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L TOPOLOGICAIL BASIS FOR HIGHER-SYMMETRY
ELECTRODYNAMICS

Topology is the study of geometrical configurations invariant under transforma-
tion by continuous mappings. It provides what is probably the most fundamental
known framework for the description of physical models using the mathematical
techniques of group theory [1] and gauge theory [2]. A study of the topology of a
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given experiment can be used to decide whether that experiment is possible
or not, and the decision is made in the language of group theory. Topological
considerations can be applied to the vacuum itself, so that the vacuum becomes
structured, or has a given configuration. On the basis of the fact that topology is a
fundamental description, then it is also a fundamental description of the vacuum
itself, and decides the structure of physical objects such as electrodynamic field
equations [3,4] in the vacuum. The group-theoretic description of the received
equations of classical electrodynamics, the Maxwell-Heaviside equations [5], is
U(1), homomorphic with O(2) (U(1) =~ O(2)). The latter is the group of rotations
in two dimensions, and the former is the group of all numbers of the form ¢'® =
cos ¢ + isin ¢, whose group space is a circle. The two groups are homomorphic
or similar in form. Each element of O(2) is given uniquely [6] by an angle a, the
angle of rotation in a plane. The group space of both O(2) and U(1) is therefore a
circle. The received view [5,6] asserts that the classical electromagnetic field is a
gauge field invariant under local U(1) gauge transformations. In other words,
Maxwell-Heaviside theory is a U(1) symmetry Yang—Mills gauge field theory.
Unified field theory proceeds on this assertion, specifically, that the electro-
magnetic sector has U(1) symmetry. The topological basis for this conclusion in
the received view is given by such phenomena as the Aharonov-Bohm effect [6],
where the classical vacuum is deduced to have a nontrivial topology [6]. This is
combined with the view that electrodynamics is a U(1) gauge theory to give the
received explanation of the Aharonov—Bohm effect [3,4,6]. In gauge theory in
general, however, the vacuum has a rich topological structure, and this structure
is not confined to U(1). Other groups may be used, and each has physical, or
measurable, gauge-invariant, consequences. Therefore, the most fundamental
basis for the development of field equations, such as those of classical
electrodynamics, is the topology of the vacuum itself. In order to understand
this further, some topological concepts must be introduced and defined.

Basic to the understanding of topology are simply and non-simply connected
spaces. The relevant topological space is the vacuum itself. A simply connected
space is one in which all closed curves may be shrunk to a point; and in a
non-simply connected space, this is not true in general. In a non-simply
connected space, a function may be many-valued, for example cos (¢ =+ 2nn).
In this view therefore, the Aharonov-Bohm effect can exist physically if and
only if the vacuum itself is not simply connected. The group theoretic
description of the Aharonov-Bohm effect follows from these considerations.
The U(1)~0O(2) group is not simply connected because its group space
(denoted S') is a circle. The group space S' itself is not simply connected
[6]. In the received view, this argument is used to show that the Aharonov-
Bohm effect is supported by a vacuum topology described by the group U(1).

In the 1990s, however, there have been several attempts to extend the
received view of classical electrodynamics, for example, the work of Barrett
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[3,4], Lehnert et al. [7-10], Evans et al. [11-20] and Harmuth et al. [21,22].
These attempts stem from anomalies and self-inconsistencies in classical elec-
trodynamics viewed as a U(1) gauge field theory. Some of these are reviewed in
Section III of this chapter. The basis for these developments resides, as it must,
in vacuum topology and its subsidiary languages of group and gauge theory. In
other words, it may be possible to describe classical electrodynamics with
groups other than U(1) in a non-simply connected vacuum, the relevant topolo-
gical space. Once a particular group is chosen, general gauge field theory [3,4,6]
may be used to write down the physical field equations of electrodynamics and
the field tensor [3,4,11-20]. The results of the hypothesis are compared with
empirical data as usual, and cross compared with the U(1) description. This
method is developed and reviewed in this chapter. The basis of our develop-
ment, therefore, is the topology of the vacuum, which ultimately decides which
set of field equations is the more accurate in its description of data. The basis for
gauge theory is fiber bundle theory, which is briefly reviewed in Section IL

We will be concerned in this article with the non-simply connected vacuum
described by the group O(3), the rotation group. The latter is defined [6] as
follows. Consider a spatial rotation in three dimensions of the form

X' X

Y| =(R)|Y or r=Rr (1)
z z

where R is a rotation matrix. Rotations have the property

X/z 4 Y/2 4 Z/2 — X2 4 Y2 4 ZZ (2)

which can be written

where T denotes “transpose.” Therefore

r"R'Rr =r"r

R'R=1 “)

where R is an orthogonal 3 x 3 matrix. These matrices form a group. If R| and R,
are orthogonal, then so is R R;:

(RiR2)"RIRy =RIRTRIR, = 1 (5)

This group is denoted O(3) in three dimensions, and O(r) in n dimensions.
The rotation group O(3) is a Lie group (i.e., is a continuous group), and is
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non-Abelian (i.e., its rotation matrices do not commute) [6]. A simple example of
an O(3) group is the one formed by the unit vectors of a Cartesian frame in three-
dimensional space:

ixj=k
Jxk=i (6)
kxi=j

Therefore, we can adopt as our fundamental hypothesis that the topological
space under consideration (i.e., the vacuum) is described by O(3) rather than
U(1) and work out the consequences {1 1-20]. Some of the latter are reviewed in
this chapter. An O(3) group can also be formed by the complex unit vectors
defined by

e\ =
V2

o) — (i+4) (7)
V2

P =k

so that

el x o) — jo®

e x e = jgll) (8)

forms an O(3) group suitable for the description of circularly polarized radiation,
and therefore of radiation in general [11-20]. Here, an asterisk (*) denotes
complex conjugate. There are several other ways of defining the O(3) group, one
of which is that it is the little group of the Poincaré group of special relativity [6].
A little group with structure O(3) is the group of a particle with mass. So if O(3)
is adopted as the group describing classical electrodynamics, the photon, on
quantization, may have a tiny mass (empirically estimated [23] as less than
1078 kg). The little group for the massless photon in the received view is
unphysical, it is the Euclidean E(2) [6,11-20]. This means that a particle without
mass is an unphysical object. The photon without mass is obtained by quantizing
a classical U(1) theory, suggesting that the received view is also unphysical.
We do not have to search far to find some unphysical properties of the U(1)
Yang-Mills gauge field theory of classical electromagnetism. For example, the
electromagnetic phase is random, the 4-potential A* is unphysical as the result of
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Heaviside’s development of Maxwell’s original concept of a physical vector
potential, which was based, in turn, on Faraday’s electrotonic state. Barrett [2]
has reviewed extensive empirical evidence for a physical classical A", in
contradiction to U(1) theory, hereinafter described as “U(1) electrodynamics.”
The vacuum for the Aharonov-Bohm effect is non-simply connected, and
therefore supports a physical A" [3,6]. The potential A" has no physically
discernible effect if and only if the space is simply connected. Since U(1) is non-
simply connected, there is a self-contradiction in the received view, [3,6] and
since A¥, by definition, is unphysical in U(1) electrodynamics, we must search
for a new type of classical electrodynamics. In this chapter, we base this search
on the group O(3), and hereinafter describe it as “O(3) electrodynamics.” The
basic topological space is that of the vacuum, and is described by the O(3) group
and gauge theory based on this group. One consequence is that the potential is
physical as required, another is that the unphysical random phase of U(1)
electrodynamics is replaced by a gauge-invariant physical phase factor of O(3)
electrodynamics. These changes are shown to have foundational consequences in
interferometry and aspects of physical optics, for example. Furthermore, several
of the well-developed techniques of non-Abelian gauge field theory {3,4,6] may
be brought to bear on classical electrodynamics, because the group O(3) is a non-
Abelian group, as argued already. This enriches and develops the subjects of
classical and quantum electrodynamics and unified field theory.

The group space of O(3) is doubly connected (i.e., non-simply connected) and
can therefore support an Aharonov-Bohm effect (Section V), which is described
by a physical inhomogeneous term produced by a rotation in the internal gauge
space of O(3) [24]. The existence of the Aharonov-Bohm effect is therefore
clear evidence for an extended electrodynamics such as O(3) electrodynamics,
as argued already. A great deal more evidence is reviewed in this article in favor
of O(3) over U(1). For example, it is shown that the Sagnac effect [25] can be
described accurately with O(3), while U(1) fails completely to describe it.

The O(3) group is homomorphic with the SU(2) group, that of 2 x 2 unitary
matrices with unit determinant [6]. It is well known that there is a two to one
mapping of the elements of SU(2) onto those of O(3). However, the group space
of SU(2) is simply connected in the vacuum, and so it cannot support an
Aharonov—Bohm effect or physical potentials. It has to be modified {26] to
SU(2)/Z2 =~ SO(3).

Therefore, this is a statement of our fundamental hypothesis, specifically, that
the topology of the vacuum defines the field equations through group and gauge
field theory. Prior to the inference and empirical verification of the Aharonov-
Bohm effect, there was no such concept in classical electrodynamics, the ether
having been denied by Lorentz, Poincaré, Einstein, and others. Our develop-
ment of O(3) electrodynamics in this chapter, therefore, has a well-defined basis
in fundamental topology and empirical data. In the course of the development of
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this chapter, several misconceptions and inconsistencies of U(l) electrody-
namics are brought to light, and these are remedied stfalghtforwardlg by
changing the gauge group from U(1) to OQ3). The implications are bneﬂy
reviewed for quantum electrodynamics and unified field theory, starting with
electroweak theory. One major result of the latter is the existence .of a novel
massive boson, the existence of which is consistent with novel empirical c.iata as
discussed in Section XIL The gradual and consistent accumulation of evidence
leads in this chapter to the conclusion that an O(3) gauge group is to be
preferred over a U(1) gauge group in classical electrodynamics.

Some by-products of the development emerge, such as the fact that the
acceptance of a structured vacuum described by an Q(3) gauge group leads
directly to the existence of novel charges and currents in the vacuum. Thgse are
conserved, or Noether, currents and charges and are clearly topological in
origin. They spring from the fact that the vacuum is a topological space. Four
such entities emerge:

1. A topological vacuum electric charge, also proposed empirically by
Lehnert et al. [7-10] .
2. A topological vacuum electric current, also proposed empirically by

Lehnert et al. {7-101

3. A topological vacuum magnetic charge, proposed also by Barrett [3.4]
and Harmuth [21,22]

4. A vacuum topological magnetic current, proposed also by Barrett [3,4]
and Harmuth [21,22].

Each of these four objects can provide energy, which can be loosely termed
“vacuum energy:” energy coming from the topology of the vacuum. '

In well-defined limits, the field equations of O(3) electrodynamics can
collapse to a set of two complex conjugate equations that re:semble Fhose of
U(1) electrodynamics (Maxwell-Heaviside equations), and a third eqlig)uon fora
novel fundamental spin component of O(3) electrodynamics, thef B*’ compo-
nent [11-20] in the basis ((1),(2),(3)). This component also springs from the
topology of the vacuum, described by an O(3) gauge group 'and is therefore a
magnetic flux density that exists in the vacuum because of this choice of‘ gauge
group. Clearly, the B® component is fundamental to O(3) elgctrodynamwg and
is not a static magnetic field of U(1) electrodynamics. The B » cqmpopent is an
observable of the third Stokes parameter, topological phases, mter@rqme[ry,
and magneto-optics and is a radiated field that propagates with the r?x<§1atlon. In
the laboratory, it propagates for all practical purposes at the speed of light, ¢, as
does the third Stokes parameter to which it is proportional [11-20]. It is a
fundamental property of the O(3) electromagnetic field that emanates( tl;rorn {tg?
topology of the vacuum. It forms an O(3) group with the plane wave B' =B

0(3) ELECTRODYNAMICS 85

of magnetic flux density in the vacuum in O(3) electrodynamics, giving the B
cyclic theorem [11-20]

B « B — jg0igBm

B2 « B3 17105 108

Bf3) X BU) _ fB(~O7B(2)*
BO — [B(3JI

©)

which is Lorentz-invariant, as it is, within a common factor on both sides, simply
a relation between rotation generators of the O(3) group.

An important by-product of the development in this chapter (Section X) is
the possible existence of scalar interferometry, which is interferometry between
structured scalar potentials, first introduced by Whittaker [27,28] and that can
be defined in terms of B®. This is a type of interferometry that depends on
physically meaningful potentials that can exist self-consistently, as we have
argued, only in a non-singly connected O(3) vacuum, because potentials in the
nonsingly connected U(1) vacuum are assumed to be unphysical.

In summary of this introduction therefore, we develop a novel theory of
electrodynamics based on vacuum topology that gives self-consistent descrip-
tions of empirical data where an electrodynamics based on a U(l) vacuum fails.
It turns out that O(3) electrodynamics does not incorporate a monopole, as a
material point particle, because it is a theory based on the topology of the
vacuurn. The next section provides foundational justification for gauge field
theory using fiber bundle theory.

II. BASIS IN FIBER BUNDLE THEORY

The gauge concept [3] was introduced by Weyl in 1918. In consequence of gauge
theory, the absolute magnitude or norm of a physical vector depends on its
location in spacetime. This notion is the basis of all contemporary gauge theory,
which is expressed in the language [6] of group theory and has been highly
developed mathematically [29-32]. For our purposes, it is sufficient to give a
brief account of the elements of gauge theory as used in optics and electrody-
namics, including O(3) electrodynamics. A gauge theory is a theory of special
relativity in O(3) and U(1) electrodynamics, and in electroweak theory, and
borrows concepts [6] from general relativity. For example, the homogeneous
field equation of both U(1) and O(3) electrodynamics are Jacobi identities akin to
the Bianchi identity in general relativity. Several reviews of contemporary gauge
theory are given in Ref. 4, and the theory is firmly rooted in rigorous mathe-

- matical concepts such as fiber bundle theory. The latter leads to the field

equations of O(3) electrodynamics through concepts {29-32] such as principal
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bundle, associated vector bundle, connections on principal bundles, covariant
derivatives of sections of a vector bundle, exterior covariant derivative, and the
curvature of a connection. In optics and electrodynamics however,. these
mathematical concepts reduce to those of gauge potentials. It is sufficient Fo
know, therefore, that the theory of O(3) electrodynamics is ri gorously founded in
fiber bundle theory and in the theory of extended Lie algebra [4,15]. The
interested reader is referred elsewhere for mathematical details [29-32] because,
in natural philosophy, a theory stands or falls by comparison with empirjcal data,
not by mathematical rigor alone. The latter is necessary but not sufficient for a
theory in optics and electrodynamics. 4

A simple example in classical electrodynamics of what is now kno&yq as
“gauge invariance” was introduced by Heaviside [3,4], who reduced the original
electrodynamical equations of Maxwell to their present iiorm. Therf:fore, these
equations are more properly known as the Maxwell——Heawste equaﬂons and, in
the terminology of contemporary gauge field theory, are 1dentlﬁablg as U
Yang-Mills equations [15]. The subject of this chapter is O(3) Yang-Mills gauge
theory applied to electrodynamics and electroweak theon.

The Maxwell-Heaviside field equations are, in SI units

B
VXE-{*—&':O (10)
o
Vwaéfzo
¢ o

where D is the electric displacement, p is the electric charge density, B is
magnetic flux density, E is the electric field strength, H is the magnetlc_ field
strength, and J is the current density. The received view is to assert that in the

vacuum:

D=ek;  B=uH (1

where £y and p, are permittivity and permeability in vacuo. Equations (12) then
reduce to
VD =p; VB=0

VxE+gB-=0 (12)

ot
oD
VxH=J+—
ot
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The notion of gauge invariance is illustrated on this level by denoting

B=VxA (13)
E=-Vx§ (14)

where A is the vector potential of Maxwell and § the vector potential of Stratton.
Using the identity

VxVy=0 (15)
B=VxA=Vx{A+Vy (16)

it is seen that any gradient Vy can be added to A or §, leaving B and E
unchanged. Therefore, in the received view, B and E are gauge-invariant,
measurable, and physical, whereas A and S are defined only up to an arbitrary
gradient function and are therefore mathematical in nature, are not measurable,
and have no physical effect. However, this can be true as argued in Section I only
if the vacuum is simply connected, whereas the group spaces of U(1) and O(3)
are not simply connected. We find empirically [3,4] several experimental
verifications of the fact that A and § are in fact physical quantities, and that A and
§ cannot be changed arbitrarily by adding a gradient of a scalar. However
elaborate the mathematical justification for U(1) electrodynamics becomes, this
paradox remains.

During the course of this review chapter, we shall unearth several flaws in
U(l) electrodynamics, some of which are discussed in Section III. One con-
sequence of the gauge and metric invariance of the free space Maxwell-
Heaviside equations is that they are also invariant under the general Lorentz
transformation, consisting of boosts, rotations, and spacetime translations [6].
They are invariant also under the fundamental symmetry operations of motion
reversal (T) and parity inversion (P). These properties mean that they are unable
to describe interferometry and simple optical properties such as normal reflec-
tion without self-contradiction. The Maxwell-Heaviside theory and its gauge
invariance is rigidly adhered to in the received view, but nevertheless, these
basic flaws are there and are discussed systematically in this chapter. In the
course of development of O(3) electrodynamics, a more general form of gauge
theory is needed, and this more general form is based on vacuum topology and
group theory. Therefore, in our view, O(3) electrodynamical equations apply in
the vacuum as well as in field matter interaction [11-20]. In general, they must
be solved without approximation using numerical techniques, but with well-
defined assumptions, analytical solutions emerge. These include the B cyclic
theorem [11-20].

The systematic development of gauge theory relies on a rotation of a n
dimensional function  of the spacetime coordinate x* in special relativity. The
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rotation is expressed as
W = exp (iM°A“(x*)) = S(x" o (17)

where M? are group generators, and where A? is an angle that.is a functio‘n of x*
through special relativity [6]. In general, M¢ are n.x n matrices or tensms. In
0O(3) electrodynamics, the indices a can be (1), (2), and (3) qf t.he complex basis
(7), or Cartesian indices as in the basis (6). From Eq. (17), it is found that

00 = S(B,0) + (8,5) ¥ (18)

that is, that 8, does not transform covariantly. It is well known that this problem
is addressed through the introduction of the covariant derivative:

D\ = (8, — ig"A%) (19)

where g is in general a proportionality constant giving the‘ ‘right units, (ind wgege
A} is the vector potential, sometimes refe1:red to as th§ cc;nnecuon. In (l l)
electrodynamics, Aj reduces to the familiar 4-gotent1al A}l of the Ma'txweh—
Heaviside theory, a 4-vector. This means that in U(1) e]ectrod?!namlf:s, the
internal gauge space is a scalar space in which M = —1 and in which the
covariant derivative reduces to

D, (U(1)) =08, + igA, (20)

which, in momentum space, is the familiar minimal prescription. In O(3)
i . I3 S
electrodynamics however. Aj is a 12-vector, and can be expressed a

Ay =AM 1+ 4l2e® 1 40 (21)

in the basis ((1),(2).(3)). Similarly, the familiar field tensor F,, of U(1) electro-
dynamics becomes

Gy =Gl + G 1 G(le® (22)
113 ¥

in O(3) electrodynamics. Since ((1),(2),(3)} is a p‘hysical'space, each of the
tensors Gji; i = 1,2, 3 is well defined in Minkowski spacetime [11-20).
General gauge field theory emerges when the covariant derivative is applied

1o [6]):
DL‘I’ = SD, {(23)
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It is useful to go through this derivation in detail because it produces the
inhomogeneous term responsible for the Aharonov—Bohm effect in O(3)
electrodynamics. The effect of the rotation may be written as

(Ou — igAL V' = S(, — ig, ) (24)
which means that

A’ = S(@u) + (0S¥
(@S —~ igAL SV = —igSA, Y
igA,S = igSA, + 8,5
P L . (25)
ALSS = 5A87! ~ 2 (@us)s”

Al =SA,57 — é (3,5)5™"

The end result is that the inhomogeneous term —(i/ 2)(8,5)S" appears in the
vacuum. This term originates in the topology of the vacuum, and it is different for
Ut1) electrodynamics and O(3) electrodynamics. In U(D) electrodynamics, the
gauge transformation (25) reduces to

] .
A; ~ Ay, + gapﬁ (26)

which is the covariant form of Eq. (15). In O(3) electrodynamics however, the
inhomogeneous term and the vector potential are both physical quantities, as
originally envisaged by Maxwell and Faraday. The 12-vector A, is the equivalent
of Faraday’s electrotonic state and of Maxwell’s physical vector potential [3 4].
It follows that the effect (25) on the vector potential in O(3) electrodynamics is
produced by a physical rotation, and later in this review, it is shown that this
physical rotation is the rotation of the platform in the Sagnac effect [20]. More
generally, arotation in the internal gauge space of O(3) electrodynamics produces
a phase difference that is also physical and measurable [3,4]. O(3) electro-
dynamics is therefore able to describe the Sagnac effect precisely, whereas U
electrodynamics has no explanation for the Sagnac effect because of its gauge
invariance. Quantities such as the 12-vector potential of O(3) electrodynamics
are gauge-covariant, not gauge-invariant, because the inhomogeneous term in
O(3) electrodynamics is a physical term, not a random mathematical construct as
in U(D) electrodynamics.

In general gauge field theory [6], the field tensor is proportional to the
commutator of covariant derivatives. This is the result of a round trip or closed
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oop with covariant derivatives in Minkowski spacetime, and in condensed
iotation, the result can be written as

G = [D“,DV] (27)

i
8

Gy =0,Ay —O0vA, — iglAy, AV (27a)
n U(1) electrodynamics, we recover the familiar 4-curl of Maxwell—Heavis'ide
heory because the commutator [A,Ay] is zero. In O@3) electrodynamics,

2 3) .
iq. (22) applies and each component GplV , wa) , and G,y is defined as

Gl = 3,40 — 3,40 — igepwAlAal, (1), (). () = (1),(2),(3) (28)
uv v

n the complex circular basis ((1),(2),(3)),. [11=20). Whereas F,, of Ugl)
slectrodynamics is gauge- and Lorentz-invarlantz G, of O(3) electrodynamics
ransforms covariantly under rotation in the 1nte'rnal space ((1),(2),(3)). a
epresentation of the physical space of three dimensions:

—1 9
G, = SGuS (29)

The homogeneous field equation of O(3) electrodynamics is inferred from
he Jacobi identity of covariant derivatives

Z Dy, [Dy, D]l =0 (30)

cyclic
and can be written as the identity [11-20]
DG =0 (31)

The inhomogeneous field equation is not an identity, but an equation of the

Yang-Mills type [6]
e DH" = I (32)

where H*Y is a generalization of G*” to include polarization and magnetization,
and where J" is the charge current 12-vector, defined as

(i)
T = <p<"> J—> i=1,2,3 (33)

3

(o

where ¢ is the speed of light in vacuo for all practical'purposes in the laborator);
Equations (31) and (32) are developed fully in Sect1op (IV) and a.re com%a]re
with the Lehnert, Barrett, and Harmuth equations c¥ted in Sectlon. I ﬁeiz
equations extend the symmetry of the electromagnetic sector of unified fie
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theory with many consequences, some of which are discussed in Section (XI)
for electroweak theory, and in Part 3 of this three-volume series for grand unified
theory.

The development just given illustrates the fact that the topology of the
vacuum determines the nature of the gauge transformation, field tensor, and field
equations, as inferred in Section (I). The covariant derivative plays a central role
in each case; for example, the homogeneous field equation of O(3) electro-
dynamics is a Jacobi identity made up of covariant derivatives in an internal
O(3) symmetry gauge group. The equivalent of the Jacobi identity in general
relativity is the Bianchi identity.

Finally, in this section, we develop the concept of electromagnetic phase
from U(1) to O(3). This is a nontrivial development [4] that has foundational
consequences for interferometry and physical optics for example. In U(1)
electrodynamics, the electromagnetic phase is defined up to an arbitrary factor
[4] because of gauge invariance. The U(1) phase is therefore

Y=o —Ker+o (34)

where w is the angular frequency at instant #; k is the wave-vector at coordinate
r, and a is random. In other words, the U(1) electromagnetic phase factor
exp (i(ot — k+r)) can be multiplied by the factor ¢ because gauge transfor-
mation in U(1) is a random rotation in the (scalar) internal gauge space, The
random rotation is represented by the operator e* where o is random. This
operation leads to Eq. (26), where the gradient function is random as usual in
U(1) electrodynamics. Therefore the U(1) electromagnetic phase is unphysical.
This is true despite the fact that the theory of U(1) electrodynamics is the
received view, adhered to rigidly. Therefore [4], the field tensor in U(1) electro-
dynamics, is underdetermined because the phase is arbitrary; and the potential
4-vector of U(1) electrodynamics is overdetermined because it is also arbitrary—
an infinite number of A* corresponds, in the received view, to one physical
condition. Dirac attempted to remedy these flaws by introducing a phase factor

®(C) = exp (i%igcApdx“> (35)

where e is electric charge, and 4 is the Dirac constant. The Dirac phase factor
completely defines [4] the system on the U(1) level. The phase factor in O(3)
electrodynamics is obtained by generalizing this concept, as first accomplished
by Wu and Yang [33]. The phase factor in O(3) electrodynamics can be written as

®*(C) = Pexp <ig i Audx“> (36)

®*(C) = Pexp (z’i K, dx“) = Pexp <ig J J BY dAr) (36a)
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where a magnetic flux of topological origin appears on the right hand side, an
area integral over the B® (Evans-Vigier) field [11-20]. Here, ®*(C) specifies
parallel transport over any loop C in rotation, g is the same factor that appears in
the definition of the covariant derivative, [Eq. (20)], and P specifies path depen-
dence in the integral [4]. On the left-hand side appears the line integral corres-
ponding to the dynamical phase factor, which is equal through a non-Abelian
Stokes theorem to the topological phase defined by the surface integral over B®.
This result is a clear illustration of the topological origin of B®, and the phase
factor is not a random quantity as in U(1) electrodynamics, but a gauge-covariant
quantity. It is the holonomy of the connection A, in O(3) electrodynamics and
plays a central role in interferometry, including the Aharonov—Bohm effect.
Consideration of interferometry leads to the conclusion that O(3) electrody-
namics provides a self-consistent description of several situations where U(1)
electrodynamics either fails (e.g., the Sagnac effect) or is self-inconsistent (e.g.,
Michelson interferometry).

III. REFUTATION OF U(1) ELECTRODYNAMICS

From the foregoing, U(l) electrodynamics was never a complete theory,
although it is rigidly adhered to in the received view. It has been argued already
that the Maxwell-Heaviside theory is a U(l) Yang-Mills gauge theory that
discards the basic commutator A"’ x A‘”. However, this commutator appears in
the fundamental definition of circular polarity in the Maxwell-Heaviside theory
through the third Stokes parameter

S; = |—im2A“) % A(2)1 — 2A02 (37)

so there is an internal inconsistency. In O(3) electrodynamics, on the other hand,
the fundamental definition of the B field ensures that circular polarity is
consistently defined

B = —igaV x 4@ (38)

so that circular polarity in O(3) electrodynamics is due to the B field, which is
therefore a foundational physical observable. This argument is a simple and
straightforward refutation of U(l) electrodynamics, specifically, of Maxwell-
Heaviside theory considered as a U(1) symmetry gauge field theory. The third
Stokes parameter is a fundamental signature of circular polarization and was first
recognized as such by Stokes in 1852 before the development of Maxwell’s
original equations in the 1860s [3]. Circular polarization was discovered empi-
rically by Arago in 1811.

There is in effect no circular polarization in U(1) electrodynamics if we
choose to define circular polarization in terms of the third Stokes parameter.
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This result is inconsistent with the fact that the differential equation developed
by Heaviside from Maxwell’s original equations describe circular polarization.
The root of the inconsistency is that U(1) gauge field theory is made to corres-
pond with Maxwell-Heaviside theory by discarding the commutator A" x A?.
The neglect of the latter results in a reduction to absurdity, because if S;
vanishes, so does the zero order Stokes parameter:

So = £5; (39)

and Sy describes the intensity of radiation. This result is another self incon-
sistency of U(1) electrodynamics.

In O(3) electrodynamics, on the other hand, Eq. (38), defining the B® field,
is consistent with the O(3) field Eq. (31) and (32) because Eq. (38) is part of the
definition of the field tensor in O(3) electrodynamics [11-20].

A second simple refutation of U(1) electrodynamics is perfect normal
reflection. The explanation of this foundational effect in Maxwell-Heaviside
electrodynamics relies on the phase in U(1) electrodynamics, which, as argued
already, is a random quantity. If we choose o in Eq. (34) to be zero for simplicity
and without loss of generality, then the received view of perfect normal
reflection (Fig. 1) is as follows:

exp (i(K+r — ot)) — exp (i(—K-r — or)) (40)

However, normal reflection, in, for example, the Z axis, is equivalent to the parity
inversion operation P. The effect of this operation on the U(1) phase factor is as
follows:

exp (i(k-r — ot)) £ exp (i(k+r — wt)) 41)
P P(ry—> —r
[ r > r P(x) = —x
ro=-r,k
] 1
r,=rcos9
r, =rcos 6k

P(r)=-rcos6k=-r;

Figure 1. Equivalence of reflection and parity inversion.
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Thus the received view of normal reflection (1) in U(1) electrodynamics violates
parity. This violation is not allowed in classical physics. For off-normal reflection
(Fig. 1), projections on to the normal result in the same paradox using the
empirical fact that the angle of reflection is equal to the angle of incidence. In the
received view, Eq. (40) is held to rigidly, but is nevertheless in violation of parity.
This is true if and only if Snell’s law is true. In conclusion, P(wf ~ K-r =
(wt — k+r), which is Snell’s law in Maxwell-Heaviside theory.

It is highly significant that this paradox disappears in O(3) electrodynamics
through the use of the physical phase factor:

® = exp (i%x-dl) = exp (igJB“) -dS> (42)

On the left-hand side appears a line integral, and on the right-hand side, there is
an area integral over B™. If a beam of light originates at an origin O and is
normally reflected from a perfectly reflecting mirror at point Z, the line integral is

as follows:
0

z
+K-dl :J KdZ —J kdZ = 2kZ (43)
0 z

Note that this gives, fortuitously, the same change, 2kZ, as in the U(1) description
of normal reflection, which therefore fortuitously describes the empirical result.

The area integral on the right-hand side of Eq. (42) is a topological phase [4],
because the origin of B is topological as argued already, that is, B springs
from the vacuum configuration. Using the relation [11-20]

- (a4)

the right-hand-side exponent becomes k28, where S is an area

K
S=2- 45
2 (45)
If the distance OZ is n wavelengths, A, then the area becomes
)\’2
s="" (46)
T

The outcome of these two very simple examples is that all electrodynamics
(classical and quantum) must be upgraded to a gauge theory of higher symmetry,
such as O(3). Equation (42) is self-consistent, because under P, both sides are
negative. The left-hand side is negative because the line integral changes sign
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under P, and the right-hand side is negative because the integral is negative under
P (product of an axial vector B and a polar vector S).

.Michelson interferometry is dependent on normal reflection from two
mirrors at right angles, and so the same foundational argument as just given
can be used to show that U(]) electrodynamics does not describe Michelson

interferometry self-consistently. Without loss i
: of generality, i
Eq. (38) as g ity, we can write

TRkAQk Rk = B . Ark (47)

hl h n 1n gI‘ S gh f ly =
whic ca be te ated trai tO]Wa]d to glVe the non Al)ella]] StOkCS

2mkA© %R-dR = ”3(3) -dAr (48)
where R is given by
A
R="==
K 2m (49)

and where % is the wavelength. Multiplying both sides by g = k/A© defines the
required non-Abelian phase factor in terms of a non-Abelian Stokes theorem

> — A _ . K 3
exp(ijgK dR) = exp (szJB( ).dAr) (50)

which is closely related to Eq. (42). The line integrals must be evaluated over a
closed curve [11-20] and have the foundational property

K'dR:— . R
ﬂgAO iA" d (51)

which is the root cause [34] of Michelson interferometry, and interferometry in
general. In U(1) electrodynamics, the change in phase of a light beam originatin

at thc' beamsplitter [35] and arriving back at the beamsplitter after norma%
reflection from either mirror is zero because of the property (41). This is contra

to th.e empirical observation [35] of the Michelson interferogram, the basis 2;
Fourier transform infrared spectroscopy. In the usual U(1) theory. ;herefore the
path-dependent part of the electromagnetic phase is the familia’r Ker an({ the
complete electromagnetic phase is w7 — k+r 4 o, where o is random aI;d can be
set to zero for simplicity of argument. The phase wr — k7 is invariant under both
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P and T because it is a dimensionless number,i and we shall show .t‘hgt tlrtlz
complete failure of U(1) electrodynamics to desc;rnbe the Sagnac effect 1§b 1(xieb
the T invariance of U(l) phase. In Miche}son interferometry, as de%scrx e ﬁe);
0O(@3) electrodynamics, there is a change in the measurable phase factor ‘i'n
reflection because of the property of line mtegra?s. The phase fa'ctorsfam ing
back at the beamsplitter from either mirror are different, and an inter erogfr?;rel
appears as observed [35] empirically by c}.xangmg thfa lgngth of one arm -?es :
interferometer. The Fourier transformation of this interferogram gi
Spe;i]r:ﬁ;ferse Faraday effect depends on the third Stokes parametefr empmcal!y
in the received view [36], and is the archetypical magneto-optical egect tin
conventional Maxwell-Heaviside theory. This type of phenomenology hmte; Z
contradicts U(1) gauge theory in the same way as argued a.lrea.dy for the ) 111;
Stokes parameter. In O(3) electrodynamics, the garadox is F:lf‘cum\/lelnt’ijJ 0)%
using the field equations (3D and (32). A self—coqs:stent description [11-2

the inverse Faraday effect is achieved by expanding Eq. (32):

BuH T = 1 4 igAl?) x B (52)

QW = ' 4 jgAld x (53)
i

QuHNDT = 1 4 igAll) x HW (54)
p

Using the constitutive relation

H(?&)* — iB(3)* (55)
u

gives the magnetic field strength induced in the inverse Faraday effect from first
principles of O(3) gauge field theory as

/

OSSP (56)
Ho
where
r Mo (57)
=—g
§ H

Here, p is the magnetic permeability of the material in which the inverse Faraday
effect is observed. We can write Bq. (52) as

O, HHVE* :J\"“)* + AJYE (58)
m
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so that the transverse current detected [37) in the inverse Faraday effect is
given by

AP = iged x GRO) (59)

and causes a signal in an induction coil due to the vacuum B field appearing in
the O(3) field tensor GH'©),

The explanation of the inverse Faraday effect in U(1) electrodynamics relies
on the clearly self-inconsistent introduction of A(") x A phenomenologically:
“self-inconsistent” because U(1) gauge field theory sets AV x 4@ (0 zero
identically. As argued already, the conjugate product A" x 4@ g proportional
to the third Stokes parameter in the vacuum and so is a fundamental property of
circularly polarized light. As such, it must be considered as a fundamental
object in gauge field theory applied to electrodynamics. In U(1) gauge field
theory, this is not possible, but it is possible self-consistently in O(3) gauge field
theory,

In Maxwell-Heaviside electrodynamics, the field energy, Poynting vector,
and Maxwell stress tensor are incorporated in the stress energy mormentum
tensor [38]. In order to obtain a non-null energy and field momentum (Poynting
vector), the method of averaging is used. The conventionally defined Poynting
vector, for example, becomes proportional to E x B* = E( x B® This
method is inconsistent with electrodynamics considered as a U(1) gauge field
theory, but consistent with O(3) electrodynamics.

Recall that in general gauge field theory, for any gauge group, the field tensor
is defined through the commutator of covariant derivatives. In condensed
notation [6]

Gy = A, ~ A, — ig[A,, Ay (60)

where the commutator is nonzero in general. The connection or generalized
potential A, is defined in general through the gauge group symmetry. The field
tensor Gy, is covariant for all gauge groups, and is always compatible with
special relativity for all gauge group symmetries. In this general theory therefore,
the homogeneous and inhomogeneous Maxwell equations in the vacuum are the
U(1) gauge field equations

DG, =0 (61)
DGy, =0 (62)
where D" denotes the covariant derivative pertinent to U(1) and where G* is the

dual of Guy as usual. In the U( 1} gauge theory, the commutator in Eq. (60)
vanishes because the U(1) group has only one structure constant and the internal



symmetry of the gauge theory is a scalar symmetry. The covariant derivative in
U(l) is
DY =0 + igA¥ {63}

Therefore Eqgs. (61) and (62) reduce to

(8" 4 igA")F,y =0 (64)
(@¥ + igA¥)F,, =0

]

t

which become the free-space homogeneous and inhomogeneous Maxwell-
Heaviside equations if and only if

AYFy, =0 (66)
AYF,, =0 (67)

or in vector notation

AB=0 AxE=0

(68)
AE=0 AxB=10
For plane waves, and using the usual U(1) relation
B=VxA (69)
the vector potential is proportional to B and so
BxE=0 (70)

If we attempt to define the free-space field energy and momentum in terms of the
products B - B and B x E, the results are zero in U(1) gauge field theory. In order
to obtain the conventional field energy and Poynting vector of the free
electromagnetic field, products such as B!") x B and B") x E'¥) have to be
used. This procedure, although common place, and referred to in the literature as
“time averaging” [38], introduces phenomenology extraneous to U1}, be?ause
it introduces the complex internal gauge space ((1),(2),(3)). These inconsisten-
cies in U(1) gauge field theory applied to electrodynamics are therefore
summarized as follows: (1) if the U(1) covariant derivative is used, the field
energy, momentum, and third Stokes parameter vanish; and (2) if the pheng-
menological “time averaging” procedure is used, the resultant Poynting vector is
proportional to B x E@®| and is perpendicular to the plane of definition of

U(l), whose group space is a circle. This result is another internal inconsistency,
because the group space of a gauge theory is a circle, there can be no physical
quantity in free space perpendicular to that plane. It is necessary but not
sufficient, in this view, that the Lagrangian in U(1) field theory be invariant [6]
under U(1) gauge transformation.

