
in space that interacts with the bubble. As this charge distrubution
will be repelled by the charge distrubution on the skin of the bubble,
and will also repel the charges on the bubble. This process will lead
to the overall constriction in the size of the bubble while the wave
function passes through it. The shorter the wavelength of the inci-
dent electron and the denser is the repulsive charge density and the
further the bubble will contract in size. Similarly, we shall see that
the occurence of a photon will contribute to the total energy of this
bubble and change the energy at which it reaches equilibrium. We
have that the electric displacement everywhere equals the electric
field inside the bubble

Din = Do = Ein = (69124)

g
R’
and the electric field outside the bubble is

4
Eou = 5 9.1
b= (6.9.125)
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where R is the radius of the bubble. The electric polarization is
defined by the change in the energy due to the medium K as the
gradient P = (1/4m)(D — E) = VK. This gives us the energy
of the medium as

K = %e2(% - 1)%‘ (6.9.126)

Similarly, the bubble has an energy term that is given by the volume
of the bubble and its surface, a term analogous to surface tension in
a fluid,

B = (4—3’fa33 + 47bR?)O(Rpmar — R), (6.9.127)

where a and b are constants. The total energy of the bubble is then
E = K + B which diverges as R — 0 and exhibits a cut off
as R — R,.... This introduction of a cut off indicates that the
coupling between photons due to the interaction with the bubble
medium is limited by the fact that the fine structure constant is
much less than unity. By find the derivative of E with respect to
R < Ri.qz the minimum in the energy and the radius that minimum
occurs can be found

2

By = %(47#,)1/4 (;—6)3/4. (6.9.128)
Now consider the appearance of a photon. We then add the energy
density (1/2) D+ E of the photon by the total energy. The energy of
the photon in the bubble is determined by an index of refraction that
is different than outside. The energy difference is then compensated
for by a change in the energy of the bubble. This leads to the new
energy of the medium

- 121 _ 1 _ 2
B = E + e (e 1)R + (e — &) EP?  (6.9.129)

The occurrence of a photon then changes the over all energy of equi-
librium of the bubble.

The addition of the photon energy and the renormalization of the
bubble energy might not appear to be an argument for nonlinear
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electrodynamics, but we can consider the situation where vacuum
modes enter the this region with the bubble (figure 6.38). We then
look at the bubble with a cut off in energy is perturbed by energies,
real or virtual, exceeding this cutoff. We treat the vacuum as a set
of modes that are randomly distributed in their phase

A(r,t) = A/dakwke:z:p(ik-r — dwit + 6(k)). (6.9.130)

If we have vacuum modes that enter the region near the charge
that are not accounted for, due to the cut off in the scale of
the hole and thus in the polarization of the vacuum, then we are
forced to add in the additional term to the vacuum energy. Now
if there is the creation of virtual electrons by these stochastic fields
2mc® = (1/2)(E? + B?) then the electric field associated with
this pair will be zero so that D = 0 on the boundary. This is
analogous to superconductors that can repel magnetic fields. Now
an interacting electromagnetic wave will polarized these charges and
change the energy within the bubble. If we assume that this bubble
is elastic and responds to this energy change, then we change the
radius of the bubble as the surface tension of the boundary responds
to this change. Similarly, the dielectric is renormalized as well as the
bubble energy, since the change in the volume or surface shape of
the bubble will change the relative distances between the molecules
near the surface. This means that the dielectric constant in a region
just outside the bubble may then be changed. We think of this as
being similar to a wave on the surface of a fluid. In effect the elec-
tron is being modeled as a membrane between two vacua. Without
going deeply into the theory of fluid waves, it is commonly known
that such waves are nonlinear. The interaction of this wave with the
bubble then adjusts the energy of this bubble by inducing nonlinear
oscillations. We then can model this shift by considering a dielectric
of the form ¢ = ¢€(|A|%?) to model the upward shift in the total
energy. So we have the electric displacement vector defined as

D = ¢(|AP)E = (1 + 4mx|A]))E. (6.9.131)

To account for this change we write x = xo + /|A|?. This means
that a photon that interacts with the bubble will obey a soliton wave
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equation such as the cubic Schrédinger equation. The existence of
scale lengths that one can cut off electrodynamics will itself lead to
nonlinear field effects.

Based on this heuristic argument it would appear that electrody-
namics allows for the existence of nonabelian fields. This argument
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is similar to arguments for QCD confinement[21]. The one big dif-
ference is that the confinement exists only for virtual fields within
the bubble. The electric field of the inner bare charge is longitudinal
and escapes the bubble, unlike the situation in QCD where the color
fields of the quarks are also confined by the bag. Further, it is rea-
sonable to assume that for a large bubble, or equivalently a cut off in
lower energies, that these nonlinear effects are comparatively small.
For a small bubble, we then would likely see these nonlinear effects
in the vacuum become more pronounced. For small scales the dielec-
tric constant of the vacuum changes over even smaller scales near
the bare charge of the electron. This informal argument tends to
imply that this rapid change in the dielectric constant, with respect
to a vanishing radius inward towards the bare charge, will result in
nonlinear quantum effects with photons with sufficiently small wave
length.

These effects should become apparent at fairly high order in the
radiative corrections in QED. The nonrelativistic correction to the
Lamb shift occurs at fifth order in the fine structure constant
a =~ 1/137. This result is likely to suffer from departures due to
relativistic effects as the fluctuations in the momentum ép = h/éz
becomes sufficiently large. Relativistic corrections will undoubtedly
change the situation.
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CHAPTER 7
QUANTUM CHAOS, TOPOLOGICAL INDICES,
AND GAUGE THEORIES

7.1 INTRODUCTION

The numerical studies of B®) with a Fermion indicated that there
was chaotic behavior. The interaction of the system according tc
the B®) Hamiltonian for larger photon occupation numbers appears
to have induced highly random quantum oscillations. Here is a pre-
liminary examination of topological index numbers and its possible
application to the quantization of chaos within the Bohm's view ol
quantum mechanics, or the particle view of quantum mechanics, with
a comparison with the Bohr interpretation of quantum mechanics.
This view of quantum mechanics is used here in the context of quan-
tum chaos, since classical chaos theories are formulated according to
the separation of particles with nearby initial conditions. The Bohr
and Bohm views of quantum theory are essentially dual pictures,
and in this case the Bohm theory appears to be more applicable.
These analyses are done without any specific reference to the B()
field until the end. Rather, this is done with consideration of con-
jugate variables and then later this is discussed in the light that

p—p+ A

Let us write the Schrodinger equation as

Lda
Jo— =

— = Hy, (7.1.1)

where H is the Hamiltonian. Then the differential of the wave func-
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tion is
df = —iHqdt. (7.1.2)

Now the wave function lives in a Hilbert space, #, and the projective
Hilbert space is PH. The elements in the projective Hilbert space
are related to those in the Hilbert space by

P o= eV, (7.1.3)
then the above differential becomes
eV(dy) + idyeVp = —iHeVapdt. (7.1.4)
Now multiply through by i+ and we are left with
Yrdy = idy — (" Hy)dt. (7.1.5)

The first term on the right had side gives the geometric phase of M.
Berry and the second is the dynamical phase [1]. Once integrated
over a closed path the integral [, dy, gives the first Chern class of
the manifold of dynamics [2, 3]

7.2 TOPOLOGICAL NUMBERS AND QUANTUM
VORTICES

If one wants to look for topological numbers associated with the
quantum force or the amplitude, the best approach to the problem
is to use differential forms. This means that one should write for a
wave function written as ¢ = pl/%e*¥ that,

j[¢*d¢- = j{.lp*(%p-ldp + 1dS), (7.2.6)
C C

where C is a closed loop the system traverses. Now Stokes’ law gives
the result

j{zp*dw = /¢*(—;—p_1dp - idS)/\(%p'ldp + idS)yp, (7.2.7)
C A
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where C is a closed curve and A is any area bounded by this curve.
The two-form may be expanded, and since p = p(z,t), the two-form
dpAdp is a product of gradients multiplied by the two-form dz? Adz*.
The total time derivative of the action is:

ds 9§ dr? dp*

_—= = —0; i S. 2.8
dt o @ S+dt8PS (728)
The Hamilton-Jacobi equation %}”; = —H may be used to write the
differential of the action as
t ~
ds = —/ dt'dHy, (7.2.9)
0

and an expansion of the differential of the Hamiltonian in the basis
of forms dz* A dp?. Our loop integral is then

/1/;*111,& = (1/8)/ p~2[0;p, Dip)dz? A dx
(o] A

t
+ 4 / P* / dt'{H, p}FPdz? A dp*y (7.2.10)
A 0

t t
+ (1/2)/A¢*/0 dt’/o dt"{H(t'), H(t")}EPdz? A dp*y.

The second equation contains the commutator between the density
and the classical Hamiltonian. The other two terms are the real
valued portions, while the second is the imaginary portion. This
equation is a differential-commutator equivalent forms of the usual
decomposition of the Schrédinger equation. The expectation of this
loop integral [, d°r [ %*dy is the Berry phase.

To those familiar with the particle view of quantum mechanics the
real part to the Schrédinger equation is a modified Hamilton Jacobi
equation and the imaginary part is a continuity equation for the
flow of a ”"quantum hydrodynamic fluid,” often refered to as the
pilot wave. Physically this means that if [0,p, J;p] is nonvanishing,
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then the density has a rotational component to it. The quantum
hydrodynamic fluid, or pilot wave, has a vortex. The value of this
integral is a measure of the singularity or pole at the center of the
whirlpool.

This is similar to Feynman's vortex theory of super fluids, Helium
IT [4]. This is a reasonable observation. The Feynman rotons are
in effect quantum wave functions on a large scale. Another way of
looking at this is according to interference experiments. Say we have
a two slit experiment. Now the sum over experiments gets its statis-
tics from the superposition of the two paths ¢; and c; that connect
the source and a detected spot on the photoplate through the two
slits. We can equally view this as a loop that 1 = p2ets B = 1,
sends a particle through. Now what does all of this mean? Let's go
back to the Schrédinger equation

dip

i = Hiyp, (7.2.11)
and then look at di)

dy = —idtHqy, (7.2.12)

which tells us the change in 1 due to an increment in time. What
our expression is telling us is that if we think of the particle as having
traversed the loop between the source gun to the screen and back
to the source gun that there is an increment in time, or dt between
the two halves of the loop, weighted by the eigenspectrum. Another
view is that this loop integral measures the interval of time as a path
length for the parallel translate of p~'/2dp 4 idS around the loop.
If the interval of time for ¢, = ¢ then the entire ét for traversal
is zero and the value of our integral is zero, and this is destructive
interference. Otherwise, where the integral is nonzero there is a
nonzero measure for the 6t associated with the particle traveling
around the loop. This is a beginning to understand superposition
according to the particle view of QM. The superposition principle
can be looked at as a Gauss-Bonnet theorem for the J¢ a particle
takes to traverse a loop.
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Now back to the idea of superfluidity. This will be a heuristic intro-
duction to what is to follow. Let the differential operator be

d - d + 1A (7.2.13)
Then our commutator of the density goes as
[ij, Z)zp] — [ij, (')ip] + Oin — 0iA; + [A]', Ai], (7.2.14)

where the additional part are the field components of a Yang-Mills
gauge theory. If we are in a U(1) domain then the last commutator
vanishes and we have the magnetic field that satisfy Maxwell's equa-
tions. This is completely equivalent to a Berry phase that is induced
by an electromagnetic field. The commutator describes the vortex
motion of the quantum hydrodynamic fluid, or pilot wave, for the
system. It has strong analogs to Feynman’s rotons in liquid helium

11 [5].

7.3 DENSITY OPERATOR METHODS

Let 5 = |1)(1}| be the density operator that transforms according to
the unitary group

pt) = e B/h5(0)eir /R (7.3.15)
The evolution equation for the density operator is then

dp i, do
— = —=[p(t), —|. 3.

The time derivative of the generator of the unitary transform is

do o dzt
-2 T (7.3.17)

where for 0 = Hyt + £(z(t)) with Hy = 3EV? 4+ V(z) gives

2m

ii% - %[ﬁ(t), Hol + %[ﬁ(t)a %&fl (7:3.18)
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This may be expressed as the loop integration

. LT
j[dp* = %/0 dt[p(t). Ho] + j[C:aA[p: de]. (7.3.19)

By Stokes theorem the second loop integral is

j{,:a P de] = /A [dp, nde], (7.3.20)

and under the above transformation and a component by component
breakdown of the commutator is

f (p. dE] = /ﬁdg/\dg + dE AdEp. (7.3.21)
C=08A A

Now let the time dependent generator of the time development op-
erator according to a time dependent Hamiltonian term

r T
£ = —/ dtH,, (7.3.22)
h Jo
so that
1 /7 t ~ B
dENdE = ?/ dt/ dt'dH, A dHy. (7.3.23)
0 0
Now use the parameterization of this time dependent Hamiltonian
according to the position and momentum 2z = 2(t), z = {z, p},
dH, = 0;Hdz. (7.3.24)

Then this two-form can be written according to the Poisson bracket

1 (T t L _ ,
dENdE = ?/ dt/ dt'{Hy, Hy} Pdz nd?. (7.3.25)
0 0
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Now the differential of the density matrix evaluated on a closed loop

is

. T
j[ dp = % / dt[p(t), Hy) + (7.3.26)

/ / dt/ dt'{Hy, Hp)FPdz* Ad2?)
1 ~ . . .
+ /(—2/ dt/ dt'{Hy, By} Pdz* Ad2?)p.
A R Jo 0

The intended us of this is to consider Hamiltonians of the form

= Y Hieths — i) (7.3.27)

where w; are the angular frequencies. Then an examination of a
punctured KAM surface and Cantori should give information of the
extent to which the quantum hydrodynamic fluid diverges by the
ensuing chaos or turbulence. As such the above time loops become
unpredictable for the particle as it wildly dances in the Cantor dust
of the shattered KAM surface.

At this point we must return to some analysis. Since the time de-
pendent Hamiltonians evolve according to above unitary operator,
H, = e M Hpe”® and so the differential two-form is,

dH, AdH, = dH, e ") dHetr®)

= e—ia(t,)dgt_tl A dﬁoeia(tl). (7328)

Now evaluate this two form under a trace, or sum over states

T t T t
r / dt / dt'dH,NdHy = tr / dt / dt'dH,_y NdHy. (7.3.29)
0 0 0 0
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Now set ¢ — t' = 7 and this integral becomes

T t . . T . R
T / dt / dt'dHy NdHy = tr / dt't'dH, NdH,.  (7.3.30)
0 0

To conclude, this part our loop integral over the density matrix is
now

. T
tr}{ dp = ltr/ dt[p(t), Ho] + (7.3.31)
c o

T
r / hiz(p / dt't'dH, ANdHy + dH. A dHyp).
A 0

Since we are working with Hamiltonian systems the space phase vol-
ume of the system is conserved. The surface of this volume in phase
space is determined by the conservation of energy, and defines the
energy surface of the system,

Q= /d"z(—)(H — E(2)), (7.3.32)

where O is the Heavyside function. The energy defines the boundary
of this volume in phase space,

e(z) = V,Q = /d"zd(H — E(2)). (7.3.33)

The trace over any operator O is defined on the energy surface where
expectation values exist,

tr (pO) = e(z)"lfd"z()d(H — E(2)). (7.3.34)
Now for O = dH, A dH, we have

tr (pO + Op) = ﬁ(z)—l/dznz{dfff, AdHy ) ppd(H — E(2)).
(7.3.35)

—
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Now use the algebra of commutators to rewrite this as
{dH,, AdHy)ppd(H — E(z2)) = (7.3.36)

{dH,, AdHy6(H — E(2))}pp — {dH,, 6(H — E(2))}pp AdH,.

, (7.3.37)
The first commutator is a surface term and thus vanishes. The second
commutator is by the chain rule

(A, 5(H — E(2))} ppAdHy = {dH., H}pBAdHoaﬁo(H E(2)).

(7.3.38)
Now the Poisson bracket here defines the time evolution of the Hamil-
tonian dH,. Further, the derivative of the delta function when eval-
uated on a function just returns the derivative of that function at
the stationary point. This then leads to for O

T T .
/dt' t'tr (pO + Op) = / dt' t' V, (dHy A dHp). (7.3.39)
0 0

This is a fundamental equation, but some simplifications are re-
quired, since the appearance of t' is troubling. To eliminate this
problem let us introduce the limit function lim, _, ge~* into the
integral. For ¢ — 0 it is a simple matter to show that

/m dt t L2 df() —/mdtf(t), (7.3.40)
0 0

and so our above result can be expressed in the more aesthetic form

T T
/ at' t' tr (0O + Op) = e(2)7* /dznz/ dt V,(dH; A dHy).
0 0
(7.3.41)
Now if this is evaluated along the loop integration we have

// dt' t' tr (pO + Op) / /dz" / dt V,(dH,AdHy).

(7.3.42)
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7.4 HAMILTONIAN CHAOTIC SYSTEMS

Now let us consider chaotic systems. Let the time dependent Hamil-
tonian have the Fourier expansion

H, = > Hpem 0, (7.4.43)

where we will work within the action angle variables J, 6 so that

dH, = Y (dH, — inH,do)e™). (7.4.44)

n

Now set 6(t) = 6y + w(I)t, with df/dt = V ;Hy. Then we have
the two-form

dH, NdHy = i) ((n-Vy)Ho)Hae ™*0do AdJ.  (7.4.45)

The gradient along the action variables of this equation is then

VydH, NdHy = i) ((n- V) Ho)V s Hae ™ 0dg AdJ. (7.4.46)

Now we have V;H, = J,, and so this reduces to

VydENdHy = 0 (n-J)Jne™ M dgNdT = i (Ja-J)e 0 dond,

(7.4.47)
where the last equality absorbs n into J,. The term J,, - J is now
a product between two different action variables. We could just as

well write this as o

where g;; is a metric for the energy surface.

T . .
[ pandg + agnagp = iez) / [z [ @S g e Odonas,
A A 0 ~

(7.4.49)
is a curvature two-form evaluated on an enclosed area of the energy
surface. Further, the curvature is proportional to the metric. This
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means that the space is an Einstein space, with symplectic coordi-
nates.

