PREFACE

This volume, produced in three parts, is the Second Edition of Volume 85 of the
series, Modern Nonlinear Optics, edited by M. W. Evans and S. Kielich. Volume
119 is largely a dialogue between two schools of thought, one school concerned
with quantum optics and Abelian electrodynamics, the other with the emerging
subject of non-Abelian electrodynamics and unified field theory. In one of the
review articles in the third part of this volume, the Royal Swedish Academy
endorses the complete works of Jean-Pierre Vigier, works that represent a view
of quantum mechanics opposite that proposed by the Copenhagen School. The
formal structure of quantum mechanics is derived as a linear approximation for
a generally covariant field theory of inertia by Sachs, as reviewed in his article.
This also opposes the Copenhagen interpretation. Another review provides
reproducible and repeatable empirical evidence to show that the Heisenberg
uncertainty principle can be violated. Several of the reviews in Part 1 contain
developments in conventional, or Abelian, quantum optics, with applications.

In Part 2, the articles are concerned largely with electrodynamical theories
distinct from the Maxwell-Heaviside theory, the predominant paradigm at this
stage in the development of science. Other review articles develop electro-
dynamics from a topological basis, and other articles develop conventional or
U(1) electrodynamics in the fields of antenna theory and holography. There are
also articles on the possibility of extracting electromagnetic energy from
Riemannian spacetime, on superluminal effects in electrodynamics, and on
unified field theory based on an SU(2) sector for electrodynamics rather than a
U(1) sector, which is based on the Maxwell-Heaviside theory. Several effects
that cannot be explained by the Maxwell-Heaviside theory are developed using
various proposals for a higher-symmetry electrodynamical theory. The volume
is therefore typical of the second stage of a paradigm shift, where the prevailing
paradigm has been challenged and various new theories are being proposed. In
this case the prevailing paradigm is the great Maxwell-Heaviside theory and its
quantization. Both schools of thought are represented approximately to the same
extent in the three parts of Volume 119.

As usual in the Advances in Chemical Physics series, a wide spectrum of
opinion is represented so that a consensus will eventually emerge. The
prevailing paradigm (Maxwell-Heaviside theory) is ably developed by several
groups in the field of quantum optics, antenna theory, holography, and so on, but
the paradigm is also challenged in several ways: for example, using general
relativity, using O(3) electrodynamics, using superluminal effects, using an

ix



extended electrodynamics based on a vacuum current, using the fact that
longitudinal waves may appear in vacuo on the U(1) level, using a reproducible
and repeatable device, known as the motionless electromagnetic generator,
which extracts electromagnetic energy from Riemannian spacetime, and in
several other ways. There is also a review on new energy sources. Unlike
Volume 85, Volume 119 is almost exclusively dedicated to electrodynamics, and
many thousands of papers are reviewed by both schools of thought. Much of the
evidence for challenging the prevailing paradigm is based on empirical data,
data that are reproducible and repeatable and cannot be explained by the Max-
well-Heaviside theory. Perhaps the simplest, and therefore the most powerful,
challenge to the prevailing paradigm is that it cannot explain interferometric and
simple optical effects. A non-Abelian theory with a Yang-Mills structure is
proposed in Part 2 to explain these effects. This theory is known as O(3)
electrodynamics and stems from proposals made in the first edition, Volume 85.

As Editor I am particularly indebted to Alain Beaulieu for meticulous
logistical support and to the Fellows and Emeriti of the Alpha Foundation’s
Institute for Advanced Studies for extensive discussion. Dr. David Hamilton at
the U.S. Department of Energy is thanked for a Website reserved for some of
this material in preprint form.

Finally, I would like to dedicate the volume to my wife, Dr. Laura J. Evans.

MyroN W. Evans

Ithaca, New York
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2 M. W. EVANS AND S. JEFFERS
I. INTRODUCTION

If one takes as the birth of the quantum theory of light, the publication of
Planck’s famous paper solving the difficulties inherent in the blackbody spectrum
[1], then we are currently marking its centenary. Many developments have
occurred since 1900 or so and are briefly reviewed below. (See Selleri [27] or
Milloni [6] for a more comprehensive historical review). The debates concerning
wave—particle duality are historically rooted in the seventeenth century with the
publication of Newton’s Optiks [2] and the Treatise on Light by Christian
Huygens [3]. For Huygens, light was a form of wave motion propagating through
an ether that was conceived as a substance that was ““as nearly approaching to
perfect hardness and possessing a springiness as prompt as we choose.” For
Newton, however, light comprised material particles and he argues, contra
Huygens, “Are not all hypotheses erroneous, in which Light is supposed to
consist of Pression, or Motion propagated through a Fluid medium?” (see
Newton [2], Query 28). Newton attempts to refute Huygens’ approach by
pointing to the difficulties in explaining double refraction if light is simply a form
of wave motion and asks, “Are not the Rays of Light very small bodies emitted
from shining substances? For such bodies will pass through uniform Mediums in
right Lines without bending into Shadow, which is the Nature of the Rays of
Light?” (Ref. 2, Query 29). The corpuscular theory received a major blow in the
nineteenth century with the publication of Fresnel’s essay [4] on the diffraction
of light. Poisson argued on the basis of Fresnel’s analysis that a perfectly round
object should diffract so as to produce a bright spot on the axis behind it. This
was offered as a reductio ad absurdum argument against wave theory. However,
Fresnel and Arago carried out the actual experiment and found that there is
indeed a diffracted bright spot. The nineteenth century also saw the advent of
accurate methods for the determination of the speed of light by Fizeau and
Foucault that were used to verify the prediction from Maxwell’s theory relating
the velocity of light to known electric and magnetic constants. Maxwell’s
magnificent theory of electromagnetic waves arose from the work of Oersted,
Ampére, and Faraday, which proved the intimate interconnection between
electric and magnetic phenomena.