In O(3) electrodynamics, the stress energy momentum tensor is defined [11-
20] as

, | .
T, =& ((P“’-Gml - ZG" ‘Gp\,> 71
giving the field energy self-consistently as

U — E(}(E””Eim _:_EZU,)E;z) +EI(2)E‘§]) +E2{2)Eé!) +E3{3)E§3}*) (72)

The Poynting vector is self-consistently defined as

TIU = 8@(602 '621 - GO3 'GSI) (73)
79 = &(G" -G\, + G+ G3,) (74)
Tg = Eo(Gm «Gy3 + Goz'Gz}) (75)

and is finite. The B* component is defined through Eq. (38), giving, self-
consistently, the result (39).

The root cause of these further problems with electrodynamics considered as
a U(l) gauge field theory is that parallel transport [6] must be used when an
internal gauge space is present. The internal gauge space of U(1) is a scalar, and
parallel transport results in a covariant derivative whose momentum represen-
tation is the minimal prescription [6]. This covariant derivative, however, leads
self-inconsistently to a null energy density and Poynting vector as just argued.
Therefore, in U(1), the Maxwell-Heaviside equations are obtained if and only if
the field energy and Poynting vector are identically zero. A null Poynting vector
means null energy and a null third Stokes parameter. The root cause of this is
the neglect of AV x A and we have come full circle. The only way out is to
adopt a gauge field theory of higher symmetry than U(1).

A related problem is that the linear momentum of radiation in U(1) is defined
by

{p) = ggc [E x BdV (76)

which is again zero. The linear momentum of a photon, however, is nonzero in
quantum theory and is hk, leading to the Compton effect and Compton
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scattering. It is well known that there is no classical equivalent of the Compton
effect [39], so the correspondence principle is lost in the received view based on
U(1) gauge field theory. In 0O(3) electrodynamics, however [11-20], there exists,
in general, the longitudinally directed potential A as part of the definition of
the field tensor. The classical quantum equivalence in the Compton effect is then
given simply as

P =eA® =nx (77)

where e is regarded as the coupling constant in the definition of the constant
g = e/h, which appears in free space in both U(1) and O(3) electrodynamics.
This is another characteristic of gauge field theory applied to electrodynamics,
that charge e can act as a coupling constant in the covariant derivative. This is
true for all internal gauge symmetries, so ¢ need not be defined solely by the
charge on the electron. These concepts are discussed further in Ref. 6. Therefore
0(3) electrodynamics saves the quantum classical correspondence principle in
Planck-Einstein quantization. Equation (77) has the following manifestly
covariant form:

pu{3} = eAF3) = hgH

a0 = Lo ) (78)

¢

These concepts of O(3) electrodynamics also completely resolve the problem
that, in Maxwell-Heaviside electrodynamics, the energy momentum of radiation
is defined through an integral over the conventional tensor T*Y, and for this
reason is not manifestly covariant. To make it so requires the use of special
hypersurfaces as attempted, for example, by Fermi and Rohrlich [40]. The O(3)
energy momentum (78), in contrast, is generally covariant in 0(3) electro-
dynamics [11-20].

The Maxwell-Heaviside theory seen as a U(1) symmetry gauge field theory
has no explanation for the photoelectric effect, which is the emission of electrons
from metals on ultraviolet irradiation [39]. Above a threshold frequency, the
emission is instantaneous and independent of radiation intensity. Below the
threshold, there is no emission, however intense the radiation. In U(1), electro-
dynamics energy is proportional to intensity and there is, consequently, no
possible explanation for the photoelectric effect, which is conventionally
regarded as an archetypical quantum effect. In classical O(3) electrodynamics,

the effect is simply
En = ecA™) = constant x frequency (79)

and in Planck—Einstein quantization, the constant of proportionality is /, which
turns out to be a universal constant of physics. The concomitant momentum
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relation, Eq. (77), is shown empirically by the Compton effect as argued already.
Equation (77) means that above a given threshold frequency, there is enough
energy in the photon to cause electron emission in the photoelectric effect. All
the energy and momentum of the photon are transferred to the electron in a
collision above a certain threshold frequency because at this point, the potential
energy responsible for keeping the electron in place is exceeded. If we attempt to
apply this logic to (p} in Eq. (76), there is no threshold frequency possible on the
classical level because {p) cannot be proportional to frequency, only to beam
intensity. The momentum p®®) = A of classical O(3) electrodynamics is not
propqrtional to intensity; it is proportional to frequency through the gauge
equation (77), which also leads to the B ¢cyclic theorem [ 1-20], the fundamental
Lorentz invariant angular momentum relation of O(3) electrodynamics.

In the O(3) Compton effect, the observable change of wavelength is

A )
Ak = 2( )7»0 Siﬂ2i (80)

mc

where L is the wavelength of the incident beam, m is the electron mass, and 8 is
the scattering angle. If Eq. (77) is applied to this result, we recover the usual
quantum description of the Compton effect.

The concept of A® can also be used to suggest a way out of the Dirac
paradox [41] of U(1) electrodynamics, in which Dirac maintains that so long as
we are dealing with transverse waves, we cannot bring in the Coulomb
19terac;ion between charged particles. In O(3) electrodynamics, there is a force
given by

‘ SAMB)
P = e 2t (81)

whenever the beam interacts with an electron. This interaction results in a
longitudinal force with a change of wavelength as just described for the
[Clolmgg?n effect. This is not a Coulomb force since E® is zero in vacuo

Similarly, A" can be used to suggest a way out of the de Broglie paradox
[42], which points out that momentum and energy transform differently under
Lorentz transformation from frequency. This paradox led de Broglie to postulate
the existence of empty waves, which, however, have never been observed
empirically. It can therefore be suggested that the Lorentz frequency transform
must always be applied to

ho (4
eA®) = e (82)
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because this momentum is proportional to frequency empirically. If this
momentum is interpreted as that of a particle traveling at the speed of light, the
momentum becomes indeterminate (massless particle) or infinite (massive
particle) unless it is always interpreted as being a constant (%) multiplied by
o/c, which always exists empirically as the speed of light. The energy must
evidently be interpreted in the same way, namely, as a constant multiplied by
frequency. The Lorentz transform applied to frequency produces the aberration
of light as usual [39] in special relativity. In this interpretation, there is no
de Broglie paradox and no need to postulate the existence of empty waves [42].

The Sagnac effect cannot be described by U(l) electrodynamics [4,43]
because of the invariance of the U(l) phase factor under motion reversal

symmetry (7):
® = exp (i(wr —K-r)) X exp (i(of — k-r)) (83)

The T operator generates the counterclockwise (4) loop from the clockwise (C)
loop in the Sagnac effect, with the result that there is no difference in phase factor
for journeys around the A and C loops, and no interferogram. This is contrary to
observation when the Sagnac platform is at rest [43]. When the platform of the
Sagnac interferometer [3] is rotated, there is the well-known Sagnac phase shift,
which was first detected in 1913. This defies description by U(l) electro-
dynamics because the Maxwell-Heaviside field equations in the vacuum are
invariant to rotation, which is part of the most general type of Lorentz transform
[6]. The Maxwell-Heaviside equations in vacuo are also gauge- and metric-
invariant, and are not capable of describing the Sagnac effect at all. The O(3)
electrodynamics, in contrast, are completely successful in describing the
interferogram with platform at rest and with a rotating platform. The details of
this important advantage of O(3) electrodynamics are discussed in Section (VI),
where a kinematic explanation of the Sagnac effect is also given using O(3)
gauge theory. More details of magneto-optical effects are given in Section (VII).
The Aharonov-Bohm effect is self-inconsistent in U(1l) electrodynamics
because [44] the effect depends on the interaction of a vector potential A with an
electron, but the magnetic field defined by B =V x A is zero at the point of
interaction [44]. This argument can always be used in U(1) electrodynamics to
counter the view that the classical potential A is physical, and adherents of the
received view can always assert in U(1) electrodynamics that the potential must
be unphysical by gauge freedom. If, however, the Aharonov—Bohm effect is
seen as an effect of O(3) electrodynamics, or of SU(2) ¢lectrodynamics [44], it
is easily demonstrated that the effect is due to the physical inhomogeneous term
appearing in Eq. (25). This argument is developed further in Section V1.
Barrett has argued convincingly that there are several effects in classical
electrodynamics [3,4] where the potential must be physical, and Ref. 3 lists
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empirically observed effects where this is the case. The arguments in this
section point to the fact that U(1) electrodynamics, defined as U(1) gauge field
Fheory applied to electrodynamics, is self-inconsistent in the vacuum. as well as
in ﬁelQ—matter interaction. In the next section, the field equations ,of electro-
d.ynam.wS seen as an O(3) gauge field theory applied to electrodynamics are
given in full, revealing the presence in free space of conserved topological
charges and currents that do not appear in U(l) electrodynamics and that in
general are not zero.

IV.  FIELD EQUATIONS OF O(3) ELECTRODYNAMICS
IN THE COMPLEX CIRCULAR BASIS

In their most condensed form, the field equations are Egs. (31) and (32), respecti-
vely, .and, in general, must be solved without approximation on a com[;uter with
constltutiye relations, as usual in classical electrodynamics. The familiar field
tensors G* and H"Vof the homogeneous and inhomogeneous Heaviside—
Maxwell equations [U(1) Yang-Mills gauge field theory] become vectors in
the Q(3) symmetry internal gauge space of Eqs. (31) and (32), which are
equations of O(3) symmetry Yang—Mills gauge field theory. Therefore an object
such as G" is a vector in the internal gauge space and a tensor in Minkowski
spacetime, and an object such as J* is a 3-vector in the internal O(3) space and a
4-vec.to.r in Minkowski spacetime. The ordinary derivatives of the Maxwell—
He§v151de equations are replaced in Egs. (31) and (32) by covariant derivatives in
an internal gauge space, with three rotation generators [11-20]. Egs. (31) and
(32) are gauge-covariant, and not gauge-invariant, under all conditions, including
the vacuum. As argued already, the homogeneous Eq. (31) is a Jacobi identity of
the O'(3) group, and the tilde denotes dual tensor as usual. The homogeneous field
quathn, Eq. (31), originates in the cyclic identity between O(3) covariant
der¥vat¥vest Eq. (30), and can be developed by writing out the covariant
derivative in terms of the coupling constant g, which has the classical units
K/AO .[1 1-20]. The coupling constant, as usual in gauge theory [6], couples the
dynamical field to its source, so in Egs. (31) and (32), the dynamical field is never
free of its source, and there is no source-free region. This is also true in U(1)
ele(.:trOfiynamics on a rigorous level because g also appears in the U(1) covariant
der1vat1v§ as argued already. A field propagating without a source is a violation
of causality. On Planck quantization, the coupling constant g has the units e /Rin
both O(3) and U(1) gauge theory, and for one photon in free space

eAV) = pk (84)

signaling that the photon is always coupled to its source. The quantity e has the
Fiual role [6] of coupling constant and charge on the electron. The presence of g
in the theory does not mean that the gauge bosons are charged after quantization,
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anymore than it means that the U(1) gauge bosqns are 'charged after q‘uarllmlzaulcr)gi
The role of g is to measure the “strength” with which .the dynamical e e(;: o
magnetic field couples to its source. This aspect of g [6]. isa cons;:lgl{enft:e :eded
gauge principle, and g originates in parallel transport—it is a coethicient n

to ensure that units are balanced [6]. ,
The homogeneous field equation (31) can be expanded in terns of the O(3)

covariant derivative [6,11--20]:

@, +84,x)G" =0 (85)

A particular solution is
8,6" =0 (86)
the first equation of which gives
A, x GV =0 (87)
6" =0, i=1,23 (88)

that is, Heaviside-Maxwell-type equations and an equation for B/, which in
vector form is

B (89)
ot

The latter equation can be interpreted to mean that the thirfi Stokes parafne;elrp

does not vary with time in a circularly polarized beaxp of light. The particula

solution (87) gives the B cyclic theorem (9) self-con.mstently (1 1—20]_. celd
In the vacuum (in the absence of matter), the inhomogeneous 0(3) fie

equation (32) can be interpreted as

3,G" =0 (90)
J' = geoA, x GV 91

i i > nt
where J' is a conserved vacuum current. Equation (90) gives the compone

equations:
.60 =0, =123 (92)

The first two are Maxwell-Heaviside-type equations, and the third, 1n vector

form, is
vV xBY =0 (93)
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which can be interpreted to mean that the third Stokes parameter is irrotational in

the vacuum. It can be shown [17] that the current J¥ self-consistently gives the
vacuum energy

| . ,
R (94)

El’l(3> =

due to the B field.

In the presence of matter (electrons and protons), the inhomogeneous field
equation (32) can be expanded as given in Egs. (52)(54) and interprets the
inverse Faraday effect self-consistently as argued already. Constitutive relations
such as Eq. (55) must be used as in U(D) electrodynamics,

The fundamental field equations (31) and (32) can be expanded out fully in
the (1),(2),(3) basis defined by Egs. (8) to give four field equations: the O(3)
equivalents of the Coulomb, Gauss, Ampére-Maxwell, and Faraday laws. This
expansion shows clearly that the adoption of an O(3) configuration for the
vacuum produces conserved vacuum charges and currents from the first
principles of gauge field theory. The vacuum electric charge and vacuum
electric current were introduced empirically and developed by Lehnert [7-
10]; and the magnetic equivalents were introduced and developed empirically
by Harmuth [21,22] and later developed from gauge theory by Barrett [3.4],
whose field equations in SU(2) gauge group symmetry are isomorphic with the
field equations in O(3) gauge group symmetry given here.

The Gauss law in O(3) electrodynamics is

v.50r = ig(A(z} B3 _ g -ABhH (95)
V.BQ)* Eig(Af3)_B(l)_B(3) 'A(”) (96)
VB = ig(AV. B _ BN . 4)) (97)

and allows for the possibility of a topological magnetic monopole originating in
the vacuum configuration defined by the O(3) gauge group. Empirical evidence
for such a monopole has been reviewed by Mikhailov [4] and interpreted by
Barrett [45]. However, the right-hand side of Eqs. (95) to (97) can also be zero
for particular solutions [11-20], in which case no magnetic monopole exists. In
general, Egs. (95)-(97) must be solved numerically and simultaneously with the
other three equations [Egs. (98)—~(100)] given next. This is not a trivial task, but
would give a variety of solutions not present in U(1) electrodynamics, solutions
can be compared with empirical data.
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The Faraday law on the O(3) level is
aB(l)*

VxEW = —ig(cAV'B® — cAPB® + 4@ x E® — A¥ x E¥)
(98)
(2 \
V x E&* + az;t = _ig(cA"B® — caTBY +A®) x BV — A x EP))
(99)
(3)*
VxED == —ig(cAPBY — cAl"B® + A x E® — AP x EW)

(100)

and contains on the right-hand sides terms proportional to a cpnserved
topological vacuum magnetic current, which was introduced empirically by
Harmuth [21,22] and developed by Barrett [3,4] using SU(2) gauge field theory.
This vacuum magnetic current provides energy, in the same way as the current J
leads to the energy in Eq. (94), and this energy emanates from the vacuum
configuration. In principle, therefore, it can be used as a source of mecham.cal
energy provided devices are available to convert the vacuum topolog{cal
magnetic current into mechanical energy. The same is true of the t.opologlclal
magnetic charge in Egs. (95)—(97). These charges and currents va.m-sh only in
very special cases [11-20], and in general are nonzero. They originate from
fundamental topological considerations as argued in Section .
The O(3) Coulomb law in field-matter interaction is

v.p* — p([)* —+—ig(A(2)°D(3) _D(Z).A(3)) (101)
V. = p@* 4 ig(A® .pV — DB .AM) (102)
V. DB = pB 4 ig(A(‘)-D(2) — pM .A(Z)) , (103)

In the vacuum, the quantities p),i = 1,2,3, disappear, but the topological
Noether charges proportional to the remaining right-hand-side'terms do not
disappear, leaving one of the Lehnert equations [7-10]. Lehnert 1ntr0duce.d'the
vacuum charge empirically. Lehnert and Roy [10] have given clear empmc.aI
evidence for the existence of vacuum charge and current. The latter appears in
the O(3) Ampére-Maxwell law, which in field-matter interaction is

aD(I)*
(e _ e _
V xH J 5
— —ig(cAPD® — cA'D? + AP x HY —A®) x H?) (104)
@)+
vV x HO* — g2+ _ aDa
t

— —ig(cAPDM — cAl'DD + A0 x HD — AV x HD)) (105)
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aD(3)*
o
= ~ig(cAY'D® — cAPDW + AV x H® — 4@ x g)Y  (106)

v x H®* _J(3)*

In the vacuum, the terms J i =1,2,3 disappear, but the topological Noether
electric vacuum currents on the right-hand sides of these equations do not.
These are the equivalents of the vacuum current introduced empirically by
Lehnert [7-10]. These vacuum charges and currents originate in the vacuum
configuration and provide energy as argued already. This can loosely be called
“vacuum energy.” In principle, it can be converted to useful form, and this type
of energy does not originate in point electric charge; it originates in the topology
of the vacuum itself.

The Lehnert field equations in the vacuum also exist in U(1) form, and were
originally postulated [7-10] in U(1) gauge field theory. It can be demonstrated
as follows, that they originate from the U(1) gauge field equations when matter
is not present:

(0" — gAY )Fu =0 (107)
This equation can also be written as
0“Fyy = igAV'F,, g =x/AY (108)
giving the first Lehnert equation in the form
VD= —igA*-D=p (109)

Similarly, Eq. (107) shows that the second Lehnert equation is

VxH—aa—?:J:ig(cAO*D+A*xH) (110)
and vacuum charge and current emanate directly from U(1) gauge field theory
as well as from O(3) gauge field theory as just argued. The constant ¢/ must be
regarded as a coupling constant in both cases [6], because it arises from the
gauge principle. Similarly, the vacuum magnetic monopole and charge can be
obtained from the U(1l) gauge equation:

(0" —igA"™)F, =0 (111)
and in vector form are
V:B=igA*-B (112)
OB . 0
E—FVXE:lg(CA*B—FA*xE) (113)



108 M. W. EVANS

In both U(1) and O(3), the existence of vacuum charges and currents depends on
the existence of the coupling constant g, which is due fundamentally to the
notion of covariant derivative, and can be traced, therefore, to the original gauge
principle of Weyl, as discussed in Section II. The coupling constant g must be
introduced in vacuo if we accept special relativity and the gauge principle. The
existence of vacuum charges and currents follows. The arguments in Section 111
lead us to reject the U(1) gauge theory of electrodynamics in favor of another
theory such as O(3) electrodynamics. These vacuum charges and currents are
conserved in the sense that they are Noether currents, and therefore do not
violate the Noether theorem [6], specifically, conservation of charge/current,
energy, and momentum.

It is seen that as the gauge group is changed from U(1) to a hi gher symmetry,
more solutions are allowed for the field equations, and therefore for the vacuum
charges and currents. Mikhailov has detected a magnetic monopole in six inde-
pendent experiments [4], interpreted as a topological magnetic monopole by
Barrett [4,5], and a magnetic monopole means the presence of magnetic current.
This has also been detected empirically [46]. Both the magnetic charge and the
current are topological in origin. In the case of U(1) gauge field theory applied
to electrodynamics, the vacuum configuration is described by a U(l) group
symmetry, and in O(3) electrodynamics by an O(3) gauge group symmetry.

All gauge theory depends on the rotation of an n-component vector whose
4-derivative does not transform covariantly as shown in Eq. (18). The reason is
that Y(x) and y(x + dx) are measured in different coordinate systems; the field
\ has different values at different points, but (x) and Y(x) + di are measured
with respect to different coordinate axes. The quantity d\ carries information
about the nature of the field \ itself, but also about the rotation of the axes in the
internal gauge space on moving from x + dx. This leads to the concept of
parallel transport in the internal gauge space and the resulting vector [6] is
denoted \s(x) -+ d\s. The notion of parallel transport is at the root of all gauge
theory and implies the introduction of g, defined by

Sy = igh” A7 dxts (114)
where dx* is the distance over which the vector is carried, M“ are group rotation
generators, and A% are generalized vector potentials for the given internal gauge
symmetry [e.g., U(1) or O(3)]. The covariant derivative is therefore

D, =0, ~ igM Al (115)

and is defined in this way under all conditions, in the presence and absence of
matter (electrons and protons). It follows that the electromagnetic field tensor
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under all conditions for all gauge groups is
i ;
Gpvzg[Dp,Dv_g (116)

and if g is zero, the field tensor becomes infinite for any gauge group, including
U(1). Here, [,] denotes commutator as usual. The constant g interpreted in this
way is neither a property of the source (an electron) nor of the field, but a
constant that couples source and field. Note that gauge theory is a necessary
condition for the existence of vacuum charges and currents, but not sufficient.
The actual existence of these entities must be determined empirically, as in the
experiments by Mikhailov [4] and in the work of Lehnert and Roy [10]. The
gauge equations on both the U(1) and O(3) levels allow for the fact that vacuum
charges and currents may be zero [11-20]. The B field of O(3) electro-
dynamics, however, is always nonzero in the vacuum, as it is the direct resultof a
vacuum configuration described by O(3) symmetry. If vacuum charges and
currents do exist, however, they provide the possibility of extracting energy from
the vacuum as developed in Section X1

V. FIELD EQUATIONS OF 0O(3) ELECTRODYNAMICS IN THE
CARTESIAN BASIS: REDUCTION TO THE LAWS OF
ELECTROSTATICS

In this section, it is shown that the field equations of O(3) electrodynamics

written in the Cartesian basis have a substantially different meaning from those

written in the complex circular basis of Section IV. The latter basis essentially

introduces motion and dynamics, while Eqgs. (31) and (32), written in the

Cartesian basis, produce the laws of electrostatics self-consistently. This is

confirmation of the mathematical and physical correctness of Egs. (31) and (32).
In the Cartesian basis, the O(3) field tensor is

Gy =GXi+ Gy j+GlLk (117)
and the O(3) potential is
Ay = AN+ AN j+ ATk (118)

where the upper indices (X, Y,Z) denote an O(3) internal space defined by the
Cartesian unit vectors in Eq. (6). The components of the field tensor are

GY = MAY — 0YAY — iglA}, A} (119)
G = OMAY — OVAL — iglAL, AY] (120)
GY = OFAY - B¥AL — iglAk, AV (121)
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where the potentials are real quantities. Therefore the commutators vanish:
[A}, A7) = [AL, Ay] = (A%, A7) = O (122)
The covariant derivative of O(3) electrodynamics in the Cartesian basis is
D, =0, — igMA% =8, — ig(A} + A} + A% (123)
and a rotation in the internal gauge space is denoted by

W = Ay
— X0 pir(x) iz () (124)

For a rotation about the Z axis
U = My = sy (125)
producing the gauge transformation:

1
Az—’Az-i-gazA (126)

This is, self-consistently, the same result as for O(3) electrodynamics in the
complex circular basis [11-20] because of the relation k = e

The use of Cartesian indices for the internal O(3) gauge space produces the
laws of electrostatics as follows. For clarity, the derivation is given in detail.
First, the components of the magnetic field disappear:

I

By = G¥ = A% — 0%} — ig[A}. 43] =0 (127)

By = G} =03'A} — 0°A} — ig[A},A3] =0 (128)

By = G2 = %A, — 9'A% — ig[A}, Ay =0 (129)
This means that a magnetic field is always a quantity that depends on motion, or a
current. If there is no magnetic field, there is no electric current, that 18, No
motion of charge. The use of Cartesian indices for the internal O(3) gauge space
therefore corresponds to an electrostatic situation where there is no movement of

charge. The use of complex circular indices corresponds to electrodynamics.
The nonzero static electric field components are given by equations such as:

GY =%} —d'AY — ig[A}, A}] (130)
Y = 0'A} — Ay — iglA}, AY] (131)
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which correspond to
190 0
—E —Ay + =AY
X =75 + ax (132)

10 0

The static electric field is therefore given self-consistently by

19
=-VA" -—_—4A
5 (134)

The vector potential A is zero, however, because the magnetic field is zero, and
we arrive at the familiar law of electrostatics:

E=-VA° (135)
Using the vector identity (16), it is found that E is irrotational:
VXE=0 (136)

In the Cartesian basis, the homogeneous field equation of O(3) electrody-
namics can be written out as three component equations:

0,Gx' = ig(A} Gy’ — AZGY") (137)
.Gy = ig(AZGY' ~ AXGY") (138)
0,Gy’ = ig(AXGY ~ AT GY) (139)

Forv=10
0,Gy = ALGY — AZGY (140)

and using
G" = By (141)

this gives the result

0xBx =0 (142)

The complete result for v = 0 is therefore

V.-B=0 (143)
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which is self-consistent with Egs. (127)—(129), indicating the absence of a
magnetic field because of the absence of moving charges.
For v = 1, we obtain

aoé?(l + 626??(1 + 63(;;1
- - - - - 31
— ig(AYGY + AVGY + AYGY — AFGY - A5Gy - ATGy)  (144)

that is, 0By = 0. Repeating this procedure gives

B _ (145)
ot

which is self-consistent with B = 0. A . .
The inhomogeneous field equation (32) in the Cartesian basis must be written

in the static limit where
J'=(p,0) (146)

The component equations look like

O HY' + ig(A::HEV - AﬁH;‘“) =Jy (147)
For v = 0, we obtain
. Z 710 Y 1720
0HY + 0,HY + 0:Hy + ig(AVH)’ — ATHy’ + A H (148)

—AZH + ATHY — ATHY) = J} = p

and this results in the equation
VD =p (149)

which is the Coulomb law of electrostatics. The Coulomb law is we!l kpown to
be self-consistent with Egs. (135) and (136). For v =1 and other indices, we

obtain the self-consistent result
D _y (150)
ot
which is true for an electrostatic displacement D. A ' .
In summary, the laws of O(3) electrodynamics in the Cartesian basis reduce
to the laws of electrostatics:
E=-VA°
VXE=0 (151)
V cD = p
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and this is an indication of the correctness and self-consistency of Eqs. (31) and
(32). The need for the complex circular basis now becomes clear: this basis
introduces dynamics into the O(3) laws. The Cartesian representation of the
gauge space describes a static situation where there is charge but no current
(movement of charge). A magnetic field always requires the movement of
charge. It has therefore been shown that the laws of electrostatics are laws of a
gauge field theory of O(3) internal symmetry. This is another refutation of the
received view, that the laws of electrostatics are laws of a gauge field theory of
U(1) internal symmetry.

The Gauss and Ampere laws of magnetism are obtained mathematically, and
somewhat artificially, from the fact that using a Cartesian basis gives Eq. (143)
(the Gauss law); and from the fact that there is no current and no B, so we have

J=VxB=0 (152)

and the Ampere law follows. However, there is a more satisfactory way of
obtaining the Gauss and Ampere laws by using the complex circular basis. The
latter is needed because magnetism is not a static phenomenon, as evidenced by
the both the Ampere and Faraday laws. Magnetism is always a dynamic pheno-
menon, so we always need complex circular indices. Therefore the Gauss and
Ampere laws are obtained from the particular solutions (87) and (91) leading to
Eqgs. (88) and (92). The phenomenon of radiation is then removed by removing
the Maxwell displacement current in Eqs. (88) and (92). This removes the
radiated B field and leaves the Gauss, Ampére, Coulomb, and Faraday laws of
the received view at the expense of generality. This procedure is a method of
obtaining the old laws from O(3) electrodynamics, which is, however, more
general and self-consistent. In forcing a reduction of O(3) electrodynamics to the
received view, we lose the vacuum charges and currents and a great deal of
information.

Information is also lost if we replace the ((1),(2),(3)) basis by the (X,Y,Z)
basis for the internal gauge space. The reason is that the former basis is
essentially dynamical and the latter is essentially static. This is again a self-
consistent result, because electrodynamics, by definition, requires the movement
of charge. The misnamed subject of “magnetostatics” also requires the move-
ment of charge, and so is not static.

VI. EXPLANATION OF INTERFEROMETRY AND RELATED
PHYSICAL OPTICAL EFFECTS USING O(3)
ELECTRODYNAMICS

The explanation of interferometric effects in U(1) electrodynamics is in general
self-inconsistent, and sometimes, as in the Sagnac effect, nonexistent. In this
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section, the theory of interferometry and related physical optical effects is deve-
loped with O(3) electrodynamics, which is found to give an agcurate and self-
consistent explanation, for example, of the Sagnac effect in terms of the
fundamental component B™®. The latter is therefore a physical observable in all

interferometry. . celd
In order to understand interferometry at a fundamental level in gauge fie

theory, the starting point must be the non-Abelian Stokes theorem [4]. The
theorem is generated by a round trip or closed loop in Minkowski spacetime
using covariant derivatives, and in its most general form is given [17] by

exp G)Du cix“) ~ exp (_ % J [Dp,Dv]dG‘”> (153)

where the integral over the closed loop on the left-hand side .is relatc?d tg an
integral over the hypersurface o* of the commutator of coyarlant derivatives.
The electromagnetic phase factor in O(3) electrodynamics is developed as an
exponential from Eq. (153) and is given most generally by

exp <g {JDH dx”) = exp (— %g [ [Dy, D\] dG”V> (154)

The observable phase is the real part of this exponential, speciﬁcz.llly,. the cosine.
Recall that in ordinary U(1) electrodynamics, the phase factor is given by the

exponent

¢ = exp (i(wf — k+r+a)) (155)

where o is random. '
To reduce Eq. (153) to the ordinary Stokes theorem, the U(l) covariant

derivative is used

D, =0, +igA, (156)
to give the result
1
i{aApdx” _ ”EJ Fydo (157)
The space part of this expression is the ordinary, or Abelian, Stokes theorem

#A-dr:jB-dAr:jv x A +dAr (158)
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with the following fundamental property:

% A.dr:-§ A-dr (159)
0OA A0

In U(1) electrodynamics in free space, there are only transverse components of
the vector potential, so the integral (158) vanishes. It follows that the area
integral in Eq. (157) also vanishes, and so the U(1) phase factor cannot be used to
describe interferometry. For example, it cannot be used to describe the Sagnac
effect. The latter result is consistent with the fact that the Maxwell-Heaviside
and d’Alembert equations are invariant under 7, which generates the clockwise
(C) Sagnac loop from the counterclockwise (A) loop [17]. It follows that the
phase difference observed with platform at rest in the Sagnac effect [47] cannot
be described by U(1) electrodynamics. This result is also consistent with the fact
that the traditional phase of U(l) electrodynamics is invariant under T as
discussed already in Section (III). The same result applies for the Michelson—
Gale experiment [48], which is a Sagnac effect.
From Egs. (157) and (158) the integral

1
Int = —EJvado‘” =0 (160)

vanishes in interferometry as described by U(1) electrodynamics. Therefore, in
order to explain interferometry and related optical effects by gauge theory, a non-
Abelian Stokes theorem and a non-Abelian phase factor are required. This means
that O(3) electrodynamics is capable of describing interferometry but U(1)
electrodynamics is not. An area integral is needed that does not vanish, as in
Eq. (160), and equated through the theorem (157) to a line integral. It is
straightforward to show that the only possible solution for the O(3) phase factor
is

Pexp <ig }AW -dr) = P'exp <igJB(3) -dAr) (161)

and since g =k /A(O) classically the phase factor reduces to

Pexp (i}xm -dr) = P'exp <igJB(3) -dAr) (162)

for all interferometry and physical optics. Equation (162) is nonzero if and only
if the Evans-Vigier field B is nonzero, and the latter is therefore responsible for
all interferometry and related physical optical effects.
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The P on the left-hand side of Eq. (162) denotes path ordering and the P
denotes area ordering [4]. Equation (162) is the result of a round trip or closed
loop in Minkowski spacetime with O(3) covariant derivatives. Equation (161) is
a direct result of our basic assumption that the configuration of the vacuum can
be described by gauge theory with an internal O(3) symmetry (Section I).
Henceforth, we shall omit the P and P’ from the left- and right-hand sides,
respectively, and give a few illustrative examples of the use of Eq. (162) in
interferometry and physical optics.

The Sagnac effect with a platform at rest [47] is explained as the phase

factor:
exp (1% k) -dr> = exp (214)!(‘3) -dr) (163)
A-C

which is nonzero and gives an observable interferogram, a cosine function:

Yy = cos (2%1((3) «dr + 21m> (164)

Using the relation:
B = |BO)| = ga®? (165)

the right-hand side of Eq. (162) may be written as

® = exp(ix*Ar) (166)
and so Eq. (164) becomes
2
Y = €O0s <2m—2Ari2nn> (167)
c

This is an expression for the observed phase difference with the platform at rest
in the Sagnac experiment [47]; it is a rotation in the internal gauge space. In U(1)
electrodynamics, there is no phase difference when the platform is at rest, as

discussed already.
When the platform is rotated in the Sagnac effect, there is an additional

rotation in the internal gauge space described by
V' = exp(iJzo(x" )W (168)

where a(x*) is an angle in the plane of the Sagnac platform [48]. The effect on
the gauge potential Af) is as follows:

I
A =AY+ (169)
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The angular frequency of rotation of the platform is

(ols4
and so Eq. (169) implies that the additional rotation of the platform has the effect
0—-otQ (171)

on frequency, depending on the sense of rotation of the platform, which therefore
produces the phase factor difference

[ Ar
Ay _exp(z<c—2((m+ﬂ)2— (m—Q)z))) (172)
and an interferogram
oQAr
Re (Ay) = cos <4 = + 2Ttn) (173)

as observed [49] to very high accuracy. This formula was first given by Sagnac
[50] using kinematic methods. There is no explanation for it in U(1) electro-
dynamics [4].

The calculation can be repeated using matter waves, because the Sagnac
effect exists in electrons [51] as well as in photons. The starting point is the
same, namely, the assumption that the vacuum configuration is described by an
O@3) gauge group symmetry. The same structured vacuum applies to both
electrodynamics and dynamics, wherein the energy momentum tensor is also a
vector in the internal gauge space:

pu :p“(l)e(l) +pll(2)e(2) +p}1(3)e(3)
= ;—,(Kumem + kM@ 4 K“(s)e(3)) (174)

where

2.4
2 2.0 MgC
0" =cK" + ? (175)
Here, o s the angular frequency of a matter wave, such as that of an electron, k is
its wave number magnitude, and my is the rest mass of the particle corresponding
to the matter wave. The rest mass could be the photon’s rest mass, estimated to be
less than 10798 kg.
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Both p, and k, are governed by a gauge transformation
Py — SpuSTH —i(0,8)87! (176)

and similarly for . The rotation of the Sagnac platform is governed by Eq.
(168), from which we obtain

K20 100) 1 gy (177)

which is the same as Eq. (171). This is a topological result given by the structure
of the vacuum and is valid for all matter waves, including the electromagnetic
wave as argued already. The holonomy difference with platform at rest for A and
C loops [round trips in Minkowski spacetime with O(3) covariant derivatives] for
matter waves is

Ay = exp(2ik*Ar) (178)
where, from Eq. (175)
2 2 4
) ®° mgc

The extra holonomy difference due to the rotating platform is the same as for
electromagnetic waves:

(180)

0 2A
AAY = exp (41(0(22 r)
c

This result is true for all matter waves and also in the Michelson-Gale
experiment, where it has been measured to a precision of one part in 103 [49].
Hasselbach et al. [51] have demonstrated it in electron waves. We have therefore
shown that the electrodynamic and kinematic explanation of the Sagnac effect
gives the same result in a structured vacuum described by O(3) gauge group
Syminetry.

The preceding is a result of special relativity precise to one part in 10> [49].
Its explanation in standard special relativity is as follows. Let the tangential
velocity of the disk be v| and the velocity of the particle be v, in the laboratory
frame [52]. When the particle and disk are moving in the same direction, the
velocity of the particle is vy — v| = vj relative to an observer on the periphery
of the disk. Vice-versa, the relative velocity is v, + vy = v4. The special theory
of relativity states that time for the two particles will be dilated to different
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extents, so the time dilation difference relative to the observer on the periphery

of the disk is
o\ 1/2 o\ —1/2
_ V3 V4
s (18)" (1 g

using the binomial theorem. When the disk is stationary [53]:

. 2nr
= (182)

where r is its radius. So the observable time difference of the Sagnac effect is

4nrvy  4QAr
AAr =100 (183)

c? c?

as deduced already as a rotation in the O(3) gauge space of a structured vacuum.

The Maxwell-Heaviside theory of electrodynamics has no explanation for
the Sagnac effect [4] because its phase is invariant under 7, as argued already,
and because the equations are invariant to rotation in the vacuum. The
d’Alembert wave equation of U(l) electrodynamics is also T-invariant. One
of the most telling pieces of evidence against the validity of the U(l)
electrodynamics was given experimentally by Pegram [54] who discovered a
little known [4] cross-relation between magnetic and electric fields in the
vacuum that is denied by Lorentz transformation.