Here is where chaos enters the picture. A dynamical system is chaotic
it any two initial points arbitrarily close become widely separated
within a finite period of time. Let the distance between any two
points on the energy surface be given by a line element,

ds?* = g;;dz*dx?. (7.4.50)
Then the separation of any two points is given by

Ar = \/gi]-dx"da:f = \/g,‘]"l)i'l)jdt, (7451)

and the Liapunov exponent for a dynamical system is defined as

. _

ot
lim  lim llan—_-_—-
t—00 Az(te)—0 t fOD Vgijvtvldt

For a chaotic system this distance will separate at an exponential rate
and the Liapunov exponent is nonzero. The tori of regular dynamics
have elliptical curvatures, which means that any two intersecting
geodesics are guaranteed to recross at some other point on the space.
A manifold with a hyperbolic curvature will have divergent geodesics
that will exponentially separate with time. The Gaussian curvature
of a hyperbolic manifold is negative, and is a reasonable geometry to
use for the study of chaotic systems. The break down of torii leads
to regions of stochastic behavior. The positive Gaussian curvature
of the torus is being made negative in regions of overlap across KAM
surfaces of separation.

(7.4.52)

An easy example to demonstrate is with geodesics on the Poincare
half plane. This two-dimensional space has the line element

1 1
ds? = y—2dm2 + y—zdyz. (7.4.53)
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The connection coeflicients are,
Ip! = I';y' = Ty? = T® = —1/y. (7.4.54)

The geodesic equations are

2 1
Tee — ;xtyt =0, yu + 5(:1:,,2 + yi?). (7.4.55)
The solutions to this equations are z = o + [Stanh(t) and
x = fsech(t). The distance between two points y; and y, diverges
as Y2 Y2 dy T
/ — / = = l'n,(yz/yl) = a/ dt. (7.4.56)
Y1 n Y 0

These diverge as y; — 0and yo — o0, or equivalently as T — oc.
Further, the Gaussian curvature is,

K - _L(QM ﬁag_%/@) = _1. (7457

N AN TR

This space is a reasonable toy that captures the hyperbolic structure
of the geometry that occurs with the breakdown of a KAM surface.

7.5 QUANTUM GEOMETRY AND BOHM’S THEORY

Now let us examine this within the context of Bohm’s particle plus
pilot wave model of quantum mechanics. When the wave function is
written in a polar form ¢ = exp(f/h), # = R + 45 the Schrédinger
equation splits into a real and imaginary parts[6],

oS 1
22 = _—{(VS)? — (VR)? — nV?R V.,
o 5 (VS) (VR) b+
and oR 1 h
—— = =VR- - V25, 5.
ot m VS 2m ' (7.5.58)

which are the quantum corrected Hamilton-Jacobi equation and
continuity equation respectively. Now the particle’s momentum is
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p = VS, which defines the Lagrangian manifold of constant action
in phase space. Now let the momentum operator p = %V act on
the wave function ¢ = p!/2e*® = R+ 15,

pp = (VS — iVR), (7.5.59)

The expectation value of the momentum operator is
- 3, %0 30l :
B = [ dry —7,—V1//' = [ &zy*(VS — (VR)y. (7.5.60)
Since VS = p this is written in the more compact form
(p) = p — «(VR). (7.5.61)

This must mean that i(VR) = 0for (p) = p. Nowput 1 = trp
in the first term on right hand side of equation (7.6.61)

(p) = (trpp)

- / Plultp) = (). (7.5.62)

We now demand that (p) = p, so if one just peals one level of ()

off we are left with
p = (p) — iVR. (7.5.63)

The particle’s momentum is the expected value plus a quantum cor-
rection to this momentum,

. ) h V )
dp = im = ZX _ _iVR (7.5.64)
2 p
The particle’s momentum is then the expectation p = (p) plus the
fluctuation,
P = (p) + Ip. (7.5.65)

It is easily see that (6p) = 0. Now define 8% = V(R £ iS). Now
the two equations become

a8

1 : : ko .
_ + o+ 3=t . _Z(H5prt = - —
9" - 4"71 (/Ht /[), + /[j’t /[), 2(0 /[jz + al[j‘l )) + V Hs
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and
OR _ L(ﬁv‘ﬁ“ ~B7AT = (OB — 0°67)) = —H,. (7.5.66)
ot dm v ¢ * t "
Bohm's quantum potential is then equal to the square of the quantum
fluctuations plus a modified quantum potential Q' = %VZR
Q = (op)* + Q. (7.5.67)

The equations of motion are found by taking the gradient of the
modified Hamilton-Jacobi equation:

05 _0pi _ 1 b avi pepami P piat g _
0,5 =5 = %(ﬁj apt + ;o —50,(0 B+ 0°67)) -0V
(7.5.68)
Now use the fact that
pIro.pF = prro,pE + prropE — 0;67F), (7.5.69)

to find that the equation of motion is,

Ipi L atnigt 93 g + (5. 4+ +
yrle %(/31 FBT + BB+ FT(OLT - 0;67) +

BB — 067) + gai(afﬁ; + &B7)) + &V, (1.5.70)

Similarly the gradient on the continuity equation gives the fluctua-
tion in the force as,
(971’1' i

L= (B8 - 08T + BB - 07 -

R

IO~ 0f7) + FOOF - OBD)). (18T
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Now suppose that % depends upon some internal set of coordinates
that transform according to a Lie group G, = = fe®. Then the
generalized velocities A become

A7 = 0;6% = (0ifa)e” + ghTA%we". (7.5.72)

where A%; is a component of a gauge connection and g is a coupling
constant for a Yang-Mills gauge field. It is then straight forward to
calculate the action of commuting differential operators on B,

((9,'0]' - Oiaj)ﬁ* = g[)’a((')iAabj — c’)]-A“bi + g[Aacj. Acb,‘])eb = gF,']'.

(7.5.73)
These gauge field equations may be substituted into the equations
of motion:

Op;
Ot

1 . o ‘ -
= 5 (BTO8F + 57087 — B Fy + HTFY) +

Ao . . .
SOOB] + IB)) + g(@F, + OFL) + oV, (1574)

and

071’1' i ; —_ g o—
= (B8t - BB + (7.5.75)

. . ) . o : _
9Bt Fy = FTFY) + S8 - 9B5) + 90 Fy — aJF)].))).
We may make these equations of motion more symmetrical by finding
O(p; £ 1im)/dt. Further, the internal symmetries are allowed to
have time dependencies. Then we are left with the coupled set of
differential equations,

0BT 0A;
S S = (7.6.76)
1 3t o7 gt I~ F, P 0,0’ st D F,; oV
S(Hesr — e Ry + 008 + 0'Ry) + 0,
op- oAl
_ k2 —_ _t = 577
o~ h (+-577)

1/ iy + h - -
— (87087 — 9B Fy + OB + gFFL)) + oV,
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Physically the gauge field terms have several meanings. The terms
(7% F,; are Lorentz forces. The field strength terms F;; are the mag-
netic field components of the gauge theory e,;jkB"" = F;; and
the force is in a direction orthogonal to the generalized velocity
w; 4+ dv; = f;/m. The second term O7F,; are the currents,
which are zero in a source free region. The terms 0A;/0t are the
electric field components.

At this point it should be pointed out that the gauge theory is seen
to emerge from the quantum potential

i h i
Q = —mm — 5-Vir', (7.5.78)
when #* = R % iS is dependent on internal degrees of freedom

governed by a Lie algebra. The electric field components of the gauge
theory are found in the potential in the Hamilton-Jacobi equation,
V = V + ¢, and E; = 0;¢. For the case where the gauge
theory is the U(1) electromagnetic field the abelian group structure
is reflected in the vanishing of the commutator between the gauge
connection.

Before we examine the geometry of a quantum system let us touch
base with some basic notions of quantum mechanics. We have from
the Bohm approach to quantum theory that the momentum of a par-
ticle is given by a classical part plus a fluctuation. By construction
we have that (6z) = 0 and

[0z, op] = ih. (7.5.79)

The Heisenberg equations of motion assume the form

(@) + 6 = —((p) + o)

(0 + op = ~VV({z) + o). (7.5.80
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The potential may be expanded in terms of (dz}), and then the fluc-
tuations obey the equations of motion

. 1.
or = —op
m
op = =V ((x))or — %V3V((5:cz — (2®) + .... (7.5.81)

The Lyapunov exponent used to measure the sensitivity on initial
conditions of a dynamical system. The exponential deviation be-
tween the positions of two particles in phase space generate this
quantity,

L= limt_,oo%ln\/ (ji((:)))y + (%%)2. (7.5.82)

A nonzero value for A indicates that the trajectories for two different
particles whose initial positions in phase space differ by a fluctuation
(62(0), 8p(0)). Then if the fluctuation is propagated exponentially
with time, then the system is chaotic. For classical systems this
fluctuation represents a small deviation in the trajectories between
two particles, or an uncertainty in the position of a single particle.
This uncertainty exponentially propagates for a chaotic system. For
a quantum particle this uncertainty is due to the stochastic fluctua-
tions due to the quantum force on the particle.

The fAuctuations are found from the equations of motion

dxr(t) = —;%/[;tdt'w(t') (7.5.83)

() = ~itle) = — [ATV(@) + o) + IV((=)

= L [asrosr - p7087 + ot Fy — BFG) +

a
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A ) o - :
FOPBF — 0B]) + 9(0'F, - OFL))) + AV

The potential may be expanded in a Taylor series around (z) in
powers of the fluctuation éz. Yet for a chaotic system the fluctuations
grow exponentially and the Taylor series can not be satisfactorily
truncated. As a result the second expression may be more useful,
but difficult to apply.

Now let us examine the loop integral f P for i = €/,

1
= — | W*dp* Gaf. 5.
C:,AqL 1 hA/ 5% A dfy (7.5.84)

The differential of the exponentiated term in the wave function may
be written as

t
ag(t) = —/ dt'(dHr(t') + idH,(t')). (7.5.85)

0
With some analysis and the definition H' * = H, + iH, the compo-

nents of the two-form that projects through the area of integration
is a Poisson bracket

t t
dB* A df = / dt’ / dt"{H*(t'). H™ (")} Pdz* A dp’. (7.5.86)
0 0

The Poisson bracket is evaluated with the Hamilton’s equation for
the position and momentum and their fluctuations,

oH* . *
_i[)’ii‘ O_H_L_

_ _ L4
— = tpx (7.5.87)

m

Use of these Hamilton’s equations and the dynamical equations of
motion lead to the two-form,

. t t’l
- + ¢ i j
(7.5.88)
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where
Ay = B ()BT (")

By = gf; ()BF(") Fis(t”)
Cij = —%ﬁ;*(t")(c’)kc’)iﬁ“(t’) + gO*Fi(t')). (7.5.89)

The two-form d8~ A dfT is evaluated on a parallelogram on the
energy surface of the system. This energy surface is the same as
computed according to the Bohr interpretation, but where the ” fuzzi-
ness” of quantum fluctuations m A and 7 Ap are explicitly included.
The energy surface does not have the same sharpness given by a
Heavyside function. The computation on the energy surface accord-
ing to the Bohr approach is an expectation of the energy surface
just computed according to the Bohm method. As such, the largest
expected energy surface, or the energy surface of classical dynamics
is one where (1) = 0 has been taken. The quantum input from
the expectation over the Bohm energy surface is due to terms of the
form (m;m) # 0 that emerge from the quantum potential.

The same analysis on the time integration of the Poisson bracket
{H*(t'), H~(t")} may be performed. Without need of weighty anal-
ysis the result shall just be stated:

T
dg* Adp = — / dt V,(dHt(t) AdH™(0)). (7.5.90)
0

If we write these generalized Hamiltonians as H =3 HEeFo(t)
we arrive at a result that has the form

V;dHT(t)AdH™(0) = iZ(n-J—)Jje-i""(”de/\ dJ, (7.5.91)

where J- = VH~(0) and JI = VH]. These action variables by
construction contain quantum fluctuations, JE = J + i6J. With
this the two form is

A AdB = i Y (T Tn +i(J-00n = 0T Jn) + 6J -6 T,V doNdT,
i (7.5.92)
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where the terms linear in the fluctuations will have expectations that
vanish.

For a chaotic system the Lyapunov function will involve the fluctu-
ations. The fluctuation in the action variables will have their own
contribution to the Liapunov exponent,

, 0J 57
lin f? Ln T (7.5.93)
t V2R 00,

which is nonzero for a chaotic system. In the chaotic case the influ-
ence of a fluctuation will proceed to grow with time. This is contrary
to the usual notion of quantum fluctuations that are Markovian.
Markovian fluctuations are such that the fluctuations in a system at
one time are independent of the system configuration at any other
time. Any transition between states, |[{) — |j) through a fluctu-
ation, such as tunneling, at a time ¥’ occur through an interaction
that is of the form (i|V|j) =~ w;;d(t — t'). For a regular dy-
namical system the geometry of the energy surface is elliptic, and
so any fluctuation the results in a deviation of the system will in a
finite period of time intersect a path that would have resulted from
another fluctuation. If the energy surface is hyperbolic then the ef-
fect of a fluctuation will be amplified according to exp(L(t)). This
means that the dynamics of the particle, according to Bohm, will be
highly dependent upon the initial configuration of the amplitude, or
equivalently on the value of the quantum potential.

L = limf,_,mlimgtﬂ_,g

Since the quantum force can be written as
VQ = VV({z) + dz) — VV((z)), (7.5.94)

and that the wave packet oscillations are due to the behavior of the
quantum potential we can write the wave function as

Y(z) = F(S(z), 1), (7.5.95)
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where F is a periodic function in time. Then given any observable
O its expectation is

() = WOW) = SFO(. 595 — ihzo)IF) + OUF)

7
= Z/d%()(m, FVS)|Fl? - (7.5.96)
7
90 5 1000
. 3 . bl 3 v i s . 2
mzj:/d (@) 5o, 9SG + 55 g & SV + O,

This construction means that the Lagrangian manifold for the clas-
sical system is associated with a foliation of Lagrangian submanifold

Folp = U _{supFj, p = jVS} (7.5.97)

This foliation of the Lagrangian surface is seen in the fuzziness of the
energy surface due to the term (J-3J, — 6J- Jn) in the two form
(* A 3. For a chaotic system the value of these fluctuations grows
exponentially. The observable role of this growth is unmeasurable as
(3p), but is so as ((6p)?).

7.6 DISCUSSION AND PROBLEMS

What we have is a demonstration of how fluctuations derived from
Bohm's approach to quantum mechanics can be associated with a
Lyapunov exponent for a Hamiltonian chaotic system. This fluctua-
tion can involve both the momentum fluctuation of the particle and
the associated gauge fields derived when the amplitude has a set of
internal degrees of freedom. This promotion of a fluctuation in a
quantum system goes against the often stated notion that quantum
fluctuations are delta function correlated so that fluctuations at one
time are independent of events at any other time. This approach to
an understanding of quantum chaos advances the concept that such
systems are nonMarkovian.
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The gauge fields derived from the methods just presented are purely
magnetic in nature. They could easily be magnetic fields, the mag-
netic analog in QCD, or B®) = —ie/hA x A*. For most practical
issues this theory is designed for the electromagnetic interaction is
likely to be used. This development indicates that since fluctua-
tions may have their influence amplified with time that essentially
the time evolution can not be time reversed to reproduce the initial
conditions. In the numerical study of cavity QED with the B®) field
we see that this results in a quartic potential that erases the initial
conditions of the system. This nonMarkovian evolution of the effect
of a fluctuation has the effect of erasing quantum information.

The apparent breakdown of the staircase of frequencies, or its bi-
furcation into new frequency spikes, may well be explained by the
breakdown of a KAM surface. The method of Greene illustrates a
continued fraction approach to the breakdown of KAM surfaces and
their break up into Cantor set by self similar puncturing [7]. The
above analysis indicates that there can be a form of quantum chaos
that results in wild quantum oscillations. However, the orbit of a
chaotic particle is still ultimately bounded, and if that particle evolu-
tion describes a path within a path integral, it is still correlated with
other paths; in spite of any Lyapunov exponential divergence. As a
result the quantum chaos will likely settle into some form of quan-
tum oscillations that have commensurate frequencies. This would
be established by constructive and destructive interferences between
paths in the Feynman path integral. In effect this would lead to a
sort of "order out of chaos,” that is not seen in classical chaos. It
appears that the numerical exercises illustrate quantum chaos as a
sort of initial analytic transient that settles into ordered quantum
oscillations.
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CHAPTER 8
FIELD THEORY OF O(3), QED AND UNIFICATION
WITH WEAK AND NUCLEAR INTERACTIONS

3.1 DISCUSSION

f electromagnetism is more fundamentally nonAbelian then this
neans that there must be changes in our fundamental views of quan-
qum field theory. As indicated in chapter 6 there are deviations from
Abelian quantum electrodynamics of optics and atomic interactions.
These deviations indicate that there will exist measurable deviations
f we admit that there are contributions to physics from (A - A*)
i nonvacuum states. Even if this term contributes only to vacuum
symmetries, it has been demonstrated that this provides a fundamen-
:al manner in which nonlinear effects in quantum optics are derived.
1 either case this has profound implications for our understanding
f field theory and ultimately how electromagnetism is unified with
‘he weak interactions and also at much higher energies into a Grand
Jnified Theory (GUT) with the nuclear interaction.

The first impact is with how we formulate relativistic QED. Feynman
rrovided a regularization method for computing finite amplitudes in
JED [1]. The method of renormalization allowed for the elimina-
ion of ultraviolet infinities. While some, notably Dyson, have been
ess than satisfied with this method [2], it stands as the acceptable
nethod for computing in QED. Further, this method has been ex-
iended to other field theories. This method is the most acceptable
or computing field theory at the rather modest energies we probe
vith when compared to the Planck energy of quantum gravity.
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In our discussion in chapter 6 the role of field fluctuations was dis-
cussed. Further work was done to illustrate the role of a quantum
fluctuation of the B(®) field. This is one major departure in the
theory. Even though the value of this fluctuation was quite modest.
compared, 1070, to the fluctuation of the standard magnetic field.
However, this will have subtle influences. As illustrated this results
in a correction of 5 x 10~ to the Lamb shift. This estimate is just
outside the estimate based upon fluctuation estimates, but in section
6.4 this discrepancy is demonstrated to be due to our naive appli-
cation and understanding of nonAbelian electrodynamics. Further,
the B®) field associated with the photon will interact with the mag-
netic fluctuations in the vacuum. This will have subtle effects and
contribute the propagator function of the photon. Further, these
influences will need to be considered in the renormalization of the
theory.