This volume discusses the consequences of modifying the traditional, classi-
cal view of light as a transverse electromagnetic wave whose electric and mag-
netic field components exist only in a plane perpendicular to the axis of
propagation, and posits the existence of a longitudinal magnetic field com-
ponent. These considerations are of relatively recent vintage, however [5].

The corpuscular view was revived in a different form early in twentieth cen-
tury with Planck’s solution of the blackbody problem and Einstein’s adoption of
the photon model in 1905. Milloni [6] has emphasized the fact that Einstein’s
famous 1905 paper [7] “Concerning a heuristic point of view toward the
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emission and transformation of light”” argues strongly for a model of light that
simultaneously displays the properties of waves and particles. He quotes Einstein:

The wave theory of light, which operates with continuous spatial functions, has
worked well in the representation of purely optical phenomena and will probably
never be replaced by another theory. It should be kept in mind, however, that the
optical observations refer to time averages rather than instantaneous values. In
spite of the complete experimental confirmation of the theory as applied to
diffraction, reflection, refraction, dispersion, etc., it is still conceivable that the
theory of light which operates with continuous spatial functions may lead to
contradictions with experience when it is applied to the phenomena of emission
and transformation of light.

According to the hypothesis that I want here to propose, when a ray of light
expands starting from a point, the energy does not distribute on ever increasing
volumes, but remains constituted of a finite number of energy quanta localized in
space and moving without subdividing themselves, and unable to be absorbed or
emitted partially.

This is the famous paper where Einstein, adopting Planck’s idea of light
quanta, gives a complete account of the photoelectric effect. He predicts the lin-
ear relationship between radiation frequency and stopping potential: “As far as I
can see, there is no contradiction between these conceptions and the properties
of the photoelectric effect observed by Herr Lenard. If each energy quantum of
the incident light, independently of everything else, delivers its energy to elec-
trons, then the velocity distribution of the ejected electrons will be independent
of the intensity of the incident light. On the other hand the number of electrons
leaving the body will, if other conditions are kept constant, be proportional to
the intensity of the incident light.”

Textbooks frequently cite this work as strong empirical evidence for the ex-
istence of photons as quanta of electromagnetic energy localized in space and
time. However, it has been shown that [8] a complete account of the photo-
electric effect can be obtained by treating the electromagnetic field as a classical
Maxwellian field and the detector is treated according to the laws of quantum
mechanics.

In view of his subsequent discomfort with dualism in physics, it is ironic that
Einstein [9] gave a treatment of the fluctuations in the energy of electromagnetic
waves that is fundamentally dualistic insofar that, if the Rayleigh—Jeans formula
is adopted, the fluctuations are characteristic of electromagnetic waves. How-
ever, if the Wien law is used, the fluctuations are characteristic of particles.
Einstein made several attempts to derive the Planck radiation law without invok-
ing quantization of the radiation but without success. There was no alternative
but to accept the quantum. This raised immediately the difficult question as to
how such quanta gave rise to interference phenomena. Einstein suggested that
perhaps light quanta need not interfere with themselves, but might interfere with
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other quanta as they propagated. This suggestion was soon ruled out by inter-
ference experiments conduced at extremely low light levels. Dirac, in his
well-known textbook [10] on quantum mechanics, stated “Each photon inter-
feres only with itself. Interference between two different photons never occurs.”
The latter part of this statement is now known to be wrong [11]. The advent of
highly coherent sources has enabled two-beam interference with two separate
sources. In these experiments, the classic interference pattern is not observed
but rather intensity correlations between the two beams are measured [12].
The recording of these intensity correlations is proof that the electromagnetic
fields from the two lasers have superposed. As Paul [11] argues, any experiment
that indicates that such a superposition has occurred should be called an inter-
ference experiment.

Taylor [13] was the first to report on two-beam interference experiments un-
dertaken at extremely low light levels such that one can assert that, on average,
there is never more than one photon in the apparatus at any given time. Such
experiments have been repeated many times. However, given that the sources
used in these experiments generated light beams that exhibited photon bunching
[14], the basic assumption that there is only ever one photon in the apparatus at
any given time is not sound. More recent experiments using sources that emit
single-photon states have been performed [15-17].

In 1917 Einstein [18] wrote a paper on the dualistic nature of light in which
he discusses emission ‘‘without excitation from external causes,” in other words
stimulated emission and also spontaneous absorption and emission. He derives
Planck’s formula but also discusses the recoil of molecules when they emit
photons. It is the latter discussion that Einstein regarded as the most significant
aspect of the paper: “If a radiation bundle has the effect that a molecule struck
by it absorbs or emits a quantity of energy Av in the form of radiation (ingoing
radiation), then a momentum Av/c is always transferred to the molecule. For an
absorption of energy, this takes place in the direction of propagation of the
radiation bundle; for an emission, in the opposite direction.”

In 1923, Compton [19] gave convincing experimental evidence for this pro-
cess: “The experimental support of the theory indicates very convincingly that a
radiation quantum carries with itself, directed momentum as well as energy.”
Einstein’s dualism raises the following difficult question: If the particle carries
all the energy and momentum then, in what sense can the wave be regarded as
real? Einstein’s response was to refer to such waves as “‘ghost fields” (Gespen-
sterfelder). Such waves are also referred to as “empty” - a wave propagating in
space and time but (virtually) devoid of energy and momentum. If described
literally, then such waves could not induce any physical changes in matter.
Nevertheless, there have been serious proposals for experiments that might
lead to the detection of “‘empty” waves associated with either photons [20]
or neutrons [21]. However, by making additional assumptions about the nature

- THE PRESENT STATUS OF THE QUANTUM THEORY OF LIGHT S

of such “empty”” waves [22], experiments have been proposed that might reveal
their actual existence. One such experiment [23] has not yielded any such
definitive evidence. Other experiments designed to determine whether empty
waves can induce coherence in a two-beam interference experiment have not
revealed any evidence for their existence [24], although Croca [25] now argues
that this experiment should be regarded as inconclusive as the count rates were
very low.