It can be shown straightforwardly, as follows, that there is no holonomy
difference if the phase factor (154) is applied to the problem of the Sagnac
effect with U(1) covariant derivatives. In other words, the Dirac phase factor [4]
of U(1) electrodynamics does not describe the Sagnac effect. For C and A loops,
consider the boundary

X +ri=1 (184)

of the assumed circular paths of the two light beams of the Sagnac effect. The
line integral vanishes around the boundary

2r 2n
%dr:J dX—I—J ay
0 0

_ _JZR sind d + JM cos  d

0

:0:—Jdr (185)
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and so

#K-dr:—#K-dr:O (186)

in U(1) electrodynamics and the relevant holonomy in this symmetry of
electrodynamics is the same

exp<iif>cx.dr> :exp<—i§>CK-dr> =1 (187)

for both beams. There is no interferogram with the platform at rest, contrary to

observation.
Furthermore, the only electromagnetic vector present in free space in the

Maxwell-Heaviside theory is the plane wave [11-20]:

(0) .
A =A@ = % (i +j)e " (188)

which is always perpendicular to r, so we obtain Eq. (187) self-consistently.
Owing to the gauge invariance of the Maxwell-Heaviside theory, there is no
extra effect of a moving platform, again contrary to observation. The principle of
gauge invariance, and U(1) electrodynamics in general, fail to describe the

Sagnac effect.
On the O(3) level, it can be shown that if we write out the commutator of

covariant derivatives in Eq. (153) the phase factor becomes [6]
¥ = exp (J[Dp,Dv]dc“V> (189)
Y= exp(—i%J(E)uAv — 0Ay)do" — g J[AH,AV] dcs“v> (190)
ut as just argued, integrals such as
() = [ @, - 0.4, do" (191)

vanish for both A and C loops, leaving the only source of nonzero holonomy,
Eq. (162), leading to the observable interferogram in Eq. (167). This derivation
can be self-checked using a closed loop with O(3) covariant derivatives in
Minkowski spacetime [6] whereupon the holonomy in one direction is

Ya = exp (—i%]cwdsw) (192)

and in the other direction is

Yo = exp <i§ J Gy dS“V> (193)

where S*V is the area enclosed by the loop. The holonomy represents a rotation in
the internal O(3) gauge space and is a general result for all gauge group
symmetries. If the internal basis of the space of O(3) is (a, b, ¢), the holonomy
can be expressed as

_ .8 a : ¢ v
Y = exp <:F15J (BuAS — DAY — igeumcAjAT) dSH ) (194)
If the internal symmetry is U(1), the holonomy in either direction is
Y(U(1)) = exp <:Fig J (0,4, — avAu)dS“v>

= exp (:Figfi;Audx“> =1 (195)

and the ordinary Stokes theorem can be used to show that there is no holonomy
difference.
If the internal group symmetry is O(3) in the basis ((1),(2),(3)), we obtain:

exp (qti% 0,40 — avAff))dS“V) -1

£ (2) (2)y gouv
exp(:F12 (0,47 —0,A ) dS™ | =1 (196)

exp(w% (BuAyY — avAS))ds“V) =1

and the only source of holonomy difference is the commutator term, which is
written in general as [17]

2
g ,
v = exp (; 3 J EancALAS dS“V) (197)

Considering the special case

2
v = exp (;%J(AQJA(YZ’ - Af)A(y”)dSXy> (198)
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and using Egs. (165) and (188), it is found that the holonomy is

v = exp (Fik’Ar) (199)

The difference in holonomy is Eq. (178), and the interferogram can be written as

v = cos (2k?Ar £ 2nn) (200)

with the platform at rest. .
The Sagnac effect caused by the rotating platform is therefore due to a

rotation in the internal gauge space ((1),(2),(3)), which results in the frequency
shift in Eq. (171). The frequency shift is experimentally the same to an observer
on and off the platform and is independent of the shape of the area Ar. Th.e
holonomy difference (172) derived theoretically depends only on the magni-
tudes ® and €2, and these scalars are frame-invarl‘ant, as observed expe'rl-
mentally. There is no shape specified for the area Ar in the thc?ory, and.only its
scalar magnitude enters into Eq. (172), again ip agreement with experiment. .

In the one photon limit, O(3) electrodynamics [11-20] produces the result:

eA”) = hx (201)

Substituting this into
v = exp (q:i%B(3)Ar) (202)
for a beam made up of one photon, the flux B® Ar becomes Fi/e and so, in the one

photon limit
v = exp (i) (203)

The observable phase difference is therefore nonzero for one photon in O(3)
electrodynamics. The effect with platform in motion is the same as Eq. (172) for

one photon. . . . ;
Equations leading to Eq. (162) apply in general in O(3) electrodynamics an

to interferometry and physical optics in general. They imply the existence of the
quantity

8m = %J B®dAr (204)

in which the units of a topological magnetic monopole are directly dependent on
the vacuum configuration. We therefore have the relation

= ggnV (205)
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and the observation of phase ® implies the existence of both B(3) and g,,. The
latter must not be confused with the Dirac point magnetic monopole or with the
quantities on the right-hand sides of Eqgs. (95) to (97).

In the Maxwell-Heaviside theory of electrodynamics, the electromagnetic
phase is a product of two 4-vectors together with a random quantity o

=K'+ =0f - Kker+o 206
i

Let o = 0 without loss of generality, because it is a random number. Then the
remaining part of the phase in Eq. (206) is invariant under parity inversion, which
is the same as perfect normal reflection as argued in Section III. Therefore the
phase arriving back at the beam splitter [55] in one arm of the Michelson
interferometer is unchanged for all r, the length of the arm. The same is true for
the other arm, and so there is no interferogram, because the phases arriving back
from either arm are always the same as the phase in the beam that initally
entered the beam splitter. This result is clearly contrary to observation, and U(1)
electrodynamics is unable to explain Michelson interferometry, the basis of
Fourier transform infrared spectral techniques and instruments.
In O(3) electrodynamics, the interferogram is described by the holonomy

exp(iff; K(3>-dr> = exp<2iJB<3)dAr> (207)
1-2

where 1-2 represents a path traversal from beam splitter to mirror and back to
beamsplitter. Using the property

% K(3)'dr = _§ K(3J dr (208)
1 2

this is nonzero, and the interferogram is the cosine function [17]
Re(y) = cos(2k® «r + 21tn) (209)

which is nonzero and depends on r. By varying r, an interferogram is generated as
observed empirically [55]. Its Fourier transform is a spectral function, and in
general the beam is polychromatic.

The principle of interferometry in O(3) electrodynamics follows from the
fact that it is caused by a rotation in the internal gauge space

exp (ix(#;l_7 K“dx“> = exp(iJzA(M)) exp (147 K“dx“) (210)



or more succinctly

y = Ay 211y

In Michelson interferometry. for example, the left-hand-side of Eq. (210)
becomes

v = exp(2ix,x") (212)

whose real part is Eq. (209), the interferogram. This result follows from the fact
that the rotation (211) in the O(3) internal gauge space results in

) y o1
A;f) _}Af! _T_gau'j\

OA ‘
o = O = (213)
or

12A

K~ Ko =

¢ Ot
and if @ = @A /01, Eq. (212) follows. We have already applied Eq. (210) to the
Sagnac effect. . o
In U(1) electrodynamics, the equivalent of Eq. (210) is the rotation in the
(1) internal gauge space:

POt r+A) oA gilor—wer) (214)

in other words
\lj’ B eiA\.} (2143)

where A is random. The electromagnetic phase in U(1) electrodynamics is
defined only up to a random number A, whereas the phase in O(3) electro-
dynamics is fully defined and gives rise to physical effects in interferometry. The
details of the effect depend on the geometry of the interferometer.

Another example of a physical effect of this type is the Aharonov-Bohm
effect, which is supported by a multiply connected vacuum configuration spch
as that described by the O(3) gauge group [6]. The AhamnowBohrp effect is a
gauge transform of the true vacuum, where there are no potentials. In our
notation, therefore the Aharonov—Bohm effect is due to terms such as (1 J2I0.A,
depending on the geometry chosen for the experiment. It is essential for the
Aharonov—Bohm effect to exist such that (1/g)3,A be physical, and not
random. It follows therefore that the vacuum configuration defined by the

U(1) group does not support the Aharonov-Bohm effect {26]. The vacuum
configuration defined by the SU(2) group cannot support the effect because
SU(2) is singly connected [6], leaving O(3) as the only possibility. This is
another strong indication of the need for O(3) electrodynamics. Barrett [26] has
also reasoned that the U(1) vacuum configuration cannot support the Aharonov—
Bohm effect. First, there is a fundamental topological flaw in Heaviside’s
reduction of the potential to a mathematical convenience because this can apply
only in singly connected spaces, whereas U(1) itself is not singly connected, and
Maxwell-Heaviside theory is asserted to be a U(l) Yang-Mills gauge field
theory. This is another self-inconsistency of the received view. In fact, any
polarized classical wave such as a circularly polarized wave has two vectorial
components that form the O(3) symmetry basis ((1%,(2).(3)) [3]. Another
inconsistency of the received view of the Aharonov-Bohm effect is that it
depends on the interaction of an assumed physical vector potential A with an
electron. However [26], the magnetic field B = V x A4 is always zero at the
point of interaction, and the effect is described self-inconsistently [6] as an
integral over the flux due to B. At the point of interaction this flux is always
zero. The effect actually depends on the inhomogeneous term generated by the
gauge transform of the vacuum [6] into regions where both the magnetic field
and the potential are zero. So the effect is an interferometric effect determined
by gauge transformed terms such as

A= -Ls)st = la,-A(i)-, i=1,23 (215)
8 8
in O(3) electrodynamics, where these terms are physical. The Aharonov-Bohm
effect is therefore a rotation in the internal gauge space of a vacuum
configuration described by the O(3) group, and not the U(1) group, where terms
such as (215) are random.

VII. EXPLANATION OF MAGNETO-OPTICS AND OTHER
EFFECTS USING O(3) ELECTRODYNAMICS

The subject of O(3) electrodynamics was initiated through the inference of the
B field {11] from the inverse Faraday effect (IFE), which is the magnetization
of matter using circularly polarized radiation [11-20]. The phenomenon of
radiatively induced fermion resonance (RFR) was first inferred [15] as the
resonance equivalent of the IFE. In this section, these two interrelated effects are
reviewed and developed using O(3) electrodynamics. The IFE has been observed
several times empirically [15], and the term responsible for RFR was first
observed empirically as a magnetization by van der Ziel et al. [37] as being
proportional to the conjugate product A" x 4> multiplied by the Pauli matrix
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o in europium-ion-doped glasses. Good agreement was obtained [37] between
theory and experiment, implying that the resonance equivalent of this term is
present in nature, In other words, resonance can be induced between the states of
the Pauli matrix by circularly polarized radiation. This resonance phenomenon is
potentially of widespread utility as argued in this section because (1) it has a
much higher resolution than ESR or NMR, (2) it has its own spectral fingerprint
or chemical shift pattern, and (3) RFR can be observed without the use of
superconducting magnets. In O(3) electrodynamics, it is essentially due to the
product of the Pauli matrix with the B® field and also exists {20] in O(3)
quantum electrodynamics.

The IFE was inferred phenomenologically by Pershan {56] in terms of the
conjugate product of circularly polarized electric fields, E x E* = EY x E?,
In O(3) electrodynamics, it is described from the first principles of gauge field
theory by the inhomogeneous field equation (32), which can be expanded as

apHpv(l}x :Jviljx +£SA§;2) x H;w(S) (216)
QHW @ = @t jgal? x gV (217)
0,H" — JvGr +igAL') x g (218)

that is, as three cyclically symmetric equations in the O(3) symmetry basis
((1),(2),(3)) without empiricism. In order to make further progress, a constitutive
relation must be used, as follows, but there is no need to assume the existence of
E x E* empirically. This is proportional to A x A® which is part of the
fundamental definition of the O(3) field tensor [11-20]. The constitutive relation
used is [20]

HWO" =G0 (219)

so that
H = ;840 5 4@ (220)
[

where € and p are the electric permittivity and magnetic permeability of the

sample being magnetized by a circularly polarized electromagnetic field whose

signature, the third Stokes parameter, is proportional to A x A® and therefore

to B™ (Section I11). If the vacuum configuration is assumed to be described by an

O(3) group, it follows that the inverse Faraday effect is due to B, and is

empirical evidence for B® leading to the development of O(3) electrodynamics.
The magnetization in the IFE is now defined as

apr“)* :J\’fl}* +Mv(])* (221)
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where

Nv(l}* - ’8&4;(12) X GHV(3) (222)

It can be worked out precisely [15] in an electron gas for a visible frequency laser

such as that used by van der Ziel et al. [37]. Th . :
- . [ .
the electron gas is {37} magnetic flux density set up in

@ _N (e fBON
Bsamp]e Ty (W Bfree space (223)
where there are N electrons in a volume V, and where m is the mass of the

electron. It is inversely proportional to the ¢
. Ivers ube of the angular freque f i
circularly polarized laser. The free-space value of B is ) auency ofthe

B (R
free space _(,— (224)

in terms of the intensity / (W/m?) of the laser and so

@ N e\ 1
Bsampie = V (-2”22 56(3; (225)

For example, for a pulsed Nd-YaG laser [57]
, S where [ = 5.5 12 2
® = 1.77 x 10'° rad/s, we obtain 107 Wit and

sample

B =106 x 105N
%
~107°T = 10°G (226)

which for N/V = 10**m~3 (Avogadro’s number) is the same order of magnitude
as that observed experimentally by van der Ziel et al. [37} in the first inverse
Farad_ay effect experiment. More generally, g/p is a frequency dependent hyper
polarizability [58], giving the possibility of the as vet undeveloped yIFE
§pectroscopy With its characteristic [58] spectral fingerprint. IFE spectroscopy
1s magnetization near optical resonance caused by the B'® field in 03

electrodynamics and is potentiall i
y as useful as infrared or R
We can write Eq. (216) as e spectioscopy.

aygpv{l)* :‘}v(l}* +A‘]v{l}* (22?)
where the transverse current can be developed as

v{ix 2 ]
AQU = £g’AlY x (AN x 4¥)) (228)
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causes a signal in an induction coil due to the vacuum B" field, a component of
G"3). This transverse current causes the inverse Faraday effect as observed

experimentally in an induction coil [37].

The explanation of the IFE in the Maxwell-Heaviside theory relies on
phenomenology that is self-inconsistent. The reason is that AM x 4@ is intro-
duced phenomenologically [56] but the same quantity (Section III) is discarded
in U(1) gauge field theory, which is asserted in the received view to be the
Maxwell-Heaviside theory. In O(3) electrodynamics, the IFE and third Stokes
parameter are both manifestations of the B field proportional to the conjugate
product that emerges from first principles [11-20] of gauge field theory,
provided the internal gauge space is described in the basis ((1),(2),(3)}.

Equation (228) can be developed further using the following result:

Fx(GxH):G(FoH)—H(F-G) (229)
This vector relation shows that

@ (1) % 42y = AH (42 4¥@)) — 42 (4D 40
Ap} y (Ap XA&( )) = AM (Au AY )} AY )(Atl AM )
= ~A024v(2 (230)

Using

K [£)]
$= 15 = 2w (231)

it is found that
AP = - Eara® (232)

On the one-electron level, the 4-current can be written in terms of the energy
momentum:

Nv(z): € pv{2) (233)
mcV

defined through the minimal prescription. From Eqgs. (232) and (233), we obtain

2
¥ e

[ . 234

& v mw?*V (234)

where ¥ is the one-electron susceptibility.
This result is self-consistent with the demonstration [15] that the IFE can be
described through ¥ by using the Hamilton—Jacobi equation for one electron in
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the classical electromagnetic field, but the O(3) derivation is far simpler. The

f;g]'ent AJ? is due to the field-induced transverse electronic linear momentum
Consider now the development of Eq. (218). From Eq. (219)

v{3)x
QW) — (235)

and so
Bl _ 4l
T = —igalV x H® (236)
ﬁqluaztz)c}m (235) follows from the theoretical and experimental finding that

OB®
ot

=VxBY =9 (237)

i-nnthe vacuum. In Eq. (236), J*C)* is induced self-consistently in the [FE as
follows.

Use the constitutive relation

H = g0 (238)
and the definition
G C(@PAV(Z) —ovAnE :’gA“m x AV(U) (239)
with
Al x (A" 5 ¥y = 0 (240)

Set v =3 in Eq. (236) to obtain
PO = 2igeAM x B2 (241)
which is the current induced by the nonlinear cross-product AU x B, Using
B¥ =¥ xA® (242)
this current is equal to that of the orbital IFE [36]

IO = igeekA!) x AR

__“ B
Y. (243)
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and so J°®)* is the magnetization current due to B for one electron. There is no
longitudinal source current in Eq. (218) because the source current of circularly
polarized radiation is necessarily transverse, the charge in the source goes around
in a circle whose plane is perpendicular to the (3) axis and the source does not
move forward along the (3) axis. There is therefore no current in the (3) axis, that
is, no source current in the (3) axis as argued.

The technique of RFR is simply the resonance equivalent of the IFE as argued
already, but is potentially of major utility. The techniques of nuclear magnetic
resonance (NMR), electron spin resonance (ESR), and magnetic resonance imag-
ing (MRI), are widely used in contemporary analytical science and medicine,
and all rely on the principle of fermion resonance induced between states of the
Pauli spinor. The resonance pattern is distinct for each sample, and in MRI, an
image can be built up. Optical methods have been used to enhance the subject
considerably [59-65] using laser frequencies. In conventional ESR and NMR,
the resonance is induced by a circularly polarized radio frequency (RF) or
microwave frequency coil, and the population of the energy states of the Pauli
matrices of electron or proton are separated by a very tiny amount by a powerful
and homogeneous magnet, usually a superconducting magnet. The resolving
power of these techniques is limited by the magnetic flux density of the magnet.
This limitation can be removed by replacing the magnet with a circularly
polarized electromagnetic field, resulting in RFR. In theory, the latter technique
has a much greater resolving capability than does NMR or ESR and can be
developed into an MRI technique based on the same principle, the induction of
resonance between the states of the Pauli matrix by a circularly polarized RF
field. The multi-million-dollar superconducting magnet of a conventional ESR
or NMR spectrometer could be replaced in principle by an ordinary RF field.

This resuit emerges self-consistently at all levels of physics, from the
classical nonrelativistic o the quantum electrodynamic. On the nonrelativistic
classical level, the technique of RFR is due to the interaction of B with the
Pauli matrix. One way of demounstrating this result, which has been observed
empirically [37], is to extend the minimal prescription to complex A, starting
[66] with the Newtonian kinetic energy of the classical electron

1
— — p. 244
Hye 2m‘p p (244)

where p is its linear momentum and m is its mass. The electron interacts with the
classical electromagnetic field through the O(3) covariant derivative written in
momentum space, in other words, with the minimal prescription with complex A,
with AV = 4" The interaction kinetic energy is therefore the real part of:

1
Hie = 5= (p — A"} (p — eA™) (245)

0(3) ELECTRODYNAMICS 131

) (2 ;
v&;here A and A are co_mplex conjugate transverse plane waves for simplicity
ol argument. The energy in Eq. (245) can be written out as

Hyg =

1 e m 2
. v \U . _ e { e
amP P~ g Re (A p) ~ - Re(p-a?) +§%A<1? AP (246)
a weltl-known result of rRumerous textbooks [67]. The only difference is one of
notation. In the textbooks, A = A" and 4* = 42, In order to derive the RFR
tSer;(n we use Paph matrices as a basis for three-dimensional space following
akurai [68] in his Eq. (3.18). The interaction between the classical electron and

;he classical electromagnetic field in this basis is described on the classical level
Y

1
T e sae - — (1
Hyx 5-0:(p—eAV)o(p — ea?) (247)
and consists of four terms: (1) the magnetic dipole term
= & oAl (2] €
Hl 2~—mp (A + A J>:§—};1-MO'RQB (248)

rweh;arzzzo ;s 1Ehe magnetic dipole moment of the electron or proton and Re B is the
al part of the magnetic ¢ ; i in~fli
real gnetic component of the electromagnetic field, (2) the spin-flip

[
= ] - (2
H, is-6px (4 o (249)

which, for an electron or proton moving in the Z axis, can be expressed as

A0
H; = weﬁpzcz ~{feosd +isin o) (250)
where
¢ =0owr—x7Z = ( _Z
ot - (251)

[ith can be seen t.hat if ¢ = 0, the Pauli matrix (or “spin’') points in the ¥ axis:
when ¢ :'n/z, in the X axis; when ¢ = 7, in the - axis; when ¢ = 3n/2 ix;
the —X axis; and when & = 2n, back in the Y axis]. ’

Thirdly, th izabili i i i
by ¥, the polarizability term which appears in the textbooks [67], is given

et 2
Hy = —— AN 4@ _ & 4002
P g AT =5 A (252)
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and is the basis [69] of susceptibility theory, and (4) the RFR term, which is
missing from the textbooks, is given by the real-valued expression

2 2
Hy= izin;c-Am xA® = -%A(O)za-k (253)

All four terms have been observed empirically. Terms 1-3 are well known, and
term 4 has been observed as a magnetization in europium ion doped glasses by
van der Ziel et al. [37] as argued already. The RFR term therefore emerges self-
consistently with three other well-known and well-observed terms from what is

effectively the O(3) covariant derivative.
This analysis of the classical non-relativistic level can be confirmed by
writing the four Stokes parameters [70] in terms of potentials in free space:

So = APAD 1 A AD

s =AVAY —aPAY

(1,20 417402 (254)
S = —(AVAY + AVAY)
Sy = —i(A AP — AT
For elliptically polarized electromagnetic radiation
SE=S1+83+857 =83 (255)
and for circularly polarized radiation
So = £5; {236)

Therefore, the existence of A+ A2, which is proportional to Sy and to field
intensity, implies the existence of + iA!") x A®) which is an observable
proportional to S3. If the light intensity tensor [70] is defined as

AQ)A(BZ)

Pop = 10 (257)

then from Egs. (254) and (256), in circular polarization:

[ s sy
p“ﬁbm[—i& S(J (258)
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Now define the Pauli matrices [6,68]

0 1 i ]

which are interrelated by the following cyclic relation:

Ox Oy ey
53]=F (260)
The intensity tensor becomes
| \ ‘
Paﬁzwfso—iczw‘i“‘ xA?) (261)

showing that the RFR term occurs in the fundamental definition of this tensor for
circularly polarized radiation. The RFR term is as fundamental as the intensity
itself, through Eq. (256).

For practical purposes, the critically important feature of the RFR term is its
dependence for a given beam intensity on the inverse of frequency squared of
the beam. This means that the spectral resolution [15] in RFR has the same
dependence. This critically important feature is shown straightforwardly from
the O(3) relations

BV =v x4V,  BY=vxa® (262)
so from Eq. (188}, the magnetic transverse plane waves are

0}

BY Lk
B =g = i (ii +j)eet=+2) (263)
and the electric transverse plane waves are

E(l) e g(2)% __E('O) : 1y (et -xZ)

an analysis that results in the relation between conjugate products [15]

5 I \
AN« 4@ = O?BJ) x B3 — EE(U < E? (265)

Expressing B'" « B?) in terms of beam power density (7 in W/m?) results in

B x B = f%le“)* (266)

where p is the vacuum permeability in SI units.
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The basis of the RFR technique is that a probe photon at a resonance angular
frequency Ors can be absorbed under the resonance condition

@0_)2(1 —(=1)) (267)

hores =

defined by the transition from the negative to the positive states of the Pauli
matrix 6. This is precisely analogous to the basic mechanism of ESR and NMR
and is a spectral absorption. The RFR resonance frequency is therefore

2
Ores € HoC !
res — —— — - 268
fre 2n (2nﬁm) o? (268)

and is inversely proportional to the square of the angular frequency ey, of the
circularly polarized pump electromagnetic field replacing the superconducting
magnet of ESR, NMR, and MRI {69].

For 'H proton resonance, the result (268) is adjusted empirically for the
different experimentally observed g factors of the electron (2.002) and proton
(5.5857). A more complete theory must rest on the internal structure of the
proton or other nuclei. The basic theory of RFR is strai ghtforward, however, and
a term emerges with three other well-known terms. In principle, RFR can
investigate nuclear properties using microwave or RF generators instead of
multi-million superconducting magnets.

For proton resonance therefore, the RFR equation [15] is

5.5857¢%uyc\ 1 25 1
Ores ( 2000hm a2~ PTG (269)

and some data from this equation are shown in Table I, where it is seen that RFR
proton resonances can be far higher than those in conventional NMR. The

TABLE I
RER Frequencies from Eq. (27) for the Proton for / = 10 W/em®

Pump Frequency Resonance Frequency
5000 cm™! (visible) 0.28 Hz

500 cm™! (infrared) 28.0 Hz

1.8 GHz 1.8 GHz (autoresonance)
1.0 GHz (microwave) 6.18 GHz

0.1 GHz (RF) 20.6 cm™' (far infrared)
10.0 MHz (RF) 2,060 cm™" (infrared)

1.0 MHz (RF) 206,000 cm~! (ultraviolet)
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concomitant resolution in RFR is also far higher than in NMR, and as will be
shown, the RFR technique has its own spectral fingerprint or chemical shift
pattern. The spinup-spindown population difference in RFR is also orders of
magnitude greater [15] than in NMR, and because of this, the homogeneity of the
pump electromagnetic field is not critical theoretically. This is another advantage
of the RFR technique. Any remaining objection to the existence of RFR is re-
moved by the empirical fact that the term (253) has been observed experimentally
as a magnetization [37]. The only remaining experimental challenge is to induce
resonance between the states of ¢ in term (253).

If RFR is applied to the electron, the same overall advantage is obtained; the
equivalent of Eq. (269) is

Ores = 1.007 x 108 L (270)
mz

These conclusions can be obtained on the nonrelativistic level, and it is possible
in theory to practice proton and electron spin resonance without permanent
magnets, at much higher resolution, without the need for very high homogeneity,
and with a novel chemical shift pattern, or spectral fingerprint, determined by a
site-specific molecular property tensor, to be described later in this section.

On the classical relativistic level, the starting point is the Einstein equation

P'pu = m’c? (271)
where p* and p,, are energy/momentum 4-vectors. In order to demonstrate RFR,
Eq. (271) is rewritten in the basis (260) using the gamma matrices [68]

Vpuvipy = mic? (272)

and the classical electromagnetic field is introduced through the O(3) minimal
prescription:

™(py — eAEll))y“(pp - eALzJ) = m*c? (273)
In the compact Feynman slash notation [68], Eq. (272) becomes
pp=m*c’ (274)
and Eq. (273) becomes

(F—e AN (P —e AD) = m*c? (275)
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This is the classical relativistic expression for the interaction of an electron
or proton with the classical electromagnetic field. The quantized version of
Eq. (275) is the van der Waerden equation [1] as described by Sakurai [68] in his
Eq. (3.24). The RFR term in relativistic classical physics is contained within the
term ¢2AVA®, a result that can be demonstrated by expanding this term as

follows
e’lA(l}A(Z) - ezﬂ{uAil) “Y”Aﬁz}

= 2(PAY — - AN (AT — v-A®) (276)

Using the well-known relation between the gamma and Pauli matrices [68]

(v-p)(v-p)=[_2 Z]’K EH: z][l()) ﬂ

(6-p)(s-p) 0
[ 0 (6-11)(01?)} @77

it is found that
& AV A0 = 2(aAVAD — AW AP g A x AP (278)
an expression that includes the RFR term
Targ = —ie*a-A" x AP (279)

On the nonrelativistic quantum level, both the time-independent and time-
dependent Schridinger equations can be used to demonstrate the existence of
RFR. As shown by Sakurai [68], the time-independent Schridinger—Pauli
equation can be used to demonstrate ordinary ESR and NMR in the nonrela-
tivistic quantum limit. This method is adopted here to demonstrate RFR in
nonrelativistic quantum mechanics with the time-independent Schrodinger—

Pauli equation [68]:
H\ = En{ (280)

where the Hamiltonian operator is

e (@pen) Vo (281)

Here, Vy is the potential energy, which, however, does not affect the RFR term.
This method is first checked for its self-consistency using a real-valued potential
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function A corresponding to a static magnetic field, then the same equation is
used to demonstrate the existence of the RFR term.

’ In a static magr.xetic field, the minimal prescription shows that the time-
independent Schrodinger—Pauli equation of a fermion in a classical field is

. 1
H—>2—”—z(c-(p4—eA))(o"(p+eA))—l—V (282)
The usual ESR or NMR term is obtained from
A 4
H\{;zzz—m(c'pr+c-A Xph+---

A
:%u-(v X (AY) +A X V) + ---
5 283
zgaoo((VxA}\J,!+(V¢s)xA—4—Ax(V\l!))-i—-‘- )
eh

:é—’-’n.o'-B\Jj_l-..

and is the famous “half-integral spin” first derived by Dirac in relativistic
quanturr_l mechanics. However, it also exists in nonrelativistic quantum
meghamcs as just shown [68], but is a purely quantum term with no classical
equivalent because it depends on the operator relation:

p — —ihv (284)

This is the spin Zeeman effect and in perturbation theory [69] gives the nonzero
ground-state energy:

eh .
En = o {Olo-BJ0) # 0 (285)

1t is the basis for all ESR and NMR.
To obtain the RFR term on this level, the same method is used for complex-

val‘ued A. This gives an extra classical term, or expectation value, which can be
written as

ie?

En mc-A“? x AD (286)

Perturbation theory gives the ground-state term

< 3

ie*

En=—
n 2m<0

o-A" x AP0) (287)
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which is again classical and real-valued. It has the inverse square frequency
dependence described already and exists on the nonrelativistic quantum level
according to the correspondence principle. Therefore the RFR term is unlike the
ESR or NMR terms in that the RFR term is classical while the other two are
quantum.

The time-dependent Schrodinger equations

HY = mfﬁf— (288)
ot

H=HY 4+ H(1) (289)

V(1) =V e " (290)

can also be applied to the RFR phenomenon. A two-level system can be
considered to consist of the fermion in its spinup and spindown states (states of
the Pauli matrix). The unperturbed two-level system has energies E; and E; and
eigenfunctions yr, and {s,. These are solutions of [69]:

HO, = E, (291)

In the presence of a time-dependent perturbation H!)(z), the state of the system
is described by a linear combination of basis functions:

V(1) = ay () ¥, (t) + a2(1) ¥2 (1) (292)

and the system evolves under the influence of the perturbation, so 4 and a; are
also time-dependent. If it starts as state 1, it may evolve to state 2. The
probability at any instant that the system is in state 2 is ax(t)as(r), and the
probability that it remains in state 1 is.

an(0)ai0) = 1 - ax(a3) (293)
Therefore
HY = agH{O}\I’; —i~a1H{'}(r)‘lf; +(22H{0)Q’2 -+ azH(U(f)\pz

., 0
= zhé—z(a;\Ii; +a,¥;)

N o, . Oa . ov, . (Ajag
e - h—\If g — ‘*“'—\I’ 4
Ihal ; + ih ot 1+ ihas ar + ih o 2 (29 )

Each basis function satisfies

ov,

Oy, —ih 2
HOYWY, =i & (295)

0O{3) ELECTRODYNAMICS 139
and therefore
atHY ()W + a; HY ()W, = ihiy ¥, + ifian ¥, (296)

This equation is

(297)

and can be multiplied through by /] and integrated over all space. Since {; and
\/, are orthonormal
i i . )
G]Hg,J(f)e iEt/k +Q2H§;)(I)e-sngf§ = iha e~ EV/H (298)
Similarly, multiply through by {3:
arHy (1)e™ B0 4 a3 Hy (1)~ < e B (299)

Here
(1) = J WHD (1)t (300)

and \; and {, are time-dependent parts of the wavefunction of states 1 and 2 of
the unperturbed fermion. Thus

H (1) = J WHO @, dx = (HO@)1) 301)

and so on.
At this point, the RFR Hamiltonian is inputted:

2
T
H (1) = zﬁc-x{m x AP (302)

. (i {1
so the existence of H,,"(r) and H\, (¢} and so on depends on the properties of o
between fermion states.

Define

%)
I

he (303)

1 —
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and
o= f1,1> = state 1
22 (304)
B= l% —%> = state 2
then 1
Sza = ho; SzB = — ERB (305)
and |
alSzjaly ==h :—f‘zja*ad*c
CINALY 21 306)
(57 i) = 0 = - 31 [ o pee
Now define
B = iS4 x AP (307)
T h
and
) ¢ @3 - _ ¢ gl g
H(“(z):v—;S-B ) = ~S2B; (308)
So Egs. (252) and (253) become
ayHy (1) = iha, (309)
a:HY (1) = ihas (310)
because
Ay =B HYw =0
1 am 4 (311)
eh 3 (1
HY () =5-B7  Hyl)=0

Equations (309) and (310} are decoupled differential equations of the form

(3] (3)
By . _eB3’
Zl; =1 2;‘ a; ay — —1I m az (312}
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where
( e
By = 2402 (313)
h
with the constraint;
ayay + aza; =1 (314)

A particular solution of Egs. (312) and (313) is

1 etBY) 1 etBY)
a :»—\/-iexp(i—z—’f-); ag=—\7§exp<—i2—nf (315)

The perturbed wave function is therefore:

(3) (3
_— ‘I’] _eth ) \I’z ,etBZ .
\ll_zexp(t P )-:—zexp( = (316)
and
= aqial = 0.5
Pr=aa (317)

P2 = aza; = 0.5

The probability of finding the system in one state or the other remains constant at
50%, and:

by . v )
b= 'ﬁ exp (iwyest) + Eexp(ﬁimrcsz) (318)
where
(3
eB:
Wres = 2:; (319)

is the radiatively induced resonance frequency defined by

oyes = HU (1) (320)
The final result is:
v, . Uy .
‘I{ — el(um\.’ + e e ! 32]
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where
HY = ih%q—J (322)
t

which is a combination of states with energies Ffiwy;. The RFR term prepares (E
dresses the fermion in a combination of o and P spin states analogously with ES

or NMR. . .
On the relativistic quantum level, the Einstein equation becomes the van der

Waerden equation [1,68] with the usual operator rules

pt — iho" (323)
Py — 1,
to give o
v o 2
(y0,) (" 0w = _}%?“l’w (324)

where Vyy is a two component wave function as d.escribed b){ Sakurai [gi] in hxs
Eq. (3.24). The classical electromagnetic ﬁe}d 115 111(tzioduced into eq. (3 1 ).u,.s;?g
0O(3) covariant derivatives to give the term e2 AV A% on the quantum re .at1\136 éc
level. The Dirac equation is obtained from the van d‘er Waerden equation [68]
using standard methods, and the two equations are equivalent. The RFR term was

indeed first derived [15] using the Dirac equation. ‘ ‘
On the level of quantum electrodynamics [17], a classical expression such as

- %(G.AU))(G.A@}) (325)

becomes the interaction Hamiltonian

2 {3}
e s C (Far, —a.al )) (326)
—alay+ Y —{a;ay — aga;_,
Z ((Ok Ay Z 03(;! q 4 9 /

H:Z};ﬁ&qv Z p

describing the exchange of a photon that results in the change of the spin f)f tie
electron. This process is equivalent [17} to the absorpttlon of a photorx in t e
atomic transition { — j and the absorption of a photon in the atomic transition

J—i

The free Hamiltonian term quadratic in B must also be considered and is
N (327)
=- ay, ayay ag)
i mqaovkvk,‘q( kra ¢

This term appears only in O(3) quantum electrodynamics and desc.:ribes the
interaction between four photons [17]: the absorption of photons with modes
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k+gandk’ ~ g and the emission of photons with modes k and k. This is a
physical process where two photons interact and mutually exchange momenta,
and is a process that is observable only in O(3) quantum electrodynamics. The
effect has been observed empirically by Tam and Happer [71] in two interacting
circularly polarized lasers and was explained using the concept of long range
spins by Naik and Pradhan [72]. If the direction of the rotation of the polarization
is the same, the two beams attract and vice versa. In O(3) quantum electro-
dynamics [17], the effect is a form of self-focusing or photon bunching that
would result if the spins of the photons were aligned in the same direction, as
observed empirically [71]. This result also suggests that O(3) quantum
electrodynamics could account for light-squeezing effects and also photon
anti-bunching if the photon spins were opposite.

The O(3) quantum electrodynamic equivalent of the RFR effect has been
numerically analyzed by Crowell [17] using the Hamiltonian (327). Numeri-
cally, it is possible to consider only a finite number of photon modes, and the
difference in energy between these modes is set equal to the difference between
the two spin states of the fermion, More complex situations were also analyzed
[17]. Crowell discovered a variety of effects numerically, including modified
Rabi flopping, which has an inverse frequency dependence similar to that obser-
ved in the solid state in reciprocal noise [73]. The latter is also explained by
Crowell [17] using a non-Abelian model. A variety of other effects of RFR on
the quantum electrodynamical level was also reported numerically [17]. The
overall result is that the occurrence, classically, of the B*® field means that there
is a quantum electrodynamical Hamiltonian generated by the classical term
proportional to § B®'2. This induces transitional behavior because it contributes
to the dynamics of probability amplitudes [17]. The Hamiltonian is a quartic
potential where the value of B'* determines the value of the potential. The latter
has two minima: one where B®) = 0 and the other for a finite value of the B
field, corresponding to states that are invariants of the Lagrangian but not of the
vacuum,

Another potentially useful feature of RFR is that its site specificity is different
from that of NMR or ESR, because RFR relies on a different molecular property
tensor [74]. In a precursor to RFR, called optical NMR (ONMR) [59-65], site
specificity has been demonstrated at a spatial resolution corresponding to
quantum dots, a dramatic demonstration of the enhancement possible with the
use of circularly polarized lasers or circularly polarized microwave fields such
as in RFR.

The calculation of the chemical shift in RFR is straightforward [74] and
relies on a calculation of the second-order perturbation energy (SI units)

h W©gy,

i 4
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with the perturbation Hamiltonian

H:—l—(p—}-e(A +AN)) 4V (329)
2m
where
Mo wr (330)
Ay = 4nr3 N

is the vector potential [69] due to the nuclear dipgle moment my. The
perturbation term relevant to the RFR chemical shift is the one photpn off-
resonance population term [74], which is by far the dominant chemical shift term

(where c.c. = complex conjugates):

En=i a Z (Olp+A|n)(n|Ay-A"|0) + c.c. (331)

=1
mzﬁ(,l)o,, "

The transition electric dipole moment is defined by [74]

(OJuln) = ;07 Olp|n) (332)

and the vector relations:

i x (my xr) (A1 x A@)
= i(u-A)((my xr)-AD) —i(n-AD)((my xr)-A)  (333)

and
X (py xr) = (uerymy — (pemy)r (334)
demonstrate that Eq. (331) may be written as
2
E:C(ize—mc-A(” xA<2)> (335)
where
= G 2 Ol 510 (336)

Here, my = gy(e/4m)hio and Eq. (335) defines the RFR chemical shift factpr
or shielding constant. This depends on the novel molecular property tensor in
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Eq. (336), which is not the tensor that defines the well-known NMR chemical
shift through the Lamb shift formula of NMR [69]. The order of magnitude of ¢
is about 107, roughly the same as in NMR. The complete RFR spectrum from
the protons in atoms and molecules is therefore

2
Ein = i;—m(l +¢)e-AY x 4? (337)

and is site-specific because of the site specificity of (.