8.2 BASICS OF RELATIVISTIC 0(3),QED

Nonabelian electrodynamics has been presented in considerable de-
tail in a nonrelativistic setting. However, all gauge fields exist in
spacetime and thus exhibits Poincare transformation. In flat space-
time these transformations are global symmetries that act to trans-
form the electric and magnetic components of a gauge field into each
other. The same is the case for nonabelian electrodynamics. Further,
the electromagnetic vector potential is written according to absorp-
tion and emission operators that act on element of a Fock space of
states. It is then reasonable to require that the theory be treated in
a manifestly Lorentz covariant manner.

The theory is defined by the Lagrangian density
1 a apy
L = _ZF wF (8.2.1)

with the stress-energy tensor components defined according to the

LA TR R e S
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gauge covariant derivative

F°,, = 0,A% — 0,A% + ige™[A%,, A%,), (8.2.2)
where the spacial components of the four-vector potential are Her-
mition A*T;, = A%, ¢ € {1,2,3}, and the temporal parts are
anti-Hermitian A%ty = —A%. Here g is the coupling constant for

the gauge theory. The upper latin index refers to the internal degrees
associated with the gauge theory. The variational calculus with this
Lagrangian density leads to the field equation

0 FH +ige®™ A FH = 0. (8.2.3)

From the field stress tensor components we may write the electric
and magnetic field components as

E% = F%, = —A? — V;A% + ige®®AbA°; (8.2.4a)

£ B = VA% — VA% + ige*Ab A (8.2.4b)
The components of the vector potential are then expanded in a
Fourier series of modes with creation and annihilation operators that
act on the Fock space of states. If this is done according to a box
normalization, in a volume V', with periodic boundary conditions we
have,

A ak)etk T 4 e,va‘”(k)e_"'k'r). (8.2.5)

1
*(r,t) = —(ea
(rt) = 3 e

Here we are only considering the transverse components of the vector
potential. With these vector potential components written accord-
ing to these operators the electric and magnetic fields within O(3)s
electrodynamics are then,

L kr K] k) ik
E® = ; (?-e.ia“(k)e’ + —é—e.,'a““ )tk T)

V2wV
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. 1 ik —ik.
B = z (k[jez]a“(k)e‘k L k[jei]eiaaf(k)e k "+

(8.2.6)

igeabc Ee[jei](ab(k)eik'r + abt(k)e—ik-r) (aC(kr)eik’-r + ac’f(k)re—ik’.r)

kR
It is then apparent that the Hamiltonian for this nonAbelian field
theory is going to contain quartic terms in addition to the quadratic
terms seen in abelian field theory, such as U(1) electromagnetism.

If we consider nonAbelian electromagnetism we have a situa-
tion where the vector potential component A3; vanish and where
A(l)i = A®*,  The annulment of the components A%; has been
studied in the context of the unification of nonAbelian electromag-
netism and weak interactions, where on the physical vacuum of the
broken symmetry SU(2) x SU(2) the vector boson corresponding to
A3, is very massive and vanishes on low energy scales. This means
that the 3-component of the magnetic field is then

B® = i%Al x A2, (8.2.7)

It is apparent that for A%; = 0 that the electric field component does
not contain a product of potential terms. In general the vanishing
of this term occurs if there are no longitudinal electric field compo-
nents. Within the framework of most quantum electrodynamic, or
quantum optical, calculations this is often the case. The B® field
then is a Fourier sum over modes with operators aty _ q%q- The B3
field is then directed orthogonal to the plane defined by A! and AZ2.
The four dimensional dual to this term is defined on a timelike sur-
face that has the interpretation, under dyad-vector duality in three
dimension as, as an electric field or E3. The vanishing of the E?
can then be seen by the nonexistence of the raising and lowering op-
erators a®, a3!, where the B? exists solely due to the occurrence of
raising and lowering operators that A! and A? are expanded accord-
ing to. This represents a breakdown of duality in four dimensions
and the requirement that B be a longitudinal field.

Pn

L
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This nonabelian gauge theory satisfies the usual transformation prop-
erties. If M is the base manifold in four dimensions then the gauge
theory is determined by an internal set of symmetries described by
a principal bundle. Let U,, where ¢ = 1,2,...,n, be an atlas of
charts on the M. The transitions from one chart to another is given
by gap: Uz — Us, where these determine the transition functions
between sections on the principal bundle. The transform between
one section to another is given by

Sa = gapsp = €XPsg. (8.2.8)

Figure 8.1

From this point we will suppress the chart indices to indicate sections
and use the notation s, s’ for the two charts with gs = s’. Now let
the differential operator d act on s
ds' = (gds + sdg). (8.2.9)
Now define.g~'dg as a connection coefficient A on the section s,
ds' = g(ds + ig~'dg)s. (8.2.10)

Now consider the action of g on (d + A)s which equals (d + A’)¢

(d + A')s = g(d + A)s
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= g(d + A)g'gs = (d + gAg™' + gdg7')s'. (8.2.11a)
This is a fundamental definition for how a gauge connection trans-

forms:
A" = gAg™! + gdg7l. (8.2.11b)

Now we consider the group element g to be defined by algebraic
generators so that ¢ = e*X. Further consider the transformation to
be sufficiently small so that e'X ~ 1 + X,

A's' = ((1 +iX)A(1 —iX) - idX)s' = (A + i[X, A] — idX)s'.

(8.2.12)
If we are working with local gauge transformations where A is flat
then we can work with the pure gauge term (dg)d~! = idX as the
gauge connection.

Now to get the fields from this definition we have that the fields are
defined to be under a gauge transformation

dA'" = d(gAg™' + (dg)g7}). (8.2.13)
From this we find that
dA' = g(dA + AAA)g~L (8.2.14)

which means that the fields transform homogenously under local
gauge transformations. Just as the chart indices have been sup-
pressed so have the indices for the internal symmetry space.

Now for nonAbelian electromagnetic field theory we have the 3-Lie
index component of the field, and for the magnetic field B®) it equals

BBl = {4 x A*, (8.2.15)
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where this is a component that emerges from the A A A term. We
are working here with A = ¢ = 1. Then under local gauge
transformations we will have that

B®) = ig(A x A%)g™!, (8.2.16)

where g is the group element for theO(3)stheory. Then one can go
on and write g ~ 1 + ¢X and find that

B® = j(14+iX)(AxA*)(1-iX) = iAxA” — [X,[A, A”]]+ O(X?).

(8.2.17)
This can be written according to Lie derivative, and if X is a gener-
ator for a global gauge transformation then this double commutator
vanishes. We are then left with

B®" = B® _ iLxB®), (8.2.18)

where the last term is the Lie derivative of B3 with respect to the
variable X, here parameterized along a path.

In the case of quantum field theory the section determines the Hilbert
space of states under a certain gauge. This choice of gauge then
determines the unitary representation of the Hilbert space. We may
then replace the section with the fermion field ¢, that acts on the
Fock space of states. It is then apparent that a gauge transformation
A%, = A%+ dA%, is associated with a unitary transform of the
fermion field ¥» — ¢ + d%. The unitary transformation of the
fermion may be written according to ¢’ = Ut where the unitary
matrix is represented as the line integral along a path

_pr u
U = Teof Awda® (8.2.19)

where 7 is the time ordering operator that arranges fields in a prod-
uct in a time ordered sequence. The application of the differential
operator d on the unitary matrix gives,

dU = —ig(A, — A',)dz*U, 8.2.20
! !



268 Classical and Quantum Electrodynamics and the B(3) Field

which leads to the result

éUTdU — Ul(A4, - A',)dz*U = 0. (8.2.21)

This demonstrates the association between the unitary transforma-
tion of the Fermion field and the gauge theory.

More work is required to couple the gauge theory to the Fermion.
We have the gauge field determined by its Lagrangian density, and
the Fermion field determined by the Dirac Lagrangian density

Lp = —9Y(Y*d. + m)y. (8.2.22)

However, these two Lagrangian densities do not couple the two fields
together. This requires that free field equation for the gauge field
becomes,

F + ige AP FM = j”. (8.2.23)

Since this field equation is obtained by the Euler-Lagrange equation
the inhomogenous term is the result of

L _ 0L

7= 94, (8.2.24)
this implies the addition of an interaction Lagrangian density
L; = jYA,. The current term is then determined by the Dirac
field and is ¥ = v7”4. The subject of mass remormalization also
requires that an additional interaction term be included y*ém,
where ém is the difference between the physical mass and the bare
mass[3].

The total Lagrangian L = Lg + Lp + L, then involves the in-
teraction between Fermions and the gauge field. The Dirac field will
be generically considered to be the electron and the gauge theory
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will be considered to be the nonAbelian electromagnetic field. The
theory then describes the interaction between electrons and photons.
A gauge theory involves the conveyance of momentum form one par-
ticle (electron) to another by the virtual creation and destruction
of a vector boson (photon) that couples to the two electrons. The
process can be diagrammatically represented as

Elementary Scattering Process

R+k=5
B-k=§

Figure 8.2

The process ;1 + p2 — p3 + p4 then involves the conservation
of momentum, for there is no creation of any averaged momentum
from the virtual quantum fluctuation. This process can be examined
within the Coulomb gauge V- A = 0. The field equation is then

V.-E = =V?4 = iedy’y = ep, (8.2.25)
which has the solution

g = e [arLUt 8.2.26
Ap(r,?) _e/dr47r|r—r’|' (8.2.26)
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The amplitude for this simple scattering process consists of the elec-
tromagnetic Hamiltonian and the interaction process. These two
terms produce the amplitude

N2 9 N2 2
—i)%e . : —t)7e :
£T)-/cl4:17d4IL"”/'-];LA#JVI‘V = (—?-2)—6;/d4:1:d4:1:'j“G""(:1:—:1:')]',,,
(8.2.27)
where G*(z — ') is the propagator of the field that satisfies
—id(r — 7')
A;LAV MY (g ‘I — 7_____ 2.
T G"(z — ') yo P— (8.2.28)

For the purely transverse field the spacial components of the propa-
gator are

ii —1 d*k G kR '
GY _ Y = __7‘_ == (sv . tk(r — r') 2
(r — ") ol o ie( 2 )e , (8.2.29)
where k2 = k% — k2. This is seen to be the Fourier transform of
the propagator in momentum space. The temporal components are

then seen to be

1 fekr

The amplitudes for the process are then evaluated on the initial and
final states of the electrons. This then results in the matrix elements,

_ 2,2
: 22) - / d'zd's (paliulpr) G (x — «'Npaliilps)  (8:2.31)

for the amplitudes. The amplitudes (pz|j.|p1) and (p4|j.|ps) are
then represented as plane waves

(P2liulpr) = eilPr —PITX, (8.2.324)

(paljulps) = €ilpe —PITY, (8.2.32b)
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where X, and Y, are independent of the position co-
ordinates. By momentum conservation we demand that
ky, = Pip — P2u = Pau — P3u- The propagator acts on these
matrix elements to give the amplitude,

%?iz— /d":cd":c'—k_;X"Yy. (8.2.33)

Finally, this expression can be evaluated for many possible gauges
according to

(—i)%€” Y i ikor
where for § = 0 this is evaluated in the Feynman gauge, and for
f = -1 this is evaluated in the Landau gauge.

This example, within U(1) electrodynamics can then be seen in the
light of nonabelian electrodynamics. This may simply be seen by
the replacement A, — t®A®,, where t® is a structure constant that
obeys [t%,t%] = 2¢°*°t®. Then the time ordered product may be
written as

1 . rame by
T At A = 5T({t“, ) + [t°, %)), A%"5, A%, (8.2.35)

where the product of the structure constants is written according to
its symmetric and antisymmetric parts. The physical requirement
that A3,L = 0 is then imposed. From this the symmetric part of
the time ordered product yields the same result as found in the U(1)
case. The antisymmetric part is then easily seen to be

1
TinAkj, A" = STt t%)j, A%, A% = 0. (8.2.36)

This means that on the tree level there are no contributions from the
B®) field.
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In order to compute an amplitude contribution from the B® field a
process that is second order must be considered. This involves a loop
diagram of the form

Virtual Photon Locp Correlated with B® Field Fluctuation

A virtual photon
AUV
N (e

! .

\ ¢
s — R “y
~ -

A

A+ 4 photon

A virtual photon
Figure 8.3
The propagator then assumes the form

Gu(r — 1) = Tt tbethotf A%, (r) x

/ TE (4w ac, ) [ LK (ace(yar () af
G A A5 () [ G () AT (1) A1, (8:23)
where the integrations exists since the vertices tied to the loop do
not constrain momentum conservation. The four fields in the mo-
mentum integrals under the action of the antisymmetric portion of
the structure constants contribute to,

4 1. 4 1.1
/ %Bﬁ(k') / (’12 7’:);33”(k"). (8.2.38)

This term is then a sum over all possible fluctuations of the B(®) that
couple to the virtual photon coupled to the electrons. This means
that the propagator is of the form

4 1.1 4 1.4
G#,,(T—TI) — aZTAa#(r)(/((;_':;Z_BZZP(kI)/((12_71:');_B3P(kll))Afu.
(8.2.39)
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This then contributes an amplitude,

y 4 1.1 4.1
_ L I d k d k i(k' — k”)-"‘
Clope = X / @m)? J (2n)? (¢ X

K -X)E"-Y), XoYo
) )

(8.2.40)

1

ﬁ( XY -
Here |k| is the magnitude of the four vector, and |k| is the magni-
tude of the spacial part of the four vector k*. The integrals in this
amplitude suffer from the usual ultraviolet divergence that can be
removed through regularization techniques.

This is an introduction to the sort of process that may occur in O(3),
electrodynamics. In effect the B? field produces quantum vortices
that interact with electrons, as well as other charged particles, where
these vortices are quantized states and exist as fluctuations in the
QED vacuum. As mentioned earlier the dual of the B ®) field does
not exist as an electric field. These quantum fluctuations are easily
seen to be associated with the E(1) and E®) fields

§B% = %(5,41 x A? + A! x 5A?)

- %;%(wl < B® + B x §E?). (8.2.41)

This indicates a number of things. The first is that the quantum
fluctuations of the B?® field are accompanied by fluctuations in the
standard electric field. Further, the ultraviolet divergence of the
above integral is probably unimportant due to the wl—z relationship
with the fluctuation. This tends to imply an infrared divergence;
however the analysis with cavity QED indicates that the statistical
occurrence of states is such that the divergence is damped. Infrared
divergences are known to be of little trouble due to their statistical

occurrence. This was essentially illustrated in section 6.7.
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This approach to QED also suggests that methods for renormaliza-
tion are applicable. If the quantum fluctuation of the electric field is
associated in part with fluctuations in the B(®) field, then the diver-
gences that occur at the ultraviolet regime can possibly be absorbed
into fluctuations with the B®) field. Physically these are damped
out by the w1—2 term in the Feynman path integral. This potentially
leads to an additional physical understanding of the disappearance
of divergences that occur at the high frequency domain of QED.
This would be possible if the divergences in U(1) electrodynamic
processes, which exist as a subset of O(3)pelectrodynamic processes,
can be absorbed into integrals that involve photon loop processes
associated with fluctuations in the B®) field. These fluctuations
appear to quench ultraviolet divergences by its ;1—2— behavior, and it
may quench divergences for all processes if these divergences can be
absorbed into B®) fluctuations.

At high energies it is reasonable to think that the electroweak theory
is SU(2) x SU(2). The current SU(2) x U(1) theory is renormal-
izable since the vector boson propagator is "mixed” with the U(1)
field that is renormalizable. With an electroweak theory extended
to include nonAbelain electrodynamics essentially the same will oc-
cur where the unphysical term mo®A*#9,,¢, for { an unphysical field
that oscillates around the Higgs minimum, is cancelled by the gauge
fixing Lagrangian density,

Lof = %(T“@,LA““ + tmg)2. (8.2.42)

Here for £ = 1 we have the Feynman gauge, and £ = 0 is the

Landau gauge. This gauge fixing term will enter into the massive,

boson propagators for the A®) field. The propagator will be of the
form . ¢
? ‘ Dulv )
————— 0 — 55— 8.2.43
p? — m? +ie(’ p? ( )

The existence of this propagator will be the largest addition to the
physics of electroweak interactions when electromagnetism is non-
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Abelian. Further discussion on the subject of SU(2) x SU(2) elec-
troweak theory is given by the authors in [4]. Estimates on the mass
of this boson are around four times the mass of the Z, boson and
should be observable with the CERN Large Hadron Collider.

8.3 RENORMALIZATION OF 0(3), QED

Quantum electrodynamics involves the interaction of electrons, or
other charged particles, and photons, where the interaction between
two electrons involves the exchange of a virtual photon. Based upon
equation (8.2.43) for a propagator that the interaction between elec-
trons and photons means that the potential function may be written
as [5]
e

as illustrated in figure 8.1. Here v; are the Dirac spinors for the
electrons. This leads to the expectation that the potential in the
Coulomb case is ® =~ e%/r. The issue of renormalization is ap-
parent in that the potential and propagator is divergent in the limit
that the distance between the electrons approaches zero. Further, as
this distance decreases then by the Heisenberg uncertainty principle
ApAz > h means that the momentum exchanged by the electrons
due to fluctuations on that small scale becomes divergent. Carried
further, this means that the vacuum is filled with virtual quanta that
have enormously high momentum fluctuations. When these virtual
quanta couple to systems they contribute divergences in the limit
their wavelengths approach zero: the ultraviolet divergence.