Controversies still persist in the interpretation of the quantum theory of light
and indeed more generally in quantum mechanics itself. This happens notwith-
standing the widely held view that all the difficult problems concerning the cor-
rect interpretation of quantum mechanics were resolved a long time ago in the
famous encounters between Einstein and Bohr. Recent books have been devoted
to foundational issues [26] in quantum mechanics, and some seriously question
Bohrian orthodoxy [27,28]. There is at least one experiment described in the
literature [29] that purports to do what Bohr prohibits: demonstrate the simul-
taneous existence of wave and particle-like properties of light.

Einstein’s dualistic approach to electromagnetic radiation was generalized by
de Broglie [30] to electrons when he combined results from the special theory of
relativity (STR) and Planck’s formula for the energy of a quantum to produce
his famous formula relating wavelength to particle momentum. His model of a
particle was one that contained an internal periodic motion plus an external
wave of different frequency that acts to guide the particle. In this model, we
have a wave—particle unity—both objectively exist. To quote de Broglie [31]:
“The electron ... must be associated with a wave, and this wave is no myth;
its wavelength can be measured and its interferences predicted.” De Broglie’s
approach to physics has been described by Lochak [32] as quoted in Selleri [27]:

Louis de Broglie is an intuitive spirit, concrete and realist, in love with simple
images in three-dimensional space. He does not grant ontological value to mathe-
matical models, in particular to geometrical representations in abstract spaces; he
does not consider and does not use them other than as convenient mathematical
instruments, among others, and it is not in their handling that his physical intuition
is directly applied; faced with these abstract representations, he always keeps in
mind the idea of all phenomena actually taking place in physical space, so that
these mathematical modes of reasoning have a true meaning in his eyes only
insofar as he perceives at all times what physical laws they correspond to in usual
space.

De Broglie’s views are not widely subscribed to today since as with “empty”’
waves, there is no compelling experimental evidence for the existence of phy-
sical waves accompanying the particle’s motion (see, however, the discussion in
Selleri [27]). Models of particles based on de Broglian ideas are still advanced
by Vigier, for example [33].
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As is well known, de Broglie abandoned his attempts at a realistic account of
quantum phenomena for many years until David Bohm’s discovery of a solution
of Schrodinger’s equation that lends itself to an interpretation involving a phy-
sical particle traveling under the influence of a so-called quantum potential.

As de Broglie stated:

For nearly twenty-five years, I remained loyal to the Bohr-Heisenberg view, which
has been adopted almost unanimously by theorists, and I have adhered to it in my
teaching, my lectures and my books. In the summer of 1951, I was sent the
preprint of a paper by a young American physicist David Bohm, which was
subsequently published in the January 15, 1952 issue of the Physical Review. In
this paper, Mr. Bohm takes up the ideas I had put forward in 1927, at least in one
of the forms I had proposed, and extends them in an interesting way on some
points. Later, J.P. Vigier called my attention to the resemblance between a
demonstration given by Einstein regarding the motion of particles in General
Relativity and a completely independent demonstration I had given in 1927 in an
exercise I called the ““theory of the double solution.”

A comprehensive account of the views of de Broglie, Bohm, and Vigier is
given in Jeffers et al. [34]. In these models, contra Bohr particles actually do
have trajectories. Trajectories computed for the double-slit experiment show
patterns that reproduce the interference pattern observed experimentally [35].
Furthermore, the trajectories so computed never cross the plane of symmetry
so that one can assert with certainty through which the particles traveled.
This conclusion was also reached by Prosser [36,37] in his study of the double-
slit experiment from a strictly Maxwellian point of view. Poynting vectors
were computed whose distribution mirrors the interference pattern, and these
never cross the symmetry plane as in the case of the de Broglie-Bohm—Vigier
models. Prosser actually suggested an experimental test of this feature of his
calculations. The idea was to illuminate a double-slit apparatus with very short
microwave pulses and examine the received radiation at a suitable point off-axis
behind the double slits. Calculations showed that for achievable experimental
parameters, one could detect either two pulses if the orthodox view were cor-
rect, or only one pulse if the Prosser interpretation were correct. However,
further investigation [38] showed that-the latter conclusion was not correct.
Two pulses would be observed, and their degree of separation (i.e., distinguish-
ability) would be inversely related to the degree of contrast in the interference
fringes.

Contemporary developments include John Bell’s [39] discovery of his fa-
mous inequality that is predicated on the assumptions of both locality and
realism. Bell’s inequality is violated by quantum mechanics, and consequently,
it is frequently argued, one cannot accept quantum mechanics, realism, and
locality. Experiments on correlated particles appear to demonstrate that the Bell
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inequalities are indeed violated. Of the three choices, the most acceptable one is
to abandon locality. However, Afriat and Selleri [40] have extensively reviewed
both the current theoretical and experimental situation regarding the status of
Bell’s inequalities. They conclude, contrary to accepted wisdom, that one can
construct local and realistic accounts of quantum mechanics that violate Bell’s
inequalities, and furthermore, there remain several loopholes in the experiments
that have not yet been closed that allow for local and realist interpretations. No
actual experiment that has been performed to date has conclusively demon-
strated that locality has to be abandoned. However, experiments that approxi-
mate to a high degree the original gedanken experiment discussed by David
Bohm, and that potentially close all known loopholes, will soon be undertaken.
See the review article by Fry and Walther [41]. To quote these authors: “Quan-
tum mechanics, even 50 years after its formulation, is still full of surprises.”
This underscores Einstein’s famous remark: “All these years of conscious
brooding have brought me no nearer to the answer to the question “What are
light quanta?” Nowadays, every Tom, Dick, and Harry thinks he knows it, but
he is mistaken.”