The experimental or empirical demonstration of RFR is a logical conse-
quence of the detection of a term proportional to 6+A(") x A by van der Ziel
et al. [37], and some experimental details are suggested here. It would be
necessary to work initially on the interaction of a fermion beam with an
electromagnetic beam. All levels of one fermion theory given in this section
could then be tested under conditions that most closely approximate the theory.
A successful demonstration of RFR would require careful engineering in the
matter of beam interaction. The IFE has been demonstrated at 3.0 GHz by
Deschamps et al. [75], and this experiment provides clues as to how to go about
detecting RFR. It seems that the simplest demonstration is autoresonance,
where the circularly polarized pump frequency (o) is adjusted to be the same as
the RFR frequency (®p):

Dres = ® (338)

Under this condition, the pump beam is absorbed at resonance because the pump
frequency matches the resonance frequency exactly. Equation (270) simplifies to

ol = 1.007 x 10%] (339)
Therefore, we can tune o for a given /, or vice versa, using interacting fermion
and electromagnetic beams. Since autoresonance must appear in the gigahertz
range if the pump frequency is in this microwave range, the setup in Ref. 75 can
be used as a starting point for the RFR design. Essentially, the magnetization 75
must be converted into a resonance. In Ref. 75, a pulsed microwave signal at 3.0
GHz was detected from a klystron delivering megawatts of power over 12 ps with
a repetition rate of 10 Hz. The TE;, mode was circularly polarized inside a
circular waveguide of 7.5 cm diameter. A plasma was created by the very intense
microwave pulse. To detect RFR experimentally, the same standard of
engineering would have to be reached with an electromagnetic beam interacting
with an electron beam, rather than a plasma, which contains positive jons [15].
To detect resonance, the intensity of the microwave radiation would be much
lower, and governed by the autoresonance equation (339). As in the design used
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by Deschamps et al. [75], the section of the waveguide surrounding the tube
would perhaps be made of nylon coated with a micrometer-range layer of copper.
The incoming electron beam would have to be guided carefully into the circular
waveguide used to circularly polarize the microwave radiation. The engineering
design for RFR probably has to be at least as accurate as in the experiment [75] in
which magnetization was detected in the IFE at 3.0 GHz in a plasma. Cross-
referencing with the detection of the term 6-A"") x A in Ref. 37, at least part
of the signal detected by Deschamps et al. must be due to the RFR term, which is
the interaction of B® with the Pauli spinor. Contemporary IFE experiments [76]
in plasma routinely detect this term and so routinely detect the B field.
Equation (339) predicts that the resonance occurs at 3.0 GHz if I is tuned to
0.0665 W/cm? for an electron beam. For a circular waveguide of 7.0 cm
diameter, this requires only 2.94 W of power.

The preceding estimate is based on one-fermion theory, so the observed
resonance frequency in a fermion beam may be different as a result of fermion—
fermion interaction. Therefore, it is strongly advisable that I be tunable over a
wide range to search for the actual resonance pattern. The same experiment can
then be repeated in a proton, atomic or molecular beam and the RFR effect
should be I/m?*-dependent with a pattern of resonance determined by the novel
chemical shift factor ¢. Spin—spin interaction between fermions would split the
spectrum as in ordinary NMR, but the RFR fingerprint would be unique.

It is to be emphasized finally that the RFR technique is simply the resonance
equivalent of a magnetization term proportional to 6-A") x A? that has now
been observed on numerous occasions [76] in the IFE in paramagnetic materials
and plasma. The experimental challenge is to convert this magnetization to
resonance.

VIII. CORRECTIONS TO QUANTUM ELECTRODYNAMICS IN
0(3) ELECTRODYNAMICS

As discussed by Crowell [17], quantized electric and magnetic fields exist in a
vacuum that is composed of virtual photons that are the result of the Heisenberg
uncertainty fluctuations in the electric and magnetic fields. These fluctuations
can be considered as first-order terms, and second-order terms involve
fluctuations with electrons and positrons. These virtual pairs [17] are randomly
distributed in the vacuum, but an electric field will preferentially align, or
polarize, the virtual charge separation. Therefore a photon, with its oscillating
electric field, will be associated with these virtual pairs of electrons and positrons
that are polarized with the photon electric field. In the formal language of
quantum electrodynamics, this is represented by Feynman diagrams [6,17].
The magnetic field is oriented perpendicular to the plane inscribed by a
completely polarized electron—positron pair [17]. The virtual electron—positron
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is accompanied by a virtual electromagnetic field, and as discussed by Crowell
[17], the charges of the virtual pair will separate under the influence of the
photon electric field. The magnetic field lines of the virtual electron—positron
pair will preferentially align with the magnetic field of the photon. Therefore
quantum theory is the action of the vacuum on particles and fields, so there are
terms such as £("2) 1 8E(2) and B1'? 1 5B where the variational terms are
quantum fluctuations. Now, following the argument by Crowell [17], consider
the differential form F = dA, which can be written in spacetime as ,

F = Fdx* N dx" (340)

The Yang-Mills functional [17] is defined by the integration of the wedge
product F A* F, where * denotes the Hodge dual-star operator

1

k=—
8n?

L ) FuvFopdx* Adx’ A dx* A dxP (341)
n.g

and yvhere k is the instanton number. The electric and magnetic fields on the
manifold of three dimensions are

E; = g FY; B, = g;FV (342)

and the Yang-Mills functional is

1
k=1 [ 8]+ o5, B8] ' (343)

leading to the equal time commutator [17]
87 (r,1),8B] (¢, 1)] = h8;6“8(r — ¥)8(t — 1) (344)

where the O(3) indices are included. Quantum-mechanically, the electric and
rr'lagnctic fields are conjugate variables, and the uncertainty relationship is
dictated by the fluctuations in these fields in the vacuum.

These field fluctuations in the vacuum will interact with the photon’s electric
and magnetic fields. The fluctuation in the interaction energy due to the
magnetic field is given by [17]

SE:JS(I'-A) :JH-SBd»‘r (345)

and can be es.tim'ated from the quantized flux 2n#i/e. This term is responsible for
the Lamb shift in the energy levels of atoms such as the hydrogen atom. The
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magnetic field fluctuation is defined as the magnetic flux quanta multiplied by the
small area enclosed by the electron-positron pair, an area that is determined by
the coordinate fluctuations of the electron and positron, and that can be estimated
by using the energy fluctuation 8E = 8 mc?, the uncertainty relation between the
energy and the time 3£8¢ = h and the uncertainty in the position dx = cdt.
The magnetic field fluctuation is approximately 5.6 x 10* T over a range of
about 10~'5 m, and lasts for about 102 s. Fluctuations on this scale occur at

about the classical radius of the electron,

0O(3) electrodynamics predicts the existence of the B field, which must also
have an effect on the stochastic motion of an electron on a fine scale [17]. There
exists in theory {17] the commutator

BE) (r,1), 8B (', 1)) = hdyd(r —)3(1 — 1) (346)
and the uncertainty fluctuations:

5B — %(SA“} x A@ £ AT x 34%) (347)

The magnetic vector potentials will have the magnitude IBD|/k, so the
magnitude of the B fluctuation is expected to be [17]

5B = %(153”31) (348)

The fluctuation in the ordinary magnetic field in this expression is

_n(dm)’

249)
2 eh (349)

oB

which is about 5.6 x 10° T. The magnetic field associated with the photon,
without quantum fluctuations, is about 3 x 107! T, so the fluctuation in B is
approximately 6 x 1077 T. These result from virtual electron—positron pairs and
are expected to be 10 orders of magnitude smaller than the standard magnetic
field, giving measurable contributions to quantum electrodynamics in the
10-GeV range [17].

Crowell [17] argues that the vacuum contribution to the virtual B® field is a
very small effect, about a millionth of the Lamb shift.

The nonrelativistic estimate of the contribution of B> to the Lamb shift was
first carried out by Crowell [17] as follows. The interaction of the radiation field

with the electron is given by

H= gjd'*rj(r) A(r) (350)
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The Ampere law is next used with a covariant definition of the curl operator

e ;
V — Dx = Vx ~H£ZA>< (351)

implying
J(r)+A(r) =D(r) x H(r)-A(r)
=H(r)+D < A(r) +D+H(r) x A(r) (352)

The last term is a boundary operator and is discarded, leaving a B contribution
H— il d’rH-A" x AQ)
. (353)

}n*hich leads to the Lamb shift due to B, The interaction Hamiltonian (353) will
mduge the spontaneous emission of a photon with wave number o = ck and an
atomic state transition |n) — |n'), which gives the second-order perturbation
shift in energy

_ (' k, €| Hin|n, O
AEH - Z Z ( En - Enlfm— ck l (354)

n ke

where € is the polarization state of the emitted photon. First, consider the term
B =V x A with A = A . The matrix elements of the interaction Hamiltonian
are

4
/ . _ € 3 *

(n' k,e|Hiln, 0) = WA pxe-exe (355)

and if the sum over the photon numbers goes to the continuum, the energy shift is

4 3 2
_ & S [dk | Kp-g|n,0)
A= w2’ J i Z E, —Ey —ck' (356)

wherf: thf: factor (2n4) ™ is absorbed into A'Y. Now Crowell [17] sums over the
polarization states and puts the integral in spherical coordinate form:

et [Fdk— | lpe )
AE, = - w-fﬁ[ dk o~ (' lp € Im) | ,
J0 k ZEn —Ens -—Cf( (35?)

"

The integration of this result leads to

¢ [(r/|p-5*|m) !
AE, =-—=4A"Y Iy M (358)
Wi 2 g g e\ ke (358)
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which is divergent. This divergence is dealt with by recognizing that the
probability of emitting a photon depends on the electron current as a function of
wave number, so that the dipole approximation becomes

(', ke|pln, 0)] = {(n'pln, O)*i(k) [ (359)

where j(k) is a current for each wave number k divided-by the total current, a ratio
that reflects the percentage of photons that are emitted with a given k. For a finite
number of photons, this will be a Poisson distribution. If the sample size of
photons is very large, but if the number of photons emitted is far less, then
|j(k)] ~ k, and the following result is obtained

& (' |p-&*|n) ke \|
AE, = ~——A*Y —————In(1-
e > E, —E; ( E, — E;) .

(360)

an integral that is logarithmically divergent in the ultraviolet range [17].
In U(1) quantum electrodynamics, the ultraviolet divergence is removed [17]
by countering it with a similar term. For the free electron, there is the infinite

term

A 2¢2 5 oG
Ee = G 1 bl |, o (361)

leading to the mass renormalization of the electron from the energy shift:

E. = +AE, —(pl) + 2ol r dk (362)
¢ < o p 3nm?c? 0

An analogous process in O(3) quantum electrodynamics involves, following
Crowell [17], the coupling of the electron with a nonlinear photon coupling

corresponding to the energy shift:

AEE" =5 |(n K elp*|AAJ0, 0
k.
363)
87'[ h264 oc (
= i S0 |

This correction is added to the energy shift due to the B field to give

(En’ - En)

AEPY = - 3n_met iA-’Z (' Ipln)[? r dk——"_""— (364)
< 3mictpthe & TP o  Ey—E,— hkc
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which is l.ogarithrnically divergent, a divergence that is countered by the fact that
the ampl.ltudes drop off sharply for processes with frequencies hw > 2mc?
where m is the mass of the virtual electron and positron. The integral (364) can b ’
cut off at this value, giving the final result: e

8n e

AEBY = 20 e 43 ' 2 2mc?
¢ 3 m262“4O(A Z'(” tpIn)|” In m) (365)

The calculation of the Lamb shift due to B® is completed by using the equations

Hln) = Ey|n) (366)
and
ol
; &, -£) "V . £,) 7" (367)

The momentum operator acts on (Hy — E,,)_I as

P _ p
(o ~E) (=) (368)

and the action of the two momentum operators on the free Hamiltonian is

(HOP%EH) *p =[P+ [Ho,p]] (369)

:n ttl;le Lamb shift, thg Coulomb potential between proton and electron contributes

I~(I) fi cqmmutator in theé l;ydrogen atom, and the commutator with the free

eva;rlrllllattzglfmtll:ecomgs (ili e /2)V2(1 /r), which gives a delta function that is
In the matrix element when written out by com i

vet s y pleteness as an integral

e2h? 1 e2h?
- (n|V? ;|n> - Jd3r\11*(r)2ﬂ:6(r)\jl(r) (370)

For a i 2
altorm n atombm the s state, we have [W|° = [1/n(nay)’], where n is the principle
1c number and gy is the Bohr radius. The Lamb shift due to B® is therefore

2 2
[ (3) 1 e 2mc
amb(B ) = _3 5 <_(;> aS 1H< (371)
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which is 5.33 x 1073 of the standard Lamb shift. This answer is about five times

the quantum fluctuation estimate made already. o A
On the relativistic level in O(3) quantum electrodynamics [O(3) QEDY], the

Lagrangian density is

= }ZF;;VF“M’ (372)

with the gauge covariant field:

Fo, = DA% — QA + ige™ (AL, Al (373)

By

Variational calculus with this Lagrangian density leads [17] to the field equation:

D F ™M+ ige®™ ALFM =0 (374)

with electric and magnetic components:

ES = FY = —AY — ViAS + ige ™ AGA] (375)

In O(3) QED, the components of the vector potentials are expanded [17] ina
Fourier series of

ekB{ = VAT — VAT + ige P ATAS (376)

modes, with creation and annihilation operators that act on the Fock space Qf
states. with box normalization within a quantization volume V that has periodic

boundary conditions, thus giving:

1 a iker a’ ik ery 377)
Al(r,o) = E (e (k)e* T 4 eia® (k)e™T) (377
:( 3 ) - (2(0‘/)]!/~

The electric and magnetic components within O(3) QED are then

W e
E! = Z"_lpu—z (Mefa“(k)e"‘" +‘——‘e,~a" (ke * ’) (378)
P ey e c
1 iker | at ey —tker
k pa . a b SR 7
B =S e (ke @t (k)T + ke jeia® (ke )
e E;;(2mV>""~ sl
+ l‘ggab(fZe[iei](ab<k)eik'r +a”%(k)e‘i"‘°')(a"(k’}ei;‘§°’ ‘*;'GN (k’}g-f"")
"
(379)
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and the Hamiltonian for this non-Abelian field theory [17] contains novel quartic
terms.

If A,@ is phase-free, as discussed in Section IIi, and in Ref. 15, there are no
longitudinal electric field components. This also occurs if AEB" is zero {17]. The
B field is then a Fourier sum over modes with operators a;[qaq and is
perpendicular to the plane defined by A" and A®) The four-dimensional dual
to this term is defined on a time-like surface, following Crowell [17], which can
be interpreted as E© under dyad vector duality in three dimensions. The E®
field vanishes because of the nonexistence of the raising and lowering operators
a® @™+ The B® is nonzero because of the occurrence of raising and lowering
operators in the expansion of A" and A®. These facts imply that B is
phaseless and Jongitudinal, but they do not necessarily represent a breakdown of
duality because [15] ¢cB®) can be dual to an imaginary valued iE®

The effect of a local gauge transformation (Sction II) on the classical B
field is described as

B = igalh x APg-! (380)

where the group element g is an algebraic generator g = ¢*. Soin i=c = |
units the effect on B®) is generated as

dA' = g(dA+ANA)g (381)

where g is the group element for the O(3) theory. In the case of quantum field
theory, a gauge transformation

AL — AT+ BAY (382)
is associated [17] with a unitary transform of the fermion field:
Y — f + 3 (383)

In quantum field theory, the gauge field is determined by its Lagrangian density,
and the fermion field, by the Dirac Lagrangian density:

Zp = =Yy 0y + mpy (384)

In order to describe the interaction between the gauge and fermion fields, the
following equation is used:

@MF“HV -+ log(iuh(AAﬁFUw = jY (385)
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Here
A4
¥ = 386
=3 (386)

and the addition of an interaction Lagrangian density #; = j¥A, is implied. The
current term is determined by the Dirac field and is

P =y (387)

Mass renormalization requires [15] that an additional term y"\ydm be added
where &m is the difference between the physical and bare masses [77].
The total Lagrangian is then

gzg(}“FgD'*“g; (388}

and describes the interaction between the fermions and the gauge field. The Dirzfc
field is the electron field and the gauge field is the non-Abelian electromagnetic
field. The theory describes the interaction between quantized e]ec'trons and
quantized photons on the O(3) level. Because it is a gauge theory, 1t conveys
momentum from one electron to another by the virtual creation and destruction
of a vector boson (the photon). There is no creation of any averaged momentum
from the virtual quantum fluctuation [17].

In order to upgrade these well-known methods [6,17] of U(1) quantum field
theory to involve the classical B field, the following prescription is used:

Ay — 1°AG (389)

Here ¢ is a group structure constant defined by
[, ) = 26 (390)

The amplitude contribution from the B field occurs in a second-order process
using the sum over all possible fluctuations of B in the virtual photon.that
causes electron—electron interaction. The amplitude due to B has an ultraviolet
divergence [17] described by Crowell. This may be removed by regularization
techniques. o
This type of process is missing from U(1) quantum field theory [6]; the B
field produces quantum vortices [17] that interact with Qectrons anq othf:r
charged particles. The vortices are quantized states and exist d(b3 )ﬁuctuatlons'm
the QED vacuum, fluctuations that are associated, not with an E' field, but with
the E = E%* fields:

L€

5B® = zﬁlz(zsgm x E? + EV x 8E7) (391)
W
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Therefore quantum fluctuations in B are accompanied by fluctuations in the
transverse electric field. The ultraviolet divergence is probably unimportant [17]
because of the ®~? dependence of the fluctuation. The infrared divergence is also
damped statistically. The divergences in U(1) electrodynamics [6] can exist as a
subset of O(3) electrodynamics and can be absorbed into integrals that involve
photon loop processes associated with quantum fluctuations in B,

Crowell [17] has argued that O(3) QED is fully renormalizable. Renorma-
lization is necessary as in any quantum field theory because the potential and
propagator become divergent as the electrons approach each other. The
Heisenberg uncertainty principle ApAx > h means that the momentum ex-
changed by the electrons becomes divergent [17]. The vacuum is filled with
virtual quanta, as argued by Crowell [17], with enormously high momentum
fluctuations: virtual quanta that may interact with systems to contribute
divergences in the short wavelength limit, the ultraviolet divergences. These
divergences affect the self-energy of the electron, vacuum polarization, and
vertex functions [6,15,17].

In O(3) QED, there is an additional effect from the effective photon bunching
or photon interaction that emerges essentially from the photon loop generated
from the A"’ on one photon interacting with the A® on the other photon. The
loop is associated with quanta of the B field with intensity e/% as in Eq. (347).
It will be argued, following Crowell [17], that these novel fluctuations are fully
renormalizable. The virtual fluctuation of a B field does not lead to an
ultraviolet divergence, and so O(3) QED is renormalizable by dimensional
regularization.

The renormalization problem generated by O(3) is similar to the interaction
of the free electron with the vacuum through the Dirac equation [6,15,17] in
¢=1h=1 units:

(YH(Op — ieAy) —mpy =0 (392)

If there is no electromagnetic field present, the quantized vector potential
fluctuates according to

Ay = (Ay) + B84, (393)

and the fluctuation is present in the vacuum. This phenomenon manifests itself
through the zero point energy of the harmonic oscillator expansion of the fields
[17]; the electron will interact with the virtual photons, an interaction which is
expanded in terms of the order o = {e? /fic).The divergence [17] in the first term
of this series is countered by a mass term, introducing a difference between the
mass and the bare mass of the electron. Similar methods can be used
straightforwardly [17] to show that the loop fluctuations of photon, correlated
to the virtual quanta of the B field, can be calculated to be finite without
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divergence. The end result of this standard but complicated calculation [17] is
that O(3) QED is free of intractable ultraviolet divergences. The Lamb shift
calculation given already shows that O(3) QED is free of intractable infrared
divergences.

In Section I, it was argued that O(3) electrodynamics on the classical level
emerges from a vacuum configuration that can be described with an O(3)
symmetry gauge group. On the QED level, this concept is developed by
considering higher-order terms in the Hamiltonian

H= " (p—ea) (394)
2m
and evolution operator U = e~ [17], where:

U = ¢ it *A (395)

Here, H, is the Hamiltonian without the quadratic term. The vector potentials are
expanded as

(]
At iker—iwt __

A(l) =" _(ey +ie ¢ a+€—ik'r+i<nr 396)
\/2( x + ey ) (ax X ) (

giving
. N 11 (ko r— or—
AN AR = a2 (a+a+§—§(a+2€2'[-k rowr) | g2 pRitker wr))) (397)

The first two terms on the right-hand side [17] are precisely those obtained from
the standard harmonic oscillator Hamiltonian (He,) for the electromagnetic field.
The evolution operator can then be written as

i Ha Ve 7t L * 2
U e i{Hy+ Hw\)regZa +Za") (398)
=ik r-wt)

where Z = te
The operator

S(Z) = exp(Za™* + Z"a*) (399)

is a squeezed-state operator [17] that involves symmetries that are not precisely
defined by the Hamiltonian. The quantized B® field may correspond to such
symmetries of the vacyum, coming full circle with Section L The reason is that
the B> field is generated by writing Eq. (394) in the basis of the Pauli matrices,
as discussed in Section VIL
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The absence of an E® field does not affect Lorentz symmetry, because in
free space, the field equations of both O(3) electrodynamics are Lorentz-
invariant, so their solutions are also Lorentz-invariant. This conclusion follows
from the Jacobi identity (30), which is an identity for all group symmetries. The
right-hand side is zero, and so the left-hand side is zero and invariant under the
general Lorentz transformation [6], consisting of boosts, rotations, and space-
time translations. 1t follows that the B field in free space Lorentz-invariant,
and also that the definition (38) is invariant. The E¥ field is zero and is also
invariant; thus, B™ is the same for all observers and E*¥ is zero for all observers.

To prove the invariance of the B cyclic theorem [11-20], it is necessary only
to prove the invariance of the free-space Maxwell-Heaviside equations:

0,G" =0;  i=1,2,3 (400)

Consider, for example, a Lorentz boost in the Z direction using Jackson's
notation [5], and start with the 4-derivative

il 2
1 0 0 0 oX X
2 2
A A S LA (4o1)
0 0 ‘—!"{B y 5?;’ oZ ¢ t ,
oo —i(yBZ - 13
where
v\ 2 \Y
=(1-%) 5 = (402)
Using the same Z boost
Ey =v(Ex — BBy) By =Bx+BEy
Ey=v(Ey+PBBx) By =By — BEx (403)
E::, = Ez sz = By
SO
(V-E) =V +E =yV-E=0=V-E
, , (404)
(V'B) &S V 'B; = YV‘B = 0 = V~B
Considering the i component of the Faraday law in frame K.
OEy OE; OB
L N S (405)

oz oy ™
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the same component in frame K’ is
¢ vypo CE; o yo
Yom — = — | (Ey + -z —yBoe + | (By + BEy) =0
Y(faz c@t)( y + PBx) Yoy 7Y YB@Z Tem (Bx + BEy)
(406)

On the U(1) level, we can consider Ey and By to be plane waves and £7 = 0. The
following result is obtained in frame K':

OEy 10B 28 (10Byx  OF
2By 1CBx) YP [100x  OCYY
Y(@Z+c a:) c (c & ‘*'az) 0 (407)

This is true for all y and J because

OEy  18By _

7 T 0 (Gaussian units) (408)

The result is obtained that Faraday’s law of induction is invariant under a Z boost.
Similarly, it can be shown to be invariant under the general Lorentz
transformation, and all solutions are invariant. In general, on the U(1) level

@ F™) =0,/" =0 (409)
(8, F") =8,F* =0 (410)

It follows that the transverse field B = B?"* is Lorentz-invariant in free space,

and so is the B cyclic theorem:

B'Y « B = ;g0 g3+

in cyclic permutation

(411)

The general principle being followed is that, if equations of motion are the same
in any Lorentz frame, that is, to any observer, then so are the solutions.

The invariance of the definition of B can again be illustrated on the
sir?plest level by considering Lorentz boosts in the Z, X and Y directions of the
B field:

BY =By (412)
B =) ) — g w13

BY' = yBY —yBEY = yBY (414)
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In Jackson’s notation, a Z boost of A", for example, leaves it unchanged:

1 0 o0 074

{2

00 v Bl
0 0 —i

By 0

and since A’ is the complex conjugate of A", a Z boost in free space results in
(B = —igd!) x 4@ (416)

and leaves B invariant. The effect of a ¥ boost on A" is as follows:

(1)
10 o0 o07|% A’
, ; (0 all
am = |0 0B Ay (417)
0 0 1 0 0 0
0 —i 0 .
B Y 0 —iypAll
and using
3% .
BS" = —igemmAy Ay (418)
it is found that
7B = —iygal x 41 (419)

and the definition of B is again invariant. Using B® = kA®© [11-20] converts
Eq. (416) into the B cyclic theorem, and both are self-consistently invariant.
Therefore B is a fundamental field [11-20].

The E* field is zero in frame K, and a Z boost means [from Eq. (403)] that it
is zero in frame K. This is consistent with the fact that E is a solution of an
invariant equation, the Jacobi identity (30) of O(3) electrodynamics. Finally, we
can consider two further illustrative example boosts of E® in the X and Y
directions, which both produce the following result:

£y = +E]" (420)
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Therefore if E®’ is null in frame K, it is null in frame K’ . Thef%is a symmetry
between the Lorentz transforms of B> and the hypothetical £

Prey] 3y {3)
X: Bg) =By, EY =vE}
o C .
B s B =l a2
N3 3)1 f3}
z. BY =B E'=E

This is self-consistent with the fact that B®” may be regarded [1 1720]( a; duatlht(;
[ iﬁ” /c). so that B®)* + EX2 contributes to a nonzero Lagrangian and so tha
B™ is a real physical field.

These are mathematically valid results, ‘
of B® and the null E® are governed by the equation

but physically, the Lorentz transform

DG =0 (422)

where:

0" = 0¥l 0"l 4 0TV (423)

is a null 12-vector, whose components are null 4-vectors. The general Lorentz
transform of the null 4-vector is given by

OM = APQ¥ = O¥ (424)

and a null 4-vector is a null 4-vector in all Lorentz frames. ‘This means ttiat_ th;:
left-hand side of Eq. (422) is null in all Lorentz frames and is Ifo;g,mz-n;var::e.
its fi ions 1l Lorentz invariant, including, ol COUrsc,
Therefore its field solutions are also a‘ : | ot
B™ and E¥. This is self-consistent with the fact that Eq. (422) is egull:iaﬁr;tg
the Jacobi identity (30) for the group O(3). Fmall?/, when there 1s el -Yariam
interaction, all field components are Lorentz covariant, and no longer 1nv ,
1 both the U(1) and O(3) levels. 4 .
o In conclusion, the homogeneous field equation of O(3) electrodygarf}lc's nx:
Lorentz-invariant, and all its classical solutions must be also Lorentz-invariant.
The same result is obtained therefore in QED.

IX. NOETHER CHARGES AND CURRENTS OF O(3)
ELECTRODYNAMICS IN THE VACUUM

The first example of a vacuum current was introduced by.Maxvlv’feH in‘:tr::tr
to make the equations of electrostatics and magnetostatics S€ *consx 0(3;
The second examples were introduced in 1979 [7] by Lehnert, an
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electrodynamics offers four vacuum charges and currents of topological origin as
discussed already. Maxwell was led to the displacement current because the

received view at the time was self-inconsistent [5]. The received view consisted
of four equations

oB

together with the continuity equation:
0
vV-J+ 6—‘; ~0 (426)

Maxwell used the continuity equation in the Coulomb law to give
oD
V'<J+—é7) =0 (427)

and replaced J by J -+ (0D/Ct). The final result is the Ampére-Maxwell law

ob
VxH=J+— (428)
ot
which produced electromagnetic waves and is, of course, a standard part of U(1)
electrodynamics. The latter asserts, in the received view [5] currently prevailing,
that in the vacuum, there is a displacement current

OE

JD = 8Q-a—t~ (429)
using the vacuum constitutive equation D = ¢oE. The existence of Maxwell’s
vacuum displacement current is all-important for the theory of electromagnetic
radiation. The displacement current originates in the continuity equation, which
i1s a conservation law, similar to the laws of conservation of energy and
momentum summarized in Noether’s theorem [6]. The Maxwell displacement
current can therefore be referred to as a ““Noether current.”

More than a century later, Lehnert [7] introduced and developed [7-10] the
concept of vacuum charge on the classical level, and showed [7-10] that this
concept leads to advantages over the Maxwell-Heaviside equations in the
description of empirical data, for example, the problem of an interface with a
vacuum {7-10,15]. The introduction of a vacuum charge leads to axisymmetric
vacuum solutions akin to the B®’ vacuum component of O(3) electrodynamics
110,15}, and also leads to the Proca equation and the concept of photon mass.
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The latter is therefore related to the concept of the B> field through the Lehnert
equations, which in the vacuum are

oD B
VD = pyy: V.B=0; va:Jvac+6}"; VXE+%;:0
(430)
It can be seen that these are U(1) equations, but with the addition of the vacuum
charge density p,,. and the vacuum current density Jy,.. On the O(3) level, the
Lehnert charge density becomes
Elié* - ig(Afg} D% _ p® .Af3)) (431)

in cyclic permutation
and the Lehnert current density becomes

T = —ig(cAl'D® — cATDP + AP x H® — A0 x B (432)
in cyclic permutation

and O(3) electrodynamics self-consistently produces longitudinal solutions in
the vacuum typified by the phaseless B component. However, the magnetic
charge and current allowed for by O(3) electrodynamics do not appear in the
Lehnert equations (430).

The Lehnert equations are consistent [10] with the continuity equation (428)
of U(1) electrodynamics. Using the vacuum continuity equation in Lehnert’s
vacuum Coulomb law, we find

oD

J—J+—=J
ot
VxH:Jl+6_D (433)
ot
0
Ve +Pop
or
Repeating this procedure gives
oD
= [ pE—
Ji=J4 &
oD (434)
Jo=T+ s = 00

pnziJV-Jndr; "~ 00
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and theoretically, there are two infinitely large densities in the vacuum given by

Py = [V'Jndt; n-— oo
. (435)
pn:_Jv'Jndt; n— oo

because charge density can either be negative or positive. In this process, B and E
are unchanged, so the vector and scalar potentials defined by

A
B=YxA; E:-%—Vd) (436)

remain unchanged.
Therefore the vacuum potential energy difference is given by

AV == [J,, cAd*x (437)
and the rate of doing work is

ow

T + J"" JE Py (438)

In thermodynamic equilibrium, the net result is zero in both cases, but locally,
there may be a non-zero rate of doing work by these vacuum charges and currents
on a device, creating thermal or mechanical energy. This process is unknown
in the received view but conserves energy and is consistent with Noether’s
theorem [6].

The existence of charge density and current density in the vacuum is not
consistent with the Maxwell-Heaviside equations, but leads to a description of
empirical data [10,15] superior to that of the received view. Vacuum charge and
current density on the classical level are therefore postulates on the same
philosophical level as the existence of displacement current in the vacuum. The
latter emerges from the continuity equation (426) as argued already. If a
postulate leads to an improved description of empirical data, then the postulate
is valid in natural philosophy, irrespective of the received view. The role of the
coefficient g on the O(3) level may be discussed in a similar philosophical vein.
As argued already, the existence of g is a direct consequence of the gauge
principle, and it exists in the classical vacuum (or free space), on both the U(1)
and O(3) levels, in the respective covariant derivatives. It follows that ¢/ exists
in the vacuum in the Maxwell-Heaviside point of view itself, if this be regarded
as a U(1) Yang-Mills gauge theory as is the current practice [6]. If e/A exists in
the vacuum on the classical level, then charge density may exist in the vacuum
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as argued by Lehnert, and so current density may also exist. The Lehnert
equations were derived from U(1) gauge theory in Section IV. The existence of
e/h in the vacuum on the O(3) level is therefore conceptually no different from
its existence in the vacuum on the U(1) level.

As argued in Section I, the form of the received Maxwell-Heaviside
equations in free space or classical vacuum is obtained for finite g. The factor
g is a direct consequence of gauge theory [6] and is in general, a proportionality
constant without which there is no gauge theory, and without which special
relativity is violated. The coefficient g is present for all gauge groups in the
vacuum, including U(1). The superiority of the O(3) gauge group over the U(1)
gauge group in electrodynamics in no way depends on the introduction of g in
O@3): g is also present in U(l). The gauge principle and special relativity
therefore force the conclusion that e is itself topological in origin, and is not
localized on the electron, a conclusion first reached by Frenkel [15]. The bosons
(photons) obtained from a quantization of electrodynamics in any gauge group
are not charged bosons, as discussed in Section VIII. The physical nature of g
may be roughly summarized by noting the fact that g is a coupling constant that
is a property of neither the source (electron) nor the field. As demonstrated in
Section VIII, the classical O(3) electrodynamics may be extended without
conceptual difficulty to quantum electrodynamics on both the nonrelativistic
and relativistic levels. Similarly, the constant g exists in the vacuum in U(1)
electrodynamics as a consequence of the gauge principle and special relativity,
and U(l) electrodynamics quantizes to quantum electrodynamics without
charged photons.

In field theory, electric charge [6] is a symmetry of action, because it is a
conserved quantity. This requirement leads to the consideration of a complex
scalar field ¢. The simplest possibility [U(1)] is that ¢ have two components,
but in general it may have more than two as in the internal space of O(3)
electrodynamics which consists of the complex basis (( 1),(2),(3)). The first two
indices denote complex conjugate pairs, and the third is real-valued. These
indices superimposed on the 4-vector A, give a 12-vector. In U(1) theory, the
indices (1) and (2) are superimposed on the 4-vector A, in free space, so A, in
U(1) electrodynamics in free space is considered as transverse, that is,
determined by (1) and (2) only. These considerations lead to the conclusion
that charge is not a point localized on an electron; rather, it is a symmetry of
action dictated ultimately by the Noether theorem [6].

By way of introduction to the Noether currents and charges that exist in O(3)
electrodynamics, the inhomogeneous field of Eq. (32) can be considered in the
vacuum (source-free space) and split into two particular solutions:

3,G" =0 (439)
J = gﬁoAp x GMY (440)
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The first of these has been discussed in Section IV. The second is a vacuum
charge—current 12-vector in SI units. On the O(3) level, it is a physical charge—
current that gives rise to the energy

En® = JJV-AV av (441)

where Vis the radiation volume. The energy term can be developed as follows

/ 1
En™ = —E—JgAp x G™+A,dV
(O

G"-A, x A, dV
(442)
AY x AY- Ay x AydV

(B9, B av

_llo

and is the energy due to the B> component of O(3) electrodynamics. This is a
concise way of demonstrating that the Noether charge—currents of O(3)
electrodynamics give energy that in principle can be utilized for working
devices. In analogy, the Maxwell displacement current of the vacuum gives rise
to the electromagnetic field, which carries energy. The same principle is involved
on the U(1) and O(3) levels, and the ultimate source of the energy is the topology
of the vacuum, which manifests itself through the gauge principle and group
theory (Section I). If g were zero in Eq. (440), there would be no energy due to
B, revealing the latter’s topological origin. This energy can be thought of as
originating in a covariant derivative with O(3) symmetry, and a covariant
derivative is necessitated by special relativity and topology. So in this sense, the
energy due to B can be thought of as energy from the vacuum, manifesting
itself as part of the electromagnetic field. It is probable that devices can be
constructed to take advantage of this property of the vacuum and convert energy
of this nature efficiently into usable form.

The principle of taking energy from the vacuum is the gauge principle, and
this is illustrated as follows on the U(1) level. The U(1) gauge equations in the
vacuum are [6]

(8 +igA,)G™ =0 (443)
(8, + igA, ) G™ = 0 (444)

where the vacuum 4-current is defined as

JY = —igepA, G (445)
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If we set the index p = 0 in Eq. (445), for example, the following relations are
obtained:

Jx = igeoEx (446)
Jy = igeoEy
The average energy from this vacuum current can be defined as
En=c¢ JJ"*AVa‘V (447)
which is
En = —ixceg j (EpAx + EyAy)dV = g chE@A“’?' av (448)
Using

EO = xca® (449)

Eq. (448) becomes the familiar U(1) electromagnetic field energy:

En =g Jl«:‘f‘mdv = %J (80E(0)2 + iB<°)2)dV (450)
Ho

The same result is obtained from Eq. (443) using the same proportionality factor
g = x/A©. Note carefully that without the gauge term igAp, this energy would
vanish, and so the energy is due to the vacuum configuration and topology, in this
case assumed to be described by the U(1) group. o
Similarly, the magnitude of the linear momentum of the electromagnetic field
can be obtained by using the proportionality g = e/h in either Egs. (443) or

(444), giving

(au + ie%) G™ =0
(451)

(au + ie%) G"Y =0

Using the standard operator transformation of quantum mechanics

p, = —iidy (452)
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Egs. (451) both become

0,GM =0

v (453)
8,G" =0

and so we retrieve the familiar Maxwell-Heaviside equations in the vacuum. The
momentum is obtained from the equivalence

K

e
giving the magnitude of the linear momentum as
p = hx = eA” (455)

which is again a topological or vacuum property. Using En = ho, the energy is
given from Eq. (455) by

En = ecA™” (456)

and is again topological in origin; that is, it originates from energy inherent in a
vacuum configuration described by the non-singly connected group U(1).

The principle behind this derivation is the gauge principle, and so is the same
for all gauge groups. The equivalence (456) was first demonstrated on the O(3)
level [15], but evidently exists for all gauge group symmetries. The gauge
principle in electrodynamics therefore leads to the energy and momentum of the
photon and classical field. The 4-current J,, appears in both Eqs. (443) and (444)
and is self-dual, a result that is echoed in the self-duality of the vacuum field
equations:

8uG" = 8,G" (457)

Another advantage of this principle is that the coupling constant g is always
present implicitly in the calculation, meaning that the energy and momentum
have a cause, or source. This source is not the charge on the electron, but rather
the structure or configuration of the vacuum itself, obtained as a direct result of
the gauge principle taken to its logical conclusion.