A= , (8.3.44)

There are two types of processes that are divergent due to this cou-
pling to virtual quanta. There are the self-energy of the electron,
vacuum polarizations, and vertex functions.
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Self Energy of the Free Electron

" A4S () -3 ()

k2
3 VN

Figure 8.4

With O(3)s QED the major difference emerges from the effective
photon bunching or interactions that can result in a photon loop,
composed of an A1) photon and an A® photon. This loop will be as-
sociated with a quanta of B(®) field with an intensity e/h mentioned
in chapter 6. Equation (6.6.92) illustrates how this fluctuation in the
AWM and A(2) potentials are associated with this magnetic fluctua-
tion. The other renormalization techniques in U(1) QED still apply,
and are demonstrated below, and the renormalization of divergences
associated with the B(®) magnetic fluctuation is also illustrated.

We will discuss at some length the interaction of a free electron
with the vacuum, for this is similar to the renormalization problem
presented by O(3)pelectrodynamics. An electron interacts with the
vacuum according to the Dirac equation

(7"(0,‘ — teA,) — m)¢» =0 (8.3.45)

Even if there is no electromagnetic field present the vector potential
exhibits fluctuations A, = (A,) + JA,, so that even if there is
only the vacuum physics still involves this fluctuation. This is also
seen in the zero point energy of the harmonic oscillator expansion of
the fields. So an electron will interact with virtual photons. If we
represent all of these interactions as a blob coupled to the path of an
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electron, this blob may be expanded into a sum of diagrams where
the electron interacts with photons. Each term is an order expansion
and contributes a term on the order of & = €%/hc. A single loop
contributes the integral

o [Typ-—m
~ /_w S (8.3.46)

which has an ultraviolet divergence as k — oo for fooo dk k The
standard approach amounts to imposing a cut off in the integral A
so the integration is

oo A
/ dk k — / dk k, (8.3.47)
0 0
so that for an electron of mass m this defines a mass counter term
. 3am A
sm = ! (— .
m 5109 m) (8.3.48)

Then given the bare mass of the electron as mg we have the mass of
the electron as m = mgy — dm. By the Dirac equation this also
contributes a counter term into the Lagrangian émafp

The counter term is computed by performing a perturbation expan-
sion of the Green’s function, or propagator for the free electron. The
entire process is represented by T'™), which in general is determined
by a time ordered product of fields,

™ (py, p2y ...\ pno1) = /Hdﬂ?ieip‘mi(0|7-¢1¢2---¢n—1|0),

(8.3.49)
and generally describes processes of the type illustrated in figure 8.5
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e

P

»n-1

Figure 8.5

This process may also be computed from the path integral,
Z[J(z)] = / D{p}es + J¢ (8.3.50)

by the functional derivative the path integral according to the test
source function J(z)
61;

r® — Z—I[J(a,)]WZ[J(m)HJ S (8.3.51)

The propagator I for the free electron is approximated by loops
that are given by the function —iS(k2) connected by electron prop-
agators of the form i/(k* — m?). So the propagator that computes
the free electron with the mass counter term is then given by

i

) 7 ) ! 9
= —iS(k2))
k2 — m? — ie k2 — m?2 + K2 — mz( i ))kz — m?2
+ ——1——(—i2(k2))—i—(—i2(k2))——i— + ...
k2 - m2 k2 — m?2 k2 — m? :
(8.3.52)

This is illustrated in figure 8.4. This series may then be written in a
more compact form with
i

\ 8.3.53
k2 — m2 — Z(k?) ( )

r@%? =
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where X(k?) is Taylor expanded around the mass mg with the result
that

y
k2 — mi — ém?’

r®(k?) = (8.3.54)
This is a matter of replacing all of the correction terms with a finite
number, in this case one, counter terms that may be evaluated

We now add a term to the harmonic oscillator Lagrangian of the
form A¢?, where ¢ is a field that represents the field coupled to the
electron. To evaluate the amplitude we then have the integral of the

form .
d*k 1
2 _ 2 / k1 3,
I G e = 2 (8.3.55)

To perform a dimensional regularization of this integral we replace
the integral with

A [ d*k 1
2 _ e
FPlw) = 5/—(%)4 pra— (8.3.56)

where the dimension of the system has been replaced by 2w. We
then use

2mv
ke = =—k2"dk, 3.
e Tw) e dke, (8.3.57)
and A = (M?)2~“)\, to obtain the solution to the integral as
Au [ T\ e a1 — w)
2 _ _lw 2\2—w 2\yw—1
P) = -5 (—%) (M h(m?)* 7 =g (8358)

Now the ”trick” used is to identify w = 2 —-¢ to obtain,

Am?2 2

3272

m

I? =
(«) 4T M2

(1 — 4 — log( )), (8.3.59)

from which the mass counter term is defined. Here 7y is the Euler-
Mascheroni constant v = .5772...
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\ similar divergent process exists with O(3)s electrodynamics with
hictuations associated with the B®) field. It is associated with
.omputing the propagator for a photon loop, as itlustrated in figure
3.3. The integral involved is of the form

dk 1
r =12/ (2m) (k2 + de)((k + q) + te) (8.3.60)

3y letting 4 — 2w we arrive at an integral of the form

d*k 1
It = A2/ (27)t (k2 + ie)((k + @)% + ie)’ (8.3.61)

hen if the self interaction term is written as

A =4 - 2w = (Q%)* A, (8.3.62)

ind the integration measure is redefined as

d?“k = k*~dk,, (8.3.63)
;hen
dk k2o -1
=102 / = . (8.3.64
P=l@V 7 | e v i + a7 1197 00
This integral may then be evaluated as:
9 _
I = constx 2 (‘“)II:((Z) w) (8.3.65)
where const is the constant
lw(QZ)Z—w
[ = 8.3.65
K (2m)® ( a)
So in a more compact this leads to the result
Aw Q)“"w [(w)(2 —w)
1= (= —_— 8.3.66
"= emly) Tt (8569
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or
A Q\4~w 1 1
"= —= —) X — 1 — 7).
(271’)2“’((] (3+w +1 7)(1—0.) + 7)
(8.3.67)
Then we have that since w = 2 — ¢, the trick of dimensional
regularization then we see that
I'2 — w) = T'(e)
Mw) = T(2 — ¢). (8.3.68)
Now this integral can be put in the form
s - 1at (1 — 6((y + 4109(2))) (8.3.69)
532w Q") e

which is a finite quantity. Here <y is the Euler-Mascheroni constant.

This calculation demonstrates that the loop fluctuation of a photons,
which correlated to a virtual quanta e/h of B ) field, can be calcu-
lated to be finite with out divergence. So the virtual Huctuation of a
B®) field does not lead to an ultraviolet divergence, and thus O(3),
QED is renormalizable by dimensional regularization.

The issues of vacuum polarization and vertices may be computed
in the same manner as seen with U(1) electrodynamics. Effectively
O(3)pquantum electrodynamics appears to be, based on these ini-
tial regularization exercises, to be free of intractable ultraviolet di-
vergences. The calculation of the Lamb shift also indicates that
O(3),QED is also free of such divergences in the infrared region.
This is a good sign that the theory at least is not frought with com-
putational intractabilities that cast sever doubts on a theoretical
level.



8.4 B®) FIELD AS A VACUUM SYMMETRY

It is standard to adopt the rule in U(1) electrodynamics that with
the Hamiltonian of the form

1
H = —|p — edl?, 4.
2mlp eA|, (8.4.70)

that the gauge potential acts only once. The quadratic term is
basically eliminated and ignored. This rule is essentially what
O(3)s electrodynamics challenges. We then consider the role of
A-A* = AM . AD within this Hamiltonian. This Hamiltonian
leads to the evolution operator U = e~*f* that has the form

U = etHotgAW-AD (8.4.71)

where Hj is the Hamiltonian without the term quadratic in the po-
tentials. The vector potentials may then be written as

A0 . . , v
=(ex + iey)(ape’F T Wt _ glemik T+ ety (g 4.79)

A0 =

so that the modulus square of this operator is

A A® = 402 (414 4 _;_ _ %

(atze..zi(k.r - wt) + a2e2i(k-1‘ - wt))).

(8.4.73)
This result is very interesting for the first two terms on the right
hand side are just the standard harmonic oscillator Hamiltonian for
the electromagnetic field H,,,, and the latter are terms easily seen
to be incommensurate with that Hamiltonian under commutation.
As a result the evolution operator is then

U = e—ilHo + H",.)tt‘i,(:.rzz"2 + 2'62)’ (8.4.74)

for z = te~2(k" =)t The operator S(z) = e*a” +#'a) j5 4
squeezed state operator, which involves symmetries that lie outside
those defined strictly by the Hamiltonian.

There are some reasons for supposing that the B() may correspond
to such symmetries. In the next two sections a presentation is given
on how nonAbelian electrodynamics is unified with the weak inter-
actions. Below it will be concluded that there is a duality between
the B®) and E®) fields. From this it can be easily seen that the
Lagrangian for these two fields vanishes. This is evidently a curi-
ous situation where there should exist a field, but where it has no
Lagrangian. This would imply that there is no dynamics associ-
ated with this field. The argument is made that the existence of
a massive A®) field breaks this duality. This is then invoked to
justify that E®® = 0. However, this then creates a further diffi-
culty. Electric and magnetic fields trasnform by the Lorentz group
as E, = yv(E. — BBy) and B, = y(B, — (E,). This leads to
the unsettling prospect that if B > 0and E® = 0 that there is
then a breaking of the Lorentz symmetry to spacetime. This means
that unless there is an associated 3-electric field that we may have
to conclude that (B®)?2) = (E®)2) = 0. This then gives weight to
the prospect that nonAbelian electrodynamics corresponds to non-
Lagrangian symmetries or operators in electrodynamics.

It is still possible to have the Sagnac effect. If we consider the
counter-rotating portion of the nonabelian contribution to,

o = i ?f D,dz" = i / / [D., Dylda™, (8.4.75)
we have that
6 = i/(a“ze—z"(k'r —wt) g 2Ptk - “9) g3, (8.4.76)
An evaluation of the integral and using the fact that J® o (2, the
rotation of the platform it is then apparent that
A8 = (InS(z)) (8.4.77)

where z ~ e1w®?4/¢* where the doubling of the frequency argument
occurs from the existence of two path A and C. This apparently
gives the Sagnac effect according to the squeezing of light.
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Would this mean that most everything presented in this monograph
is wrong? No, but it does mean that the classical results are purely
pedagogical tools. The quantum results may still hold. For instance,
with the cavity QED work the term Hpgs;p¢, equation (6.4.62) corre-
sponds to the absorption of one photon and the emission of another
as the atom changes its internal state. Similarly, the term Hpgs,
equation (6.4.63) corresponds to the absorption of two k, k' mode
photons and the emission of ¥ + q and k¥’ — ¢ by the atom during
a quantum fluctuation between its two atomic states.

k k+g
k' atomic
Sluctuation \L
k'-g
g
c
Figure 8.6

This indicates that the quantum mechanical aspects of this theory
is valid, and the Hamiltonian, Hg), then involves quantum fluctu-
ations in the atomic states. It must also be noticed that this inter-
action Hamiltonian is only real since it involves the introduction of
a quantum system. In the absence of this atom we would no longer
obtain this photon-photon coupling. In the case of photon loops this
process must then be considered as attached to a fermion line, where
the fermion has a fluctuation in its momentum to give rise to this
photon graph. Similarly the Lamb shift is changed by a factor of
a = 1/137, as the current coupling in equation (6.7.94) involves a
field fluctuation. This means that the Lamb shift due to nonAbelian
electrodynamics is 3.89 x 10~7. This is curiously at the lower end of
our estimate based on fluctuation estimates and the result in section
6.6.

This means that states are not completely described as eigenstates of
the Hamiltonian. While they posses kinematical properties of states,
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but the squeezing of these states are not determined by diagonal
operators and are thus not Hamiltonian or Lagrangian symmetries.
This is an interesting result, for this implies that squeezed states in
QED are connected to an underlying nonAbelian symmetry. This
would continue to be the case even if there is no classical B®) field,
orif Hgs = 1/2|B®|? = 0. Under this condition the nonabelian
symmetry of QED would be manisfested as vacuum squeezed states.
In this case electrodynamics is then a U(1) gauge theory, as described
by a Lagrangian, plus additional nonLagrangian symmetries.

8.5.1 SU(2) x SU(2) ELECTROWEAK THEORY WITH
ONE HIGGS FIELD

The first attempts at extending SU(2) x U(1) electroweak theory
to incorporate the fundamental B3 field of SU(2) electrodynamics
were made in [6] in which an SU(2) x SU(2) electroweak theory was
suggested but not developed. In this paper a more rigorous, but
incomplete, SU(2) x SU(2) electroweak theory is developed to find
several results which are missing from the original electroweak the-
ory, because the latter did not incorporate B3 and restricted consid-
eration to a U(1) symmetry electromagnetic sector. The extension
is achieved in such as way as to maintain agreement with experi-
mental data on weakly interacting vector boson and their masses,
while still assuming for the sake of argument, a massless photon.
The SU(2) x SU(2) electroweak theory developed in this Letter re-
produces the fundamental relation between B® and the conjugate
product of nonlinear optics, the relation responsible for the poten-
tially very useful technique of radiation induced fermion resonance
[7] and suggests the existence of a longitudinal E® field dual to B3.

Nonlinear optics causes physics to consider electrodynamics to be an
SU(2) field theory with a magnetic field defined by the conjugate
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product[6],
B® = —i%A‘ x A2, (8.5.1.78)

where A! and A? are conjugates or duals of each other. This mag-
netic field will couple to a Fermi % spin field according to the Hamil-
tonian[6],
eh
H = ——d° B3 (8.5.1.79a)
2m
The occurrence of the B3 field, in addition to the observation of non-
linear effects due to the conjugate product of connection coefficients,
should be apparent through the spin resonance effect with a Fermi

field.

We will examine the SU(2) x SU(2) electroweak model first with
an analysis that is similar to that used with the SU(2) x U(1) elec-
troweak model. Here we will have one Higgs field for both parts of
the twisted bundle. We will then look at the consequences of that
and determine what is wrong. From there the requirements to fix
the theory are discussed. These corrections to the theory are then
to be presented in the second paper.

8.5.2 THE SU(2)xSU(2) EXTENDED STANDARD
MODEL

Consider an extended standard model to determine what form the
electromagnetic and weak interactions assume on the physical vac-
uum defined by the Higgs mechanism. Such a theory would then be
SU(2) x SU(2). The covariant derivative will then be

D, = 0. + igo-A, + igT-b,, (8.5.2.795)
where o and T are the generators for the two SU(2) gauge fields

represented as Pauli matrices and A, b are the gauge connections
defined on the two SU(2) principal bundles. There is an additional
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Lagrangian for the ¢* scalar field(8],

1 1 1 2
Lo = SIDu(®F — Zrlof + N(F) . (85.2.80)

The expectation value for the scalar field is then

v

{(¢0) = (O, ﬁ)' (8.5.2.81)

for v = /—p2/A. At this point the generators for the theory on
the broken vacuum are

(po)or = (—}5. 0),

(po)oz = (1:—\”5, 0), (6)

(po)os = (O, _E)' (8.5.2.82)

These hold similarly for the generators of the other SU(2) sector of
the theory. There is a formula for the hypercharge, due to Nishijima,
that when applied directly, would lead to an electric charge,

Qlg) = 5dodlos + ) = 0.-250.2). (85289

This would mean that there are two photons that carry a + charge
respectively. We are obviously treating the hypercharge incorrectly.
It is then proposed that the equation for hypercharge be modified as

Qo) = %(%)(nz-rs +m -al) = 0, (8.5.2.84)

where the vectors n; and n; are unit vectors on the doublet defined
by the two eigenstates of the vacuum. This projection onto o1 and 73
is an ad hoc change to the theory that is required since we are using a
single Higgs field on both bundles on both SU(2) connections. This
condition, an artifact of using one Higgs field, will be relaxed later.
Now the generators of the theory have a broken symmetry on the
physical vacuum. Therefore the photon is defined according to the
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o, generator in one SU(2) sector of the theory, while the.charged
neutral current of the weak interaction is defined on the 73 generator.

We now consider the role of the ¢* scalar field with the basic La-
grangian containing the electroweak Lagrangians

102

1 1
L = —_F¢ Farv _ a apy
4 4G,uuG +

1 1 2
IDugl® — Zi?lol” + —A(W) : (8.5.2.85)

4
Here Gy, and F}}, are elements of the field strength tensors for the
two SU(2) principal bundles. In further work the Dirac and Yukawa
Lagrangians that couple the Higgs field to the leptons and quarks will
be included. Tt will then be pointed out how this will modify the B*
field. The ¢* field may be written according to a small displacement
in the vacuum energy

ro_ -~ (v + & + 1x)
¢ = ¢ + ($o) = — 5 (8.5.2.86)

The fields ¢ and x are orthogonal components in the complex phase
plane for the oscillations due to the small displacement of the scalar
field. The small displacement of the scalar field is then completely
characterized. The scalar field Lagrangian then becomes

£y = 3(0u0%¢ - 2°¢)

1

ﬁ)a,‘x) (8.5.2.87)

1 5, 1
~2(g'A, + gb, (——
+2v(g,+g,+gv+

1 1
(g’ A* + gb* + (— + ,—)Of‘x)
gu gv
The Lie algebraic indices are implied. The Higgs field is described
by the harmonic oscillator equation where the field has the mass

My =~ 1.0TeV/c%. On the physical vacuum the gauge fields are

1
gIA.“' + gb.“' - gIA,“' + gb,u + H_O[I.X = gIA/,u. + gb/“. (85288)

(i
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which corresponds to a phase rotation induced by the transition
of the vacuum to the physical vacuum. Let us now break the La-
grangian, now expanded about the minimum of the scalar potential,
out into components:
1 L 242 1 2
Ly = —(o,tgow — 2% ) + v
2 8
x(g’2|b3|3 + gzz(l W + |W‘|2) +PAN? + g?A% + iA2|2),
(8.5.2.89)
where we have identified the charged weak gauge fields as

1 2
w3 Lot zb“). (8.5.2.90)

Ly
= —(b
Vz\
The mass of these two fields are then gv/2. From what is left we are
forced to define the fields

1
Ap = ———(QAE’L + g'b} — gA‘l) (8.5.2.91a)
! 92 + glz £ It 1
1
0 — ! A3 3 /4l
Z’“ - g2 + g/2 (g A.“ + gb,u + gA;;)- (85291b)

In order to make this consistent with the SU(2) x U(1) electroweak
interaction[4] theory we initially require that A3, = 0 everywhere
on scales larger than at unification. If this were nonzero then Zp
would have a larger mass or there would be an additional massive
boson along with the Zy neutral boson. The first case is not been
observed, and the second case is to be determined. This assumption,
while ad hoc at this point, is made to restrict this gauge freedom
and will be relaxed later when a more complete discussion of the
3-photon is given. This is condition is relaxed in the following letter.
This leads to the standard result that the mass of the photon is zero
and that the mass of the Zy particle is

Mp = Vo ¥ 97 9/2;12’_ = J1+ (%)2MW. (8.5.2.92)
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The weak angles are defined trigonometrically by the terms
g/(g®> + g”?)and ¢'/(g®> + g'*). This means that the field strength
tensor F3  satisfies

lt’/
3 _ 3 3 €[ 41 42
F3, = 0,43 — 9,43 — zE[A,,, A“]
= —i%[A,l,, Ai], (8.5.2.93)

and further implies that the third component of the magnetic field
in the SU(2) sector is

3 w 3
B] = fj‘ F v

= —i%(Al x A?) (8.5.2.94)

2

This is the form of the B® magnetic field. This also implies that the
E3 electric field is then

o e
B} = ¢"Fj, = —i(al xAz)j. (8.5.2.94a)

This demonstrates that E® = B® in naturalized units.