II. THE PROCA EQUATION

The first inference of photon mass was made by Einstein and de Broglie on the
assumption that the photon is a particle, and behaves as a particle in, for example,
the Compton and photoelectric effects. The wave—particle duality of de Broglie
is essentially an extension of the photon, as the quantum of energy, to the photon,
as a particle with quantized momentum. The Beth experiment in 1936 showed
that the photon has angular momentum, whose quantum is 4. Other fundamental
quanta of the photon are inferred in Ref. 42. In 1930, Proca [43] extended the
Maxwell-Heaviside theory using the de Broglie guidance theorem:

h(l)() :m0c2 (1)

Wwhere my is the rest mass of the photon and mqc” is its rest energy, equated to the
quantum of rest energy hey. The original derivation of the Proca equation
therefore starts from the Einstein equation of special relativity:

P'pu= ’”(2)62 (2a)
The usual quantum ansatz is applied to this equation to obtain a wave equation:

., 0 ,
En = zha; p = —ihV (2b)



This is an example of the de Broglie wave-particle duality. The resulting wave
equation is

(m n mgc4> ¥=0 3)

where s is a wave function, whose meaning was first inferred by Born in 1926. If
the wave function is a scalar, Eq. (3) becomes the Klein~Gordon equation. If Y is
a 2-spinor, Eq. (3) becomes the van der Waerden equation, which can be related
analytically to the Dirac equation, and if \ is the electromagnetic 4-potential A¥,
Eqg. (3) becomes the Proca equation:

n Yn()(,‘2 : n
OA*=—(=—) 4 (4)

So A" can act as a wave function and the Proca equation can be regarded as a
quantum equation if A* is a wave function in configuration space, and as a

classical equation in momentum space.
It is customary to develop the Proca equation in terms of the vacuum charge

current density

2N\ 2
1
A" = — (m;c ) A = —KAM = 5 M (vae) ()

The potential A* therefore has a physical meaning in the Proca equation because
it is directly proportional to J*(vac). The Proca equations in the vacuum are
therefore

2N\ 2
8P + ("%) A = (6)
0, A" =0 (7)

and, as described in the review by Evans in Part 2 of this compilation [44], these
have the structure of the Panofsky, Phillips, Lehnert, Barrett, and O(3) equations,
a structure that can also be inferred from the symmetry of the Poincaré group
[44]. Lehnert and Roy [45] self-consistently infer the structure of the Proca
equations from their own equations, which use a vacuum charge and current.

The problem with the Proca equation, as derived originally, is that it is not
gauge-invariant because, under the U(1) gauge transform [46]

1
AY 5 AM L MA (8)
g
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the left-hand side of Eq. (4) is invariant but an arbitrary quantlty 13" A is added to
the right-hand side. This is paradoxical because the Proca equatlon is well
founded in the quantum ansatz and the Einstein equation, yet violates the funda-
mental principle of gauge invariance. The usual resolution of this paradox is to
assume that the mass of the photon is identically zero, but this assumption leads
to another paradox, because a particle must have mass by definition, and the
wave-particle dualism of de Broglie becomes paradoxical, and with it, the basis
of quantum mechanics.

In this section, we suggest a resolution of this >70-year-old paradox using
O(3) electrodynamics [44]. The new method is based on the use of covariant
derivatives combined with the first Casimir invariant of the Poincaré group.
The latter is usually written in operator notation [42,46] as the invariant
P, P", where P" is the generator of spacetime translation:

. pt
P“zz@“zf (9)

The ordinary derivative in gauge theory becomes the covariant derivative
0, — D, =0, —igA, (10)

for all gauge groups. The generator D, is a generator of the Poincaré group
because it obeys the Jacobi identity

> [Ds.[D,D,]] =0 (11)

o,

and the covariant derivative (10) can be regarded as a sum of spacetime
translation generators.

The basic assumption is that the photon acquires mass through the invariant
DDy =0 (12)
for any gauge group. This equation can be developed for any gauge group as

(Op — igAu) (& +igA™ )W =0 (13)
and can be expressed as
OV — igA, 3"V + igd, (AM) + g?A, A*
=0
= 0OV — igAud"V + igyd, A" + igAHd,\r + g?A, A" (14)
= (O + igd A" + g2A, A" )y
=0
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This equation reduces to
(O + x> = —igd, A"V (15)

for any gauge group because

K
8=10 A A = A2 (16)
In the plane-wave approXimation:
oAt =0 (17a)

and the Proca equation for any gauge group becomes
(O+)y =0 (17b)

for any gauge group.

Therefore Eq. (18) has been shown to be an invariant of the Poincaré group,
Eq. (12), and a product of two Poincaré covariant derivatives. In momentum
space, this operator is equivalent to the Einstein equation under any condition.
The conclusion is reached that the factor g is nonzero in the vacuum.