If the procedure is repeated for the rate of doing work by the vacuum
4-current J¥

dw .
—d}—:CJJ «EdV (458)
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it is found that

aw
== Cj (JEx + JyEy)dV (459)

which is zero if E is a transverse plane wave. This result means that the energy
corresponding to J¥ is conserved in the vacuum because the rate of doing work is
energy per unit time. Therefore the field momentum is also conserved in the
vacuum. And therefore JV is a Noether current in the vacuum.

On the O(3) level, several new sources of energy from the vacuum emerge as
follows. First, define the charge and potential 12-vectors:

‘ ®
) = (pJT) (460)
AR = (d),,CA(i')) (461)

so that the energy from a vacuum configuration considered to have O(3) gauge
group Symmetry is

En=- j S0 AZ @Al 4 g al)av (462)

(En is used here to denote energy, not o be confuse with E as an electrical field).
The 12-vector is a spinor in which the Greek indices in covariant contravariant
notation are 0,1,2, and 3 and the numerical index (i) runs from 1 to 3,
representing the circular basis ((1).(2),(3)). For example [11-20]), AHD s the
4-vector, (¢, cAV), AH? is the 4-vector, (¢, cA?), and A*D is the 4-vector
(" ). cAW). Each of the three 4-vectors has four components, making a
12-vector. This must not be confused with a vector of 12 components. The field

12-vector is defined as
Gy = Gl + G2 1 GLle™ (463)

where each component in indices (1), (2), and (3) have the structure:

0o -E B _E 0 E B B
[ ¢ ¢ [ (4 [
. £ o -8B B -8 0 =By B
V= ; Gy = &
2 p 0 -B -& B, 0 B
E(_f _B B 0 - f;} —-By B 0
(464)

0(3) ELECTRODYNAMICS 169

The field equations in the vacuum are (31) and (32), and there are two possible
vacuum charge current [2-vectors:

J} = —geod, x G (465)
J' = —geoA, x GV (466)

Whi(:,h, frqm Eq. (462), are sources of energy from energy inherent in a vacuum
conh.gurauon as a direct result of the gauge principle. These two 12-vectors
provide several more sources of energy, a result that can be illustrated witﬁ
Eq. (466) by developing it as follows in the ((1),(2),(3)) basis:

J(l)* — 'igEOA;(lz) x G¥(3)
TP = —igeoA) x G (467)

JO* = —l'gﬁoAﬁl) x GHv(2)

This result follows because of the negative sign i i
gn in Egs. (465) and (466).
(462) for the energy is therefore ) : (#60) Hquation

En = —iggg (JAS) x G AR gy 4 JAf) x G APy
+ JAfP x G LAY dV) (468)

Now use the 3-vector identity:
F-GxH=G-HxF {469)

to obtain
. " . . -
En = Igg(}(JGm( ).Agz} XAtl}}dVT JGH W-Ail) XALZ}dV
e, 43 (1)
; fG A x A:l ’dV) (470)
The definition (461) implies that we can write

B = B = —igAl? x AL (471)
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The energy terms in Eq. (470) can therefore be developed as follows:

1.

El‘l| = 8()(?2 G'W“) . Bﬁ’dv

_ Lpwtn. gorgy
Ho "
| I - \
= -}-I— BJV(I) . BE? dv
0
:uL FI0BE 4 pREE gy
0
:Hio _32(1)Bg2> _ 31(1)322)‘1‘,
= L[ 58 av )
0
2.
Eny = goc? {G“"m . BE[?(]V
= 8002 JG‘ZHJBS;') + GZI(?)B{];) dV
1
= E'JB(ZB)BE;) + 3(23)3%3) dv (473)
0
3.

Ens = goC° JG“V@) -B{})dv

-~ goc2JG“3(2> -B)av
1

=— J BPB\Y + BY'BY av (474)
Ho

These derivations are given in full detail to show that the O(3) gauge principle
leads to several more terms than in U(), where the same gauge principle leads
to Eq. (450).

The overall result for the vacuum energy in U(1) is

En = L [B(O)Zdv (475)
Hg .
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and the corresponding result in O(3) is
En = En; + Eny + Ens (476)

If we adopt a gauge group of higher symmetry than O(3), there will be more
terms and so on, and this is a general principle. Electromagnetic charge current
and electromagnetic energy depend on the configuration of the vacuum, and
ultimately on the topology of the vacuum as represented in the language of gauge
and group theory (Section I). Charge current is a property of the vacuum, and
charge is not localized to a point as in the conventional view. On both U(1) and
O(3) levels, the field equations can be expressed in terms solely of potentials that,
in the language of general relativity, are connections. The constant e becomes a
scaling factor and both g = { = & and all field potentials are consequences of
the gauge principle for all gauge groups, including U(1).

We can begin to think of the electromagnetic field in the same terms as the
gravitational field, and the former is not an entity superimposed on the vacuum
irrespective of the vacuum structure. This conclusion is reminiscent of
Faraday's concept, as adopted by Maxwell [4], of charge as being the result
of the field. In gauge theory, g is a property of neither electron nor field, but a
property of the structure of the vacuum itself. The energy and charge current
also come from the vacuum. These concepts are further developed in Section
XI1. Finally, the energy momentum of the field on the O(3) level is a 12-vector:

p, = ple) +plPe® 4+ plet (477)

giving a new view of field momentum. This view is quite different from the
problematic [4] view of electromagnetic energy proposed by Poynting.
Electromagnetic theory in the vacuum at the O(3) level begins to look like
the theory of gravitation, the electromagnetic field can be replaced by physical
potential differences, and these are primary. Analogously, mass in general
relativity is a curvature of spacetime, and the gravitational field is the coordinate
system itself. On the O(3) level, the potentials are connection coefficients, and
charge is the result of topology expressed through gauge theory and group
theory. It has been shown that the topology of the vacuum can produce energy,
and that charge-current emanates from the same source. If the potential is a
connection, then the field can be expressed in terms of the potential and
therefore wholly in terms of the connection, and therefore in terms of topology.
The view presented here of the field particle dualism of de Broglie is that all
particles are pseudo particles and the vacuum electromagnetic field is the
topology of the vacuum itself. This point of view rejects action at a distance,
as did Newton himself. It is clear that particles result from the gauge principle,
for example, photons and quarks, as the result of quantization of the potential.



172 M. W. EV,

The potential is again primary in canonical quantization, and it has been shown
in Section IX that quantization of O(3) electrodynamics does not lead to
charged photons.

X. SCALAR INTERFEROMETRY AND CANONICAL
QUANTIZATION FROM WHITTAKER’S POTENTIALS

Whittaker’s early work [27,28] is the precursor [4] to twistor theory and is well
developed. Whittaker showed that a scalar potential satisfying the Laplace and
d’ Alembert equations is structured in the vacuum, and can be expanded in terms
of plane waves. This means that in the vacuum, there are both propagating and
standing waves, and electromagnetic waves are not necessarily transverse. In this
section, a straightforward application of Whittaker’s work is reviewed, leading to
the feasibility of interferometry between scalar potentials in the vacuum, and to a
trouble-free method of canonical quantization.

Whittaker [27,28] derived equations defining the electromagnetic field in the
vacuum in terms of functions f and g with the units of magnetic flux directed
longitudinally in the axis of propagation (Z)

[f=Fk; g=Ck (478)

and defined all field components in terms of f and g. The electric and magnetic
field vectors in the vacuum, in SI units, are defined by

E=cVx(Vxf)+Vxg (479q)
BZ%VXf—VX(VXg) (479b)

If we use the Stratton potential defined by

B" = (cP,S) (480)
where
0S
E=-VxS§; B:—E—VP (481)
and the 4-potential defined by
At = (d,cA) (482)
where
0A
B = -V x A; E=-—-Y¢ (483)
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it is deduced that
1.
A=-V ><g+;f (484)
S=—-cVxf—g (485)

in the vacuum. So, in general, the Maxwell potential A and the Stratton potential
S both have longitudinal components in the vacuum. Both A and § are generated
from the more fundamental f and g, and their longitudinal components in the
vacuum are

1

Az = EF; S; = -G (486)

The longitudinal magnetic and electric field components are [27,28]:

G G
BZ —_ = _— A

. _F 1OF
ox2  orz’ -

0Z* cror (487)
It is now known that these equations correspond to twistor contour integral
solutions for a particle with zero rest mass, and lead to an O(3) symmetry gauge
group for electromagnetism in the vacuum because the Whittaker solution is a
spinor formalism. Electrodynamics on the O(3) level is also a spinor, and
ultimately a twistor, formalism. Using the Penrose transform [4], the full
significance of the Whittaker solution becomes apparent. Later in this section,
the B field is expressed in terms of f and g, which are therefore physical. It is
this property that leads to the possibility of interferometry between scalar
potentials. In the received view [U(1) level], the scalar potential in the vacuum is
zero or unphysical, and so the received view loses a great deal of information.
The work of Whittaker therefore anticipates much of contemporary non-Abelian
gauge theory applied to electrodynamics in the vacuum. In the original equations
of J. C. Maxwell [ 78], Faraday’s electrotonic state is a physical vector potential,
a term that was introduced by Maxwell himself [79]. It is the later interpretation
of Maxwell’s original intent by Heaviside [80] that relegates the U(l) vector
potential to a mathematical subsidiary with no physical meaning. Several
refutations of Heaviside’s opinion have been given in this chapter already. It is
also incompatible with electromagnetism as a twistor theory, where Maxwell’s
original intent is realized, and vector potentials are physical on the classical
level. To be precise, vector and scalar potential differences can be measured
experimentally on the classical level.

Without loss of generality, it can be assumed that plane waves can be used
for the transverse parts of S and A, resulting in

S = icA (488)
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We obtain, self-consistently

f=ig [f=ig (489)
The following scalar magnetic flux gives transverse plane waves for A and S

()

A A
G= i (X — iy)efler+2) (490)
so that

A0 )

A= _Vxg= —2(ii +j)elerx2)
50 (491)

B— -—VXxA=—\(ii+] ei(u)r—KZ)
7 (ii +J)

Importantly, there also exists a longitudinal propagating part of the vector
potential

A= éKk= —Ki@ (X — iy)e' @2k (492)
L — c - \/E

that is not present in the received view [6]. For example, A, is zero in the
radiation and Coulomb gauges, and is considered in the received view to be
unphysical in the Lorenz gauge [6]. The longitudinal vector potential gives rise
to the transverse magnetic plane wave

B .
B=V xA;, = ——\/E(l + i].)el(m’_KZ) (493)

and to the electric field:

2 40) .
B = - gy =" (x - ir)e Dk~ v (494)

or c V2

In general, therefore, there is a longitudinal propagating component of the
electric field in the vacuum. However, in the plane-wave approximation used
here, there occurs the relation

Vd)ZVXS—%A? (495)
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and the longitudinal part of V¢ is

0A

(Vo) = - or

(496)

so the net longitudinal propagating electric field vanishes. Similarly, the
longitudinal magnetic field is

QAL A .
B = —ic=t_vyp= 290 o i{ot—KZ) _
L e~ VP=wo 7 (X —iY)e VP (497)
and using
os

VP:VXA—I—E (498)

the longitudinal part of VP is

as

(VP), = a (499)

and the longitudinal magnetic field vanishes. These results are consistent with
Whittaker’s

E FF 1 °F
Z= a2 T a2An =
0z ¢t Or (500)
B _azc+azc_0
7 x2 Tarr

when F and G correspond to plane waves. The presence of a longitudinal vector
potential and longitudinal f and g potentials in Whittaker’s theory demonstrate
that it is not a U(l) theory of electromagnetism. On the simplest level,
Whittaker’s theory defines the B field as

* . K *
B = —IW(V xg)yx(Vxg (501)

S0 g is a physical and measurable quantity, a result that is consistent with
Whittaker’s own result that G and F can be expanded in terms of plane waves and
are structured and physical quantities, and with the fact that Whittaker reduces
the U(1) equations in the vacuum to two d’Alembert equations

OF =0G =0 (502)
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which are Lorentz- and gauge-invariant, Canonical quantization can therefore
proceed through consideration of F and G, giving the photon straightforwardly as
demonstrated later in this section. This type of canonical quantization is free of
the difficulties associated with canonical quantization [6] in the Coulomb and
Lorenz gauges.

In the plane-wave approximation, all electromagnetic effects are derived
from the structured time-like potential difference

. ¥ A(O) . i{wi—xZ)
‘b:F:zG:-m'ﬁ(x—ly)e‘ (503)

which is thereby a physical observable in effects such as those observed
reproducibly and repeatedly by Priore and others [81-85]. These effects have no
explanation in the received view, but may be highly beneficial if properly
developed. The entities known as electric and magnetic fields are double
differentials of ¢ in the plane-wave approximation in the vacuum, a result that is
consistent with the ontology developed in Section I1X, that the topology of the
vacuum is primary, and that potential differences are the result of the vacuum
topology. Whittaker uses the usual Lorenz condition, and it is easily verified that

104,
VeAy+ 5t =0 (504)

If gauge freedom is lost, however, the Lorenz condition is no longer valid, and a
far more comprehensive view of the electromagnetic entity would be obtained by
solving the O(3) equations numerically. On the O(3) level, there is no gauge
freedom, and no Lorenz condition.

As discussed by Frauendiener and Tsun in Ref. 4, gauge field theory is a
form of twistor theory, and as discussed in Section 1X, the covariant derivative
must always be used in a gauge field theory, even on the U(D) level. The
covariant derivative must be used in curved spacetime, and in gauge theory
when used with ordinary flat spacetime. These authors also point out that the
phase on the U(1) level has no physical significance: it can be redefined by an
arbitrary rotation at any point in spacetime. The role of the covariant derivative,
or connection, is to compare phases at two neighboring points [4]. This property
Jeads directly to the conclusion that electromagnetism in the vacuum is not a
U(1) theory, but a Yang-Mills theory of higher symmetry. We have seen, for
exaraple, that the U(1) covariant derivative does not describe the Sagnac effect,
whereas O(3) theory describes it accurately because of the nontrivial self
interaction {4] resulting in the BY field concept. Since O(3) electrodynamics
is a Yang—Mills theory, it is also a spinor theory and also a twistor theory [4],
which takes us full circle to the fact that Whittaker’s theory is a twistor theory.
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N Potenti.al differ.enc?s are primary in gauge theory, because they define both
e cqvanam de‘nvan‘ve and the field tensor. In Whittaker’s theory [27,28]
gi%entlalslcap exist without the presence of fields, but the converse is not ’true,

is conclusion can be d 5 i ) is i jant
T e demonstrated as follows. Equation (479b) is invariant

g — g+ Va; Vxg—-Vxg+Vh {505a)
where a and & are arbitrary. This invariance implies that:

Vxg—=Vxg (505b)

The transvgse part of the vector potential is therefore invariant under the
transformations (505), because of the definition

Ar=-Vxg (506)

and this is a clear s.ign of the fact that Whittaker’s theory contains something
contrary to ‘the received view that the transverse A7 is always unphysical. The
gautge mvarlapc]e of Ay does not occur at the U(1) level, but on the O(j) level, the
vector potential is gauge covariant and physical i :

: , as in the Sa i
rotating platform. ’ g effect wih

The magnetic fluxes F and G obey i
[ S ey the Klein—Gordon equati S
particle in the vacuum: auation fora massiess

OF=0G6=0 (507)
and if we apply Eq. (505), we obtain
O(Va)=0(Ve) =0 (508)

indicating that @ and ¢ are not arbitrary. Therefore f and g are physical and
obse{'vable, Ay is physical and observable, and the transverse part of A¥ i
physufal. These conclusions refute U(1) electrodynamics. °
This result is consistent with Whittaker’s main conclusion [27,28], that
the S'Cé‘l]fir potential ¢ is structured and physical in the vacuum leadi?n {0 the
possibility of interferometry between different scalar potentia’ls withgout th
presence of fields. To reinforce this conclusion, we can differenti;te Eq (484§

) I .
A=-Vxg+-
X g p ! (509)
and use the Lorenz condition (also used by Whittaker)

1 0
v. -
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to give the following expression for the scalar potential:
b=V (Vxg)—cV-f (511)
This results in the following expression for the potential 4-vector
AF = (b, cA)
= (&Jv—(v x g)dt —cVf, —cV ><g+f>
= <—c2 J‘V-Aa’t —(Vef, -V xg Lf)

—(¢—cV-f,cA+f)
= (dp,cAr) = (&, cAL) (512)

where it is split into its transverse and longitudinal components in the vacuum.
The longitudinal component is

Al = (b, cAL) = (—cVf.f) (513)

and is physical because fis physical. On canonical quantization, therefore, there
exist physical longitudinal photons and time-like photons. By definition

OF OF
A= —cm5 5k 514
L ( AR > (514)
and in the special case where the transverse A!} consists of plane waves, F = G
and
A0 ——
AP = (X — )T (L 515
L 7 ( ) (1.k) (515)
The vacuum longitudinal potential is light-like
ALpAﬁ =0 (516)
and may be written as
Al = (b, cé k) (517)

The potential ¢, obeys the massless Klein-Gordon equation

D¢, =0 (G18)
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and it is well known that canonical quantization of this equation is straightfor-
ward [6]. This result is consistent with Whittaker’s main result that ¢, is physical
and made up of a sum of plane waves and standing waves in the vacuLum [7758]

The Lagrangian for Eq. (518) is well known [6] to be T

|
L =58 (30, )(3:07) (519)

from which is obtained the energy momentum tensor

£
M = Q000 — &
! = O 0L 8 (520)

and the Hamiltonian
H = temd%\- (521)

In ST units, the Hamiltonian is the positive definite

|

H = I'TOFJ (God; 8o, + Vb, -V, )dV (522)

R . . . « 2 .
where the beam radius is R* = X> + ¥°. Using the relations

A0 —
¢, = “%(MX — {Y)e! O NE
1 . N L A0
0oy = ——_im‘(X - iY)e’\"’”""'/)é—
¢ V2
o 40 (523)
* il kolX - Y ,—i{wr—xZ)
£ \/5 ( )6
AD . .
Vd)L = — 75 K(J)(X — IIY)ei(m’iKZ)
the Hamiltonian reduces to
H; _ L ‘B“’)de 524
Ho . (524)

wénch is identical with Eq. (450) of Section IX. This result proves that ¢, is
physical because the result (524) is a physical vacuum electromagnetic ener}gy.
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Whittaker theory refutes U(1) theory in several ways, so it may be more
appropriate to describe the result (524) as a component at the O(3) level:

Hy = — {Bm -BYdv (525)
Ho

[t may also be argued as follows that f and g are physical. If an attempt is
made to apply the usual U(1) gauge transform rule to A}

oy,
Ab AR Ly AL — ALV & ok (526)
it follows that
. . 10y
o F Uy f o Vef -k 527
fof-cOn  Vef 2V (527)
and
Gyt = _‘_J' A 47 (528)
) 2 ) dt

It follows from Eq. (528) that the quantity ¥ is not random, contrary to the U(1)
rule that % must be random. Euation (528) implies solutions of the type

¥ = Xoei{mt wZ) (529>
$o that
A AY Al (530)
where
A = ioxee®(1.4) = (¢, ¢A}) (531)
and
04¥ =0. ¢, =0 (532)
The net result is
b, — by + ioye’™” (533)
d =t —KZ
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If, for example

AD)
Yy = ;i (X —iY) (534)
then
d, —2¢,; F—=2F.  G—2G (535)
and a field such as [27,28]
2 2
o= xez " oo 556

doubles in magnitude. The field is not invariant, contrary to the requirements of
U(1) theory. The only possibility is that y =0, and that is physical and
observable.

Physical potentials are present in Whittaker’s theory without fields. This is
demonstrated as follows in the special case of a plane wave for the transverse
parts of E and B. In this special case

f=ig (537)
and from Egs. (479a) and (479b)
E=icVx(Vxg +aV xg (538a)
B:éng—vX(ng) (538b)
Under the condition
VvV x(V xg):é—aa-t(v X g) (539)

all the components of E and B vanish. The condition (539) is satisfied by

t aAr
V X Ay = ——n 540
T= (540)
whose solution is
Ar = A (ii + jye "N (541)
\/‘2‘ i
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The overall result is

(0) )
AL _ —KA—- (X _ iy)e—t(mt—KZ)k
\/i (542)
b, = _mA_m_) (X — iY)e @2
V2
F A0 it —KZ)
= =—(X - IY)e
C=7="7 (

so there can be both transverse and longitudinal phys.ical potentla]s,d or
connections. Electromagnetism can be described entirely without fields, and in

terms of the vacuum topology. . . '
Whittaker also argued [27,28] that longitudinal standing waves occur in the

vacuum. These can be illustrated by the choice of flux

G = ’—4(_0) (X _ iy)(ei(mrfncz) 4 e—i(mt—xz)) (543)
V2
a choice that obeys the d’Alembert equation:
0G=0 (544)
The real part of Eq. (543) is
Re(G) = iA(O) (X cos ot cos kZ + Y cos ot sin KZ) (545)

V2

which is a standing wave in the vacuum, directed along the propagatlon axis.
Such waves do not exist in the received U(1) theory. The magnetic flux

g= —2—A(0> (X cos wr cos kZ + Y cos ot sin kZ)k (546)
V2
is a solution to the vibrating-string problem, and the idea that electromggn]etls;n
must be described in the vacuum by transverse plane waves of E apd B is clearly
erroneous. Fluxes of the type (546) give rise to scalar potential interferometry
where there are no detectible fields. 4 . . o
It has been shown that the electromagnetic ﬁel(.i in Whlttaker s view
originates in the vacuum, and in the plane wave approximation, in the equation
; ; A ) i (01—KZ) 547
L:F:iG:—m—(X_lY)em ( )

V2

0O(3) ELECTRODYNAMICS 183

under conditions of circular polarization. The scalar potential ¢, is time-like,
physical, and structured, and it propagates. An experimental design can be used
to test experimentaily whether fand g are physical. The principle of the design is
very simple. Two dipole antennae are set up in close proximity so that the vector
potentials from each antenna cancel:

Keh(r

A =—i 72 (548)

dncegr

Here p; and p, are the dipole moments of each antenna and r is the magnitude of
the radius vector

ixr

Ke
Ay =i 549
g l4TEC80rp2 (549)
in spherical coordinates [86]. It follows that
E=0; B =0; A=A1+A=0 (550)

so there are no vector potentials or fields radiated into the vacuum by this antenna
arrangement. Whittaker’s f and g magnetic flux vectors are defined as follows by
this arrangement:

81 = —82 fi1=-2 (551)

However, the scalar magnitudes of g and f from both antennas (G and F) are the
same, because the scalar magnitude of a vector is the square root of the vector
squared. Thus the following quantity is radiated into the vacuum:

2 .
26 = %A(O) (X — i¥)elr=x2) (552)

and the scalar potential
¢, =26 (553)

is also present in the vacuum. On canonical quantization, this scalar potential
gives an ensemble of massless photons from the Klein-Gordon equation. This
property will be proved later in this section. These are physical time-like photons
each with the Planck energy %w. The energy from these photons is therefore
Eq. (524), and is phase-free. For a large number of frequencies, the photons are
distributed according to the Planck distribution for blackbody radiation [69],
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which is radiated heat detectible by a bolometer. There are no vector potentia?s or
fields present, so the heat is due entirely to the physical £ and G. In the‘recenved
view, such photons are unphysical and no heat should be detected.‘Anﬁlmprove-
ment on this design, due to Labounsky [87], is shown in Fig. 2, which illustrates
how fieldless G waves can be generated.

Scalar G waves Output

!

—1 Open end of waveguide

2 oppositely-potarized TE o modes
waves, excited and mutually
cancelled in the main waveguide
section, resulting in the production
of Whittaker scalar G waves

Waveguide
Directional Coupler

Waveguide
Directional Coupler

Closed end of waveguide

Waveguide T-Junction
Power Splitter

RF Output in form of

«— waveguide flange

Gyrotron

Gyrotrons produce high-power
microwaves up to megawatt range

Figure 2. Practical conception for a source of scalar G waves,

0O(3) ELECTRODYNAMICS 18

Scalar interferometry is possible in this view if F and G are physical in th
vacuum. When two scalar beams of the type

(0
G1 — A_\}__) {X . l-Y)ei(Lx)t—KZl)
2
Al0) (554
Gy = e (X — Y et 0r—xZ2)
2 \/ﬁ ( )

interfere, an interferogram is generated, as usual, and their combined energy
density in the zone of interference is

= iz (1 cos (x(Z) ~ 7)) (555,

where 7 is the combined power density of the two beams in watts per square
meter. Here, Z; — Z, is the path difference as usual, that is, the difference in
distance traversed by each beam from source (the design in Fig. 2) to interference
zone. If we now define

1 . X
Gs = =5 (G + G)(G] + Gy) (556)

then

LG =B#0 (557)

and a fluctuating magnetic flux density B appears in the zone of interference even
though no field is radiated by either source. The presence of a magnetic field
indicates the presence of an electric field. There are magnetic and electric fields
in the zone of interference but none outside. Equation (557) is a gauge-invariant
construct, and the E and B fields in the zone of interference are real and physical,
and so interact with matter in the zone of interference. The energy density within
this zone is also gauge-invariant and physical

En B2 GG

Voo Ry,

(558)

where R? is the beam area, assumed to be the same for each beam. The lateral
extent of the radiated beams from the device in Fig. 2 is constrained by the
inverse fourth-power dependence on R,

It has been proved that ¥ and G of Whittaker are physical and gauge-
invariant, and it follows, as shown next, that there exist physical time-like and
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longitudinal photons. These have an independent existence.: and appear frqm
canonical quantization of the classical, physical, and time-like scalar pf)tentla]
difference in vacuo [Eq. (547)]. Canonical quantization follows straightfor-
wardly from the massless Klein—-Gordon equation:

O¢.=0 (559)

The potential ¢, is treated as usual [6] as an operator subject to thg t?ommutat'or
relation of quantum mechanics. This procedure gives the positive definite
Hamiltonian (521) and vacuum energy (524) self-consistently. The scalar
potential ¢; is Fourier expanded as

_ o’k al)e % 4 qt (x)e'? 560)
¢L—J——(2n)%x<(> T a*(x)e?) (

a procedure that is self-consistent with Whittaker’s original demonstration
[27,28] that ¢, can be expanded in a Fourier series in the argument.denoted by
Whittaker in his general solution for ¢,. Equation (560) has frequencies wy = Kc
generated by the Fourier expansion. So many different photons emerge, each
corresponding to a different frequency; quantization results in an eqsemble [6] of
physical time-like photons, each of energy /. This is consistent with the Planck

quantization of energy momentum

p* = fix (561)

where the time-like component has energy Ao.
The coefficients @ and a* in the expansion (560) are operators defined by the

commutators [6]:
la(x),a(x)] = [a*(x),a"(x)] =0

(562)
la(x),a ()] = (2n)’ 20,8 (x — «')

The operator:
N(x) = a" (k)a(x) (563)

represents the number of particles with energy o and longitudinal momentum
hx. The Hamiltonian, after quantization, takes the form

H= %P"‘(K) + %in(K) (564)
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where
P(x) = (%) Uz(a(tc) +a*(x))
1 (565)
O(x) = W (a(k) —a® (x))

and &, after quantization, is an infinite sum of oscillators, that is, an ensemble of
time-like photons with energy hw. The operators a and a™ respectively are
therefore the annihilation and creation operators for the quanta of ¢; and the
energy of the quantized ¢, is rigorously positive. The photons obtained after this
type of quantization obey Bose-Einstein statistics [6], and any number of
particles (photons) can exist in the same quantization state. These photons are
spin zero and massless and, because they are spin zero, are not absorbed by an
atom or molecule, in contrast to physical space-like photons carrying angular
momentum. The received view of canonical quantization asserts [6] that these
photons are unphysical. Paradoxically, the received view also asserts that the
vector (561) is physical. This paradox is seen in the Compton and photoelectric
effects as argued already in Section III. There are insurmountable difficulties [6]
in the received methods of canonical quantization. In the radiation gauge, for
example, the scalar and longitudinal parts of the 4-vector A* are missing, so A* is
not fully covariant at the outset. In the Lorenz gauge, there are several difficulties
well summarized by Ryder [6]. For example, there is an indefinite metric where
the Lorenz condition has to be used and then discarded, then a gauge fixing term
has to be used, and the final result is paradoxical in that an admixture of time-like
and longitudinal photons are physical [6], but each component is unphysical. The
procedure of canonical quantization in the Lorenz gauge gives photons with spin,
and these are asserted to be physical transverse photons.

It is far simpler to introduce spin into the assumed massless photon by
following the little group method of Wigner [6], that is, by examining the most
general type of Lorentz transform possible for a particle without mass. This
produces the normalized helicities —1 and 1 through parity considerations.
These correspond, in the received view, to physical right and left circularly
polarized photons. If the photon is massive, as implied by O(3) electrodynamics,
there occurs in addition the helicity zero, corresponding to a physical long-
itudinal space-like photon without spin and corresponding to a physical O(3)
symmetry little group. [The little group of the massless photon is the unphysical
[6,15] E(2), another paradox of the received view.] As argued already, there also
occurs a time-like photon that is a scalar and that is purely energetic in nature.

These various considerations point toward the O(3) definition of the energy-
momentum 4-vector:

pH :pu(l)e(l) +pu(2Je(2) +pu(3Je(3) (566)
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There are therefore three energy-momentum 4-vectors present:
PO = (En,cp®);  p? = (En,p®);  pH = (EnplV)  (567)

Energy is a scalar and so does not carry an internal %auge in@ex. There are tl}ree
momenta; p® is longitudinal, and p'” and p® are circularly polarized
conjugates. Applying Planck quantization gives immedlia}tely a tlme—llke photon
Ao without spin, a longitudinal photon k) with%ut1 \spm and with energy fa,
and right and left circularly polarized photons Fc 142 each of energy A,

Therefore Whittaker’s theory points toward the existence of O(3} electro-
dynamics. This conclusion is reinforced by the fact that Eqs. (479a) and (479b)
are invariant under the duality transform:

f——s (568)
g—f

and Eqs. (484) and (485) can be written as

10g I .

2 S (569)

Vo f+ c Ot ¢

‘27><g-l§f~::ﬁA (570)
¢ Ot

These equations are invariant under the transform:

Special relativity then dictates that there exists the set of equations

Veg :%
ngzlé%;"’ (572)
Vef=-P
1§ 1
VxS g =S
which can be written as
08" = A (573)
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where
ro o 0o g
v 0 0 £ 0
g = 0 - 0 o0 (574)
g 0 0 0
00 0 —-f3
0 0 —g 0
g = L& (575)
0 g 0
LFf 0 0 0

Equations (573) have overall O(3) symmetry, and have the same structure as the
Maxwell-Heaviside equations with magnetic charge and current [3,4]. From
Egs. (573), we obtain the wave equation

1
08" =5F" =0 (576)

which is consistent with Whittaker’s starting point:
OG6=0F=0 (577)

The received view asserts that A" is always random, but in this section, several
counter arguments have been given. Several more counterarguments appear
throughout this chapter and elsewhere in the literature [3].

XI. PREPARING FOR COMPUTATION

In this section, the field equations (31) and (32) are considered in free space and
reduced to a form suitable for computation to give the most general solutions for
the vector potentials in the vacuum in O(3) electrodynamics. This procedure
shows that Eqgs. (86) and (87) are true in general, and are not just particular
solutions. On the O(3) level, therefore, there exist no topological monopoles or
magnetic charges. This is consistent with empirical data—no magnetic
monopoles of any kind have been observed in nature.

If consideration is restricted to the vacuum, the field equations (86) and (90)
apply. The Jacobi identity (86) is first considered and written in the following
form [6]:

DLGuv + Dquk + DVGXM =40 (578)
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This reduces in general to the form

akav + avak + avG;\p =0 (579)

because
A, xGV =0 (580)

is identically zero. The proof of this latter result proceeds by using the definitions
G = 0,4l — BAl" — igAD x AL
G =,A —0.A" - gAY x A (581)
GL) =0,AD" —0.40" ~igAll AP
and Jacobi identities such as:
AP x (40 x AP + AR x (4L x AT) + AP x (47 x AT) =0 (582)
The terms
AV x (3,AP -0,47) =0
AP % (0,40 -840 =0 (583)
AY x (8,40 8,4 =0

vanish individually as follows:
' ( EPN ) (2)
AV x (8,AP ~23,AD) = syAl %Al - Eneedy Sy
( (2) ol 1)
= >)Fﬁ2\2 MA}K va!
= AxBy(e? eV —elVe®) =0
(584)

Equation (584) implies that the topological magnetic charge—current
Jx Ay x GV =0 (585)

vanishes in the vacuum, while B is nonzero in the vacuum, a regllt that is
consistent with empirical data, which show the existence of BY and the
nonexistence of a magnetic monopole and magnetic current.
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The computational problem reduces therefore to a numerical solution of
three differential equations:

G +8,6Y +0,6)), = (586)
862 +0,G5 +8,G2) =0 (587)
HGl +8,G +3,6;) =0 (588)

using the definitions (581). There are three equations in three unknowns, so the
problem can be solved for given boundary conditions.

The work of Whittaker described in the previous section can be summarized
by the potential

AD = (4", eAY) (589)

where the magnitude of A® is Aff) /. The O(3) theory allows Af‘f) and A to be
structured, constant or zero. The B field exists in all three cases. If, however,
AP is zero, s0 is A((f’ and there is no scalar potential. The conclusion reached is
that there can be an infinite number of components of the 4-vector AE) for a
given phaseless B, In other words, the scalar potential can be expanded in a
Fourier series, or some other suitable series that includes the terms A’ = 0 and
A® = constant.

The disappearance of the magnetic charge—current (585) means that the
topological terms on the right-hand sides of Egs. (95)-(100) vanish identically
in the vacuum. The only topological charges and currents present are therefore
those introduced by Lehnert [7-10]. There is no empirical evidence for the
existence of an E® field, so we are left with

.. OB
(1 —
V x EVY + & =0 (590)
B
oBb)
= 9
o =" (592

as first proposed some time ago [11-20]. Equation (592) has been verified
empirically by Raja et al. [88] and Compton et al. [89]. The most general type of
solution must be found, however, by solving Egs. (586)-(588) numerically, so
that potentials are primary and fields are derived from potentials. The
mathematical structure of O(3) Yang-Mills theory applied to electrodynamics
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allows for A® = 0 as one of many possible solutions. However, if A® = 0, then
the scalar potential is also zero, while the B™ field remains nonzero.

The vanishing of the topological magnetic current in Eqgs. (98)~(100) leads to
two components of the B cyclic theorem as follows. In Eq. (98)

A(()m —0; E® =0 (593)
and so

—cAPBM = EV x A (594)

B — %k < EO (595)

for any A} = cA®). This result is self-consistent with the left-hand side of
Eq. (98), because Eq. (595) is a solution of Eq. (596):

. g
VXE(l"F%TEo {596)

The B cyclic component emerges as follows:

. : 1 |
BU’] B(z) -k E(l) BQ) — 'B(O)BB}*
X ~(k xE') x { (597)

Therefore all is self-consistent.
These calculations show that B is not dependent on the existence of a

vacuum magnetic monopole [11-20]. Therefore the explanation of phenomena
based on B is not dependent on a topological magnetic charge or monopole.
The fundamental reason for this is that B® is defined in terms of quantities that
are not dependent on a magnetic monopole, namely, g, A", and A,
Furthermore, the structure of O(3) Yang-Mills theory forces us to conclude
that E*¥ is zero through the structure of Eqs. (98)—-(100) [11-20]. The existence
of a phaseless E® has never been observed empirically. Action at a distance in
electrodynamics is obviously denied by the fact that we are working with a
gauge theory, and there is no convincing evidence for superluminal phenomena
in electrodynamics. It should also be clear that B® is not a static magnetic field;
rather, it is a radiated field, propagating with the third Stokes parameter.
The three equations (586)—(588) can be written in condensed form

8,60 =0, i=1,23 (598)
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which is ‘self-dual to another set of three simultaneous equations suitable for
computation and derivable from Eq. (90):

DH™ =0, i=1,2,3 (599)

where G*¥ of Eq. (90) has been replaced by H" for greater clarity and to indicate
the presence of vacuum polarization Therefore

8,6 = p . H™ = ¢ (600)

represents the O(3) wave equation, which has a much richer structure than its
U(1) counterpart, and many more solutions. The charge current 12-vector in
vacuo, Eq. (91), is nonzero. This can be demonstrated by writing it out in
component form:

e = _,ngff) x g3
IO = —igald x g (601)
vi3)x __ s 4 (1) v{2)
J = —igA,’ x H"
Terms such as
T = —igdl x (A — 8¥AMD) — jear() x 42)) (602)
are obtained. The first part can be expanded as
(2) o aHgvid) (2 3 ) ) )
AL x A — AP ) BAMD = e AVDAY — e AT AN
— 2 3 3} ppuv(
= —AQ PO A @) (603)
which is nonzero in general. The second part can be expanded as
Ahz) % (A““) XAV(?-)) — AM) Af).AV(?)) _AV(Z)(AEE) .Au(l))
= 42 (Aff) ,Au(l)) {604)

which is also nonzero in general.

Therefore we reach the important overall conclusion that the structure of the
03) -equations is a development into O(3) symmetry of the Lehnert field
equations [7-10], which are written in U(1) form. The Lehnert field equations

??Vfo}been extensively developed and tested empirically and theoretically
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The O(3) Coulomb and Ampére-Maxwell laws in the vacuum are therefore
written in terms of displacement and magnetic field strength, and are as follows.