The duality between these electric and magnetic field means that the
Lagrangian vanishes. The vanishing of this Lagrangian on symmetry
principles means that there can not be any dynamics determined.
This would indicate that this particular model simply reproduces
U(1) electrodynamics, plus additional nonLagrangian symmetries.
Within this picture it appears as if the B(®) = 0 and that it simply
represents the occurrence of various nonLagrangian symmetries, but
where there are no dynamics for the B®) field.

This result is a curious and troubling one for the prospect that there
can be a classical B(® field that has real dynamics. This would
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imply that nonabelian symmetrg is determined at all by a Lagrangian
of the form (1/2)(E32 — B3%%), as this is automatically zero by
duality. However, if this were the case we would still have nonAbelian
symmetry as a nonLagrangian symmetry. This strongly supports the
possibility that the electrodynamic vacuum will continue to exhibit
nonAbelian symmetries, such as squeezed states, even if we impose
E3 = B = 0.

However, it can be suggested that the B3 = E3 field duality is
broken when we consider the Lagrangian for the 3-field with the
massive A3 field introduced as

1 1 ;
L= SELF 4+ Spd®u 4% — (1/c)i, A%

2

1 .
L = %(ESz - B3 ) + E,UIAS;LAS# _ (l/C)_‘]zA?’“. (85295)

The middle term is a Proca Lagrangian for a massive photon. Here
the mass of this photon is assumed to be larger than the masses
of the W% and W?° bosons. The current j3 u 18 determined by the
charged fermions with masses given by the Yukawa interactions with
the Higgs field. These are yet to be explored. Now consider the term
in the Euler-Lagrange equation

oL
dDH A3

with covariant derivatives that enter into the Euler-Lagrange equa-
tion as

= [A. A4, (8.5.2.96)

DAY = 0,A% + i(e/n)*[A%, AL (8.5.2.97)

and the subsequent setting of A> — 0. Then the full Euler-Lagrange
equation

) oL
D' A=) ~ gaw = ° (8.5.2.98)

is then OB
Vx B+ pfad — j3 = et (8.5.2.99)
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which is just a form of the Faraday-Maxwell equation. However, the
Hodge-star dual of this equation, the Maxwell equation, does not
contain the current term,

oB?

3 243 _
VxE®> 4+ pA° = T

(8.5.2.100)

The nonvanishing A2 field at high energy will then break the duality
between the E® and B? fields.

There is rub to this construction. This Proca equation is really only
applicable on a scale that approaches the high energy physics where
the A® boson has appreciable influence. This will be only at a range
of 1077 cm. On the scale of atomic physics 10~8¢m , where quantum
optics is applicable, this influence will be negligable. In effect on a
scale where the A(® does not exist, as it has decayed into pion
pairs, the duality is established and there is no Lagrangian for the
B®) field. This puts us back to square one, where we must consider
nonabelian electrodynamics as effectively U(1) electrodynamics plus
additional nonLagrangian and nonHamiltonian symmetries.

It has been demonstrated that there is an SU(2) x SU(2) elec-
troweak theory that gives rise to the Zy, W* gauge vector bosons
plus electromagnetism with the photon theory with the cyclic con-
dition for the B? fields. What has not been worked out are the
implications for quark and lepton masses by inclusion of Yukawa
coupling Lagrangians. However, that sector of the theory has little
bearing upon this examination of the electromagnetic theory, with
A® = 0, that emerges from the SU(2) x SU(2) gauge theory. We
now have a theory for electromagnetism on the physical vacuum that
is

£ o= ~(F R — 146G, + (B ~ (B +

;
B
e

i
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1
MZol* + M WP+ Z(jel — 2°1¢?)

+Dirac Lagrangians + Yukawa {Fermi — Higgs}  (8.5.2.101)

where F,, and Gj, are the field tensor components for standard
electromagnetism and the weak interaction, and the cyclic electric
and magnetic fields define the Lagrangian in the third term. The
occurrence of the massive Zy and W particles obviously breaks the

gauge symmetry of the SU(2) weak interaction.

8.5.3 DUALITY AND CHIRAL BREAKING

Physically we have the fields £, B3 which are easily demonstrated
to be longitudinal fields. Longitudinal fields result from the breaking
of gauge invariance. What is unique is that the B> and E3 fields are
massless; unlike most fields resulting from symmetry breaking that
are massive. That these fields are divergences and are equal up to
¢, before the breaking of duality, suggests that there are clues to
field duality and monopole physics [10,11,12,13]. So we have on the
physical vacuum three fields, where two are equivalent and all three
are massless. This mechanism of breaking the E* = B3 duality
needs to be further explored.

Electrodynamics may be more fundamentally nonabelian leads to the
existence of B? field that gives rise to nonlinear optical effects. This
means that in a nonlinear optical system there should be exhibited
a Lorentz force on a moving charge that is not predicted by U(1)
electrodynamics. The coupling of a Fermi field to the B3 field is just
such an interaction, and empirical evidence for this coupling can be
found in the inverse Faraday effect [6]. The o - A x A* term is given
in Eq.(8.6) of Ref. 9. That this field exists, and apparently the E°
field does not, should be determined more explicitly by an extended
standard model.
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Now let us perform a gauge transformation A' — UA'U~! + UOU L.

The electric field in the 3-sector is then transformed as
BY% = ¢ty [A;-, Ai] U-l. (8.5.3.102)

This can be easily demonstrated by the antisymmetry of 7 and k with
the commutators with A! or A%. So fortunately the theory appears
to be gauge invariant. So there is a general situation of proper gauge
transformation if self-duality holds, or if it is broken. In effect if
self-duality, and the broken duality due to the A3 potential, is true
for flat gauge connections then it is true for all gauge connections.

This duality is an artifact of excluding the masses predicted by the
Higgs mechanism and their role in the decay processes of the charged
and neutral weak currents, and the decay of SU(2) massive photon
A3. Setting A3 = 0 allowed us to ignore this problem to examine the
basic electroweak issues. The explicit inclusion of massive Fermions
in the decay of these fields will break field duality[10]. The condition
that A3 = 0 everywhere is relaxed and a 3-photon is defined. Tt can
be demonstrated that the currents contain vector and axial vector
components that obey the SU(2) X SU(2)¢ algebra. On the physical
vacuum fields acquire masses that violate the current conservation of
the axial vector current. Within this context a better understanding
of duality breaking can be derived.

8.5.4 DISCUSSIONS OF THE THEORY, ITS
PROBLEMS, AND THEIR REMEDIES

So here we have constructed, in some ways rather artificially, an
SU(2) x SU(2) gauge theory that is able to reproduce the standard
model U(1) X SU(2) with the additional cyclic magnetic field given by
equation 18. However, we are left with two uncomfortable conditions
imposed on the theory to make this work. The first is that the electric
charge is computed in an ad hoc fashion so that we do not have the
massless photons A! and A? that carry a unit of opposite electric
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charges. The second problem is that we have by hand eliminated
the A3 vector potential. If this were nonzero we would have the
following gauge potential

Wl = —% a3 (8.5.4.103)

This field would have a mass equal to /g2 + ¢?v/2 and would
then contribute a large decay signal at the same scattering transverse
momenta where the Z; is seen.

The problem is that we have a theory with two SU(2) algebras that
both act on the same Fermi spinor fields. We further are using one
Higgs field to compute the vacuum expectation values for both fields.
The obvious thing to do is to first consider that each SU(2) acts on
a separate spinor fields doublets. Next the theory demands that we
consider that there be two Higgs fields that compute separate phys-
ical vacuums for each SU(2) sector independently. This means that
the two Higgs fields will give 2 X 2 vacuum expectations, which may
be considered to be diagonal. If two entries in each of these matri-
ces are equal then we conclude that the resulting massive fermion in
each of the two spinor doublets are the same field. Further, if the
spinor in one doublet assumes a very large mass then at low energies
this doublet will appear as a singlet and the gauge theory that acts
on it will be O(3), with the algebra of singlets

e = Gijk[e]', ek]. (854104)

This will leave a theory on the physical vacuum that involves trans-
formations on a singlet according to a broken O(3), gauge theory,
and transformations on a doublet according to a broken SU(2) gauge
theory. The broken O(3)s gauge theory reflects the occurrence of a
very massive A2 photon, but massless A! and A2 fields. This bro-
ken O(3), gauge theory then reduces to electromagnetism with the
cyclicity condition. The broken SU(2) theory reflects the occurrence
of massive charged and neutral weakly interacting bosons.
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To take this theory further would be to embed it into an SU(4)
gauge theory. The gauge potentials are described by 4 x 4 trace-
less Hermitian matrices and the Dirac spinor has 16 components.
The neutrality of the photon is then given by the sum over charges,
which vanishes by the tracelessness-of the theory. The Higgs field is
described by a 4 X 4 matrix of entries

It is concluded within the above "toy model” that the B® field is
consistent with an extended SU(2) x SU(2) model of electroweak in-
teractions. A more complete formalism of the SU(2) x SU(2) theory
with fermion masses will yield more general results. A direct mea-
surement of B3 should have a major impact on the future of unified
field theory and superstring theories. The first such measurement
was reported in Ref. 14, (see also Refs.6 and 7).

8.6.1 CHIRAL AND VECTOR FIELDS IN SU(2) x SU(2)
ELECTROWEAK FIELD

The cyclic theory of electromagnetism has been demonstrated to
be consistent with a SU(2) x SU(2) theory of electroweak unifica-
tion[15]. It has been demonstrated that if we set A3 = 0 on
the physical vacuum that a cyclic theory of electromagnetism is ar-
rived at. This theory contains longitudinal E® and B3 fields that
are dual E3 = B3, but where this duality is broken by current
interactions. By setting A3 = 0 the transverse 3-modes of the
theory have been completely eliminated by this arbitrary restriction
of this gauge freedom. The elimination of these transverse 3-modes
guarantees that photons are entirely defined by the o!:? generators
of the SU(2) theory of electrodynamics. Since the field defined by
the o® generators are longitudinal this means they are irrotational
VxE? = VxB? = 0and thus time independent. By Maxwell’s
equations this means that there are no electromagnetic waves or pho-
tons associated with this field.
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8.6.2 AXIAL-VECTOR SU(2) x SU(2) FIELDS: A FIRST
LOOK

To start we examine a putative model of a chiral-vector model at
low energies to determine what sorts of processes may be involved
with the broken symmetry of such a model. We start by naively
considering a chiral-vector model to see what sorts of structure may
emerge at low energy without explicit consideration of the Higgs
mechanism. The field theory starts out as a twisted bundle of two
chiral groups SU(2) x SU(2) and emerges as a theory that is an axial-
vector theory at low energy. We consider initially the situation where
the theory is an axial-vector theory at low energy. We then consider
the situation where there is a breakdown of chiral symmetry. This
is then used to set up the more complete situation that involves the
breakdown of the chiral theory at high energy into an axial-vector
theory at low energy.

In this letter we relax the condition that A3 = 0. This statement
would physically mean that the current for this gauge boson is highly
nonconserved with a very large mass so that the interaction scale is
far smaller than the scale for the cyclic electromagnetic field. In
relaxing this condition we will find that we still have a violation of
current conservation.

With A3 # 0 we have the fields[15]

1
n _ 1 3 n3 .
A;L - \/gT+—g,2(gA,L + gb“ gA“)
} 1
o _ _ - 3 'l
I = \/m(gbu + g AL (8.6.2.105)
g 3

w3=

i ——AL'
L /92 + gIZ /
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One purpose here is to examine the wi connection; which will have
a chiral component. This at first implies that the B3 field is partly
chiral, or that it is mixed with the chiral component of the other
SU(2) chiral field in some manner to remove its chirality.

The theory of SU(2) electromagnetism, at high energy, is very similar
to the theory of weak interactions in its formal structure. Further,
it has implications for the theory of leptons. The electromagnetic
interaction acts upon a doublet, where this doublet is most often
treated as an element of a Fermi doublet of charged leptons and
their neutrinos in the SU(2) theory of weak interactions.

Following in analogy with the theory of weak interactions we let 1
be a doublet that describes an electron according to the 1 field and
the 3 field. We start with the free particle Dirac Lagrangian and let
the differential become gauge covariant,

L = Piy*D, — m)y

= P(iy*8, — m)y — gALPy o (8.6.2.106)
= Lfree + AZJ:,
where ¥ = %ys. From here we decompose the current Jﬁ into
vector and chiral components,
Tpo= Pl + )ty = V4 X, (8.6.2.107)

This is analogous to the current algebra for the weak and electromag-
netic interactions between fermions. We have the two vector current
operators(16]

a i a
V,y. = §¢7;L0 JP (862108)

and the two axial-vector current operators

7 -
X = SPIYT Y- (8.6.2.109)
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Here v5 = t71v2737. and 75 are Pauli matrices. These define an
algebra of equal time commutators:

[V:la~ Vb] — itabcvc

13 wo
Vit ] = —it**xh. (8.6.2.110)
If we set 1 = 4 we then have the algebra

[V:la! V:lh] - itabc‘/‘f,

and
Vi, x5 = —it®®xs, (8.6.2.111)

If we set .
QY = —2-(V4“ * x3), (8.6.2.112)

we then have the algebra
Q. Q%] = *°Q%
Q2. Q] = t*Q° (8.6.2.113)

[Q%, Q%) =0
This can be seen to define the SU(2) x SU(2) algebra.

The action of the parity operator on V2 and X% due to the presence
of 5 in the axial vector current.

PVEPT = V}

PX,Pt = -4 (8.6.2.114)

As such one SU(2) differs from the other by the action of the parity
operator and the total group is the chiral group SU(2) x SU(2)p.
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We have at low energy half vector and half chiral vector theory
SU(2) x SU(2)p. On the physical vacuum we have the vector gauge
theory described by A? = AZ?*and B® = VxA3 + (je/h)A1x A2
and the theory of weak interactions with matrix elements of the form
7Y.(1 — <s)e and are thus half vector and chiral on the level of el-
ements of the left and right handed components of doublets. We
then demand that on the physical vacuum that we have a mixture of
vector and chiral gauge connections within both the electromagnetic
and weak interactions due to the breakdown of symmetry. This will
mean that the gauge potential A3 will be massive and short ranged.

One occurrence is a violation of the conservation of the axial-vector
current. We have that the 1 and 2 currents are conserved and in-
variant. On the high energy vacuum we expect that currents should
obey

o*Ih = 0, (8.6.2.115)

where b € {1, 2}, which are absolutely conserved currents. How-
ever, for the Aﬁ fields we have the nonconserved current equation[17]

0"Jﬁ = im,l,sz'y‘;'yg,JSzp, (8.6.2.116)

where inhomogeneous terms correspond to the quark-antiquark and
lepton-antilepton pairs that are formed from the decay of these par-
ticles. This breaks the chiral symmetry of the theory. Then this
current’s action on the physical vacuum is such that when projected
on a massive eigenstates for the 3-photon with transverse modes

m?
w(k)w(k')

The mass of the chiral {1, 2} -bosons will then vanish, while the
mass of the chiral 3-boson will be m. So rather than strictly setting
A3 = 0, it is a separate chiral gauge field that obeys axial-vector
nonconservation and only occurs at short ranges.

(00" T3 Xx) = ( )(Xklle)e”“. (8.6.2.117)
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So now that we have an idea of what nature may look like on the
physical vacuum, we need to examine how it is that we can have sym-
metry breaking and an SU(2) x SU(2) p gauge theory that gives rise
to some of the above requirements of B3 electromagnetism. A mixing
of the two chiral SU(2) bundles at low energy is what will produce
vector gauge bosons for the electromagnetic interaction. It is appar-
ent that we need to invoke the mixing of two chiral gauge bosons in
such a manner as to produce a vector theory of electromagnetism at
low energy with a broken chiral theory of weak interactions.

8.6.3 CHIRAL AND VECTOR GAUGE THEORIES
FROM CHIRAL GAUGE THEORIES ON THE

PHYSICAL VACUUM

The SU(2) x SU(2) theory should mimic the standard model with
the addition of the B3 = (e/R)A! x AZ? field at low energies. This
means that we demand that a field theory that is completely chiral
at high energy becomes a field theory that is vector and chiral in
separate sectors on the physical vacuum of low energies. This means
that a field theory that is chiral at high energy will combine with the
other chiral field in the twisted bundle to produce a vector field plus
a broken chiral field at low energy. Generally this means that a field
theory that has two chiral bundles at high energies can become vector
and chiral within various independent fields that are decoupled on
physical vacuum at low energies.