In gauge theory, for any gauge group, however, a rotation

V= ety = Sy (18)
in the internal gauge space results in the gauge transformation of A, as follows
TR -

A, =SA,S™ —g(aus)s ! (19)

and to construct a gauge-invariant Proca equation from the operator (16), a

search must be made for a potential A, that is invariant under gauge trans-

formation. It is not possible to find such a potential on the U(1) level because the

inhomogeneous term is always arbitrary. On the O(3) level, however, the

potential can be expressed as

A= Aff)e(l) + AELI)e(2> + Af)e@) (20)

if the internal gauge space is a physical space with O(3) symmetry described in

the complex circular basis ((1),(2),(3)) [3]. A rotation in this physical gauge
space can be expressed in general as

W = exp(iMPA () (21)
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where M are the rotation generators of O(3) and where A, A@ | and A® are
angles.
Developing Eq. (13), we obtain

(0, — igAD)(@" + gAYy =0
(0, — igAD) (@ + igA* )y =0 (22)

(8, — igAD) (& + igA* )Yy = 0

The eigenfunction { may be written in general as the O(3) vector
y=A" (23)
and under gauge transformation
AY = exp(iM?A“(x*))AY (24)
from Eq. (21). Here, AV, A®), and A® are angles in the physical internal gauge

space of O(3) symmetry.
Therefore Egs. (22) become

1
[1%4Y = —k’A" = — J¥(vac) (25)
€
where
Jo
J = (p(1)7_> i=1,2,3 (26)

and Egs. (25) become

Oa' = 240 = (27)
€
v(2)

0AY? = k24 = - (28)

It can be seen that the photon mass is carried by A*(!) and A¥?), but not by A?).
This result is also obtained by a different route using the Higgs mechanism in
Ref. 42, and is also consistent with the fact that the mass associated with A*C)
corresponds with the superheavy boson inferred by Crowell [42], reviewed in
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Ref. 42 and observed in a LEP collaboration [42]. The effect of a gauge which in vector form can be written as
transformation on Egs. (27)—(29) is as follows: A, X G" = A° x G* + A* x G*° + A" x G
1 =0 40
O <Ag> + lauA“)> =« <A§3> + -auA“)) (30) (“0)
8 ‘? As a result of this Jacobi identity, the homogeneous field equation
1 )Y _ 2{ 42 4 & @ 1 -
O (Aﬁf) +§auA( )> =K (Au +2oh GU D,G" =0 (41)
0 <A(3) + la“A@)) -0 (32) reduces to
‘ B =
i g 3,G" =0 (42)

i Equations (30) and (31) are eigenequations with the same(c}e)igelivalue,1 —K2, as
i Egs. (27) and (28). On the 0(3) level, the eigenfunctions Ay~ + gauA( ) are not
| } arbitrary because A and A® are angles in a physical internal gauge space. The
¥ original Eq. (12) is gauge-invariant, however, because on gauge transformation

for all gauge group symmetries. The implication is that instantons or pseudo-
particles do not exist in Minkowski spacetime in a pure gauge theory, because
magnetic monopoles and currents vanish for all internal gauge group
symmetries. Therefore, the homogeneous field equation of electrodynamics,

i 24 AR, 2 Al AR ¢ = K (33) considered as a gauge theory of any internal symmetry, can be obtained from the

£ 4 A A0 Jacobi identity (42) of the Poincaré group of Minkowski spacetime. The homo-
I geneous field equation is gauge-covariant for any internal symmetry. Analo-
| and gously, the Proca equation is the mass Casimir invariant (12) of the Poincaré
1y D, D" — D, D™ (S¥) = yD,D"*S + SD,D"{ =0 (34) group of Minkowski spacetime.
! There are several major implications of the Jacobi identity (40), so it is help-
i because S must operate on V. ) ful to give some background for its derivation. On the U(1) level, consider the
i l‘ In order for Eq. (34) to be compatible with Egs. (30) and (31), we obtain following field tensors in ¢ = 1 units and contravariant covariant notation in
th Minkowski spacetime:
i O(@,A") = —2(@,A) (35) _ e
. 0 -B —B —B 0 B, B, B;
i D(@uA) =~ (@,0%) (36) B 0 E —E B 0 E -E
} } F“V _ - : F = —0] 3 —£2
;‘il which are also Proca equations. So the >70-year-old problem of the lack of B -E 0 E : -B, -E3 0 E
‘i‘ gauge invariance of the Proca equation is solved by going to the O(3) level.. | B3 E2 —FE! 0 -B; E, -E 0
l The field equations of electrodynamics for any gauge group are obtained © 0 E E  E 0 _E - _p
‘} from the Jacobi identity of Poincaré group generators [42,46]: . _E, 0 -B; B, - E! 0 B B
}1 Z [Dcv [Dva” =0 (37) P ) B3 0 —-B, 7 E? B 0 -B'
STRY | —E3 —B; B 0 E> —B* B! 0

(43)

If the potential is classical, the Jacobi identity (37) can be written out as
These tensors are generated from the duality relations [47]
DcGuv + Dvac + Dchp - Guch - Gchp - GGHDV =0 (38)

; | G* — %SPVPUGPU; GH — _%guvpcépc
‘%!‘ \ This equation implies the Jacobi identity: _ 1 1 (44)
| G, = ~¢ GPU; G = ——¢ Gpc
| i Ao, Gl + [Aw, Guo] + [Ay,Gou] =0 (39) BV T g THvPO v 5 tuvpo
i
|
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If the symmetry of the gauge group is O(3) in the complex basis ((1),(2),(3))

here the totally antisymmetric unit tensor is defined as .
vher e R d [42,47], Eq. (52) can be developed as three equations:

0123 _ | _ _ 45
e ElE e ) 3,60 =0 (53)
and result in the following Jacobi identity: 2.6M) =g (54)
" =
I 3uF™ = °F™ + " F"° +3'F* =0 (46) 3,6 =0 (55)
It also follows that Now consider a component of the Jacobi identity (39)
:u

it (I muv Vo O 47
ili ; The proof of the Jacobi identity (46) can be seen by considering a development

such as and consider next the following cyclic permutation:

2) (3 3) A2
AG'Gy — 450Gy +AYGY) - AP G + AP G - A6l =0 (57)

o1
QuF™ = 28,(6"*°Fyo)