The Coulomb Law in the vacuum is
V.V = ig(®.p% - D . A
V. D" = ig(a®.pM — D¥ . 41 (605)
7. plk ig(A“) .D@ —ph. 4

i

and the Ampére-Maxwell law in the vacuum is

1) ; . »
v x H" — %ﬁl = —ig(cA?D® — calD® + AY x HY — AP HP)
t
Ay 2)* . ' ‘
v g~ P ig(cAPDY — cAl"DY + 4P < B — AV < HY)
ot
(3 : N ,
v x HO — azg — _ig(cA"D® — cADDY 4 AY x H® — A®) x HY)
t
(606)
The displacement D™ for example can be developed as
D® = gE® + PV (607)

and since E® is zero, we obtain
pb) = p»

indicating the presence of classical vacuum polarization P due to the topology
of the vacuum as represented by a gauge field theory with an assumed ~0(3) gauge
group symmetry. Therefore the energy inherent %n the vacuum is obtained
entirely from the electric charge current (91), as dx§cussed in Sgct;on IV: The
magnetic charge-current (585) vanishes, and so there is no energy inherent in the
vacuum from the magnetic charge—current for an internal O(3) gauge group
symmetry, On the O(3) level, there can therefore. be. classical vacuum
polarization, whose analog in quantum electrodynamics is the photon self-
energy [6]. A .

The constitutive equations in the vacuum in O(3) electrodynamics are not the
same as those of U(1) electrodynamics, and in general

DO — B PO =123 (609)

where P are vacuum polarizations. -
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To summarize, there are three equations [Egs. (586)—(588)] in three un-
knowns (indices of the vector potential appropriate to G*V) and another three
equations [Eq. (599)] in three unknowns (indices of the vector potential
appropriate to H*Y in the vacuum). Simple vacuum constitutive relations such as

|
D = gyF; H = —B (610)
Ho

of U(1) electrodynamics no longer apply, because of the existence of classical
vacuum polarization. The latter also occurs in the Lehnert equations [7-10],
which are known to give axisymmetric solutions similar to BY, to indicate
photon mass, and to be superior in ability to the Maxwell-Heaviside equations.

To put the O(3) equations into the form of the Lehnert equations, we use the
definitions

D = DU 4+ p _ pB3

H=H"Y +H? L H®

E=E" +EY + EO (611)
B =B + B2 ; g®

to obtain
V.B=90
t (612)
VB = Prac
D
Vv XH'_a——“J\aL
ot

which are mathematically identical to the Lehnert equations. The O(3) gauge
theory, however, shows that the origin of the vacuum charge and current
postulated phenomenologically by Lehnert [7-10] is the topology of the vacuum
described by an O(3) gauge group. The O(3) theory also shows, self-consistently,
that there is a vacuum polarization, so that the simple constitutive relations (610)
used by Lehnert do not hold. The O(3) gauge theory also reveals that the
presence of the B®"" component, through its definition, is proportional to the
conjugate product of potentials, AM < 4D, However, the mathematical form of
the O(3) equations (612) is identical with that of the Lehnert equations.
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Formally, the O(3) equations are written most generally as

V+H= P, vac
OH
VXD —=— =T
o (613)
VoD = Py
oD
YV x H—~—=Ju
ot

which are identical in mathematical structure with the Harmuth equations
[21,22] and Barrett equations [3,4]. However, in O(3) electrodynamics, there is
no magnetic monopole or magnetic current as argued already. The strus?tpre
(612) in the vacuum is identical with the structure of the Maxwell-Heaviside

equations as used for field-matter interaction. )
The complete computational problem in the vacuum is therefore as follows:

1. Use egs. (586) to (588) to obtain AS’,A?&AS)W =0,..,3 with the
simplifying definitions
AP =AY =0, i=12
(3 — 43 31y — (43 (3
Ay = (A" cA ) = (Ay . cAy k) 614)
Al = A =0,

AP =4 =0
2. Use Egs. (101)-(103) to obtain D", D®, and D,
3. Use Egs. (104)=(106) to obtain H", H®, and H,
4. The complete displacement and magnetic field strength vectors in the
vacuum are then
D=D" 1 D& L p?
== Dyi + Dyj + Dzk (6]5)
H=HY + H® + HY (616)
5. Use
BV =v xAY
BY = v x A% (617)

B® = —iga x A

to obtain B", B®, and B®.
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6. Use Egs. (590)~(592) to obtain E" and E®.
7. Simplify the code with

B — g
EW — g2
A = 400 (618)

8. Finally, find P, P, and P and, if they exist, M", M® and M in
the vacuum.

The computational problem for the vacuum involves the definition of vacuum
boundary conditions, which, for example, may be a volume of radiation or a
beam radius. The computational method assumes no Lorenz condition, and
gives a vast number of solutions. Having obtained these solutions, we can next
check whether the non-Abelian Stokes theorem (153) is obeyed numerically.
Essentially, everything is obtained from potentials in the vacuum, and every-
thing is expressible in terms of these potentials, including the charge and the
current. In evaluating the coupling constant /A", the denominator is the
magnitude of A = A@*, defined by

NRNY:!
A0 = (A0.4®) (619)

This is then a computational solution of a classical problem in the vacuum. If g is
defined as k/A”, then e is never used.

In field-matter interaction, the fields B and E remain unchanged. The fields
D and H change because P and M change. Equations (612) have precisely the
same structure as Egs. (9-7) of Panofsky and Phillips [86] with the following
identifications:

Pvac F Prrues Jvae = Jie (620)

The pyye and Jige of Ref. 86 are therefore identified as being due to the topology
of the vacuum, a topology that gives rise to potential energy inherent in the
vacuum. The potential energy appears in O(3) electrodynamics through the
connections Aif}, and so the connections are regarded as physical entities. Fields,
currents, and charges are obtained from the potentials, or more precisely,
potential energy differences that are dictated by the topology of the vacuum
itself. On the classical level, g = k/A'Y) so the constant e does not appear in the
vacuum. As demonstrated already in this review, the equivalent of the Poynting
theorem can be obtained by considering the energy inherent in the vacuum, on
both the U(1) and on the O(3) levels.
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In dealing with Egs. (612), the vacuum is treated as if 1t were a materigl, apd
the equations are solved with stipulated boundary conditions aqd constitutive
relations. The ontology behind Egs. (612) is that charge—currem is the rf?sult of
spacetime. Similarly, in general relativity, matter is t.he resuI.t of spacetime. 13
complete theory would obviate the need for constitutive rel‘atlons and be bE'lSC
on grand unified field theory with an 0@3) electromagnetlc. sector. Equatlor'lls1
(612) deal only with the electromagnetic sectqr on a classwz.il lev§l 2.1nd sti
utilize the concept of field as a matter of convenience. So we still write in terms
of field—matter interaction, although the ontology dictates that field~matter
interaction is dictated solely by the topology of spacetime. _

The computational problem in the vacuum has to t?e solved first, to obt.am Fhe
vacuum polarizations. To simulate the interaction with m.atte.r, the po}arlzatlog
changes in the medium must be modeled using constltgtlve relations, an 1
boundary conditions defined according to the problem being solYed. Integra
forms of Egs. (612) may be useful, and integral forms mu§t b? obtained through
the non-Abelian Stokes theorem using O(3) covariant derivatives. For example,

the integral form of Egs. (590)~(592) is

%E(l)-errag%B(”-dAr:O (621)
t

 {B@. aar — 622)
+E<2)-dr+a— B®.dAr=0 (

t

694;3(» - dAr =0 (623)

t

and the integral form of V-BY = 0;i =1,2,3 is

(fB(i).drzo; i=123 (624)

A simple example of a computational problem on the U(1) level is the
numerical solution of the equation

10 10’4
A+ 5= ——= = (625)
V(V-4) - VA +c26tv¢+62 32
which is equivalent to solving the following equations simultaneously:
VxE+ 0B _ 0
T (626)
1 0E
VxB-=—=0

2o
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In the received opinion [5], these are the vacuum Faraday law and Ampére—
Maxwell law, respectively. The vacuum charges and currents are missing in the
received opinion. Nevertheless, solving Eq. (625) numerically is a useful
computational problem with boundary conditions stipulated in the vacuum. The
potentials and fields are related as usual by

B=VxA
0A (627)
E——a—t-Vcb

In the received view, it is customary to simplify the problem of solving Eq. (625)
with the Lorenz condition

1 3¢
. A —— =
V-A+ a2 0 (628)
to give the d’ Alembert equation in vacuo
1%A
VA-—5-5=0 62
c? o (629)

an equation that has analytical solutions such as plane waves. The Lorenz
condition (628) is asserted to be the result of gauge freedom. The computational
problem therefore consists in solving Eq. (625) with and without Eq. (628) for
different boundary conditions.

Regardless of whether the Lorenz gauge is used, the equation [y = 0 is
obtained. So % is not random after being assumed to be random (a reduction to
absurdity) proof of the self-consistency of the U(1) gauge ansatz. Ludwig V.
Lorenz introduced the idea of the Lorenz gauge or condition (often misattrib-
uted to Henrik Anton Lorentz) in 1867, so we can write the structured scalar
potential as ¢ = ¢oe’"), where (1) is the retarded time. So in this sense, we can
have pure time-like potentials (something that apparently was discussed between
Bearden and Wigner) in the context of a pure time-like photon. Whittaker’s
work depends on the Lorenz condition on the U(1) level.

Plane waves have infinite lateral extent and, for this reason, cannot be
simulated on a computer because of floating-point overflow. If the lateral extent
is constrained, as in Problem 6.11 of Jackson [5], longitudinal solutions appear
in the vacuum, even on the U(1) level without vacuum charges and currents.
This property can be simulated on the computer using boundary conditions,
for example, a cylindrical beam of light. It can be seen from a comparison of
Eqgs. (625) and (629) that if the Lorenz condition is not used, there is no increase
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in the number of variables. Therefore Eq. (625) is one equation in two
unknowns, ¢ and A. If we use the Lorenz condition

voa+1% g (630)
c? ot

we still have one equation in two unknowns. Making use of the vacuum Coulomb
and Gauss laws in the received view

v-E=0 (631)
V-B=0
we obtain two more equations:
V. (%? + Vd)) =0 (632)
V.VxA=0 (633)

So there are three equations, (625), (632), and (63 3), in two un@oxvns Aand ¢ .
These are enough to solve for the components of A and for ¢ foxj any boundary
condition. For any physical boundary condition, there will be longitudinal as well
as transverse components of A in the vacuum, and ¢ will in general be phase-
dependent and structured. This computational exercise shows that the Lorenz
condition is arbitrary and, if it is discarded, the values of A and ¢ from Egs.
(625), ( 632), and (633) change.
Under the U(1) gauge transform

\ . 1oy 1
AM = A Aty AM = (d,cA); <l,e.¢-—'(§)+-£*a—t; A—»A—;Vx)
(634)
we see that £ and B do not change:
10 10y
— ~—Vy — ~-V-==
E B c Ot X c Ot (635)

1 .
B—_’BHEVX(VX) = B

and Egs. (625), (632), and (633) do not change. This means that for any given
boundary condition, we can find the solutions

10t (636)

’_ B

Y=o+ (

A=A -—«l-Vx (637)
. ¢
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from Eqgs. (623), (632), and (633) numerically. The solutions ¢’ and A, however,
are not arbitrary for a given boundary condition, indicating another self-
inconsistency in U(1) gauge theory (Section II). Furthermore, under the same
gauge transform (634), Eq. (625) indicates that y must obey the equation

Ox=0 (638)

whose general solution has been given by Whittaker [27] and is not arbitrary. If
we arbitrarily decouple Eq. (625) into

[JA =0
(639)
¢ ot

then Eq. (638) is obtained again, indicating that the Lorenz condition and
d’Alembert equation in vacuo are arbitrary constructs, that is, particular solutions
of Eq. (625). The Lorenz condition has no physical meaning, nor does the
vacuum d’Alembert equation. The function y is not arbitrary, contrary to the
U(1) gauge transform ansatz, Eq. (634). In other words, the gauge transformed ¢’
and A are not arbitrary, as they are solutions of two differential equations, (625)
and (632), in two unknowns, ¢’ and A’, for a given boundary condition. We
conclude that ¢’ and A’ are physical. not arbitrary, thus refuting Heaviside’s point
of view and supporting that of Maxwell and Faraday. For a self-consistent picture
of electrodynamics, we have to go to the O(3) level, as discussed earlier in this
section.

The same conclusion regarding the Lorenz gauge is reached by Jackson [5],
who shows that:

3 AY = 0,4 + Oy (640)
However, Jackson follows the received opinion and forces
Ox = —0,4% (641)
through the arbitrary assumption:
8 A" =7 0 (642)
The latter merely reinforces the conclusion that y is not arbitrary.
By discarding the Lorenz condition, a vacuum current J,,. is introduced. The

vacuum current Jy,. is conceptually similar to the one introduced by Lehnert
and Roy [10]. Relativity then indicates the presence of a vacuum charge, so the
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field equations in vacuo become identical with those of Panofsky anq Phillips
[86] and those of O(3) electrodynamics [11-20] i.e., [Eqgs. (612)]. Phipps [99]
has also derived the same structure and describes it as “neo-Hertzian.” There is
therefore a remarkable degree of agreement in the literature that the structure qf
the Heaviside-Maxwell equations in vacuo is such that the overall symmetry is
O(3). This conclusion is consistent with the fact that there is no Lo.renz
condition on the O(3) level, necessitating numerical solution as described

earlier in this section. -
The source of Eq. (625), however, is the set of vacuum Maxwell-Heaviside

equations

V:-B=0
V-E=0
OB 4
UXE+2—=0 (643)
ot
x T

and to identify Egs. (612) with Eqs. (643), it is necessary to write the vacuum
displacement as

D=¢E+P (644)

and to introduce the vacuum polarization. This result is self-consistent with our
constitutive equations (607)—(609) on the O(3) level. The vacuum polarization
gives rise to a polarization current g

opP
= 645
Jp a1 (645)

and exists if and only if we discard the Lorenz condition. It therefore becomes
clear that use of the Lorenz condition prohibits the evolution of U(1) into 0o3)
electrodynamics and arbitrarily asserts a zero vacuum polarization. The
existence of vacuum charge and currents means the existence of vacuum energy,
as argued already. The experimental challenge is how to tap this energy, which is
theoretically infinite, that is, extends throughout the universe.

The vacuum charge density and current density are

i
Pyvac = EM)
Ho (646)

1
Jvac : TDA
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and so it becomes clear that Whittaker’s theory [27] is restricted severely by his
adoption of the Lorenz condition. The received view is similarly restricted. The
new paradigm introduced here is that the vacuum itself is the source of charge—
current, including, of course, Maxwell’s displacement current. The latter has
nothing to do with charged electrons, and similarly, the Noether currents of 03)
electrodynamics have nothing to do with charged electrons. The received view
asserts that the Maxwell displacement current is the origin of the electromagnetic
field, which carries energy and momentum; the new paradigm asserts that the
vacuum itself is the source of energy and momentum through the intermediary of
entities labeled charge, current, and field. The topology of the vacuum is
described by physical A and ¢ , which, in turn, originate in the gauge principle
and group theory. We have argued that the notion of unphysical A and ¢ is
untenable. It is this idea that leads to the Lorenz condition, which is, in turn,
untenable.

Therefore electric and magnetic fields do not emanate from a point charge, as
in the received view; both charge and field are outcomes of the topology of the
vacuum. In the new paradigm, the energy that is said to be transmitted by the
electromagnetic field in the received opinion is inherent in the vacuum structure;
all is determined by the nature of the connection in gauge theory, and by the
physical nature of the potential, which is more precisely described as potential
energy difference. An intense electromagnetic field in the received view
corresponds in the new paradigm to a warping of space-time by the gauge
connection inherent in the covariant derivative. On the classical level, the
proportionality constant g is K/A(O), and e/h is not necessary. Curvature or
warping of spacetime determines the process of radiation and of detection of
radiation. Causality implies that the cause precedes the effect in time. This new
view of electromagnetism as being essentially the vacuum itself is similar to
general relativity. The major implication is that the vacuum carries an unknown
amount of electromagnetic energy; the electromagnetic field is far stronger than
the gravitational field, so the amount of electromagnetic energy in the vacuum is
commensurably greater,

The vast paradox inherent in the concept of field is vividly summarized by
Koestler [91, p. 502ff.]: a steel cable of a thickness equaling the diameter of the
earth would not be strong enough to hold the earth in its orbit. Yet the gravitational
force which holds the earth in its orbit is transmitted from the sun across 93
million miles of space without any material medium to carry that force. The
paradox is further illustrated by Newton’s own words, which I have quoted before,
but which bear repeating: It is inconceivable, that inanimate brute matter should,
without the mediation of something else, which is not material, operate upon, and
affect other matter without mutual contact, --- And this is one reason why 1
desired you would not ascribe innate gravity to me. That gravity should be innate,
inherent, and essential to matter, so that one body may act upon another, at a
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distance through a vacuum, without the mediation of anything else, by and through
which their action and force may be conveyed from one to another, is t¢ me so
great an absurdity, that I believe no man who has in philosophical matters a
competent faculty of thinking, can ever fall into it. Gravity must be caused by an
agent acting constantly according to certain laws; but whether this agent be
material or immaterial, I have left to the consideration of my readers.

The paradox is cormpounded greatly in electrodynamics, where, in the re-
ceived view, the field is superimposed on spacetime. In the new view, both the
gravitational and electromagnetic fields are the results of topology, or vacuum
structure. The enormous amount of energy inherent in the vacuum is meta-
phorically apparent in Koestler's steel cable. The electromagnetic energy from
the same source is orders of magnitude greater. Thus a few simple computational
trials are needed.

XIL. SU(2) x SU(2) ELECTROWEAK THEORY WITH AN 0(3)
ELECTROMAGNETIC SECTOR

It has been demonstrated conclusively that classical electrodynamics is not a
U(1) gauge theory; therefore, the continued use of a U(1) sector in unified field
theory is misleading. In this section, a first attempt is made to unify the
electromagnetic and weak fields with an 0(3) electromagnetic sector. The theory
has SU(2) x SU(2) symmetry instead of the usual U(}) x SU(2) symmetry. The
change in symmetry has several ramifications, including the appearance of a
novel massive boson that has been detected empirically [92]. The use of an O(3)
electromagnetic sector will also have ramifications in grand unified field theory, a
paradigm shift that extends throughout field and particle physics 7.ad challenges
the standard model at a fundamental level. In the new view of grand unified field
theory, all four fields are manifestations of non-Abelian gauge theory. If we go a
step further and drop the word “field,” then all physics becomes a manifestation
of vacuum topology.

The extension of U(1) x SUQ2) electroweak theory to SU(2) X SU2) elec-
troweak theory succeeds in describing the empirically measured masses of the
weakly interacting vector bosons, and predicts a novel massive boson that was
been detected in 1999 [92]. The SU(2) x SU(2) theory is developed initially
with one Higgs field for both parts of the twisted bundle [93), and is further
developed later in this section.

The physical vacuum is assumed to be defined by the Higgs mechanism, and
the SU(2) x SU(2) covariant derivative is

D, =0, +ig'o-A, +igt-by (647)

where ¢ and t are the generators for the two SU(2) gauge fields represented as
Pauli matrices, and where A and b arc *he gauge connections defined on the two

0(3) ELECTRODYNAMICS 205

SU(2) princi : s .
ﬁe]g gggincmal bundles. There is an additional Lagrangian for the ¢* scalar

1
L4 = 5IDu(6P] - i216F + 1

(1$I*? (648)

The expectation value for the scalar field is then

@)= (0.) (649)

— 172
for v = (—p?/L)"/“. The generators for the theory on the broken vacuum are

{(bo)g, = (é())
(b0, = (z%O) (650)
(oulo, = (0.-25)

These are the. same fqr the other SU(2) sector of the theory. The hypercharge
formula of Nishijima, if applied directly, would lead to an electric charge

Q(bo) =5 (60 (63 +0)

- (0-25) +(0.%5) (651)

implying two unphysical oppositely charged photons. The equation for the
hypercharge must therefore be modified to

o
Qdy) =5 (do)(m2+t3 + 11 061) =0 (652)

where r; and n; are unit vectors on the doublet defined by the two eigenstates of
t}.le vacuum. This projection on to ¢, and 3 is required because we are using a
single Higgs field on both bundles on both SU(2) connections. This requirement
can be relaxed as discussed later in this section. At this stage of the development

the generators of the theory have a broken symmetry on the physical vacuum,
Therefore, the photon is defined according to the o generator in one SU(2;

sector of the the?ry, while the charged neutral current of the weak interaction is
defined on the 1° generator.
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The fundamental Lagrangian contains the electro-weak Lagrangians and the
¢* scalar field:

1 1 2 | 2 1 2,2
— __FAFW__G4 G . Y Y
% = - F Y = GG + Do — el + MIORT (653)
where Gﬁv and F ﬁv are elements of the field strength tensors for the two SU(2)
principal bundles. In order to develop the theory further, it would be necessary to
include the Dirac and Yukawa Lagrangians that couple the Higgs field to the
leptons and quarks. The ¢* field may be developed as a small displacement in the

vacuum energy.
. v+ E+ix)
¢' =+ ($o) & 5 (654)

The fields & and  are orthogonal components in the complex phase plane for the
oscillations due to the small displacement of the scalar field, which is thereby

characterized completely. The scalar field Lagrangian becomes

g'v

, ol
X <g A, + gby + (gv+g’v Oux (655)

1 1 1 1
Ly = E(aug g - 2}/‘2&2) + 5"2 (glAu + gbu + (g‘j + ——) auX>

where Lie algebraic indices are implied. The Higgs field is described by the
harmonic oscillator equation where the field has the mass My ~/ .0 TeV/c>.
On the physical vacuum the gauge fields are: ’

g'Ay+gby — gA, + gb, (656)

which corresponds to a phase rotation induced by the transition of the vacuum to
the physical vacuum. The Lagrangian is now decomposed into components by
expanding about the minimum of the scalar potential

l 1 ! 1) -
Z4 =503 - ) + (e B+ (WP WT)
+g2|A“)(2 +g2|A(3) + iA(2>)2) (657)

where the charged weak fields are identified as

1
_ (1) 4
wE=— (b)) £ b)) (658)

u

[$®)
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with mass gv/2. The other parts of the Lagrangian define the fields:

3
= (gAY + g'b() — gall)
(g2 +g’2)1/2 (659a)

1 4(3) @3
(gA)” + gb“) - g’AEll))
(82 + g?)'*

70 =

b (659b)

bOn scales largfer than unification, the requirement Aff) = 0 is needed [94]
[ hecause otherwise Z, Wf)uld have a mass greater than empirically measured, or
m(e);z woulcll be Zn additional m.és)sive boson along with the Z, neutral boson’ A

complete discussion of Ay is given later in thi ition

: : is chapter. The additional
Zr:)z:]s:il(;/:r l)thon g:edlgted by the theory has been observed empirically [92]. The

ations thus far lead to the standard result that th '
. e

vanishes, and that the mass of the Z; particle is s of the photon

My, =%(g2 +g12)l/2

i (1 i (%) 2) ; (660)

The weak angles are defined tri i
/ gonometrically by the terms 2462
/ 2 .
g'/(8*+ g?). This means that the field strength tensor satisﬁesg/(g a7 and

3
i) = 3y = 3l — iglald, AR
= —iolA(D 4
lg[Av :A“ } (661)

and that the B field is defined, in this notation, by
(3) v .
B = el"F) = —igdV) » 4 (662)

The E? i
e E* field, however, is zero, as we have seen, so that the Lagrangian is

satisfactorily nonzero. The E® field . "
Specifically [11-20] eld vanishes by definition [Egs. (581)].

I _ A0 3G A3 4000
GP* = 3043 _ 3400 _ jo(4001)432) _ A3CI400y = ¢ (663)

a res . . . .
an nl:)lt IIEhat is consistent with the B cyclic theorem and with the fact that there
agnetic monopoles or currents in O(3) electrodynamics. The E® field
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also vanishes if A® is a constant, or is structured. Therefore an SU2) x SU2)
electroweak theory can be constructed that self-consistently describes the
empirically observed Zo, W= bosons, and the B® field in the electromagnetic
sector. The theory of electromagnetism on the physical vacuum that emerges is

1 1 1
_ _ _FW _lenwvea (3)2
& =y 70" Gl 5B

1 Mofzof + MW 5 (105 — )
(664)

+ Dirac Lagrangian + Yukawa/Fermi/Higgs

where F, and G} are the field tensor components for standard electromagnetism
and the weak interaction, and the cyclic magnetic fields define the Lagrangian in
the third term. The occurrence of the massive Zp and W particles breaks the
gauge symmetry of the SU(2) weak interactions.

The longitudinal field B® therefore results from the breaking of gauge
invariance. There is no E® field by definition [Eq. (663)]. Under the gauge

transform

AW o yahyuT + vau! (665)
the B field is invariant [11-20]:
B = e yal, AU (666)

The condition Afl = @ is, however, restrictive, and can be remy ved by the
inclusion in the theory of massive fermions. This makes the S¥(2) x SUQ2)
theory consistent with the fact that A® is phase-dependent and structured from
Egs. (586)—-(588) and with the fact that there can be many solutions forAff) in the
vacuum. The condition is therefore a first step in the development of SU(2) X
SU(2) theory. If the condition Af) — 0 is relaxed, the currents will contain vector
and axial components that obey SU(2) x SU(2)c algebra, and on the physical
vacuum, fields acquire masses that violate the current conservation of the axial
vector current.

The theory so far is incomplete, however, because it has two SU(2) algebras
that both act on the same Fermi spinor fields, and only one Higgs mechanism is
used to compute the vacuum expectations for both fields. To improve the theory,
consider that each SU(2) acts on separate spinor field doublets and that there are
two Higgs fields that compute separate physical vacua for each SU(2) sector
independently. The Higgs fields will give 2 x 2 vacuum diagonal expectations.
If two entries in each of these matrices are equal, the resulting massive fermions
in each of the two spinor doublets are id~ntical. If the spin in one doublet
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. .
ssumes a very large mass, then at low energies, the doublet will appear as a

singlet and the gauge theory that acts on it will b i
oo, will be O(3), with the algebra of

e; — E,jk [ej,ek] (667)

The th.eory on the physical vacuum will involve transformations on a singlet
accordmg to a broken O(3) gauge theory, and transformations on a douﬁlet
acc.:ordmg to a broken SU(2) gauge theory. The broken O(3) theory signals the
existence of a very massive AY boson, which has been observed empiricall
[92], and massless A" and A”® bosons. This broken O(3) gauge theorypreduce}s/
to electromagnetism with the cyclicity condition. The brokben SU(2) theor
reflects the occurrence, as usual, of a massive charged and neutral weak bosonsy
The theory can be taken further by embedding it into an SU(4) gauge theor.
where the gauge potentials are described by 4 x 4 traceless Hermitian matrice)s/
apd the Dirac spinor has 16-components. The neutrality of the photon is then
given t_)y a sum over charges, a sum that vanishes because the theory is tracel
The nggs field is described by a 4 x 4 matrix of entries. k o
By }nvoking the condition Af?) =0 in the above development, what is
meant is that the transverse components of Al(f ) are zero. This is aiways the

case in pure electro i ; S
radinal P magnetism, because (3) is the longitudinal index. The longi-

AY) = (§,cA) (668)

is evidently nonzero from the arguments of Section XI. In general, in electroweak
theory, however, the indices (1), (2), and (3) denote isospin, and not the circular
.complex space ((1),(2),(3)). So if we take Af) to denote a 4-vector with isospin
index (3), it may have a transverse component that is nonzero. This would mfI:)an
that the current for this gauge boson is not highly conserved with a very large
g’:;zs' so that the interaction scale is far smaller than that for the electromagnetic

If we take (1), (2), and (3) to denote isospin indices, we have in general

() 3
0y _ (A + gty — gl)

A =

H (g2+g’2)'/2

3
2o e’ gAY (669)
i ol
(g +gf2)l/2
(D(B) i_._.gl— (3)
(g2+g/3)l/2 B
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The w{’ connection has a chiral component that seems to imply that B“ has a
chiral component, or is mixed with the chiral component of the other SU2)
chiral field of the electroweak theory. This is what happens to SU(2) electro-
magnetism at very high energies. It becomes very similar in formal structure to
the theory of weak interactions and has implications for the theory of leptons.
The electromagnetic interaction acts on a doublet that can be treated as an
element of a Fermi doublet of charged leptons and their neutrinos in the SU(2)

theory of the weak interaction.

Let { be a doublet that describes an electron according to the (1) field and the
(3) field, where the indices (1) and (3) are isospin indices in general. The free-
particle Dirac Lagrangian is (¢ = 1; A=1)

£ = Y(iy* Dy — mpy = Y(iy*0, — m)b — gALby" opl
= yfree + Ai']g (670)

where = {"y,. We decompose the current ij into vector and chiral
components

JE =y, (14 vs)o = Vi 4y (671)

a procedure that is analogous to the current algebra for weak and electromagnetic
interactions between fermions. There are two vector current operators

a f Ten a
and two axial current operators
i-
Xﬁ =3 ‘l’Yp“&’ST})‘V (673)

where v5 = iY,7,Y3Y4 and where 1 are Pauli matrices. These define an algebra
of equal time commutators:

a - abc y ¢
Vi, V:] = iV,

Va b1 _-rabc c (674)
[ 4 /vp] = xu
The index p = 4 implies the following algebra:

(Ve Ve =i vy (675)

Vi oa) = —i" %
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The definition
1 @ a
ol = B (V§£x5) (676)
gives the algebra
01,07 = iy
[o¢, 0] = i Q- (677)
{Qie Q;i] =0
which defines the SU(2) x SU(2) algebra. The parity operator P acts as follows:
PVIPT = VP
N (678)
Py P = —yy

and one SU(2) group ditfers from the other. The total group is therefore the chiral
group SU(2) x SU(2)p.

On the physical vacuum, the above theory becomes a vector gauge theory
where the indices (1), (2), and (3) are now defined in the complex circular basis
((1).(2),(3)) described by

2) (3}

eV xe? = je

(679)

On the physical vacuum, therefore, there are no transverse components of Aff’),
and its longitudinal components are structured as in Section XI. On the physical
vacuum, there is a mixture of vector and chiral gauge components within both the
electromagnetic and weak-field sectors. This means that any transverse compo-
nent of A will vanish identically at low energies, and any transverse component
of A can exist only if (3) is regarded as an isospin index. If so, any transverse
A will be massive and short-ranged and will quantize to the massive boson
detected in Ref. 92. Clearly, a transverse component of A in the pure electro-
magnetic sector vanishes by definition, and can exist only as a result of the
mixing of the electromagnetic and weak field, and then only if (3) is generalized
to an isospin index from a purely spatial index (3) = k.

If there exists a very high energy massive A, as the data in Ref. 92 appear
to indicate, there exists the nonconserved current

MY = imyy yays0y (680)
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where inhomogeneous terms correspond to quark—antiquark and lepton—
antilepton pairs that are formed from the decay of these particles. This breaks
the chiral symmetry of the theory. The action of this current on the physical
vacuum is such that when projected on a massive eigenstate for any 3-photon

with transverse modes, for instance
2

(o(k)o(k))'"?

the mass of the chiral bosons will vanish, while the mass of the chiral 3-boson
will be m. Therefore A is a separate chiral gauge field that obeys axial vector
field that does not obey axial vector conservation and occurs only at short ranges.
Therefore A®’ must not be confused with a transverse component of the low-
energy electromagnetic AS), which is zero by definition. Furthermore, the
condition A® = 0 must not be taken to imply that the scalar and longitudinal
vector parts of A® are zero.

Therefore the electroweak theory is chiral at high energies, but is vector and
chiral in separate sectors on the physical vacuum of low energies. The high-
energy chiral field combines with the other chiral field in the twisted bundle to
produce a vector field plus a broken chiral field at low energy. There are
independent fields that are decoupled on the physical vacuum at low energies.

Consider two fermion fields, \ and ¥, each consisting of the two component
right- and left-handed fields Ry, Ly iRy, L,. These Fermi doublets have the
masses n1; and m. The two gauge potentials A, and B, interact respectively
with the \r and  fields. In general, these Fermi fields are degeneracies that split
into the multiplet of known fermions, so that there are four possible masses for
these fields in the physical vacuum. The masses originate in Yy awa couplings
with the Higgs field on the physical vacuum, which give Lag/angian terms of
the form YoR| Ly + H.C. and YnL,nRy + H.C. where there are two compo-
nent ¢4 fields for the Higgs mechanism. (H.C. = higher contributions). These
components assume the minimal expectation values (¢) and (ng) on the
physical vacuum with the Lagrangian:

¥ = ‘l-f(ti(au + igAu) —my)¥
+ x(iy* (0 + igB,) — my)y — Y¢R$Lx + H.C.
— YnL$nRx + H.C. (682)

(08" 1 |X5) = (Xie | Xp)e™ (681)

that can be further broken into the left and right two component spinors
¥ =Ry ic" (3 + igAw)Ry + Lyic*(dy + igAw)Ly
+ RYic* (O, + igBu)Ry + Ly c"(0y + igBu)Ly
- m1R$L¢ - m|L$R\|, — myRY Ly — my LI Ry
— Y¢R$¢Lx + Yd*)L;d)*Rq, — lnL$nRx + YT*]RIn*Lq, (683)
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Tbe gauge potentials A, and B, are 2 x 2 Hermitian traceless matrices, and the
Higgs fields ¢ and y are also 2 x 2 matrices. These expectations are real-valued
apd the nonzero contributions of the Higgs field on the physical vacuum are;
given by the diagonal matrix entries [95]:

W=7 gl 0= (% ] e

The values of the vacuum expectations are such that, at high energy, the left-
handed fields R, and the right-handed doublet field Ly, couple to the SU(2) vector
boson field B,,, while at low energy, the theory is one with a left-handed SU(2)
doublet Ry, that interacts with the right-handed doublet L, through the massive

gauge fields A,. The mass terms from the Yukawa coupling Lagrangians will
give

m = Yo (x) > m" = Y (xP) > m" = Yy (dV) > m" = Ye(d?) (685)

If the SU(2) theory for B, potentials are right-handed chiral and the SU(2) theory
for A, potentials are left-handed chiral, a chiral theory at high energies can
become a vector theory at low energies.

This is a broken gauge theory at low energy, which can be expressed as in
Eq.- (686) as a gauge theory accompanied by a broken gauge symmetry. Assume
a simple Lagrangian that couples the left-handed fields \, to the right-handed
boson A, and the right-handed fields V, to the left-handed boson B,:

L =Y (iv" (O + igAw) — m)V; + VU, (iy" (0, + igBy) — ma)Vy,

— YU &V, — You (686)

If the.coupling constant Yy is comparable with the coupling constant g, then the
Fermi expectation energies of the fermions occur at the mean expectation value
for the Higgs field (¢y). In this case, the vacuum expectation value is proportional
to the ?dentity matrix, meaning that the masses acquired by the right chiral plus
left chiral gauge bosons A, + B, are zero, while the right chiral minus left chirai
gauge bosons A, — B, acquire masses approximately equal to Y4(¢y). The
th(?ory at low energies is one with an unbroken vector gauge theory plus a broken
chiral gauge theory [95]. The additive charges AV B1)-(2) of the two chiral
fields are opposite so that of the resulting vector gauge bosons are chargeless.
Therefore gauge theories can change their vector and chiral character, and so also
can the doublets of the theory. In so doing, this will give rise to the doublets of

leptons anq quarks plus doublets of very massive fermions that should be
observable in the multi-TeV range.
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The two parts of the twisted bundle are copies of SU(2) with a doublet
fermion structure. One of the fermions has a very large mass, m' = Yy (M,
which is assumed to be unstable and not observed at low energies. So one sector
of the twisted bundle is left with the same Abelian structure, but with a singlet
fermion, meaning that the SU(2) gauge theory becomes defined by the algebra
over the basis elements

[éi, &)} = igjnex (687)

To calculate the photon masses, define the Higgs field by a small expansion
around the vacuum expectations

n® ="+ (my)
) _ @ o (@ (688)
T\( =&% +(ng")

The contraction of the generators o) and 6@ with the Higgs field matrix and
right and left fields gives

oVenR + 6@ nL =0 (689)

so that the charges of the A" and A fields are zero. On the low-energy
vacuum, these fields can be thought of as massless fields composed of two gauge
bosons, with masses (m’ +m”)1/ 2> M, and with opposite charges. These
electrically charged fields can be thought of as A* = A'V +A®@, giving rise to
particles that cancel each other and massless vector photon gauge fields. The AP
field has an unstable mass that decays into particle pairs.

Therefore the more massive Higgs field acts to give the gauge theory
SU(2) x O(3), where the first gauge group acts on singlets. On a }/;wer energy
scale, or longer timescale, A® has decayed and vanished. The Second gauge
group is then represented by O(3)p, a notation that implies “partial group.” The
latter describes Maxwell’s equations, and the B field is defined through
——igA(l) x A?). Evidently, in this scale, the isospin indices become identified
with the space indices (1), (2), and (3) of the circular basis.

The second Higgs field acts in such a way that if the vacuum expectation
value is zero, <¢(2>> = 0, then the symmetry breaking mechanism effectively
collapses to the Higgs mechanism of the standard SU(2) x U(1) electroweak
theory. The result is a vector electromagnetic gauge theory 0OQ3)p and a broken
chiral SU(2) weak interaction theory. The mass of the vector boson sector is in
the A® boson plus the W* and Z° particles.

The two SU(2) theories can be represented as the block diagonals of the
SU(4) gauge theory. The Lagrangian density for the system is then

L = Y(iy" (@ + igAy) — mi)¥ — YUy (690)
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and the gauge potentials A, now have 4 x 4 traceless representations. The scalar
field theory that describes the vacuum will satisfy field equations that involve all
16 components of the gauge potential. By selectively coupling these fields to the
fermions, it might be possible to construct a theory that recovers a low energy
theory Fhat is the standard model with the O(3)p gauge theory for electro-
magnetism. We arrive at the important conclusion that the electroweak theory
can pe constructed with an O(3) electrodynamic sector to provide additional
physical details at high energy.