We consider a toy model where there are two fermion fields ¢ and
x. where each of these field consists of the two component right and
left handed fields Ry, L, and R, L. These Fermi doublets have
the masses m; and mo. We then have the two gauge potentials A,
and B, that interact respectively with the 1 and x fields. In general
with more Fermi fields this situation becomes more complex, where
these two Fermi fields are degeneracies that spit into the multiplet
of fermions known. In this situation there are four possible masses
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for these fields on the physical vacuum. These masses occur from
Yukawa couplings with the Higgs field on the physical vacuum. These
will give Lagrangians terms of the form Y,,,R:’I)QSLX + H.C. and
Y,,LLnRX + H.C., where now we have a two component ¢* field for
the Higgs mechanism. These two components assume the minimal
expectation values (¢o) and (1) on the physical vacuum. We then
have the Lagrangian|18]

L = Py (Ou + igAL) — M) (8.6.3.118)

+ X(i7"(8, + igBy) —ma2)x — YyRY$L, + H.C. — Y, LInR, + H.C.,

that can be further broken into the left and right two component
spinors

L = RlLioc*(0, + igAu)Ry + Llic*(, + igA,)Ly

+ Rlio*(8, + igBu)Ry + Llio*(8, + igBu)Ly (8.6.3.119)
- mlRLL,;, - nzlLIpR¢ - mzRLLX — mzL;’(RX
— Y4RL6L, + Y;LL¢"R, — Y,LinR, + Y;Rin"L,,

The gauge potentials A, and B,, are 2 x 2 Hermitian traceless ma-
trices and the Higgs fields ¢ and x are also 2 X 2 matrices. These
expectations are real valued, and so we then expect that the non-zero
contributions of the Higgs field on the physical vacuum are given by
the diagonal matrix entries [18]

(#) = (<%1) <£z)) x) = (%1) ng)) (8.6.3.120)

In a recently submitted paper these issues were not discussed [15].
There this matrix is proportional to the identity matrix and the ma-
trix nature of the Higgs field was conveniently ignored. This means
that the SU(2) x SU(2) electroweak theory shares certain generic
features with the SU(2) x U(1) theory. The values of the vacuum
expectations are such that at high energy the left handed fields R,
and the right handed doublet field L., couple to the SU(2) vector bo-
son field B, while at low energy the theory is one with a left handed
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SU(2) doublet Ry, that interacts with the right handed doublet L,
through the massive gauge fields A,. Then the mass terms from the
Yukawa coupling Lagrangians will then give

m' = Y,(x') >> m" = Y,(%) >> (8.6.3.121)

m" = Yy(¢') >> m"" = Yu(¢?). (8.6.3.122)

Further, if the SU(2) theory for B,, potentials are right handed chiral
and the SU(2) theory for A, potentials are left handed chiral then
we see that a chiral theory at high energies can become a vector
theory at low energies. The converse may also be true in another
model.

In the switch between chirality and vectorality at different energies
there is an element of broken gauge symmetry. So far we would have
a theory of a broken gauge theory at low energy. However, there is a
way to express this idea so that at low energy we have a gauge theory
accompanied by a broken gauge symmetry. To illustrate this let us
assume we have a simple Lagrangian that couples the left handed
fields 1; to the right handed boson A, and the right handed fields
1, to the left handed boson B,

L = "El(i’#‘((’)p + igA,‘) - 'm'l)?pl (8.6.3.123)

+ ("8 + 9Bu) — m2)pr — Yylde — Yolmpy.

If the coupling constant Yy is comparable to the coupling constant
g, then the Fermi expectation energies of the Fermions occur at the
mean value for the Higgs field (¢g). In this case the vacuum expec-
tation of the vacuum is proportional to the identity matrix. This
means that the masses acquired by the right chiral plus left chi-
ral gauge bosons A, + B, are zero, while the right chiral minus
left chiral gauge bosons A, — B, acquires masses approximately
Y4(¢o). The theory at low energies is a theory with an unbroken
vector gauge theory plus a broken chiral gauge theory[18]. It is also
the case that we demand that the charges of the two chiral fields
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A2 B1.2 that add are opposite so that the resulting vector gauge
bosons are chargeless.

Just as we have gauge theories that can change their vector and chiral
character so also do the doublets of the theory. In so doing this will
give rise to the doublets of leptons and quarks plus doublets of very
massive fermions. These massive fermions should be observable in
the multi TeV range of energy.

8.6.4 THE OCCURRENCE OF 0(3),
ELECTRODYNAMICS ON THE PHYSICAL VACUUM

The two parts of the twisted bundle are copies of SU(2) with a
doublet fermion structures. However one of the fermions has the
extremely large mass m’ = Y, (x!) that is presumed to be unstable
and not observed at low energies. So one sector of the twisted bundle
is left with the same abelian structure, but with a singlet fermion.
This means that the SU(2) gauge theory becomes defined by the
algebra over the basis elements é;, i € {1,2,3},

[éi, éj] = z'e,-jkék. (8.6.4.124)

We further need to examine the photon masses. We define the
Higgs field by a small expansion around the vacuum expectations
7 = ¢+ (nd)and 9 = €2 + (n2). The contraction of the
generators o' and o2 with the Higgs field matrix and right and left
fields gives

o' 7R + o -9L = 0, (8.6.4.125)

which gives that the charges of the A! and A? fields are zero. These
fields on the low energy vacuum can be thought of as massless fields
composed of two gauge bosons, with masses vm/ + m”7 >> M,
and with opposite charges. These electrically charged fields can be
thought of as A* = A' + A2 These particles cancel each other
and gives rise to massless vector photon gauges fields. The field A3
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also has this mass. This massive field is also unstable and decays
into particle pairs.

With the action of the more massive Higgs field we are left with
the gauge theory SU(2) x O(3), where the first gauge group acts on
doublets and the last gauge group acts on singlets. Further on a
lower energy scale, or equivalently long enough time scales, the field
A3 has decayed and vanished. At this scale the second gauge group
is then represented by O(3), meaning a partial group. This group
describes Maxwell’s equations along with the definition of the field
Al x AZ

From this point we can then treat the action of the second Higgs field
on this group in a manner described in [15]. If we set the second Higgs
field to have zero vacuum expectation (¢?) = 0 then the symmetry
breaking mechanism effectively collapses to this formalism which is
similar to the standard SU(2) x U(1) model Higgs mechanism. We
can the arrive at a vector electromagnetic gauge theory O(3)p, p
stands for partial, and a broken chiral SU(2) weak interaction theory.
The mass of the vector boson sector is in the A% boson plus the W*
and Z° particles.

8.6.4.1 THE SU(4) MODEL

It is possible to consider the two SU(2) group theories as being
represented as the block diagonals of the larger SU(4) gauge theory.
The Lagrangian density for the system is then

L = Py + igAu) — mi)y — Yodrp.  (8.6.4.1.126)

The gauge potentials A, now have 4 x 4 traceless representations.
The scalar field theory that describes the vacuum will now satisty
field equations that involve all 16 components of the gauge potential.
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By selectively coupling these fields to the fermions it should be possi-
ble to formulate a theory that recovers a low energy theory that is the
standard model with the O(3), gauge theory of electromagnetism.

What has been presented is an outline of an SU(2) x SU(2) elec-
troweak theory that can give rise to the nonabelian O(3), theory
of quantum electrodynamics on the physical vacuum. The details
of the fermions and their masses has yet to be worked through, as
well as the mass of the A% boson. This vector boson as well as the
additional fermions should be observable within the 10 Tev range of
energy. This may be accessible by the CERN Large Hadron Collider
within the next decade.

The principal purpose here has been to demonstrate what sort of
electroweak interaction physics may be required for the existence of
an O(3)stheory of quantum electrodynamics on the low energy phys-
ical vacuum. This demonstrates that an extended standard model of
electroweak interactions can support such a theory with the addition
of new physics at high energy.

8.6.5 DUALITY IN GRAND UNIFIED FIELD THEORY,
AND RECENT LEP1 DATA

Above is a construction that indicates that the electromagnetic and
weak interactions may be dual field theories. If the above construc-
tion is experimentally verified then this would be the first empirical
indication that the universe is indeed dual according to a theory
along the lines of Olive-Montenen [ 11,12,13]. Within this theory
there are coupling constants that have inverse relationships, or con-
vergences at high energy, so that one field is weak and the other is
strong at low energy. In this case the electromagnetic field is compar-
atively strong, but not when compared to the nuclear force, and the
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other is very weak. It may be that both field theories have coupling
constants that are both lowered and diverge at low energy within a
Grand Unified Theory (GUT). The examination of this electroweak
theory within such a construction has not been been done. Nonethe-
less, the experimental finding of the A®) would bring a tremendous
change in our views on the foundations of physics.

It was recently suggested by Erler and Langacker [19] that an
anomaly in Z decay widths points to the existence of Z’ bosons.
These are predicted to exist with a mass estimate of 812G(»3Vj'1:’:,f"29
within an SO(10) GUT model and a Higgs mass posited at
145GeV_"‘61103. This suggests that a massive neutral boson predicted
by Grand Unified Theories has been detected. Further, variants of
string theories predict the existence of a large number of these neu-

tral massive bosons.

Analyses of the hadronic peak cross section data obtained at LEP
1[20] implies a small amount of missing invisible width in Z de-
cays. These data imply an effective number of massless neutri-
nos, N = 2985 + 0.008, which is below the prediction of 3
standard neutrinos by the standard model of electroweak interac-
tions. The weak charge Qu in atomic parity violation can be inter-
preted as a measurement of the S parameter. This indicates a new
Qw = -—72.06 + 0.44 is found to be above the standard model
prediction. This effect is interpreted as due to the occurrence of the
Z' particle, which will be refered to as the Z, particle.

S0(10) has the six roots a*, i = 1 ...6. The angle between the
connected roots are all 120°, where the roots a2, a? are connected to
each other and two other roots. The Dynkin diagram is illustrated
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below:

o

Figure 8.7

The decomposition of SO(10) -+ SU(5) x U(1) is performed by
removing the circles representing the roots a!?%% connected by a
single branch. The remaining connected graph describes the SU(5)
group. However, by removing the circle a? connected by three
branches forces SO(10) to decompose into SU(2) x SU(2) x SU(4).
Here we have an SU(2) and a mirror SU(2) that describe opposite
handed chiral gauge fields, plus an SU(4) gauge field. The chiral
fields are precisely the sort of electroweak structure proposed in ref-
erence [15]. Presumably since SU(4) can be represented by a 4 that
is 3@1 and 4 as 3@ 1, we can decompose this into SU(3) x U(1). Fur-
ther, the neutrino short fall is a signature of the opposite chiralities
of the two "mirrored” SU(2) gauge fields [15].

The SU(2) x SU(2) -+ SU(2) x O(3) predicts the occurrence of
a massive photon. So it is possible that these data could corrobo-
rate the extended standard model that expands the electromagnetic
sector of the theory. What we really understand empirically is QCD
and electroweak standard model, and we may have some idea about
quantum gravity for at least we do have general relativity and quan-
tum mechanics. This leads to the strange situation that we have
reasonable data on low TeV range physics and potential ideas about
quantum gravity at 10'°GeV, with a void of greater ignorance in
between. However, these data and analyses suggest theoretical in-
formation about GUTs and cast some light on this energy region.

—_——
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These experimental data do suggest that nonabelian electrodynam-
ics is a valid theory, at least as an extended theory that predicts
nonHamiltonian vacuum symmetries. It also suggests that at high
energy electrodynamics and the weak interactions are dual field the-
ories. This duality would then exist at energies that may be probed
in the TeV range of energy. In order to completely verify that this is
the case experiments at the TeV range need to be performed where
the Z, and Higgs boson can be directly produced.

This leaves open the question about the nuclear interaction. It is
tempting to conjecture that there is a dual field theory to the SU(3)
nuclear interaction or Quantum ChromoDynamics (QCD). It is easy
to presume that such a construction would proceed in a manner out-
lined above with the chiral SU(2) x SU(2) electroweak field theory.
This would then imply that there exists an additional weak field in
nature. It the field theory is similar in construction, then there may
exist some massive particle with weak coupling. It would then be
tempting to pursue calculations to predict the existence of such par-
ticles. However, it must be stressed that this is rather speculative
and has speculative implications for the foundations of physics.

It is tempting to think that there may be a generalized SU(3) x
SU(3) type of theory for the strong interactions. As in the above
SO(10) theory we see that the nuclear interactions are embedded
in an SU(4) theory. This would mean that there exist chiral colored
gluons associated with QCD. This can most easily be seen if the U(1)
group associated with QCD according to SU(4) = SU(3) x U(1).
The U(1) group describes local phase changes according to

P = e (8.6.5.127)

We may assign this U(1) group to a chiral transformation, similar to
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a G parity operator, according to
P — e, (8.6.5.128)

The Dirac Lagrangian would then assume the form

L= 500 + w0 (8.6.5.129)
where at high energies, before the Higgs field has assigned masses
to the quarks through Yukawa couplings, the QCD sector would be
chiral invariant. Once the quarks have masses then there is chiral
breaking. One may then have a field where the dominant ampli-
tudes favor vector gluons, but where there is a small chromo-chiral
amplitude. This would also mean that quarks would exhibit a small
chiral breaking. Further, if the coupling constants for the chiral
component of the chromofield are very weak then we have in effect
a duality within QCD.
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CHAPTER 9
POTENTIAL APPLICATIONS OF 0(3), QED

This short chapter is a discussion of some possible applications of
quantum nonabelian electrodynamics. The B®) field is associated
with quantum fluctuations and the loss of quantum information in
QED. This has a number of potential applications for computational
systems and with techniques in molecular biology. The intention
here is to introduce some of these possibilities that might become
real technologies in the twenty first century. Two possibilities are
suggested. The first involves the use of biophysics and nonabelian
electrodynamics in quantum computing. The second is a more mod-
est suggestion of using the B®) field to detect the sequences of DNA.

9.1 COMPUTATION, BIOPHYSICS AND B®) INDUCED
ENTANGLED STATES

At the close of the twentieth century we are faced with two technolo-
gies that have profound impact on the course the world is taking. The
first technology is computers and microprocessors. The second tech-
nology is the molecular biological revolution and biotechnology. The
first technology is firmly in place in our world. This technology had
its early beginnings with the enigma machine employed by British
intelligence to break nazi codes. The transistor brought mainframe
computers such as the IBM 360/370 series in the late 1960s and early
1970s. Later the microprocessor, with VLSI architecture, lead to the
small computer. These trends continue to exponentially grow. The
biotechnology revolution is in a more nascent stage of development.
The most successtful developments have been in the production of
single proteins by genetic recombinant techniques. These gene prod-
ucts are used mostly for medical purposes, such as insulin, and for
agriculture, which has sparked considerable controversy. These tech-
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niques involve recombinant genetic techniques applied to plant germ
cells, where genes are inserted into plants to make them resistant to
diseases and our own agricultural chemicals.

These two technological trajectories are likely to continue through
at least several decades in the twenty first century as the dominant
trends in advanced industry. In fact it is likely that these two trends
will in some places merge into single tracks. This makes sense in that
DNA, and the protein product that DNA encodes, is essentially an
information tape that could in principle be used to store information
that is ultimately read by a computer. Further, the behavior of
proteins is very complex in that it involves the mutual interaction
between many charged amino acid residues. There is the potential
for interactions that could be used to process information according
to information states assigned to various conformational shapes a
protein may exhibit.

Quantum computers are a curious possibility for the future. There
are a class of problems, such as the travelling saleman problem, that
are extremely difficult to solve. The reason for their diffuclty is that
if there are n variables or inputs into the problem the space and/or
time required for an algorithm to solve them increases as 2™. This
means that for n sufficiently large the problem becomes increasingly
unwieldy in computer space or in time of computation. These are
refered to as nonpolynomial (NP) complete problems. This means
that computers that currently exist are limited in their ability to
solve these types of problems for data sets that are at all large.

Quantum computers provide a method for solving these type of prob-
lems. Essentially, if such a problem can be run quantum mechanically
then the system will process the problem as a quantum superposi-
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tion of states. This means that a processing element, or bit, in a
quantum computer can exist as a superposed set of possible states,
a g-bit. Since such a processing element then processes a set given
by Y., e*Ent this means that the actual computer space and time
required is a logarithm of the space and time required for a classi-
cal computer. In effect a quantum computer is a parallel processor
that executes each of these individual processes in a superposition
of states. In general this is accomplished by putting an array of two
states atoms or ions into entangled states.

Ry

1 2 3 e n [2)

2 aloms in an array with two states each

Figure 9.1

This would mean that a whole class or problems that are in general
inaccessible to current computing power would become computable
within reasonable space and time constraints.

The current approach to quantum computers involves ion traps.
These are devices that are able to trap ions or atoms in local elec-
tromagnetic wells with lasers that manipulate the quantum states
of the ions or atoms. The ion trap scheme was advanced by Cirac
and Zoller [1] involved establishing entangled atomic states by the
exchange of phonons. These phonons are extablished by the mutual
electrostatic interaction between the ion charges. An atomic scheme
was advanced by Pellizzari et. al. {2]where atoms communicate by
the exchange of photons in an optical cavity. The laser pulses the
atoms or ions with photons that induce a 7/2 spin change on the
two states system, here thought of as generically a spin % system,
that will result in entangled states.
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Figure 9.3

A quantum computer is composed of quantum bits, g-bits, that are
two level atoms woth the quantum states [1) and |2). This is similar
to a standard computer, but in the case of a standard or classical
computer a bit exists in one state exclusive of the other and with
a quantum computer a g-bit can exist in a superposition of the two
states |¢/) = Cj|1) + C3|2). In general this superposition can
include and arbitrary number of basis elements. These g-bits each
define a set of two state Hilbert spaces Hy, Hz, ... Hn. A state vector
defined by this entanglement will then have 2™ possible states. This
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means that an array of 3 atoms or ions, 3 g-bits, will then define the
wave function

|?[)> = 011111,1,1) + an]].,].,?) + ... + nggl?,?,?). (9.1.1)

This system is then a quantum parallel processor with quantum wave
interference between the various computational paths. The atoms or
ions for these -bits exist in an array and are placed in an entangle-
ment of states by the 7/2 laser pulses.