W\ 1

This gives the result
— Eau (SHVOIFOI + gpv()2FO2 + 8pv03F03 + 8pleFIO + Spv20F20 + 8pv30F30 g

(2)

+eVIZF ), 4 eVOF 4 eV Fy + 0y 4 eV Py + 600 F) B;z) +EL _A(Yz)E?) ~0 (58)
\1‘ 48 C

(43)
)i | Using Eq. (54), we obtain the result
1‘ 1 If v =0, then

K 3) —

i _ . . E;’ =0 (59)
il O F0 4 0, F0 4+ 53F° = —0,FP —0,F® —:F? =0 (49) z

thus E® vanishes identically in O(3) electrodynamics. The third equation (55)
therefore becomes the following identity:

w Equation (47) may be proved similarly. On the O(3) level there exist the analo-
I gous equations (40) and

: - . - oBY®
W‘ A, x G =45 x GV + A, x G° + A, x G (50) 5 =0 (60)
1‘1‘ ! :
m‘ which is not zero in general. N In other words, B® is identically independent of time, a result that follows from
“M ‘ It follows from the Jacobi identity (40) that there also exist other Jacobi iden- its definition [42,47]
}; ‘ tities such as [42]
i B® = —igd) x 4® (61)

| AP x AV x AD) +AD x (A x A7) + 4P x 4 xaP) =0 (51)
I The ansatz, upon which these results are based, is that the configuration of the
b The Jacobi identity (40) means that the homogeneous field equation of electro- - Vvacuum is described by the doubly connected group O(3), which supports
| ‘ dynamics for any gauge group is the Aharonov-Bohm effect in Minkowski spacetime [46]. More generally, the

vacuum configuration could be described by an internal gauge space more

M!‘ au(;uv =0 (52) general than O(3), such as the Lorentz, Poincaré, or Einstein groups. The O(3)
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group is the little group of the Poincaré group for a particle with identically
nonzero mass, such as the photon. If the internal space were extended from O(3)
to the Poincaré group, there would appear boost and spacetime translation
operators in the gauge transform (36), as well as rotation generators. The
Poincaré group is the most general group of special relativity, and the Einstein
group, that of general relativity. Both groups are defined in Minkowski space-
time. In all these groups, there would be no magnetic monopole or current in
Minkowski spacetime because of the Jacobi identity (37) between any group
generators. The superiority of O(3) over U(1) electrodynamics has been
demonstrated in several ways using empirical data [42,47-61] such as those
available in the Sagnac effect, so its seems logical to extend the internal space to
the Poincaré group. The widespread use of a U(1) group for electrodynamics is a
historical accident. The use of an O(3) group is an improvement, so it is expected
that the use of a Poincaré group would be an improvement over O(3).
Meanwhile, the Jacobi identity (40) implies, in vector notation, the identities

A@.BG _g2.4g

A® gl _ g3 A

AL B _ .4

0
0 (62)
0

and

APBD — ADBD L A®) 5 EO) _ 40

x E
cAVB® — cAPBY 4+ A% 5 EW — A x EO)
x E1)

0
0 (63)
CA(()z)B(l) _ CA(()I)B(z) +A(1) X E(z) _A 2 0

It has been shown elsewhere [42] that the identities (63) correspond with the B
cyclic theorem [42,47-61] of O(3) electrodynamics:

BY) « B@ — ;g0 gB3)=
(64)

which is therefore also an identity of the Poincaré group. Within a factor, the B
cyclic theorem is the rotation generator Lie algebra of the Poincaré group. In
terms of the unit vectors of the basis ((1),(2),(3)), the B cyclic theorem reduces to

eV) 5 @ — jgl
(65)
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which is the frame relation itself. This relation is unaffected by a Lorentz boost
and a spacetime translation. A rotation produces the same relation (65). So the B
cyclic theorem is invariant under the most general type of Lorentz transforma-
tion, consisting of boosts, rotations, and spacetime translations. Similarly, the
definition of B, Eq. (61), is Lorentz-invariant.

The Jacobi identities (63) reduce to the B cyclic theorem (64) because of
Eqgs. (53)-(55), and because E® vanishes identically [42,47-61], and the B cyc-
lic theorem is self-consistent with Eqs. (53)—(55). The identities (62) and (63)
imply that there are no instantons or pseudoparticles in O(3) electrodynamics,
which is a dynamics developed in Minkowski spacetime. If the pure gauge
theory corresponding to O(3) electrodynamics is supplemented with a Higgs
mechanism, then O(3) electrodynamics supports the ‘t Hooft—Polyakov mag-
netic monopole [46]. Therefore Ryder [46], for example, in his standard text,
considers a form of O(3) electrodynamics [46, pp. 417ff.], and the ‘t Hooft—
Polyakov magnetic monopole is a signature of an O(3) electrodynamics with
its symmetry broken spontaneously with a Higgs mechanism. In the pure gauge
theory, however, the magnetic monopole is identically zero. It is clear that the
theory of ‘t Hooft and Polyakov is O(3) electrodynamics plus a Higgs mechan-
ism, an important result.