The prediction of a heavy boson A®) has received preliminary empirical
support [92,96] from an anomaly in Z decay widths that points toward the
existence of Z bosons with a mass of 812 Gerfgg {92,96] within the SO(1)
grand unified field model, and a Higgs mechanism of 145 GeV*'%3. This
suggests that a new massive neutral boson has been detected. Analy_sﬁils .of the
hz{drf)nic peak cross sections obtained at LEP [96] implies a small amount of
missing invisible width in Z decays. The effective number of massless neutrinos
is 2.985 + 0.008, which is below the prediction of 3 by the standard model of
f:lectroweak interactions. The weak charge Qw in atomic parity violation can be
interpreted as a measurement of the S parameter. This indicates a new
Q,W = —72.06 & 0.44, which is found to be above the standard model pre-
dlCFlOIl, an effect interpreted as being due to the occurrence of the Z/ particle
which is referred to hereinafter as the Z, particle. ’

SO(10) has the six roots o',i =1,...,6. The angle between the connected
roots are all 120°, where the roots o, o* are connected to each other and two
other roots. The Dynkin diagram is

o?

a af

T.he decomposition of SO(10) to SU(5) x U(1) is performed by removing the
circles representing the roots o> connected by a single branch. The remaining
connected graph describes the SU(5) group, and the isolated circle is the U(1)
group. However, by removing either of the circles o>¢ connected by three
branches forges SO(10) to decompose into SU(2) x SU(2) x SU(4). Here, we
have an SU(2) and a mirror SU(2) that describe opposite-handed chiral gz’iuge
fields, plus an SU(4) gauge field. The chiral fields are precisely the sort of
electroweak structure proposed in this section and elsewhere [17,94]. Since
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SU(4) can be represented by a 4, that is, 3&® 1 and 4 as 3@ 1, SU@4) can be
decomposed into SU(3) X U(1). The neutrino short fall is furthermore a signature
of the opposite chiralities of the two “mirrored” gauge fields [17,94].

The mechanism SU(2) x SU(2) — SU(2) x O(3) discussed in this section
predicts the occurrence of a massive A®) s it is possible that the LEP data could
corroborate the work outlined in this section, with an extended electromagnetic
sector. Quantum chromodynamics (QCD) and the standard model of the electro-
weak theory are understood empirically. There is reasonable empirical corro-
boration in the TeV range and ideas about quantum gravity at 10" GeV, but
nothing in between. The LEP data therefore give some confidence that O(3) elec-
trodynamics is a valid theory, and the data suggest that at high energy, electro-
dynamics and the weak interactions are dual-field theories in the TeV range of
energy, which is expected to be accessible to the CERN heavy hadron collider.

The LEP data could be the first indication that the universe is dual according

to the Olive Montonen construct [97], which asserts that coupling constants
have inverse relationships. One field is weak, and the other is strong at high
energy. The experimental finding [96] of the massive A®) might bring a basic
change in the foundations of physics. For example, it may be conjectured that
there is a dual field theory to the SU(3) nuclear interaction of QCD with a chiral
SU(2) x SU(2) electroweak theory, implying the existence of an additional
weak field in nature. The problem with such a program is that supergravity and
superstring theories imply that, at very high energies, the universe is one of 10
or 11 dimensions [98]. The minimal grand unified field theory is the SU(5)
theory that breaks into SU(3) x SU(2) x U(1) at lower energy. This is a gauge
theory in six dimensions that fits into the Calabi—Yau construction of compac-
tified manifolds. These spaces leave the four-dimensional spacetime left over
and uncompactified from the 10 dimensions at high energy. /. Calabi-Yau
manifold of seven dimensions would accommodate an SU(3) x SU2) x SU(2)
bundle. The-low energy SU(2) x SU(2) electroweak theory would then suggest
a superstring theory of 11 dimensions, which appears to preclude any SU(3)
field dual to QCD because this would demand a Calabi—Yau space that can
subsume an SU(3) x SU(3) x SU(2) x SU(2) bundle of 10 dimensions, and a
supergravity theory of 14 dimensions.

The theory of gravitation, however, need not involve four dimensions; infor-
mation [99] may exist on a two dimensional surface, such as the event horizon
of a black hole. If the symmetries relevant to gravitation involve the evolution of
a two-dimensional surface, then an SU(2) x SU(2) x SU(3) gauge theory plus
gravity would be |1-dimensional, and duality between the two surfaces that
construct spacetime would reduce this to nine dimensions. However, the issue of
duality with nuclear interactions would still increase the dimensionality re-
quired to 12 or 14, and supergravity requires a total space of 11 dimensions.
Strings exist at 10 dimensions.
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If t.he naFure of spacetime involves the interference of dual wave fronts of
two d1m§n310ns, then there are two wave fronts, each of two dimensions. that
constructively and destructively interfere, but that are determined by the ’same
symmet.ry space. Gravitation can be described by the set of diffeomorphisms of
a two—d1m§nsional surface and SU(2) x SU(2) x SU(3) plus gravity involving a
space qf nine dimensions. The additional dimensions to spacetime are purfl :
:ilé;ual mdnaturz.d A ﬁel? dual to QCD would require a large space of 12 dimen)-,

s, and an additional constraint i ired i i i
Jons. and an 2ddi Supergravsityz.imt is required in order for this theory to satisfy

Gravitation is described by the Lie group SO(3,1) ~SL(2,C)/Z,. It can be
seen tbat tht? relevant symmetries are contained in the SL(2 é) corﬁponent of
two ‘dlmensmns, and the Lie group has a hyperbolic metl"ic structure. The
Euclidean group for gravity is SO(4) ~ (SU2) x SU(2))/Z,. In effect thesé two
groups are related by a rotation ¢ — ir, which might suggest that the eiectroweak
Interaction and gravitation can be regarded as two states of a single symmetr
that may /maniqul itself by the action of a U(1) rotation on the Cartan center o};
SUQ2), o3 = 5. At low energy, the circle associated with this rotation is
:;eocriluSedt t;) a Eoint and the direction of the angle 0 determines the coupling

stan . ) .

A ;)lr ;i;:] :r:fs:ic(:;(;\‘neak and gravitational fields, implying a superstring
If there is a field dual to the SU(3) QCD field, and if the theory is similar in
form tq the electroweak unification scheme outlined in this section, there ma
b'e a right-left chiral SU(3) bundle that, at low energy. combi’nes into Z
rlght—.left chiral and right + left chiral field. This result \,Jvould indicate that
QCDis a vector theory but associated with another field that is chiral or that has
a broken. chirality. Since QCD is the strongest force in the universe with ¢ = |
its putative dual field is one with a very weak coupling constant. For exfm_le’
there.may be slight chiral couplings between quarks. This would, in turn impl ’
the discovery of chirality with gluons, usually regarded as vect(;r boson,s o
In the absence of data, it seems best to proceed on the assumption that éau e
tl?eory at low energy is SU(2) x SU(2) x SU(3) and that the inclusion of gravi%
gives a space of 11 dimensions at high energy, fitting in with supergravit mode]sy
These thoughts [7,94] indicate the major impact on physics of the Bg) field .

XIII. RELATIVISTIC HELICITY

In thi . . .
V:,l. tt}llm section, we extend consideration from the Lorentz to the Poincaré group
ithin the structure of O(3) electrodynamics, by introducing the generator

ng he axis Of T agati i i
O t) I : t S p ()p g on in the n()rmahled (Ulllt

tu =g el) + el 4 el (691)
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The relativistic helicity is then the product
G, = (“;Eliv)gu(ZJ + (”;&i)ét(ﬂ + (‘;qu(s) (692)

which, for Z = (3) axis propagation, is the Pauli-Lubanski pseudo vector (PL
vector):

S = 1 (
G, = Ggiv)gp(:i) _ EgmpGopO}gu{B} (693)

Evidently, this vanishes on the U(1) level, a basic paradox, because the photon
has helicity after quantization. By using the Poincaré group, a fundamental
geometric proof can be given for the existence of B in the vacuum, and helicity
defined entirely through B This proof proceeds by constructing the PL vector
from the geometric 3-manifold in 4-space, a 3-manifold that is in general a tensor
of rank 3 in four dimensions, antisymmetric in all 3 indices. The PL vector is dual
to this 3-tensor and has the same magnitude. The 3-tensor $**° is in general the
following product:

§YOH = GOt (694)

This approach is therefore based in rigorous and general geometric tensor theory.
The PL vector dual to $*°* turns out to be the light-like invariant:

B = (BY,0,0,8) (695)

In the Lorentz group, this concept is missing, and in the Poincaré group, the
relativistic helicity vanishes if B is not zero. Therefore B'¥can be regarded as
the fundamental field component representing spin in the cl ssical electro-
magnetic field. If B were zero, the PL vector would be a null//ector, meaning
that the space part of the equivalent hypersurface element is null. This resultis a
paradox, because a physical beam of light must always have a finite cross section
or area perpendicular to the propagation axis of the beam, the Z or (3) axis. So if
B vanishes, reduction to absurdity occurs, and the beam of light vanishes. This
result, in turn, is self-consistent with the fact that if B®) were zero in the B cyclic
theorem, B!" and B'®) would also vanish, and electromagnetism would vanish.

The unit 12-vector &, acts essentially as a normalized spacetime translation
on the classical level. The concept of spacetime translation operator was intro-
duced by Wigner, thus extending [100] the Lorentz group to the Poincaré group.
The PL vector is essential for a self-consistent description of particle spin.

The dual pseudotensor of any antisymmetric tensor in 4-space arises from the
integral over a two-dimensional surface in 4-space [101], in which the infinite-
simal element of surface is given by the antisymmetric tensor:

A = datdx” — dxdx" (696)
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T , . s
cé}; dcpmponcnts of this tensor are projections of the element of area on the

] inate planes. In 3-space, it is always possible to define an axial pseudovector
element df;, dual to the antisymmetric tensor dfy:

= 1
dﬁ = igl‘jkdfj& (697)

T -
::): rfsget_xdovecgor element df; represents the same surface element as dfy, and
i f;r(njcally, is a pseudovector normal to the surface element and ei;llal ir;
agnitude to the area of the element. In 4-space, such a pseudovector cannot be

constructed from an antisymmetric t
ensor such as df,,.
pseudotensor can be defined by [10]: fo: However, the dua

1

v v,
4 = e, (698)

Where € v 18 thc { {d”y p b
0 Sy!llmelrlC unit Sel}d()tenSO 1 imensions Wlth
T 1n [our d ) y

80‘23 = —Egin3 = 1 (699)

in r;:yfslic permutation of indices. In geometric terms, df*¥ is an element of
s.l:t hape equal and normal 'to the element df;,. All segments in it [101] are
orthogonal to all segments in df;,, leading to the following result: |

df*¥dfy, =0 (700)

in general, therefore, an antisymmetric 4-tensor is an element of surface in
-sgace. .There are three of these elements of surface in the 12-vector G*¥
quation {700) means that G*" is orthogonal to G, in free space

G“VG,Jv = (701)
where
G _1 nvop
=5 £ op (702)
1 -
Guv = Eguvo‘pGGp (703)

In contravariant covariant notation, the field tensors are defined by [101)]

E 2 3
o 2 & & 0 £ £ £
~El N
= 0 -B B £
Gop = - 3 2 G — = 0 -B B
= B 0 -B E g o -p
—F } B
== -B, B 0 E _p pi 0
C

(704)
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and the dual tensors by

_pl _g2 _pB3 0 By, B, Bs
0 B B B
3 2 Ey -Ey
B' 0 g £ . —B Pl
PITA < : Guv — _E E (705)
S I R -B, =2 0 %
I c
g E —E' 0 —B3 Ecl 7cEl 0
It follows that
GvGO) = 0 = 4B® .EC) (706)
Y

and that B® is zero. This result is self-consistent with earlier arguments and with
the fact that the light like products of PL. vectors are null:

* * __ 707
B“Bu:EuEH—O (707)

The only nonzero components of the PL vectors ?“. and B‘f are the.longlFudlnal
and time-like components. It follows that since B® 1s.nu11, 1ts.magmtude 1}31 Zetr}:),
and so E* and E,, are nuil. This result is, in turn, consistent with the fgct t zlilt e
PL vector is a pseudovector, whereas E* is a null vector whose.dual is null. )

The dual axial vector in 4-space is constructed geoxpetrlcally frorp the
integral over a hypersurface, or manifold, a rank. 3-tensor in 4-space antlsfytrlrll-
metric in all three indices [101]. In three-dimensional space, tbe volumic1 oth. z
paralielepiped spanned by three vectors is equal to the determinant of .t e 1}1;e
rank formed from the components of the vectors. In four /9?’.mens‘1on§, t
projections can be defined analogously of the volume of the paxillele,eflped {(il.ﬁi,
areas of the hypersurface) spanned by three vector elements: dx*, dx* and dx *.
They are given by the determinant

dx*  dx™ dx™
st = |dx¥ dxV dx" (708)
dxo- dx/(y dxl/o’

which forms a tensor of rank 3, antisymmetric in all three indices. The ax1a;
o

4-vector element dS* dual to the tensor element ds¥ve is the element o

integration over a hypersurface in four dimensions:

~ 1.,
dsll = — 68“ cpdSvo‘p (709)

dSvo‘p = Spvcpdsu
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sothatds® = dS'?, 48" = ds°%3_ and so on. The §° component of $* is therefore
equivalent to the $'> component of $*°°, normal to it and equal to it in
magnitude. The PL vector is an example of a 4-vector dual to the 3-manifold in
4-space. This is a rigorous geometric result, and if the PL vector were null, it
would represent a null hypersurface in four dimensions. This, as follows, is a
rigorous geometric proof of the fact that B®) is nonzero within the Poincaré -
group. The dual-vector $* is a 4-vector equal in magnitude to the area of the
hypersurface to which it is dual, and is normal to this hypersurface. It is therefore
perpendicular to all lines drawn in the hypersurface. In particular, the element
dS® = dXd¥dZ is an element of three-dimensional volume, 4V, the projection of
the hypersurface on to the hyperplane x° = constant.

In classical electromagnetic theory, the PL vector is defined through the
3-manifold

ot Ar g
o= Av g (710)
0% A° g°

defining the fully antisymmetric rank 3-tensor

SVU“:(GVAG—GUAV)8“+"' (711)
which consists of three terms, the first of which is the product of €" with the
antisymmetric tensor G¥°, a component in internal gauge space of Eq. (22). This

product gives the PL vector through

.
§ = 368\, (712)

The second two terms of the sum (711) can be eliminated using a combination of
the free-photon minimal prescription and the quantum hypothesis

Op=—iZA, (713)
and the manifold defined in Eq. (711) reduces precisely to
SV = GY9%H (714)

It is now possible to adopt the standard definition [6] of the PL vector to the
problem at hand to give

~ 1
GH = Es“vc’chpa\, (715)
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where
ch = acAp - apAc (7]6)
i i i lto
G* i hird rank G..&y in four dimensions and norma
nEq (N3). G 1 e th Gp\fiew, there is nothing normal to the

it wi i he received
it with the same magnitude. In t there is n rmal
turely transverse Ggp on the U(1) level, and therefore G* c‘dnnot.be conlsw‘t:;r::));
Eual with GgpEv. This result is inconsistent wi[h the four-dtmengona] alge

the Poincaré group. If we adopt the notation G, = By, we obtain

B, = Gy " (717)
and the complete PL vector in consequence is
A - 3
B, = GSV)EH( )
1 3) n(3)
=3 ‘pwp(;cp( )gh
= (B¥.0,0,-BY) (718)
Similarly
BY = (B ,B®) (719)

ich is orthogonal to B,. ‘
Whi{?:elPL vectgor was ori\ginally constructed for particles from the generators of

i ’ far
the Poincaré group. The PL vector corresponding t‘o the g)/.oton s angu
momentum corresponds in free space and in ¢ = I units to

7 = (79,0,0,7%) (720)

and the light-like momentum in ¢ = 1 units is
P = (p,0,0,p")

If the mass of the photon is identically zero, its n(érm;lhize(;i helic;tzfe;z:kc:jh;lcli
J*is ional to p* [6]. The O comp X
s +1 and —1 because J* is proportiona ‘
Zzzn‘ﬁlsy appears for a boson, is not considered but reappeari if the pl(])o(t;;)n ;‘1;12
i i little group becomes .

identically nonzero mass. In this case, the Wigner ‘ »

gig?tlgzlldycnorresponds to J® for the photon with a tiny but nongi;) 122:3
because, as argued earlier, the structure of the O(3) ﬁejld e'quatlonsh:st ine; fea
with [h.’:lt of the Lehnert equations [Egs. (6.12).1, whxc]'1 imply p o;) m,liké'
Therefore p* and J* in the laboratory are infinitesimally different from lig ,
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but on an astronomical scale, they may become substantially different from light-
like {11-20].

A complete consideration of relativistic helicity in the electromagnetic field
therefore requires consideration of the Poincaré group. It is not sufficient to
consider the Lorentz group. The vector dual to the antisymmetric field tensor
introduced by Lorentz, Poincaré and Einstein could not have been defined prior
to the introduction of the Pauli-Lubanski vector and Wigner’s work of 1939
[100]. This work characterized all particles in terms of two Casimir invariants:
one for mass and one for spin. The photon and electromagnetic field are linked
by quantization, so the Wigner method must also be applied to the field. When
this is done, as in this section, the relativistic helicity in O(3) electrodynamics is
defined entirely by B®). U(1) electrodynamics can be described in terms of the
Lorentz group, in which relativistic helicity is incompletely defined. A full
understanding of B therefore requires the Poincaré group [11-20]. Further-
more, Noether’s theorem is reduced to energy-momentum conservation only
with the use of the spacetime translation generator, which within a factor 4, is
the energy-momentum 4-vector itself. In the received view of the classical field
[5], energy momentum is defined only through transverse components, whereas
in O(3) electrodynamics, it is straightforwardly defined through A, which is
purely longitudinal at low energies.

The nature of the dual vector (B*) can be deduced without usin g any equation
of motion, but the dual 4-vector is a fundamental geometric property in the four
dimensions of spacetime. The complete description of the electromagnetic field
in O(3) electrodynamics must therefore involve boosts, rotations, and spacetime
translations, meaning that B* is a fundamental geometric property of spacetime.
The unit 4-vector ¢, is orthogonal to the unit 4-vector B*:

g B =0 (122)

and this is a fundamental property of the Poincaré group. The Casimir invariants
of the electromagnetic field are therefore

enef =0
BB =0 (723)
Sulg‘” =0

The homogeneous O(3) equations in the vacuum are obtained by considering
the helicities:

85}){;&\'\‘3) - (3(3)70,073(3))

3Gy
e /GmM =0 (724)
8'&3){;”\’(2) — O
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The first of these gives the vector B*, and the second and third give terms such as

Ey’

—Bg(l) + —;— =0 (725)

The three relativistic helicities (724) therefore give Egs. (590)-(592) with the
addition of the following equation:

v.B% =0 (726)

In arriving at this conclusion, we have used antisymmetric tensor definitions such

as

) ~Ey
iy | B0 0o =
G = 8 (727)
BY 0 0o =
0o B

By considering the conserved quantity B*G), we arrive at

0,8 =0 (728)

a solution of which is /
oB®

—— =0 .B® =0 29
& ;v (729)

The overall structure of the O(3) equations in the vacuum is therefore
8,G" =0 (730)

This is the same structure as the homogenous Maxwell-Heaviside equations in

the vacuum, which can therefore be obtained by a consideration of relativistic

helicity.
We have seen that the overall structure 0

in the vacuum is [Egs. (612)]

f the inhomogeneous O(3) equations

3uH™ = U (731)

vac
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where the vacuum charge density is defined by
Poac = ig(A(z)-DO) —DW.40) L 40, p0) _ pB AW
+A.pD _ph.4@) (732)
and the vacuum current density by
Jae = —ig(cAPDD — cAPDD £ 4D « gO _ 40 5 g©
—I—CA(()3)D“) - cA((,])D(3) +A® x HO _ 40 o g®
+cA' DD — cATDY + A0 x HO — 4@ 5 g0y (733)

El“gl;e]re(f)?re,ftl]ie hvacuum charge and current densities of Panofsky and Phillips
elec; y of Le nert aqd Roy [10], are given a topological meaning in O(3)
| rodynamics. In this condensed notation, the vacuum 0O(3) field i
iven by eld tensor is

0 -D' -p* —p?

Dl 0 —H? H?

HY — c ¢
D? H? 0 _H! (734)
D3 ‘5.12 HTI 0

and the 4-current by

I= ("%) (735)

forr'lr’lhe e}czluations of O(3) elec.trodynamics can therefore be written in condensed
as Eqgs. (730) and (731) in the vacuum. These equations can be written as a

Slngle conservatio a n -
) onserva n ] W u de] a]l CODdlthIlS (Vacuum and ﬁeld matter interac

0,G" = 0,H" =0 (736)
G*=G";, H"=H"% (736a)

In general, define the unit generators

#= (- 0) (737a)
# = (1) (737)
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where v is linear velocity and ¢ the speed of light. Equation (737a) defines a unit
energy-momentum 4-vector orthogonal to the unit energy momentum 4-vector in
Eg. (737b). The existence of such generators signals that the electromagnetic
field in general has a rotation-translation character, so forward momentum is
always accompanied simultaneously by a transverse momentum. Thus €,€" = 0,
that is, €, is orthogonal to &, This feature develops Eq. (736) into two field
equations. In the vacuum, v = ¢, and these field equations become Egs. (730) and
{731) with vacuum charge and current defined by Egs. (732) and (733),
respectively. In field—matter interaction, v < ¢ in the charge—current 4-vector of
Eq.(735).1f B™ is zero, the vacuum electromagnetic field is lost. Because of its
simultaneous rotation and translation, the electromagnetic field has left- and
right-handed circular polarization and is chiral. The Pauli-Lubanski construct
can be either a pseudovector or vector.
We first consider the conservation law

ap@u =0 (738)
where (¢ = 1 units)

M = Guvgv - (__KBI +KBZ _ KB{Bl .__EEz,B2 + KEI7BB -+ BE2 +XE[>
c c c ¢ ¢ ¢ ¢

(739)
giving the conservation equation:
/’/
Vv Vv /
ﬂ-%#+aﬁ?—%ﬁy+mu#—;#) '
+64#+5E)+m0?+3§+ﬁy)=0 (740)
5 c 4
In vector form, this becomes (in SI units)
oB
w<§+VxE):3VJ (741)

which is a balance of the Faraday law of induction and the Gauss law for all v,
including v = ¢. This result is true for all v, and therefore under all conditions,
and is precisely equivalent to the result (730), the condensed form of Egs. 95)-
(100) of O(3) electrodynamics. Apparently, magnetic monopole was never
observed and the Faraday law was never violated. This is consistent with 03
electrodynamics as argued already.
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Next, we consider the conservation law:
OH" =0

where (¢ = | units)

227

(742)

H“:H*‘“E:(D‘+DQ+D3ED’ 3 Voo 3 i
v D'+ H —H D — 1 4 H,

YD iHt Hl)
C
Using Eq. (742)
0(D' +D* + DY) +2, (2D + #* — 1?)
c
V.2 3 v
+QQD~H+HQ+@QW+W—HQ=0
which in vector form is (in SI units):
oD
V x H — —— = .
& vw(V.D)
and is a combination of the Ampére-Maxwell law:

oD
VXH—%)—t—=J:v(V-D)=vp

and the Coulomb law:
VD = p

Equation (745) can be written as

VxH= (?-+VV'>D:§-D—
ot ot
where
9_3
TR

(744)

(745)

(746)

(747)

(748)

(749)
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is the convective derivative. The charge—current 4-vector in general is

= (pg = (p;p) (750)

and in the vacuum is
W 1
‘]vac = pvaca—(;‘]v‘dc ; vV==~¢C (751)

Therefore, charge density and current density in the vacuum and in matter take

the same form, [see Egs. (732) and (733)]. Thisis a general result of assuming an

O(3) vacuum configuration as in Section I. Equations (736) are a form of

Noether’s theorem and charge/current enters the scene as the result of

conservation and topology. Similarly, mass is curvature of the gravitational field.
In the vacuum

y=c; &"=(1,0,01) (752)

and conservation of the PL pseudovector gives the continuity equation

3

)
V x D(3) =V X P(S) = ——gt—— CV‘BB)G(S) =0 (753)

which is a post-Noether-invariant. We have used the vacuum relatioy .
D) = g, E® +pP® = pB (754)

The vacuum polarization component P® is equal to the vacuum displace-
ment D® and aligned along one axis, so its curl vanishes. If B were zero,
then for a light-like €*, G+ would be null and the electromagnetic field would
vanish a reduction to absurdity proof of the existence of B if we adopt the
Poincaré group. The adoption of the latter group leads to the post-Noether-
invariant equations (736), which break out into the field equations of 0@3)
electrodynamics. Since U(1) is an O(3) symmetry with one null axis (the Z axis),
U(1) is in a sense a sub symmetry of O(3), and this property leads to the fact
that O(3) equations can be expressed in the form of U(1) equations without
self-contradiction. The following diagram, which outlines the rules for
connecting U(1) and O(3), may help the reader understand how this process
occurs.
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Rules for Connecting U(1) and O(3)

SV _
9,6 =0 ouH™=J"
A*B=0
3B Ab=e
AxE+—=0 oD
at AXH:J+§
.
B=B"4+p®,p® H=H"+H? +H®
E=EV4+E® p=p"+p® . p®
FHV
3,G"=0 DHY =
r=lp. L)

p=ig (42-D¥) —pR@. 4B 1 4@ .p)_ pB. 44 40). D@ _ pM.42)
J=—ig (cAtha)— CA(g)D(2)+A(2) x HO — 4@« @

+cAPDM - cAVUD® L 4@ g 4O g

+cASID® — caA@p 4 40 g® 4@ x gy

uv > Ay

1
Gy = o4 720 4 (19,9
Ay

1
= AD (4 42 @), 4@
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In the vacuum limit, we also obtain the following equation for the vacuum
> . 3
displacement D® and vacuum polarization P

ap®  ap®
= =0 (755)
o oz ;
Now use
VxH= (%‘?w(v-z))) (756)

in the limit v — ¢, and take the (3) component to find that:
VxHY =0 (757)
which gives
Vv x (A1 xA®) =0 (758)

a result that is consistent with the definition of BY) in the vacuum, Fq (38),
because the curl of A1) x A% is zero. The 3-component of Eq. (741) is simply

B3
7B = =0
VB o

(759)
because E is zero as proved already. The fact that E® is zey is a direct
consequence of the Jacobi identities (86) or (578). The same identit/2s imply tl}at
there is no magnetic monopole or magnetic current in O(3) electrodynamics
under any circumstances. The B component is topological in origin, and df)es
not originate in a magnetic monopole as a material particle. These theoretical
results are consistent with empirical data [11-20], which imply the presence of
B® and the absence of a magnetic monopole in nature.

In the Poincaré group, therefore, the fundamental spin of the electromagnetic
field is represented ineluctably by the PL vector:

B* = (B%,0,0,B%) (760)

The integral of B over a hypersurface in four-dimensions is always zero, a result
of the ordinary Stokes theorem in four dimensions:

351}“ dx* = % J (0,By — 8,B,)0c*" =0 (761)
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The equivalent result in 3-space dimensions has been given by Evans and Jeffers
[102]:

%B(?” dr =0 (762)

and is simply a consequence of the fact that B'¥ is irrotational by definition.
Therefore we obtain from Eq. (761) the results

0By =0,B, =0 (763)

and
OuH, =d.H, = Jyy = Jy, (764)

These are alternative forms of the Lehnert or Panofsky—Phillips equations (612),
which can be expanded out into the O(3) equations (95)—-(106) using the rules in
the above flowchart shown above [after text that followss Eq. (754)).
Conservation of helicity therefore requires the charge current tensor to be
symmetric. Similarly, conservation of angular momentum requires the energy-
momentum tensor to be symmetric in dynamics [6]. Therefore conservation of
helicity generates the field equations and new conservation laws based on
topology. Charge current itself is the result of topology as discussed by Ryder.
[6, p. 93].

The Lie algebra of the PL vector within the Poincaré group is not well known
and is given here for convenience. The PL vector is defined by

W, = Jy P (765)

where

0 Jy Ja I3
T —‘]I 0 K3 —Kz
w=1_, ki 0 K (766)

-3 Ky -K; O

is a matrix of Poincaré group generators: the boost (K) and rotation (/) generators
[6,11-20]. Here, P is the generator of spacetime translation, which is missing
from the Lorentz group. Therefore the PL vectors written out in full are

Wy = 1 P! + ,P* + 1P
Wy = —J1 P’ + K3 P2 — K, PP
Wy = —LP’ — K3P' + K PP

Wy = —J 1 P° + K,P' — K, P*

(767)
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These are linear operator relations implying the property
[P0, WH =0 (768)

showing that the ~Hamiltonian operator H = P° [6,11-20] commutes with the
complete vector W* under all conditions. Equation (768) implies

QW' =0 769)
B

as in Eq. (736). Relativistic helicity has no 4-divergence. From Egs. (767), we
obtain the closed Lie algebra

(770)

and Jacobi identities such as
W, W2 W2+ (W2, (W2 W)+ W3, (W', W3] = o, (1)
/

checking that W* is a valid generator of the Poincaré group. The Casimir
invariants P,P* and W, WH are the two fundamental invariants of the Poincaré

group. } )
In electromagnetic theory, we replace W* by G* the relativistic helicity of the
field. Therefore, Eq. (770) forms a fundamental Lie algebra of classical electro-
dynamics within the Poincaré group. From first principles of the Lie algebra of

the Poincaré group, the field B is nonzero.

If a light beam is considered propagating at ¢ in Z, we obtain from Egs. (770)
the Lie algebra of the E(2) Euclidean group [6,11-20], which is a mathematical
group with no physical meaning:

W, Wi =0 (772a)
(W2, W3] = iP"W' (772b)
(W, W' = iP"W? (772¢)
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compared with the O(3) Lie algebra

(W', W = iPW? (7724)
(W2, W3] = iP"W! (772¢)
W2, W] = iP°w? (1721)

and snmllaﬂ){ for G*. The E(2) group is the Wigner little group for a particle
whpse mass is identically zero, and so such a particle does not exist in nature
Th}g proves that the photon and neutrino both have identically nonzero mass. The;
Wigner little group for a particle with mass is the physical O(3) group. In terms
of field components, Eq. (772b) gives (in ¢ = 1 units) .

B> —E' B = iBVB! (773)
which is satisfied by

f32,33] — lBl'O)Bl

.5 = 55 (74

;Il;he tf:irst of these equations is an equation of the B cyclic theorem, which
erefore emerges from the symmetry of the Poincaré group in f '
Similarly, Eq. (772¢) gives: o R

[B*,B' + E*] = iB(B* — E") (775)

which is satisfied by
[B°,B'] = B B*

{BaEZ] — _zB(()}EI (776)

B' + EB*—E'1=0 (777)
which is satisfied by
[BI,BZ] — [EI,EZ]
(E*,B%) = [E*, B (778)

where the first i o . R ] .
theorom. rst of this pair give the third and final equation of the B cyclic
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The structure of the O(3) equations in condensed form [i.e., Egs. (612)]
emerges from the symmetry of the Poincaré group. Consider, for example, the

three equations:
(P2, ]3] = iPy
[P3, h] = —iP,
[Po, K] = iPy

By definition, the generator of space-time translation is
P =i0,
so Eq. (779) becomes
([02,3] — [03,J2] — [Qo, Ki])¥ = Py
where V is an eigenfunction, Equation (781) can be written as
(003 — 032 — BoKy — (V302 — 203 — KiGg))¥ =0

which is a relation between operators on . Now use

Jap = j3y
I = jaV
I =iy

where lowercase letters denote eigenvalues. We have

B03) = (D27 +j3(020)
B3(javr) = (Oaj2 )V +j2(03%)
ok = (Doki W + k1 (Do)

Assume that
J3(020) + 2 (030) + K1 (8oW) = j3(@2) +j2(338) + ki (o)
an equation that is compatible with:
(02 4 83 + Oo)¥ = constant Y

Equations (781)—(786) give the eigenvalue relation
Bajs — O3j2 — Ok = P,

(779)

(780)

(781)

(782)

(783)

(784)

(785)

(786)

(787)
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which is one component of
12K

v il
xJ -~ =P (788)
If we write
¥ = (789)
where ¢ is a phase factor, then
I3 = 1) = ey = jav (790)

fmd so on. Therefore the eigenvalues appearing in Eq. (788) are phase-dependent
in general. It is clear that the structure of Eq. (788) is the same as one of Egs.
{(612). The complete set of operator relations leading to this equation is

(01, 2] = [0, 1] = [0, K3])¥ = P3¥s
([627‘13} - [63‘17-5 - [a()le])“"’ = P!‘l’ (791)
([83,41] = (81, 43] — [0o, Ka] )Y = Pay

Similarly, the Lie algebra
([02, K3] — [03, K2] + [00. 3]0V = O (792)

and so on leads to the eigenvalue relation

10j
Vxk+~——=
x k 4+ e 0 (793)
as another of Egs. (612).
The Lie algebra

(01, 1] + (82, 2] + (85, 5] )y = 0 (794)

gives
((51.]; — J.é.) -+ (62.12 — Jzay_) + (63J3 - J}@x))\l} =0 (795)

Using

Iy =jiy

310 Y) = 1 (@1%) + Bujn )W (756)
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and assuming

L1 (@0) 4 L(D20) + J3(330) =) (@10 + j2(@20) +j3(33¥) (797)
leads to
O1j1 + a2 + 53]'3' =0 (798)
V=0

Therefore the complete set of equations (612) emerges in the form

vk =3po
V=0
ka+la—J=0 (799)
cot
. 1ok
VoIS w T

simply by considering the symmetry of the Poincaré group. The vacuum charge—
current is therefore intrinsic to the structure of the Poincaré group, but not of the
Lorentz group, in whichp is undefined. Structure (799) exists under all conditions
because the Poincaré group applies under all conditions. Therefore O(3) electro-
dynamics emerges self-consistently from the symmetry of the Poincaré group,
without a magnetic monopole or magnetic current as material entities, but with
vacuum charge and current. This is a powerful result of symmetry.
Consideration of the symmetry of the Poincaré group also shoy’s that the B
cyclic theorem is independent of Lorentz boosts in any direction, &.d also reveals
the physical meaning of the E(2) little group of Wigner. This group is unphysi-
cal for a photon without mass, but is physical for a photon with mass. This
proves that Poincaré symmetry leads to a photon with identically nonzero mass.
The proof is as follows. Consider in the particle interpretation the PL vector

1
W = __Z_EM‘W’P“JVp (800)
Barut [102] shows that this PL vector obeys the cyclic conditions:
(W, WH] = —ig"" PP W, (801)

For a particle (including the photon) with mass, the spacetime  translation
operator P* in the rest frame is

P* = (P",0,0,0) (802)

O(3) ELECTRODYNAMICS 237
and in the light-like condition
P' = (P°,0,0,P") (803)

In the rest frame, Eq. (801) becomes [15]

Vi, ) = ils
[J2,J3] = iJy (804)
U3, Ji] =il

which is the Lie algebra of the rotation
. ' generators of the Lorentz group [6]. L
light-like condition, Eq. (801) becomes group [0} Tnthe
(Ux + Ky,Jy — Kx] = i(Jz — JZ)
Uy — Kx,Jz] = i(Ky + Jx) (805)
Ky + Jx,Jz] = i(Kx — Jy)

which has the symmetry of the E(2) group. Equation {805) can be written as

Ux. Jy] + [Kx. Ky] = iJ, — iJ;
[.]y,.]z] + [Jz,Kx] = iJy + iKy (806)
—[Jz,Jx] + [Ky, Jz] = —iJy + iKx

If' we .assume that the Lie algebra (804) is independent of Lorentz boosts in any
direction, we obtain the Lie algebra:

Kx, Ky] = —iJz
Vz,Kx] = iKy (807)
[Ky,Jz] = iKx

Thls is a Lie algebra of the Poincaré group [15] and of the Lorentz group [6], and
is thefefore self-consistently independent of spacetime translation. Therefor’e the
meaning of the E(2) little group of Wigner is that it is a combination of the Lie
algebra (804), which is independent of Lorentz boosts and spacetime translations;

an f the Lle algebra (80 ) thh IS in i .
N ende t f i
d [0 > ; w dep nt o Spacetlme translatl()ns

[Kx, Ky| = —iJz (808)

is the Thomas precession [6].



238 M. W. EVANS

In the field interpretation [1 1-20], the Lie algebra (804) becomes [15]

B B = _'3(0)3{3)
(B, B*] l (809)

in the basis ((1),(2),(3)), which in vector notation is the B cyclic theorem:

B(l) B(?') — B(O)B('i)*
g l (810)

The latter is therefore independent of Lorentz boosts of any kind, and indepen-
dent of spacetime translations of any kind. As demonstrated previously in this
chapter, this result can be arrived at independently and self-consistently by
considering the following definition:

B = -igAm « A (811)

The B cyclic theorem is therefore 2 Lie algebra independent of boosts and
spacetime translations and is the same in the rest mass and light-like conditions
for the photon. This result leads to the Lie algebra (807) for a particle with mass.
The E(2) group becomes physical if the photon with mass is boosted to the speed
of light, or, more precisely, infinitesimally close to the speed of light.

This symmetry analysis of the generators of the Poincaré group also shows in
the field interpretation that the E(2) group contains the B field (corresponding
in the particle interpretation to the Jz generator) but does not contain the E¥
field, corresponding in the particle interpretation to the K generator. The
Poincaré group also gives the structure of the O(3) equations of y.otion, Egs.
(799). In the field interpretation, the P* generator of the particle /aterpretation
corresponds to charge~current. Therefore charge is analogous with energy and
current with linear momentum. The magpnetic field is analogous with the rotation
generator, and the electric field is analogous with the boost generator. The
Poincaré group Lie algebra produces the O(3) equations (799), and not the
Maxwell-Heaviside equations. Our analysis throughout this chapter is therefore
shown to be entirely self-consistent on the O(3) level, while there are many self-
inconsistencies on the U(1) level. The normalized helicity of the photon with
mass is —1. 0, 1, as for any boson with mass. In the rest frame, there is no
helicity, because there is no forward momentum for a particle in its own rest
frame. In the light-like condition (i.e., infinitesimally near the light-like
condition), the three helicities are the space parts of the PL vector in that state:

Wy = J 1Py + KaoPs3
W, = J2Po — K\ P3 (812)
Wz = J3Po
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The time-like part of the PL vector is

Wo = —J3Ps (813)
It can be seen that the PL vector is not proportional to P* in the light-like

condition, thus removing another paradox [6] of the concept of massless photon
In the U(1) gauge the vacuum field equations are: .