The operation of a quantum computer involves three basic steps:
preparation of states, computation, and read out of the output,
[hin)) = Z CE™|n) : preparation of input,

n

[% finat) = iH‘]?/zin) : computation by Schrodinger equation,
[ (out)) Z C("“t)]n ) : read out of input. (9.1.2)

The preparation of states involves the establishment of entangled
states. The nature of the entangled states determines the form of the
parallel computation to be performed. The evolution of the compu-
tation is governed by a Hamiltonian that governs a time reversible
computation, where reversibility is established by the addition of
registers that record each step of a computation, of a Turning ma-
chine or Von Neumann type of computational system. Reversibility
is important, for the erasure of information involves irreversibility
and entropy and is not an aspect of quantum mechanics. The read
out must be performed by measurements of the quantum system.
This results in an irreversible change in the system. The addition of
quantum erasers, pumped optical cavity systems that can reestablish
quantum coherence, would be required if output is required during
the execution of the quantum computer.

Of central concern with quantum computers is the problem of deco-
herence. This problem stems from two sources. The first is thermal
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noise in the environment. Zurek has demonstrated that thermal noise
has the effect of increasing the volume of a system in phase space.
Since information is contained on the energy surface that bounds
this volume, the increased volume expands this energy surface means
that this information is increasingly mixed in with random bits of
information. The result is that the system will continually lose in-
formation. The second source is the existence of the vacuum in the
universe. The quantum computer has a finite number of states. This
means that the system’s information is completely recoverable since
there will be a Poincare reccurrence of states. However the vacuum
has an infinite number of states, defined by the set of modes {|0;)},
for k € {0, ... oo} and continuous, which means that a sponta-
neous emission of a photon by the computer that cancels one of these
vacuum modes will not have a Poincare reccurrence cycle that is fi-
nite in time. The vacuum is effectively a system of random quantum
fluctuations and contributes to the noise that a quantum comput-
ing system would encounter. Since each of the g-bits has a certain
probability of exhibiting decoherence during any time interval this
means that a quantum computer will have an exponential sensitivity
to noise and spontaneous emission. This problem is a major arena
of research at this time.

The nonlocality of quantum mechanics is most often seen in the
entanglement of states. These entanglements give rise to spacelike
connections between states. The simplest example is seen with a
pair of spin 1/2 particles that result from the decay of a spin 0
particle. The two particles fly apart in opposite directions. Assume,
if one particle passes through a region with a magnetic field both
particles will be subjected to the spin precession. A measure of the
spin position of both particles will reveal that the spins are still
in opposite directions. This will obtain even when both particles
are measured simultaneously so that signal can be communicated
between the two detectors at the time of measurement.
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The precise nature of entangled states can be seen with an example
from quantum optics. Basically an entangled state is the following.
Say we have N two state atoms. Each atom has the states |1) and
|2) that are relevant to the problem. We put all the atoms in their
ground states, so the state of the n atoms in combination are

119112 . |1 (9.1.3)

Now we apply a /2 pulse to the first atom and we get the state

1
) = 7§(I1>1 + 12)2)IDz2 - (1) (9.1.4)

Now we apply the following transformation between the first and
second atomic states

[D1[)2 = {D1]1)2
[D112)2 = [1)1]2)2
2)1|1)2 — [1l1)2 (9.1.5)
2)112)2 = [2)1]1)2.
This can be more generally seen as the following map
la){p) — la)la + b), (9.1.6)

where a is a control state for this control-NOT operation. Now we
apply this to our wave function |1/) where atom 1 is the control state
for the second state

by - %ummz F 22D e 1. (0.1.7)

Now just repeat the process where the first atomic state is the control

state
) — \/%“1)1'1)2 D+ 2022 o [2)e). (918)

This is the final entangled, or maximally entangled state, for the
system.
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The problem with decoherence can be illustrated with this entangled
state. It is easy to see that if there is a jump that occurs due to
stochastic noise that this maximally entangled state will become

) = %(]1)1]1)2 cn0i™ _ state [1)n +21]2)2 . no ¢ state |n))i)

(9.1.9)
which is no longer a maximally entangled state. Entangled states are
vulnerable to environmental effects such as spontaneous emission. Tt
is then apparent that if an entangled, or partially entangled, state in
the operation of a quantum computer emits a photon and is further
disentangled that the quantum computer would be effectively solving
an entirely different problem than the initial problem. Further, the
information pertaining to the intended problem is lost.

The situation that is proposed is one involving electron spin reso-
nance (ESR), or nuclear magnetic resonance (NMR), with charged
amino acid residues. The basic side chains lysine, arginine and his-
tidine are alkaline amino acids with a positive charge. The acidic
side chains aspartic acid and glutamic acid have a negative charge.
In either case, and excess electron for an acidic chain or an excess
nuclear charge, that may be effectively an electron hole, for the basic
side chain. These amino acids are common in alpha helical proteins.
The alpha helical structure is one that is a secondary structure where
the protein exists in a helix, in much the same way DNA does, and
where the helix executes on turn 27 for every 3.6 amino acid residues.
Charged amino acid residues are common in alpha helices where the
charges on these residues form hydrogen bonds that stabilizes the
structure of the helix. Often nonploar amino acids, except proline
due a bond between a trimethyl group with the carbon and nitro-
gen in the amine group that bends this in a fixed angle, are also
found in alpha helical chains. These protein subunits naturally find
themselves inside cell membranes, due to their hydrophobic nature,
that act as anchors, and as regions that bind to various sequences of
DNA. It is the charge nature of these proteins that they are proposed
n experiments for ESR based quantum computers.

-

T e
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A brief discussion is in order on the nature of how proteins are con-
structed in a cell. The usual laws of physics apply, mechanics and
thermodymanics in the formation of a protein. Here we examine
the ratchet like machinery that is involved with the formation of a
polypeptide. At each step in the formation of a protein an amino
acid is linked to the nascent polypeptide chain through ATP hydroly-
sis. This iterative mechanism involves fluctuations that are modeled
according to the Feynman ratchet.

We compare the formation of a protein to the mechanism of a ratchet
form of a tire jack. One pushed on a lever to lift the car and a ratchet
that held the car at that height as you reset the lever. The ratchet
was a device that permitted work on the system to be conducted in
one direction. The work in lifting the car is then stored as gravi-
tational potential energy. This device is one that can be imagined
scaled to the nanoscale. This device would then be subject to the
random motion of gas or liquid molecules. As such, it is possible that
a molecule of gas could strike the lever thus lifting the jack and the
added height kept fixed by the ratchet. As a result, this jack could
just sit in an ambient environment and simply lift some small object.
We then have a curious situation where the potential energy of some
small mass is increased with no heat flow. This is then an apparent
violation of the second law of thermodynamics. Feynman discussed
this problem in his Lectures on Physics [3] and demonstrated that
the apparent violation is resolved by considering the fact that the
ratchet is itself an object with a finite temperature, and as such the
ratchet is also subject to fluctuations. It is then concluded that the
ratchet is unable to lift the mass up or even store some potential en-
ergy for an indefinite period of time. It is possible for the Brownian
motion of air molecules to impart net energy onto the ratchet if the
ratchet is at a substantially lower temperature than the air. Such
a system will work with the normal Carnot efficiency. As such the
nanoscale jack would need to have some input of external energy to
move the system from thermodynamic equilibrium.
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There are molecular forms of the tire jack. In this regime, 10-100nm,
one is at a scale that is significantly larger than quantum fluctuations,
but where statistical fluctuations due to Brownian motion predomi-
nate. Further, the Reynolds number = mass/friction becomes very
large. This means that a bacillus swimming through water faces the
same sort of resistance a swimmer would in a pool of honey or mo-
lasses. On this scale the predominant mechanisms are then viscosity
and the diffusive effects from Brownian motion of water molecules.

The role of actin and myosin in muscle cells is very analogous to
the tire jack. Muscle tissue is made of elongated multinucleated
cells, segmented into sarcomeres, that are threaded with alternating
threads of of actin and myosin fibers. The actin fibers are attached
to what are called Z disks and the myosin fibers lie in between the
actin fibrils.

amplified force from lever action
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Myasin fibril bundles

actin fibrils

Figure 9.5

The myosin heads then, through a process of phosphorylation, attach
to the actin fibrils and move inward, thus exerting an inward force
on the Z disks. This results in a contraction of the overall sarcomere.
The myosin heads move along the chain of actin molecules in much
the same manner that a ratchet works (figure 9.6). At the start of
each cycle each myosin head is attached to an actin. With the bind-
ing of ATP each head detaches and is cocked. The phosphorylation
of the myosin head with ATP — ADP + P; results in a power
stroke. The process is similar to the ratchet device in that at the
start of the cycle the myosin head is locked into a position. If there
is an opposing force on the sarcomere at the start of the cycle, the
sarcomere is held rigid. When an organism dies the myosin heads
are left in this position and is the cause for rigormortis. The myosin-
actin mechanism of muscle is an example of Feynman’s resolution of
the Brownian propelled ratchet. If the myosin head were not subject
to thermal fluctuations then it might be possible for muscular action
without the need of energetic ATP that gives 7.3kcal/mole of free
energy|[4].

Another example of the ratchet mechanism in biology is the process
by which nRNA is translated into a polypeptitide chain. This mech-
anism is more complex for unlike the actin-myosin system where
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the actin and myosin fibers are fixed to the sarcomere, the polypep-
tide chain that is produces is free to fold in response to the internal
stresses within the chain and the mechanical fluctuations that ensue
from the energetic process. The process then leads to the formation
of a protein with a three dimensional shape that effectively contains
different information, according to its function, than just the lin-
ear chain of nucleotides in the DNA that encoded the protein. The
polypeptide is produced in the ribosome, where mRNA is read in a
manner similar to how a computer reads a tape (figure 9.7). Proteins
are linked in polypeptide bonds that connect the amine and carboxyl
ends of amino acids together. The process is diagrammed in figure
9.8.

This process involves the use of energy at four steps. The first is
that that ATP — AMP + P; is required in the formation of
an adenylated amino acid with a phosphate bond. Secondly this in
turn transfers the amono acid to the tRNA, where energetically the
process is left with an AMP along with the aminoacyl-tRNA. This
subsequent energetic process involves an aminoacyl tRNA synthetase
that is specific for each amino acid. The third energetic process in-
volves the formation of the peptide bond through ATP hydrolysis.
The final step is the translocation of the t-RNAs with elongation
factors and the energetic pathway induced by GTP — GDP + P,
As such the formation of a polypeptide is an energetically intensive
process. The first energetic pathway, while biologically important is
not of specific interest here, for it is not explicitely coupled to any
nascent polypeptide or the ribosome. The second process may be
of importance, but since it is coupled to the ribosome this step may
not result in vibrational modes that effect the polypeptide. This as-
sumption is based on the reasoning that the ribosome is a massive
molecule and any energy fuctuation is either not likely to induce
significant bulk motion and that modes induced inside the ribosome
are likely to be distributed according to the virial theorem through-
out the ribosome. As such these modes will be ”diluted” within this
macromolecle and will weakly couple to the nascent polypeptide. As
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such this energetic pathway is not considered. The process that is
of direct importance is ATP hydrolysis. It is here that the energy
fluctuation will be strongly coupled to the nascent polypeptide. This
will then act as the energy involved with the mechanics of protein
folding. The final process that is of importance is the translocation
of t-RNA, for this effectively moves the nascent protein out of the
ribosome. As such the second and fourth steps will induce modes
on the polypeptide chain, where these modes may induce confor-
mational changes or put the nascent protein into various ”folding
states.” Both of these steps also act to release a ratchet.

It has been demonstrated that polymerases that replicate DNA exert
a force on the DN A that it is measurable throught the application of
laser tweezers. Here a bead is attached to the DNA and the optical
molasses that occurs from two opposing laser beams can be used to
detect this minute force. The force is exerted in pulses as NTP’s
expend their energies and are incorporated into the replicated DNA
chain. In the case of the formation of peptide bonds we see that in
the middle diagram that the occurrence of the peptide bond requires
ATP. Without ATP the process is "stuck” at the first frame. It is
then reasonable to think that the occurrence of the aminoacyl-tRNA
in the A binding area of the ribosome, the A region is where the
first tRNA binds and the P region is where the second tRNA binds,
acts much as the ratchet in a car jack. Without the energetically
favorable dephosphporylation that occurs with ATP — ADP, this
system is stuck. Hence this situation implies that there is some nkT
of energy required to change this binding of the aminoacyl-tRNA in
the A binding region in order the to change this system. The ATP
hydrolysis involves the release of a Gibbs free energy mkT where
m > n. As such the process of polypeptide formation and the ” Vir-
ginia wheeling” of tRNAs then ejects the left tRNA is energetically
possible. External energy has been applied to remove the ratchet
from its lock and keep the system in motion.
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The ATP hydrolysis of aminoacyl-tRNA into tRNA that binds the
amino acid onto the nascent protein involves the use of Gibbs free
energy to forge the peptide bond. Translocation of the t-RNAs also
require the release of energy from GTP. We will at this point treat
both of these steps as being one from the standpoint of stochastic
mechanics. Both steps trip the ratchet and they further deliver their
work onto the nascent polypeptide. This process will then involve
a quantity of Gibbs free energy 6G = 0E — Té4S, where E is
the energy available to to work, T is the temperature, and S is the
entropy. In effect the work available to the system changes the state
of the ratchet and overcomes the potential barrier associated with it
in the locked state. As such the Gibbs free energy gives a chemical
potential that induces a definate direction for the progression of the
system.

Suppose that we have a ribosome that is producing an polypeptide
chain with charged amino acid residues. The mRNA is engineered
to produce a particular alpha helix. If we wish for these charged
residues to interact with each other two problems must be overcome.
The first is that the polypeptide chain must be prevented from coiling
up with the formation of hydrogen bonds between the acidic and
alkaline residues. These bonds will neutralize the charges. There are
two ways of preventing this. We could have a polypeptide chain with
only acidic or alkaline amino acid residues. The second problem is
that these amino acid residues will attract water molecules and form
bonds. Again this is a problem, but these bonds can be broken by
a microwave that is tuned to their frequencies after the polypeptide
is crystalized. The result is a chain of amino acid residues that
will act just as the ion traps currently employed in experimental
arrangements of quantum computers. An obvious advantage is that
there is no need for expensive arrangements to trap ions, for in this
case the charges are held in place by the peptide bonds between
the amine and carboxyl groups in the polypeptide chain. An other
advantage is that these polypeptide chains can be arrayed in lattices
and arrangements.
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Before discussing the nature of quantum computers and the
NMR/ESR role with the B®) the following is proposed as the
method used for producing a polypeptide quantum computer. A
prokaryotic cell such as Escherichia coli is a system with polymerases

2 eecall g Introduce plasmi for replicating DNA and for translating it into mRNA. The mRNA is

Prokaryotic ., = gﬁ’ ite:z,,d O sth 2”81”9” ed then translated by ribosomes to produce polypeptides. A method for

chr omosome. e producing polypeptides for quantum computing is to lyse an E-coli

5 and introduce a plasmid with the a gene for the repeated sequence of

a charged amino acids. This peptide is designed and its template is

its designed DNA. The molecular machinery of the cell will produce

ohmerase the mRNA that is complementary to the DNA sequence and the ri-

cytosol i ‘ 4 bosome will in turn produce the polypeptide. The amino acids that
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lifts the product from the lysed cell. The protein is crystallized and
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acidic amino acids respectively. The beads that hold the amine and
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In order to produce an electron spin resonance effect one needs an
external magnetic field and an electromagnetic field that acts to flip
the spin of the various residues. The spin states are defined by
the external magnetic field as these spin states are aligned in the
direction of this field. The timing of the electromagnetic pulse is
what determines if the spin is completely flipped or if it enters into a
state that is a superposition of the spin up and spin down states. The
contolled-not gate can be seen with the correlations between the two
spin states of the electron on the amino acid residue. The coupled
spins of the electrons will energetically favor spin antiallignment.
If we initially start out with two electrons in aligned states and a
pulse places one electron into a superposition of the spin up and
spin down state then after a time when a second 7/2 pulse is placed
on this electron it will be antialligned in its final state. A repeat of
this experiment on an electron that is antialligned with the second
one will reveal that this electron after the two /2 pulses will end up
back in the antialligned state. This is the basically the controlled-not
gate.

Glutamic acid residue |
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Figure 9.11

With the B(®) field the construction of a quantum processing unit
or chip is unencumbered by the requirement for large magnets. The
B®) field is produced by an electromagnetic wave in a medium that
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induces nonlinear and nonabelian behavior. This field is compara-
tively strong and localized. Due to the 1/w? effect in the RFR effect
longer wavelength radiation is required. A 10Mhz radio wave can
induce a 14.5 mega tesla field. For the application discussed here
an infrared laser would probably suffice to generate a field. A far
infrared laser could produce a field approaching a tesla.

Applications towards quantum computers will doubtless be re-
searched as the empirical reality of the B(®) field becomes appar-
ent. The discussions of the magnetic resonance effect from the B(®)
indicates that it should be possible to induce the NMR effect on
two spins when the two spins are coupled by a Hamiltonian of the
form o - o'. We have the standard Hamiltonians for the two spins
H = Ho + Hps, + Hpw), where the B®) Hamiltonians are

82 3
Hps = heV Zk:(wkIaLak 4 zq:wqa( Natar—q + aqa{,_q))

£

Higeps= 2w,e0V
q

E (a}c_l_qakaz,_qak:). (9-1.10)
kK g

This coupling between the spins will then permit the existence of
entangled states and the existence of a controlled-NOT state.

The largest difficulty with any quantum computer is decoherence. In
this simulation it is assumed that the cavity is a perfect Q cavity.
However, reality is not so forgiving. The problem is that spontaneous
emission of a photon from a g-bit can occur in 10~° seconds. A
High Q cavity can reduce this significantly, and the application of
a quantum eraser can restore quantum entanglements lost through
decoherence. A quantum eraser involves the application of a detector
that measures a photon emitted by an excited atom, and then directs
a photon to a half meter that stimulates that atom and the atom the
state was entangled with. The result is that the entangled state can
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be restored. However, the practical issues are not entirely solved.
The quantum eraser allows one to measure a quantum state without
destroying the quantum entanglements of that state, and can thus
be used to restore the entanglement of a state due to the quantum
noise of the environment.