In order to show that the Proca equation from gauge theory is gauge-invar-
iant, it is convenient to consider the Jacobi identity

D,G" =0 (66)

which is gauge-invariant in all gauge groups. Now use
DyG" = DoG™* + DG + D, G*° (67)
and let two indices be the same on the right-hand side. This procedure produces
Dy,G" = Do (G™ +G*°) =0 (68)

showing that:
D,G" =0 (69)

is also gauge-invariant for all gauge groups. Finally, expand Eq. (69) as
D,G" = D,(D*AY — D'A*) =0 (70)
to obtain

D,D"A¥ =0 (71)
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which is also gauge-invariant for all gauge groups.
On the U(1) level, for example, the structure of the Lehnert [45] and gauge-
invariant Proca equations is obtained as follows:

(O+xY)A" =0 (72)

(au + igA;)GHV —0 (73)

These are regarded as eigenequations with eigenfunctions AY and G" in
configuration space. In this method, there is no need for the Lorenz condition.
The equivalent of Eq. (72) in momentum space is the Einstein equation (2), and

this statement is true for all gauge group symmetries. Comparing Egs. (6) and (7)
with Egs. (72) and (73), the following equation is obtained on the U(1) level:

KAY = igATG* (74)
This equation may be developed as follows:

K?A® = jea*- g (75)
In the plane-wave approximation
(V) (76)
and it is seen that condition (74) is true on the U(1) level. Equation (73) can be

written as

s JH
0.G" = —igA G" = ~ (77)

in the vacuum, and this is the Lehnert equation [42,45]. The latter gives
longitudinal or axisymmetric solutions and can describe physical situations that
the Maxwell-Heaviside theory cannot.

On the O(3) level, one can write the Proca equation in the following form
(22):

O+ £ A0 —o
(O +gala)a® =0 %)
(O +gAa)AN A <0
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The third equation of (22) reduces to a d’Alembert equation
0a® =0 (79)

because AE?)A“(” = 0 in O(3) electrodynamics. Equation (79) is consistent with

the fact that Af?) is phaseless by definition in O(3) electrodynamics. The first two

equations of the triad (78) are complex conjugate Proca equations of the form
(O+x*)A"=0

(O+xHA™ =0 (80)

so we obtain the U(1) Proca equation, but with the advantages of O(3) electro-
dynamics inbuilt.
In summary, the structure of the Proca equation on the O(3) level is as

follows:
D,G" =0 (81)

which is equivalent to
0,G" = —gA, x G (82)

The latter equation can be expanded in the basis ((1),(2),(3)) as [42]
V-DW* = ig(a®.p"% — p® .A(3))
v-D* = ig(A(3) .pt _ p3 .A(l))
V-D®* = iAW .p@ — p.42)

(1)#

V x HV* — o = —ig(cA(()z)D@) - cA(()3)D(2) +AY x H®) —A®) x H?)
(2)

V x HO* — 6I;t = —ig(cADD — cA'D®) 4 A®) x HO) — 40 5 HO))
(3)

V x HO — azgt = —ig(cAD® — cAPDM 1 A x H® — 4@ x HO)

(83)

It can be seen that, in general, there are extra Noether charges and currents that
define the photon mass gauge invariantly. The magnetic field strength and
electric displacement is used in Eq. (83) because, in general, there may be
vacuum polarization and magnetization, defined respectively as

D=80E+P

(84)
B = 1y(H + M)
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There may be a vacuum charge on the O(3) level provided that the term
V-DB* ig(aW.p@ _D(IJ.A(2)) (85)

is not zero. For this to be the case, the vacuum polarization must be such that the
displacement D" is not the complex conjugate of the displacement D@ It can
be seen as follows that for this to be the case, polarization must develop
asymmetrically as follows:

DY = gEM | qp(D)

D(Q? = gOE(z) + bP(z) (86)

If there is no vacuum polarization, then the photon mass resides entirely in the

vacuum current.
In the preceding analysis, commutators of covariant derivatives always act on

an eigenfunction, so, for example:
Dy, D = (8, — igAy, B, — igA\ )
= (apav - avap)‘l’ - igApav‘l’ + igav (All‘l’)
- igap(AV‘J!) + igAvap‘l’ - g2[AH7Av]‘JJ

, . . : (87)
= —igA 0 + lgavAp‘Jf +ig A0 — lg(aHAV)‘JJ
—IBALY +ig A — g7 [Ay, A
= —ig(apAv - avAp - ig[AvaVD‘JJ
giving the field tensor for all gauge groups:
G = Ay — 3A, — ig[A,, Ay (88)

In the literature, the operation [Dy, D is often written simply as [D,, D,] but
this shorthand notation always implies that the operators act on the unwritten .

On the O(3) level, the clearest insight into the meaning of the Jacobi identity
(37) is obtained by writing the covariant derivative in terms of translation (P)
and rotation (J) generators of the Poincaré group:

Do =05 —igAo = 05 — ig(A%Ix + ALJy + AZ),)

89
0o = —iPy (89)

where Jy, Jy, and J, are the rotation generators. The translation generator is
defined [42,46] as

Ps = i0, (90)
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The Jacobi identity of operators (37) therefore becomes, after index mat

[Po + gAGJx, [Pc+ gALTy, Py + g AZ1,]]
= [Px + 8AyJx, [Py + g ALy, P, + g AZJ,]]

Now consider the component

[Px, [Py + gAy, Pz + gAZI,]]
= [Px, [Py, Pz] + gAY Iy, P7] + g AZ[Py, 1] + gAY AZlIy, 17))

and use the Lie algebra [46]

[Jy,ij:—l.PX [Px,ijIO
[Py, J7] = iPy [Px,Jx] =0
Uy, Jz] = iy

to find that it vanishes. In vector notation, this result implies Eq. (52)
0,G" =0 [O(3) level]

and the result
[A(ﬂ GK)\.] + [Aka G}»O’] + [A?»: GUKJ =0

which can be developed as
[0, Gy =0
giving Eq. (94) again self-consistently. Similarly
A, Gy =0 (
giving Eq. (40). In operator form, this is
l8A6Tx, [Px + 8ALdy, P, + gAZU]) = 0 (

and the factor Ay, GM] is a simple multiplication operation on /A

The overall result is that the homogeneous field equation for all group sy
Il.letries is the result of the Lie algebra of the Poincaré group, the group of s
cial relativity. The Jacobi identity can be derived in turn from a round trip
holonomy in Minkowski spacetime, as first shown by Feynman [46] for
gauge groups. The Jacobi identity is Lorentz- and gauge-invariant.
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III. CLASSICAL LEHNERT AND PROCA VACUUM CHARGE
CURRENT DENSITY

In this section, gauge theory is used to show that there exist classical charge
current densities in the vacuum for all gauge group symmetries, provided that the
scalar field of gauge theory is identified with the electromagnetic field [O(3)
level] or a component of the electromagnetic field [U(1) level]. The Lehnert
vacuum charge current density exists for all gauge group symmetries without the
Higgs mechanism. The latter introduces classical Proca currents and other terms
that represent energy inherent in the vacuum. Some considerable mathematical
detail is given as an aid to comprehension of the Lagrangian methods on which
these results depend.