(@ +igA")Fy, =0

(0" +igA")F,w =0 ®14)
and become the Maxwell equations if and only if
AF =0
AFpy = 0 (815)
which in vector notation correspond to
A-B=20
AXE=0
AE=0 (816)
AxXB=0

Therefore A+ B = 0 in the U(1) i
‘ gauge in the vacuum. Unfortunatel ici
in the U(1) gauge is defined by [103] rrunately, the heleity

h= JA-BdV (817)

:l}xch; is the linli(ing number of field lines. This is zero because A-B =0, and
elicity cannot be defined in the vacuum in the U(1) gauge. It :

It
to the O(3) level and to define helicity by gause T necemayto go

hogy = [Ai'%siz?dv (818)

}ll é)g(})ﬂ(lznor; this level that the link between helicity and topological quantization
mlllt_ipl Confr:l eux:d;r;tood properly. The O(3) group, like the U(1) group, is
o y o c § . h{: group space of U(1)is acircle [6, p. 105]. As explained
arlier in this review, this is not simply connected because a path that goes twice
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around a circle cannot be continuously deformed while staying on a circle into
one that goes around once. The group space of SU(2) is §? {6, p. 411]. Every
closed curve S' on S* may be shrunk to a point. The group O(3) is not simply
connected but doubly connected, [6, p. 412]. Therefore the Aharonov-Bohm
effect is possible only in 0(3), as described in early sections of this review. We
have the relation SO(3)=SU(2)/Z2. There are only two types of closed path §' in
the group space of O(3): homotopic to a point and line [6]; therefore it is doubly
connected. The topological theory of classical electromagnetism proposed by
Ranada [103] thus can be extended systematically to the 0(3) level. On the U(1)
level used by Ranada, the electromagnetic knot is locally equivalent to the
Maxwell-Heaviside equations. The electromagnetic knot is a field defined by the
condition that their force lines are closed curves, and any pair of magnetic or
electric lines is a link [103]. The linking lines are two integers that are interpreted
as the Hopf indices of two applications from the sphere §7 to the sphere S* at any
instant. In the vacuum, the knots are such that n,, = n,. Since A «B is identically
zero in the U(1) gauge (Maxwell-Heaviside theory), this elegant theory needs to
be upgraded to the O(3) level.

XIV. GAUGE FREEDOM AND THE LAGRANGIJAN

We have just seen that the symmetry of the Poincaré group leads to vacuum
charge and current as proposed by Panofsky and Phillips [86], Lehnert and Roy
[10], and others. We must therefore seek a Lagrangian that gives the structure of
the O(3) equations, a structure that, in condensed form, is identical with the
Panofsky—Phillips and Lehnert-Roy equations. The Lagrangian leading to the
Maxwell-Heaviside equations is deficient. It must also be explaing/ + why photon
mass can enter gauge theory without making ten Lagrangian gauge not invariant.
The problem with the Proca equation is that it removes gauge freedom, but at the
expense of rendering the Lagrangian gauge noninvariant [6]. The original Proca
equation is not therefore an entirely satisfactory approach to photon mass. The
origin of photon mass (mg) in O(3) electrodynamics is therefore topological,
because the origin of charge—current is topological. The topology is expressed
through gauge theory and group theory as discussed in Section L. On the U(1)
level in the received view, a Lagrangian that does not contain a photon mass term
is needed, Fuler Lagrange equations have to be constructed, and constrainis are
needed to reduce the number of field variables so that there are no undetermined

multipliers.
This program is not consistent with the Proca equation on the U(1) level. If

the Proca equation

2
BuH — " = —eg 5 A” (819)
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is used by ansatz, then it follows, by taking its divergence [6,15], that
mig,AY =0 (820)
and if myq is not zero, the Lorenz condition is always obtained
3A* =0 (821)
and the d’Alembert equation becomes

mé o4

~[JA, ='};2“‘Au (822)

f}\l ;(;nfti:;on 18 imposed I(;n one of the four components of A, so that there are only
components. However, the Lagrangi i
-0mpC , gian leading to the Proca equation i
not gauge invariant due to the presence of a mass term [15] e s

Py =" g a0
my = 5 AuA (823)

:ng thf; ?roca eguation always leads to the Lorenz condition, which is arbitrar
eguaig f—u;conmstenlt. These disadvantages offset the advantages of the Procz
1on; for example, it allows a three dimensional icle 1 ‘ i
: particle inte
ph(;ton and it can be quantized without difficulty. rpretaton ofthe
@ ;) Ub(llt) ;gnau(;gz theory, bthe Lagrangian in general [6] contains the mass term
, rder to obtain the inhomogeneous Maxwell equati this i
323 . : : uations, t
(jlscarded. Thfs pfocedure is outlined, for example, on pp. 89ﬁEl of Ref {ihl;‘hlS
U(1) Lagrangian in general is, in reduced units . o

_ ' o]
& =DydDyd" —m* P — JH" Hyy (824)

where ¢ is a scalar complex field and F,, i
“uv 18 the electromagneti :
Euler-Lagrange equation in the U(1) gt;uge is et feld tensor The

0¥ (87
o V-———~6(6»‘Ap)) -0 (825)

and Eqs. (824) and (825) give

OuH™ =1V = —ig(¢"D'¢ — 9D*¢") (826)
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The photon mass term in the Lagrangian

1 1
¥ = _ZHWHM +§W%Au‘4p (827)

leading to the Proca equation in the received view [6] is not invariant under the
gauge transformation
AR AM 4 DMy (828)

and is discarded in order to obtain the inhomogeneous Maxwell-Heaviside
equation (826). The constant g appears in this theory as a coupling constant; it
couples the ¢ and A¥ electromagnetic fields.

Therefore the fact that 8" is arbitrary in U(1) theory compels that theory to
assert that photon mass is zero. This is an unphysical result based on the Lorentz
group. When we come to consider the Poincaré group, as in section XIII, we
find that the Wigner little group for a particle with identically zero mass is E(2),
and this is unphysical. Since "y in the U(1) gauge transform is entirely
arbitrary, it is also unphysical. On the U(l) tevel, the Euler-Lagrange equation
(825) seems to contain four unknowns, the four components of A¥, and the field
tensor H" seems to contain six unknowns. This situation is simply the result of
the term H"' in the initial Lagrangian (824) from which Eq. (826) is obtained.
However, the fundamental field tensor is defined by the 4-curl:

Fuv = apAv - a\’AP (829)

and the six components of the field are interrelated automaticall)/ by a constraint.
The field tensor therefore contains only the four unknowns of’A¥ by definition,
and this definition is the constraint. The physical nature of the potential has been
reviewed by Barrett [3,4].

It is well known that the Proca equation [6], Eq. (809), for a massive photon
is not gauge-invariant because the Lagrangian (827) corresponding to it is not
gauge-invariant. In SI units, this Lagrangian is

2.4
v %Q Ve + 8():;3 mgzc AAY (830)

where Vg is the radiation volume, € is the permittivity in vacuo, HY is the field
tensor, and my is the mass of the photon. It is customary to adopt reduced units,
so the Lagrangian becomes [6] Eq. (827), with:
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The term mZA A" is not invari
" gauge-invariant under a focal U(1) transform of A®. This

problem can be circumvented by adopti i
pting the notion of the v
Fire of & ealur it o g of the vacuum as the ground

5" (832)

where V is potential energy. This definiti
y. s tion of the vacuum depend
spontaneous symmetry breaking [6] of the Lagrangian: pends on the

¥ = @0u0)(@") — m*P P — M)
= (8,) (") — V(¢, ") (833)

where X is the self-interaction i
parameter, and assuming that .% is invari
the local transformation ¢ - manantunder

iA L)
¢ =M (834)
the vacuum is the ground state
ov 0 2 s
5g - 0=m O* + 2297 (¢" ) (835)

and the ?arame.ter mis a}]]owed to become negative, This is the basis of the Higgs
mechanism of introducing mass. If m < 0, there is a minimum at ‘

m2

@ =(9f=-2r1 |4l =a (836)

Zr;;rln n;lelter quat?kr? deﬁnfingh the vacuum [Eq. (835)]. In reduced units, spontaneous

' y breaking of this type leads to the Lagrangi

inhomogeneous field equation (826). raneian (820 and o the
The charge-current density

T = —ig(¢' D' — dDH ) (837)

}s a vacuum cgr:rent because g exists in the vacuum and Eq. (837) is obtained
rom the definition of the vacuum, Eq. (835), as the ground state of the scalar

field ¢. The fundamental field i
Fuy is completely defi i
commutator of covariant df:rivativestlzv P ¥ defined in terms of the

Fuv =-1[Dy, Dy} (838)

O |~
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The Lagrangian (824) can be rewritten using Eq. (836) as [6}

1 ) 1 5 1 \2
g = -ZHI*WHH +§g202AuAu ‘\"E(apq)l) +§(au¢‘2)

— AP + V2gaA"Ouby + (839)
The two Lagrangians (824) and (839) contain the same physical information, but
in the form (839), the mass of the photon appears a3 the term } g*a”A A" in these
reduced units. In SI units, the mass of the photon is

c
mo’s = ga = 80| (840)
and using
8= (841)
||
we recover the de Broglie guidance theorem [15%:
mge” = ho (842)

Proca equation is recovered in gauge-invariant

from the Higgs mechanism. The
hes as the result of

form from the Lagrangian (839) if it is assumed that ¢, vanis
spontaneous symmetry breaking. Using the Euler—Lagrange equation

Gy 0
Y P ) 843
3, o (a(mg) (843)

the gauge-invariant Proca equation is as follows, in SI units:

2
auH“" == Jv =S ’Sgg%(mz%;ﬁ‘v (844)
1

(824), which is the same as the Lagrangian (839), gives the
Euler-Lagrange equation (843).
ith the vacuum charge—current

The Lagrangian
inhomogeneous equation (826) using the same
Therefore the photon mass can be identified w
density as follows (in SI units):

b
y4

2
P = el A = ~igeo 13 (97D — $D"¢7) (845)

hat the O(3) equations in their condensed form,

This result, in turn, shows t
is precisely the result

Eg. (612), indicate the existence of photon mass. This
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obtained by ‘Lehnert and R(?}* [10}. Canonical quantization of the gauge-invariant
Pro.czil f:quatlon procegds without any problem to give the photon as a boson with
h;:hcmeé - lh, 0, 1. This procedure is described in Ref. 6. In summary, it has been
shown that the vacuum charge—current density and photon m : i
s mechaniam p ass are the result of
Photon mass is shown to be self-consistent wi
hotol - S with O(3) electrodynamics b
considering the O(3) Lagrangian [6] in reduced units: ’ R

1 2
© = LD, )(D0) "5 b~ M) —GHLHY(846)

where i is thg internal gauge index and D¥ is the covariant derivative of O(3)
electrodynamics. The latter gives the usual results

Dydy; = By, + geu Ay

Gl = B,AL — ol + gel Al (847)
and the potential V has a minimum [6] at
RENTE:
ol == (‘ H) (848)
where
by = aey = ae®) (849)

The O(3) Lagrangian becomes
1 , ) .
<=5 (Budy)? + (@uda)” + Ru(ds — a))*) + ag((@ud)A; — (Cudy)AY)
a*g? l
=S N2 A282y i giny b
5 (A" + (A7) ZHMVH‘ — 4a*hy, (850)

and contains the photon mass term

2

a g i
L= (A + (A0 (851)

*

in gauge-invariant form. The 55 1
! ‘ . photon mass in O(3) electrodynamics is theref
given again by Eqg. (840). If it is assumed that ’ -

8= 1l (852)

&e . .
de Broglie guidance theorem (842) is again recovered self-consistently.
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The Lagrangian (850) shows that O(3) electrody:namics is consistentlwnh (tihe
Proca equation. The inhomogeneous field equation (32) of »O.(3) e ectro 'yk-l
namics is a form of the Proca equation where the phf)ton mass Is 1dgnt1ﬁed wit
a vacuum charge-current density. To see this, rewrite the Lagrangian (850) in

vector form as follows:
& =Dyp-D"d ~ m2¢- ¢ — %H“\, «-HY (853)

The inhomogeneous O(3) field equation (32) is obtained through the Euler—
Lagrange equation:

0L o 2 ) (854)
8(AL) 0(8.AL)

which gives Eq. (32) with the current term (in SI units):
DHY =] = —-¢(D'¢) x ¢ (855)

In analogy with Eq. (845), the photon mass is defined in SI units by

CZ

D = J' = —eog’| 0o 7 A" (856)

The individual terms of the charge current density (J*) in‘ the vacuum/ae Noether
currents of the type (101)—~(106) and we have the following identifications under

all conditions:
ol = ig(A®.D®) — D). AP
0@ — ig(A®.p — DO . A1)
o = ig(41. D — D4 57
JU = _ig(eAPD — cAPDP 4 4% x HY —AB x g
T = —ig(cA?DM — Al DO 4 A% x HY — A x HP)
7O = —ig(cA'D® APDY 4 AW x HY - AP x H)

il

The photon with mass has three degrees of freedom, so the (?(3) pxtocedure is
again self-consistent. The key advantage of the 0(3)' procedure is that it prc:(‘iu'ces
a Proca equation that does not indicate the necessity for the Lorenz condition.

0(3) ELECTRODYNAMICS 247

The U(1) Proca equation (819) implies that the Lorenz condition always holds,
because Eq. (819) leads to

8,AY =0 (858)

The O(3) Proca equation (856) does not have this artificial constraint on the
potentials, which are regarded as physical in this chapter. This overall conclu-
sion is self-consistent with the inference by Barrett [104] that the Aharonov—
Bohm effect is self-consistent only in O(3) electrodynamics, where the
potentials are, accordingly, physical.

Having derived the Proca equation in gauge-invariant form on the U(l) and
0O(3) levels, canonical quantization can be attempted. Defining the photon mass
in reduced units as

mﬂzg[(Mv (C‘—‘-],ﬁ:l) (859)

canonical quantization of the Proca equation is similar to that of the Klein—
Gordon equation discussed in section X. The difference is that the Klein—Gordon
equation produces a massless photon. With the definition ng = glol, the
canonical momentum from the gauge-invariant Lagrangian (827) is

o0

Fida 67 = G“AO —A“ (860)
u

from which [6] it follows that
n=-A% =0 (861)

So on this U(1) level, the scalar photon represented by A% is set to zero and the
Lorenz condition always applies, meaning no gauge freedom. This is self-
inconsistent because the original Lagrangian from which Eq. (827) is obtained is
a U(l) Lagrangian with gauge freedom. If so, the Lorenz condition cannot
always apply. Leaving these problems aside for the sake of argument, the
commutation relations fundamental to the method of canonical quantization
become [6]

[Ax, 1), my(x 1)) = 808 (x — x) (862)
i, 1,4 1)] = g8 (x — x') (863)
and the field can be expanded in the Fourier series

Lk S ; . .
Aufk) = oS k (0 k -—efo:+ {(hj+ ikx 864
0 = [ L W e e )
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implying
(@™ (k), a7 (k)] = 8,,,0k"(2n) 8 (k — &) (865)
and a Hamiltonian:
% g™
H= J’—r—ku at (kya™ (k) (866)
(2n)"2ko ;

This gives a straightforward interpretation of the photon with mass as a particle,
but this interpretation is self-inconsistent on the U(1) level, as argued.

Self-consistent quantization of the photon with mass can occur using the
Higgs mechanism. Symmetry breaking of a U(l) theory gives one massive
photon, A,; and symmetry breaking on the 0(3) level gives one massive photon,
A:l. and one massive photon, Ai. On the U(1) level, the time-like component of
the photon is canceled by the scalar field, leaving three polarization states for
the space-like part of the photon. On the O(3) level, symmetry breaking leads to
one massive scalar field and two massive vector fields. The massive scalar field
can be interpreted as a physical time-like photon with mass. This massive scalar
field appears in the term —4a®)y? in the Lagrangian (850), where y = b; —a lt
is also possible to define an effective physical longitudinal photon whose
amplitude is the same as that of the physical scalar photon. This should not
be confused with the superheavy photon that emerges from electroweak theory
with an O(3) electromagnetic sector and observed as described in Section X1I.
In summary, physical time-like and longitudinal photons are missing from
symmetry breaking of a U(1) theory, but are present after symmetry breaking of
an O(3) theory. It can be seen from Eq. (826) that electric charge cy/rrent density
is defined by the scalar field ¢, and the basic requirement for charge to exist
from Noether’s theorem [6] is that ¢ be complex. It is therefore possible to build
up electromagnetic theory from topological considerations, in particular the
complex scalar field ¢, whose ground state is the vacuum.

From the foregoing, it becomes clear that fields and potentials are freely
intermingled in the symmetry-broken Lagrangians of the Higgs mechanism. To
close this section, we address the question of whether potentials are physical
(Faraday and Maxwell) or mathematical (Heaviside) using the non-Abelian
Stokes theorem for any gauge symmetry.

On the U(1) level, this becomes
c}A}, it = — %J Fyydo™ (868)
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or in vector notation
%Aodr:fB-dArz—JV x A +dAr (869)

The gauge transformation rule on the U(1) level is
A—~A-Vy (870)

and when applied to Eq. (869), it is found that
#Vx-a‘r:O (871)

which is self-consistent with

Vx{(Vy)=0 (872)

The Dirac phase factor

exp (ig %Audx“> = exp (_ingdew) (873)

is therefore gauge-invariant [3,4] and full i i
R y describes the electrom:
factor on the U(1) level. emagnetic phase

On the O(@3) level, a gauge transformation applied to the theorem (867)
produces

0 e 1
%(SAHS e (8,5)S ')dx“ =—3 J SG S~ do™ (874)

where
§=exp (iM"A°(x")); A" = M°A (875)

Here, M“ are physical rotation generators of the O(3) group and A“ are physical
angles [11-20]. The gauge transform produces

; | .
A&)MAL’W—EGHA(‘)()‘-“); i=1,2,3 (876)

so that the potential components of?

— AlD (1) (2),(2) 3),(3)
A=A e + AP 1 A0l (877)
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are also physical. The gauge transform (874) also produces the result

%auA“(x”)dx“ =0 (878)

which means that
0,0, A% = 0,0, A" (879)

This result, however, is an identity of Minkowski spacetime itself, namely, 8,3,
operating on a function of x* produces the same result as 0,0, operating on a
function of x*. Equation (879) does not mean that A? can take any value. We
reach the important conclusion that the vector identity (872) of U(1) is a property
of three-dimensional space itself and can always be interpreted as such.
Therefore even on the U(1) level, Eq. (872) does not mean that ¥ can take any
value. Even on the U(1) level, therefore, potentials can be interpreted physically,
as was the intent of Faraday and Maxwell. On the O(3) level, potentials are

always physical.
XV. BELTRAMI ELECTRODYNAMICS AND NONZERO B®

In this final section, it is shown that the three magnetic field components of
electromagnetic radiation in O(3) electrodynamics are Beltrami vector fields,
illustrating the fact that conventional Maxwell-Heaviside electrodynamics are
incomplete. Therefore Beltrami electrodynamics can be regarded as founda-
tional, structuring the vacuum fields of nature, and extending the pojnt of view of
Heaviside, who reduced the original Maxwell equations to ttj}:ir presently
accepted textbook form. In this section, transverse plane waves are shown to be
solenoidal, complex lamellar, and Beltrami, and to obey the Beltrami equation,
of which B® is an identically nonzero solution. In the Beltrami electrodynamics,
therefore, the existence of the transverse B(") = B®* implies that of B®), as in
O(3) electrodynamics.

As argued by Reed [4], the Beltrami vector field originated in hydrodynamics
and is force-free. It is one of the three basic types of field: solenoidal, complex
lamellar, and Beltrami. These vector fields originated in hydrodynamics and
describe the properties of the velocity field, flux or streamline, v, and the
vorticity V x v. The Beltrami field is also a Magnus force free fluid flow and is

expressed in hydrodynamics as

vx (Vxv)=0 (880)

The solenoidal vector field is:
V=0 (881)
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and the complex lamellar vector field is
P(Vxv)=0 (882)
The Beltrami condition can also be represented [4] as:
Vxv=ky (883)
where
kz‘%v-va (884)

for real-valued v.

Beltrami fields have been advanced [4] as theoretical models for astrophy-
siéal phenomena such as solar flares and spiral galaxies, plasma vortex filaments
arising from plasma focus experiments, and superconductivity. Beltrami elec-
trodynamic fields probably have major potential significance to theoretical and
erppirical science. In plasma vortex filaments, for example, energy anomalies
arise that cannot be described with the Maxwell-Heaviside equations. The three
magnetic components of O(3) electrodynamics are Beltrami fields as well as
being complex lamellar and solenoidal fields. The component B®) is identically
nonzero in Beltrami electrodynamics if B = B®* is so. In the Beltrami
electrodynamics, B® is a particular solution of the general solution given by
Chandrasekhar and Kendall [4] of the Beltrami equation:

V x B = kB (885)

This argument shows again that Maxwell-Heaviside electrodynamics is
incomplete, because B®) is zero. General solutions are given in this section of
the Beltrami equation, which is an equation of O(3) electrodynamics. Therefore
these solutions are also general solutions of O(3) electrodynamics in the vacuum.

The three components of the B cyclic theorem (411) are solenoidal, complex
lamgllar, and Beltrami. This is a remarkable property of Beltrami electrody-
namics when recognized as O(3) electrodynamics for the special case when
B(") = B are plane waves. Specifically

V-BY =0; BY.VxBY =0, BYx(VxBU) =0
v.ED = 0; E(l)-v x ED — 0; EW (V x E(l)) —0 (886)
V‘A(l) 207 A(l).v XA(I'> — O, A(l) X (v ><"4(1)) =0

and also for indices (2) and (3). Multiplying the Beltrami equation:

Vv x B = kB (887)
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on both sides by B it is seen that
B®.v x B = kB! .B® (888)

so the constant k is not necessarily zero when dealing with complex fields. To
prove that & can be different from zero, consider the complex transverse magnetic

plane wave

(0}

A . .
AW =2 (ii + e 889)
V2

which obeys the B cyclic theorem (411). From Egs. (883) and (884)

[ A*-B
k= WA WV XA= _—A{O)E =K (8903)
v x AD = x4l (890b)

and all three components—(1), (2) and (3)—are solutions of the same Beltrami
equation. Similarly, if we define the complete magnetic field vector by

B=B" +BY +BY (891)

the complete vector B obeys Eq. (885).
On the U(1) level, if we start with the free-space Maxwelk -Heaviside

equations
oB 1 OE
N | M o o 2
VxE+at 0, VxB a5 0 (892)
it follows that
V xB=kB (893a)
V x E = kE (893b)
VxA=FkA (893¢)

where B = V x A as usual, and where k = =K. Here, k is a pseudo scalar that
changes sign between left and right circularly polarized radiation. The Beltrami

equation for B is

V x BY = kBY (894)
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whert? k=0Tt follgws that all components of transverse plane waves are
described by Beltrami equations in vacuo. For left-handed plane waves

(0)
B = £ et = g
N .
gl B L ez _ pl®
L Zﬂ(u-%})e ) = B}" (895)
. (0
U)_A_ s (oK Z) (2)*
AL = i+ e = A

For right-handed transverse plane waves

E©®

E}:) = 7 (i + jf)e 02 = Eﬁf)*
©)
BT i .
BY =S5 i j)e o) < By (896)
0 A
\U_A ey itk My
Ap __\/—f(“u 4 fle oK) ::A;f)

and for the longitudinal B field
(3) (3
B = B} = Bk (897)
Therefore

VxB) =-«xB", VxBy =«By

R
1 y
VxE" = «E".  VxEY =«E (898)
VxAY = —al;, vxal =xall

and similarly for index (2). For the longitudinal index (3)
VxBY =V xBY =0 (899)
and all components are described by Beltrami equations in vacuo. Since E and B

are the fundamental fields of electrodynamics, these equations are valid under all

» . - teﬂtlal iS no
¢ t N t gauge ivariant under

A—~A-Vy (900)
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revealing that in Beltrami electrodynamics, 4 is physical. This result again
supports Maxwell’s postulate of a physical vector potential and does not support
Heaviside’s postulate of an unphysical vector potential. Equation (893c) is self-
consistent, however, on the O(3) level, where potentials are physical. The
covariant form of Eq. (893c) is

Fry = XAy (901

so the field tensor is directly proportional to an axial potential 4-tensor. This
suggests that the vector potential can be polar or axial in nature. The solutions of
Eq. (901) are also solutions of the d’ Alembert equation in vacuo. In this view, the
field tensor is directly proportional to the axial potential tensor Ay, and so gauge
freedom is lost because, if F, is gauge-invariant, so is A,y. This result is another
internal inconsistency of the Maxwell-Heaviside point of view.

The Faraday law of induction does not distinguish between left and right cir-
cular polarization, that is, the structure of the equation is the same for R and L:

M
B
v EY = _ B’
T o
OB
v xED = R
X Lr Ot

On the other hand, the corresponding Beltrami equations are distinct:

V x Ey) = —«E})
L L (903)

V x By = «Ey)

The handedness, or chirality, inherent in foundational electrodynamics at the
U(1) level manifests itself clearly in the Beltrami form ( 903). The chiral nature of
the field is inherent in left- and right-handed circular polarization, and the
distinction between axial and polar vector is lost. This result is seen in Eq. (901),
where A, is a tensor form that contains axial and polar components of the
potential. This is precisely analogous with the fact that the field tensor Fp.
contains polar (electric) and axial (magnetic) components intermixed. Therefore,
in propagating electromagnetic radiation, there is no distinction between polar
and axial. In the received view, however, it is almost always asserted that E and A
are polar vectors and that B is an axial vector.

The BY component [which is nonzero only on the O(3) level] is a solution of
the Beltrami equation (885) with k& = 0. Therefore, in Beltrami electrodynamics,
B is a solenoidal, irrotational, complex lamellar and Beltrami field in the
vacuum, and is also a propagating field. The B component in Beltrami
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electrgdyngmics is part of the general solution of the solenoidal Beltrami
equation glven in Ref. 4, and is identically nonzero in the vacuum. This
statement is equivalent to saying that electrodynamics is an O(3) Yang-Mills

theory in the vacuum. The general solution in cylindri
) rical co
Eq. (885) is y components of

B=> Bub"™(r,0,z) (904)

e

where m is a nonnegative integer and where 5™ depends on ¢ and Z through
¢ = mB + nZ. The expressions for the modes depend on linear combinations of
Bessel and Neumann functions, J,, and N,,, similar to the solutions of the
Helmholtz equation [5]. When the domain of solution involves the axis r = 0
and solutions are restricted to axisymmetric wave equations, then ,

10/ &
12 (—‘”) —e (905)

or
The solution of this equation is [4]
V= C Jgkr) (906)

where C is any constant, and the solution specializes to:

B = Bo(O,]] (kr),]o(kr)) (907)
for 'the mode m = n = 0;a = (0,0, 1). Therefore the unit vector a = (0,0, 1}
designates the Z axis. The solution for the B component is A

B = By(0,41(0), o(0)) (908)
and depends on the Bessel functions J;(0} and J5(0). Therefore

BY =Bk =0,m=0,n=0)
= By(0,0,1) = B9k (909)

and B"¥) is an identically nonzero, phaseless function directed in the Z axis. This
result is self-consistent with that of O(3) electrodynamics. .

In c_onducting media, the wave number k becomes complex [5], and by
separating real and imaginary parts, we can obtain the Beltrami equations:

VxA=FkA;, k=ix" (910)
V x B = kB; k= ix" (911)
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Taking the curl of Eq. (910) gives
V x(VxA)=kVxA=kA (912)
which can be rewritten as
V24 = "4 (913)
using the vector identity
Vx(VxA)=Vx(V-A)—- VA (914)

The covariant form of Eq. (914) is

[JA" = —K"2AH (915)
If we assume
K = Tﬁﬁ (916)

Eq. (915) becomes the Proca equation, and Eq. (916), the de Broglie gnidance

theorem.
Similarly, Eq. (911) becomes the equation of the Meissner effect in super-

conductivity:

V’B = «"*B (917)
Finally, using
VXxB=kB=kV xA=kA (918)
we obtain the London equation:
J=VxB=-x"A (919)

It is seen that the acquisition of mass by the photon is the result of an equation of
superconductivity, and this is, of course, the basis of spontaneous symmetry
breaking and the Higgs mechanism (Section XIV). Beltrami equations account
for all these phenomena, and are foundational in nature. Note that the London
equation (919) is not gauge-invariant on the U(1) level because a physical gauge-
invariant current is proportional to the vector potential, which, in the received
view, is gauge-noninvariant. This is another flaw of U(1) electrodynamics in the
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received opinion. The electric field from the London equation is zero because the
current J is time-independent:

A

E=_-"_
ot

0 (920)
By th’s law, the resistance of the conducting medium vanishes, and the
medium becomes a superconductor. The Higgs mechanism and spontaneous

symmetry breaking were derived using the properties of superconductors.

TECHNICAL APPENDIX A: THE NON-ABELIAN
STOKES THEOREM

The non-Abelian Stokes theorem is a relation between covariant derivatives for
any gauge group symmetry:

|
W
jﬁpudx _ ZJ[D,J,DV]dO'“V (A1)
This expression can be expanded as
. 1
jﬁ(au —igA,)dx* = _EI [0y —igA,, 0, — igA,]dc* (A2)
The terms
jﬂap =19, 8] =0 (A.3)

are zero because by symmetry
8,0, = 0,0v (A4)
S0

1
jﬁaudx“ - —_J[a,l, Ndo™ = 0 (A.5)
2
The half-commutators are evaluated as follows

[A08)) = <04 [0,,4)) = 0,4, (A.6)

giving the non-Abelian Stokes theorem

1
jﬁA“dxu _ —EJG,,vdc“V (A7)
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where the field tensor for any gauge group is

Gy = 0,4, —0A, — ig[Au, AV (A.8)
On the U(1) level, the 4-potential is
Ay = (¢,cA) (A9)
and the field tensor is
E E Es
—Ey B '
I (A.10)
Fo=
£ _B; 0 B

¢

% B, —-B O

P

Summing over repeated indices gives the time-like relation

1;4)(#:%('[5((10'01 +JEde°2> (A.11)

where the ST units on either side are those of electric field strength multiplied by
area. Summing over space indices gives

1 i
J}Aldxl-l-A?_dxz‘l'Ang}:—EJ‘FijdG" (A12)

which can be rewritten as

1
Aldxl = =3 F23d0‘23 +F32d032 = —J B]dG23
Ardx® = —% F31do® + Fy3do' = -] B,do®! (A.13)
A3dx3 = —% Flzdo'lz +F21d0'2] = - B3d0‘2

In Cartesian coordinates, this is
AxdX = | B.dc"?

AydY = jBdeZX (A.14)

AydZ = J Bzdc™
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or in condensed notation

%A-dr: JB-dAr (A.15)

This is the Stokes theorem as usually found in textbooks. For plane waves, A is
always perpendicular to the path, so in free space

}A-dr=05§A2d2=>VXAZ=O (A.16)
On the O(3) level, there is a nonzero commutator and an additional term
}Ag”dﬁ = —iZ (J 4", 47 do'2+ J [Aé”,AE”]da”) (A.17)

in the basis ((1),(2),(3)) defined by

el 5 @) — g0

(A.18)
In Cartesian form, Eq. (A.17) becomes
}A(;) dzZ = —ig J AV, AP dAr = jB‘;)dAr (A.19)

and explains the Sagnac effect as in the text. There are time-like relations such as

1
}Aodxo - —EJGOAV — 0yAg — ig[Ap, A, dc® (A.20)

which define the scalar potential in O(3) electrodynamics to be nonzero and
structured.

TECHNICAL APPENDIX B: 4-VECTOR MAXWELL-HEAVISIDE
EQUATIONS

In this second technical appendix, it is shown that the Maxwell-Heaviside
equations can be written in terms of a field 4-vector G* = (0, cB + iE) rather
than as a tensor. Under Lorentz transformation, G* transforms as a 4-vector. This
shows that the field in electromagnetic theory is not uniquely defined as a
4-tensor. The Maxwell-Heaviside equations can be written in terms of the
4-vectors:

G* = (0,¢B + iE) (B.1)
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and
H" = (0,H + icD) (B.2)
as
0.G"=0
[01,G;] +i[00,Gi] =0 (B.3)
O H" = ipc

[ai,Hj] + i[607Hk] =Jk

Under Lorentz transformation:

e
G.G"=G,6 (B4)
HH" = HLH*l
Using the fact that p and J themselves form the components of a 4-vector, the

Maxwell-Heaviside equations for field matter interaction can be combined into
one relation between 4-vectors:

1
(0 H ([0, H] + B0, L)) = c(p,sz) (85)
The free-space equivalent is )
(0,G", [0, Gi] + i[00, Gi]) =0 (B.6)
A Lorentz boost in the Z direction of the vector G* produces

By + iEy = cBx + iEx

B}, + iEy = cBy +iEy (B.7)
cBl, + iE, = Y(cBy + iE})
cB} + iEy = —vB(cBy + iE7)

. o . v
but a Lorentz transform in the Z direction applied to F*" produces

cBy = v(cBx + BEy)
cB}, = y(cBy — BEx) (BS8)
cB = cBz

B, =0
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The results (B.7) and (B.8) are different, even though both describe a boost of the
same vector equations, the Maxwell-Heaviside equations:

V:B=0
B.9
V><E+6—B:0 (B9)
or

The only common factor is that the charge—current 4-tensor transforms in the
same way. The vector representation develops a time-like component under
Lorentz transformation, while the tensor representation does not. However, the
underlying equations in both cases are the Maxwell-Heaviside equations, which
transform covariantly in both cases and obviously in the same way for both
vector and tensor representations.

If we define the vectors

a

N = N —

(cB + iE)
(B.10)

S8
M

(cB — iE)
then

lax,ay] = iaz - - -
[bx,by]zibz»-- (B.11)
[aiaai] =0 (i,j=X, Y7Z)

and @ and & both generate a group SU(2). The Lorentz group is then SU(2) ®
SU(2) and transforms in a well-defined way labeled by two angular momenta
(,J'), the first corresponding to @ and the second to &. Thus @ and b are
generators of the Lorentz group. The vector G* also transforms as a rest frame
Pauli-Lubanski vector, suggesting that the vector representation is suitable for
intrinsic photon spin, and the tensor representation for orbital angular
momentum. This is also suggested by O(3) electrodynamics where the
fundamental intrinsic spin of the field is B®.

TECHNICAL APPENDIX C: ON THE ABSENCE OF MAGNETIC
MONOPOLES AND CURRENTS IN O(3) ELECTRODYNAMICS

The non-Abelian Stokes theorem

1
%Dudx“ + EJ Dy, DJJds™ = 0 .1
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is the integral form of the Jacobi identity

Y Do, [Py, D] =0 (C2)

O,V

which is an identity between spacetime translation generators of the Poincaré

group. Since
Dy =0, —igAy (C3)

for any gauge group symmetry, it follows that the identity (C.2) holds for the
different components of D,. In an O(3) gauge, group symmetry identity (C.2)
can be written as the field equation (31) of the text, so it follows that

3,G" =0 (C.4)
A, xGY =0 (C.5)

Equation (C.5) means that there are no magnetic charge or current densities in

0O(3) electrodynamics.
It follows that

AR .BB®) _ B .40 =9 (C.6)
AG) . B _ B3 .4 =9 (C.7)
AV.BA _BW.A%) =9 / (C.8)

The third equation is always true if
B =vxA®:;  B®=vxa® (C.9)
because of the vector identity
V-(FxG)=G-(VxF)-F+«(VxG) (C.10)

and the first two equations are always true because (3) is always orthogonal to (1)

and (2).
It also follows that

APB® — APBO + A® x EP AP x E® =0 (C.11)
CA(()‘)BU) o cA(()“)B(l) _}_A(z) % E(l) _A(l) X E(3) =0 (C12)
APBY — cAl'B® + AV x ED AW x EW =0 (C.13)
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and using
2
AV =4 =0,  |A®) = 4P (C.14)

Egs. (C.11) and (C.12) give

(3)
B =k x EV — A0 E
— C.
CAE)3) (C.15)
B —kx E® _ 4@ , EY (C.16
CA(()3) 16)
However, we know from Eq. (C.4) that
o)
VxED 4= —
X + o 0 (C.17)
oB®@
VxE® 4 —— =
X + o 0 (C.18)
SO
BY =k x EV) (C.19)
cB® =k x E? (C.20)

and E® is identi ause Ay, A(
and is identically zero because A ,A( ) , and A@are nonzero. It follows

OB®)
T (C.21)
and there is no Faraday induction due to B®®). Equation (C.13) gives
AV x E® =A@ « ED (C.22)
which is self-consistent with Eqgs. (C.9), (C.17), and (C.18).
The B cyclic theorem follows from
B x B® = B x (k x E?) (C.23)

which becomes

B(l) X B(z) — [B(O)B(3)* (C 24)
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using the vector identity
Fx(GxH)=G(F-H)—-H(F-G) {(C.25)
Similarly
eB"Y x BY = (k x EV) x BY (C.26)
becomes
B® x BV = i g@* (C.27)
using
EM = —icB"Y (C.28)

‘. . . . 3y :
and we obtain the Poincaré invariant B cyclic theorem because E*" is zero, and
because there are no magnetic charge and current desities:

B » B2 = iB(O)B{ﬁ*
B® x B — ;g0igi+ (C.29)
B® x B = BB
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