The future appears to be open to new forms of computation. While
the problems with quantum computing are not entirely solved, there
is a prospect that quantum computers may exist in the early twenty
first century and offer general solutions to NP complete problems.

9.2 B®) FIELD AND THE SEQUENCING OF DNA

NMR basically looks at the energy gap associated with a spin flip.
This usually involves looking at the spin flip of hydrogen. Now if
B®) occurs in a nonlinear quantum optical system this might be
a way of mapping out the occurrence of hydrogens in a molecular
chain. By this it may be possible to sequence a gene by directly
mapping the places for hydrogens.

The idea would be to use far infrared lasers that will have nonlinear
and NMR behavior. This would allow for the mapping of hydrogens
in a DNA chain. This would allow for quick sequencing of DNA
samples for the purpose of genome identification. Current methods,
while better than they were 10 years ago, are still fairly laborious.
Recombinant genetics costs have gone from $5.00 per base pair to
$.50 per per base pair in the last 10 years. A nonchemical sequencing
technique would undoubtedly drive this cost down further.
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Most NMR involves finding the spin flip of a proton in a hydrogen
atom. The problem with NMR is that it is rather course grained.
Now suppose a DNA sample is placed on an array of micro-Josephson
junctions. An IR laser scans the sample so that the charged induced
phase shift gives rise to a B®) field. Then the rfr effect occurs
with the hydrogens in the DNA. The interaction of the B®) field
with the spin will induce flux across the Josephson junction. This
would be a quantum NMR device where we would detect the change
in a quanta of magnetic flux ~ e/h. We can then form a map
of the occurrence of hydrogens and map the H-bonds between the
complementary strands of DNA. As the spin coupling is different for
the two types of purine to pyrimadine bonds are different, a map may
be made the occurrence of hydrogens in the base pairs and identify
the purines and pyrimidines.

spin states of hydrogen
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hydrogen bond
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This would be faster and simpler than current methods. It involves
taking a sample of single strand DNA (split off by heating), putting
it in the presence of a polymerase and nucleosides where about 5%
are dideoxynucleic acids. This adulteration of the 3’ end at the ribose

‘_
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prevents the phosphodiester bond between the 5’ and 3’ end of the [4] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, J. Watson, Molec-
nucleoside with the complementary DNA strand by the polymerase. ular Biology of the Cell, Garland Publishing, Inc, New York, (1994).
The result is that one gets a mixture of complementary DNA with
varying lengths. Heating then splits the complementary strands and
this is run through an electrophoresis gel. The short strand move fast
and the long ones move slow through the gel under the influence of
the electrical field. By making 4 batches, each run on the gel side by
side like a race track, with adenine thymidine, guanine and cytosine
as the dideoxynucleoside in each lane. Then one can then read off on
the blot the sequence of a gene. This is a rather complex, laborous
and time consuming. It also involves the use of ethidium bromide
for identification of bands. E-Br is a very dangerous substance for it
is extremely mutanagenic and carcinogenic. Perkin Elmer produces
an automated sequencer that makes this work certainly easier. It
interfaces a MAC and the results are read off on the computer screen.

In the end economics makes the difference. The cost per base pair
sequencing is currently between .25—.50, where it was ten times that
in the 80s. One cost is augarose gel, and a serious sequencing is
done on a pretty large gel frame and uses a lot of this. The other
problem is that this takes considerable time for the gel to run as all
those negatively charged DNA strands have to squirm through the
gel under an electric potential. So the cost here is time, but as it is
said time is money. This proposed method could drive the cost per
base pair much further down then this would become an accepted
way of gene sequencing.

REFERENCES

(1] J.I Cirac, and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).

[2] T. Pellizzari, S. Gardiner, J. Cirac, P. Zoller, Phys. Rev. Lett. 75,
3788 (1995).

[3] R. Feynman, Feynman Lectures on Physics vol I, Addison Wesley
Pub. (1965).




441

APPENDIX 1
APPLICATIONS OF STOKES’ THEOREM

In this appendix three applications of Stokes’ Theorem are given
which distinguish between a static magnetic field; the magnetic com-
ponent of an electromagnetic field; and a topological magnetic field.

1. The Static Magnetic Field: Integration around a Circle

The relevant Stokes Theorem in this case is the abelian:

?{A-dl = //B~dA = 7mR*By, (A1.1)

where B = V x A. The area integral is around a circle of radius R,
and the line integral is over the circumference. The vector potential

can be expressed as:

1 . .
A = §B(X_1 — Y1), (A1.2)

in cartesian coordinates (X, Y), related to circular polar coordinates
by:
X = Rcos#; dX = —Rsinddd

Y = Rsinb; dY = Rcosfdd. (A1.3)

It is readily checked that the line integral is equal to the area integral:
1 2
f{ A-dl = EBLRZ / (sin%8 + cos®4)dd
0

= 7B, R?, (A1.4)

as given by the abelian Stokes Theorem.
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2. Magnetic Component of an Abelian Electromagnetic
Field

The relation between the magnetic component of an abelian elec-

tromagnetic field and the vector potential is again B = V x A,
where: o
A
A = — 71 + ] 8.“#)
7 ( 7)
B :
B = — (5 — it + k)<
7 (g )
are plane waves. Here ¢ is the abelian phase factor ¢ = wt — k-7
as usual. If an integration is attempted around a circle, with:
A = |Alk, (A1.6)

it is seen immediately that the result is zero. As shown in chapter
three, the line integral also vanishes. So the topological phase is
undefined in abelian electrodynamics because B3 is undefined.

3. The Topological Magnetic Field B®
The topological magnetic field is defined in O(3) electrodynamics as
(see chapter three):

B@* = _ig401) x A (A1.7)

and is not defined as the curl of a vector potential. It gives the
topological phase factor:

7:9//13(3)‘4/1:2%%1;@3 (A1.8)

which is achromatic. The line integral equal to this achromatic phase
factor is along the propagation axis, because as seen in example (2).
the transverse contributions vanish. The Stokes Theorem needed for
this result is non-Abelian and the B field is related to the topological
charge, or magnetic monopole, through:

o = / / B® .44, (419)
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where V is a volume. The B®) field essentially derives a form of
the Berry phase for one photon, and is related to the Pancharatnam
phase. The phase factor -y for one photon is the topological charge
41, and is detected in interferometry by changing the state of polar-
ization of the beam in one arm. Experimentally there is no difference
in interferometry between a phase change induced by changing the
length of one arm (changing the optical path length), and a phase
difference induced by changing polarization in one arm. This is what
the non-Abelian Stokes Theorem (A8) has to say. However, the topo-
logical phase is experimentally distinct from the dynamical phase in
several ways, as summarized in chapter three.
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Bogoliubov transformation 350-353, 361-367, 399-400
Bogomolny theory 134
Bohm quantum theory 240-255, 348-350, 399-400
Bohr magneton 39
Box normalized modes 163
Brownian motion 321-322

Cantor set 243-244, 258
Chaos 204
Planck scale 435
quantum chaos 240-255
Charge
conservation 56
duality 353-356, 409-410
electron 3, 6, 38, 40
Lorentz force 5,7
quantization 57-58, 67-73
units of 41, 56, 410




448 Index

Compton effect 42,57
Conjugate spacetime variables 343-353
Cosmological wave function 348-361, 371-381
Coulomb’s law 11, 52-54
Coulomb gauge 24
Covariant
derivatives 17-19, 78, 141-148, 151
gauge 17-19, 28, 170-178, 217, 240
spacetime 17, 24
Current 11, 14
conservation of 56-57
units of 38
Curvature
bundle 428-430
extrinsic  346-348
spacetime 347-352, 371-380
Ricci 352, 400
Weyl 415
Cyclicity condition 19, 40, 95,117

d-branes 354
de Sitter cosmology 356-357, 407
Differential forms 168—-169

Dipole

electric 25

magnetic  20-23, 25-30
Dirac

energy term  8-9
equation 20-23
matrices 21
monopole 354-356, 371, 376, 398, 409
paradox 72
Density operators 241-244
Displacement 11, 38
units of 38
Duality 339437
fields 354-360
four manifolds 377
monopoles 355, 410
quantum vs Mach 341-343
SU2)x SU(2) 286-306, 342
“subPlanck” physics 339-342

topological 370
vortices 353, 408-409, 420
W. 343-345

Doppler effect  87-99

Eigenvalue 24
harmonic oscillator  179-182

Einstein
Einstein-Mach 341-343
general relativity 135
curvature 343, 368-381, 399-415
Ricci 352, 405
Weyl 415
field equations  373-380, 400
special relativity 16, 20
summation 12-13

Electric field 5-12, 46-47, 161-164, 175, 181, 213
charge polarization 212-214, 227-229, 232,233
dipole 25
duality 355
monopoles 12, 355
permativity 11
units of 38-39

Electron spin resonance 9

Electromagnetic radiation 36

Energy
cutoff 220
electromagnetic 3
Fermi energy gap 353
fluctuation 205, 213-217
ground state 25, 180, 212-221, 350-353, 363-366
high energy 16, 42, 58, 286-310
infrared divergence 9, 222-227
interaction 4, 7-9, 25, 33, 153-154
inverse Faraday 22, 25, 29, 32-33, 4960
kinetic 3-9
Lamb shift 217-221, 284
negative 208
nonAbelian aspects  176-179
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perturbation 27
Planck 353-354, 358-362
potential 24-26, 126
quanta of 180
relativistic 20
renormalization 220, 227-281
RFR quantum description 179-205
states 162, 164-166, 179-183
SU2)

homomorphism 8-9
surface 244-257

Fermi 352-353

vacuum (zero point) 25, 180, 212221, 350-353, 363-366

Entangled states 313-317, 344-346
Ether

Maxwell’s 13,59
Euler—Mascheroni number 279, 281

Fabry-Perot interferomenter 175
Faraday’s law 16, 52-53, 117-119, 161, 206
string surface  353-355, 408
Fermi energy gap 352-353
Fermi golden rule  163-164
Feynman diagrams 213
Feynman ratchet 321-322
Feynman rotons 241
Fields
electric 511, 4647, 161-164, 175, 181,213
duality 335
magnetic  4-6, 40, 43, 5155, 161
duality 355
Fluctuation
Markovian 256
nonMarkovian 257
quantum 214-221, 249-256, 272, 278
quantum gravity 345-370, 399-400
Foliation of planes of constant action 257
Four vector 12
Frequency
v 222-227
absorption probability 164, 167

B® interaction 64
doubling 204

eigen 179-180

quantum oscillator 210,223
RFR 173, 179-204, 222-227
spin resonant 8-9
transition 210

Galileo 160
Gauge

chiral 297-306, 396
choice 161
connection 78, 8082, 86, 251-252
duality 339, 343-345, 355
Feynman 271,274
fixing term 15, 18, 272-274
gravitation 342
constraints 371-378
invariance 3, 6-8
Kac-Moody 382,391, 413-418, 426-430
Landan 15, 18,270-271, 274
Jattice theories 171-172
local transformation 15, 265-268, 429—-431
massive A(3)
nonAbelian 10
physical vacuum 292-396
potential 133
quantum mechanics 15, 17, 77, 144
radiation 18
string 354, 359, 381-414
symmetry
0(3), 7-10,78,81, 115, 118, 137, 140
SO3) 78,81
SO0(32) 396
sU@2) 7-8, 139-141, 147, 285, 304
SUQR)x SUQ2) 285-310, 340
SU@3) 308-309, 342
SU@4) 305-306
U@y 6,10, 13-15, 79-83, 89-90, 115-121,139
U1y x SU@2) 139, 285,294
theory 77, 8082, 140-144, 251-255
transformation 5, 80-83, 162
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vector boson 286-310

Virasoro construction 380, 386-391, 427-433

weak interaction 286-306
W. 380,431-433
Yang-Mills 80, 118, 251, 430
Z,boson 295, 297, 306-309
Gauss law 11, 51, 162
Gauss—Bonnet theorem 240-242
Gibbs free energy 329
Gilbert, William 159
Gluon 381
self-interaction 14
Grand Unified Theory (GUT) 261, 309
Gravitation 135, 371-380
ADM 346-361, 403, 414
Ashtekar variables 351-353, 371-380
canonical quantization 348-351
curvature 346-352, 371-381
Ricci 352, 400, 414
Weyl 414
field equations  377-380, 400
Gupta-Bleuler condition 18

Hamiltonian 24-28, 165, 179-184, 208, 217, 222223, 237-246, 254-253

357, 373-376, 412

BCS 407

constraint 346-351, 356-357, 373-375

gravitation 351, 374

rfr quantum  179-206

string surface  343-344, 407-412
Hamilton-Jacobi equation  239-241, 248-252, 375
Hamiltonian chaos 246-258
Harmuth ansatz 115, 123, 287-290, 301-303, 340
Higgs field 287-290, 301-303, 340
Hopf bifurcation f doubling 204

Infrared divergences 205,218
Inverse Faraday effect 29-31, 152-155
Infinitesmal
spacetime interval 20-22
[nstanton 122-136, 174-178

’

Jacobi identify 78, 389, 412
Kolmogorov—Arnold-Moser (KAM) 243

Lagrangian

Arnowitt—Deser-Misner (ADM) 352, 373-374
broken 288-293, 302-303, 407
conformal 417-420
Dirac 268
electrodynamics 16, 262-268
electroweak 285-292, 302-305
gravitational 370, 373-374, 400, 406411
harmonic oscillator 279-289
Higgs field 274, 286-289, 301-303
Lagrange multipliers 346
nonAbelian 205, 262
nonLagrangian symmetry 277, 282-285, 290-292
quantum potential 252, 349-352
Sakharov 359-360
soliton 122-126, 130-136, 177-178, 381-414
strings 381-414
Yukawa 288, 302-304
Lamb shift 205-209, 214, 221
Landau frequency doubling 204
Landau-Ginsburg potential 198
Liapunov exponent 247, 256
Light
speed of 4
Longitudinal fields 18, 224
Loop (interferometer) 77-80
Lorentz transformations 20

Mach principle 339-343
Magnetic field strength 38, 41
Magnetic flux density 38, 40, 108
Magnetic flux quanta 39, 214
Mass counter term  277-279
Maxwell’s equations 11, 47, 159, 162, 179
Michelson-Morley interferometer 86-96
Michelson-Gale interferometer 108-109
Monopole

electric 11-12, 355
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magnetic  11-12, 119, 126, 355 Wu-Yang 93
Motion . Path integral 278, 412
equation of 15 Phonon 222-227
quantum (Schrédinger) 7, 17, 27, 165-167, 182-184, 208-211 Photon  7-8
van der Waerden 23 bunching 176-178
vortices 176
Myosin  322-323 Planck scale 261, 341, 348-356, 361-370, 383, 399, 424
Poincare half plane 247-248
NonAbelian Poisson statistics of photons 218-219
electrodynamics 10, 28, 41-42, 84-86, 88-90, 96-99, 129133, Polarizability 4, 6-8
270-273, 280, 285, 293 circularly 5-10, 115, 118, 121
gauge field theory 10, 285-310 Polarization vector 38
Nonlinear optics  175~178, 282285 Polypeptide chain 320-330
Nonlinear Schrédinger equation  174-178 Potential
Nuclear Magnetic Resonance 7, 31 chemical 412-413
energy 24-26
Operator gauge (vector) 3, 12,39-44,78, 81-86, 143-144, 147-152, 161-165, 210,
annihilation 167, 179-182, 223 241, 251, 263-276, 286-292, 297, 411
covariant 15 gauge (chiral) 301-306
creation 179-182, 223 gravitational 372, 376-379, 400, 405, 411-413
differential 169-172 Kahler 405
Hamiltonian 24-28, 165, 181-182, 351 quantum 250, 348, 400
Hodge star 12, 169 Power
momentum operator 162-166, 209, 221 density 9
quantum 18, 23, 162-167, 174-177, 179, 182, 209, 221 inverse Faraday 29
Schrodinger 209 Principal bundle 173, 248, 263~267, 415-416, 428-430
kernal of 209 Projective space  403-406
Optics Propagator (Green’s function) 208-21 1,269-273,277-281
nonlinear 175-178, 282-285 Proper time 20
Optical Hall effect 156
Optical Josephson effect 155-156 Quantum gravity 261, 339-343, 348-362, 405-413, 422-424
Quantum mechanics 11, 17, 20-22, 24-26, 162-168
Parallel transport 83, 88-90, 101, 105 Bohm’s model 248-252, 348-351, 400
Phase shift numerical 182-206
Aharonov—-Bohm 16 quantum potential 249-256, 348, 390-392, 400, 403
averaging 26 quantum vortices  237-242
gauge transformation 15, 81, 85, 89-90 quantum gravity 353, 392-403
inverse Faraday 152, 265-268 Quantum Chromodynamics (QCD)  228-234, 309, 234
quantum 14-17, 80-84, 93-102 Quantum computers 314-316, 332-334
Pancharatnam 92-102 Quarks 173-174

topological 80-84, 93-102

Virasoro 429-430 Rabi flopping 177, 184-185
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Recombinant genetics  334-335
Radiation 3-4

polarized 7-9, 115, 118, 121
Relativistic

Dirac equation  21-22, 268, 274

electromagnetism 20-27

momentum 20

motion 18, 22

quantum mechanics 20-26
Relativity

general relativity 135, 339-343, 345-253, 356-360, 371-381,

399-402, 407-414

special relativity  12-15, 20-23
Renormalization 275-281
Resonance

condition in RFR 29

spin 8
Rotation

internal gauge space 6-7, 80-83

relativistic 17

Sagnac effect 86-92
Scalar
gauge transformation 5
potential 17, 161-162
Scattering 206-212
Schrédinger equation  26-28, 169, 179-184, 237-241
Pauli-Schrédinger 162, 165
Wheeler—DeWitt 348, 356-360, 375
Sine—-Gordon equation  122-127
Snellius, Willebrod 159
Soliton 122-136, 174-178
Spacetime 340, 343-353, 363-369, 399-402, 405-408, 421
Ricci 352, 403, 415
Weyl 403,415
Euclideanized 128-132
Squeezed states  282-285, 366-368
SQUID 214
Stokes parameter 4-7, 78-82, 140-150
Stokes theorem 93
nonAbelian 93, 151, 153-155
Strings 339, 343, 353-414