The starting point is the Lagrangian that leads to the vacuum d’Alembert
equation for an electromagnetic field component, such as a scalar magnetic
flux density component, denoted B, of the electromagnetic field. The identifica-
tion of the scalar field, usually denoted ¢ [46], of gauge theory with a scalar
electromagnetic field component was first made in the derivation [62,63} of
the ‘t Hooft—Polyakov monopole. In principle, ¢ can be identified with a scalar
component of the vacuum magnetic flux density (B), or electric field strength
(E), or the Whittaker scalar magnetic fluxes G and F [64,65] from which all
potentials and fields can be derived in the vacuum. The treatment is classical,
and the field is regarded as a function of the spacetime coordinate x*, and not as
an eigenfunction of quantum mechanics. The general mathematical method
used is a functional variation on a given Lagrangian, and so it is helpful to il-
lustrate this method in detail as an aid to understanding. The basic concept is
that there exists, in the vacuum, an electromagnetic field whose scalar compo-
nents are B and E, or G and F, scalar components that obey the d’ Alembert, or
relativistic wave, equation in the vacuum. The Lagrangian leading to this equa-
tion by functional variation is set up, and this Lagrangian is subjected to a local
gauge transformation, or gauge transformation of the second kind [46]. Local
gauge invariance leads directly to the inference, from the first principles of
gauge field theory, of a vacuum charge current density first introduced phenom-
enologically by Lehnert [45]. Inclusion of spontaneous symmetry breaking with
the Higgs mechanism leads to several more vacuum charge current densities on
the U(1) and OQ3) levels, and in general for any gauge group symmetry. Each
of these charge current densities in vacuo provides energy inherent in the
vacuum.

The method of functional variation in Minkowski spacetime is illustrated first
through the Lagrangian (in the usual reduced units [46])

1
L=~ F Fy (99)
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where F" is the field tensor on the U(1) level [46-61]. The relevant Euler
Lagrange equation is

d 0z ) _oZ 10C
"\o(d,A,)) oA, (
Consider the component
0%
O —= ) =
() = o

For indices v =0 and pu = 1, summation over repeated indices gives
F™F,, = F9F,, + F"' Fy (102
Therefore

F'F, = (0'A° — 8°A1)(9,40 — BpA))
= (9'4%)(8140) — (°A1)(B140) — (3'A°)(B0A1) + (B°A")(BoA1)
= —0xApOxAp + GoAxOxAg + OxAoCoAx — OpAxOpAx

(103
using contravariant—covariant notation. In the same notation, we have
o __ g (104
0(0p4)) 0(0pAx)
)
O(F'°Fy0)
————— = —0xAp — OxAp + GpA
3(G0A1) xAo — OxAo + CoAx + GoAx (105
Using the additional minus sign in the Lagrangian (99), we obtain
A(=F"°F10/2) _ 1o
—_—=F 106
0(oA1) (106

and repeating with the term

FO'Fo = (3°A" —23'A%)(804; — 8,40)
= —0pAx00Ax + OxAoOoAx + OpAxOxA¢ — OxAgOxAg (107
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gives the same as Eq. (103). So the final result of the functional variation is
O =0 (108)

which is the vacuum inhomogeneous field equation in the Maxwell-Heaviside
theory. This equation is widely accepted, but it violates causality, because there is
a field (effect) without a source (cause). This flaw is usually overlooked by
stating that the field is in a source-free region, or that the field is infinitely distant
from its source. Both explanations are unsatisfactory.

Another example of functional variation is the Lagrangian

1 1
P = _ZF,WF“V + §m2AuA“ (109)

which leads to the Proca equation in the received view [46]. The obvious
problem with this Lagrangian is that for identically nonzero m, the product A A"
is not gauge-invariant on the U(1) level. Setting that problem aside for the sake of
argument, contravariant—covariant notation gives

AAP =AY — Ay — AT — A7 (110)
so that functional variation proceeds as follows:

0¥ - 2m2A0 . 0¥ 2m2Ax . 0¥ _ 2m2Ay . 0¥ _ 2m2Az

04y 2 ' oAy 2 ' 4y 2 84, 2
(111)

The overall result is

8L _ 2w (112)
0A,
giving the received Proca equation [46]:
B FY + m*AY =0 (113)

The Lagrangian (109) is not gauge-invariant, so Eq. (113) is not gauge-invariant.
However, the foregoing illustrates the method of functional variation that will be
used throughout this section.

In order to derive field equations in the vacuum that are self-consistent, cause
must precede effect and the classical current of the Proca current must be gauge-
invariant. The starting point for the development is the concept of scalar field
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[46], which is usually denoted ¢. The basic idea [46] behind the existence of tt
scalar field ¢ is a transition from a point particle at coordinate x(¢) to a field

o(x") = (X, Y, Z,1) (11¢

which is a function of X, ¥, Z and ¢ in Minkowski spacetime. The scalar field ¢
a classical concept and is governed by the Euler-Lagrange equation:

0 _s (_ag ) (11
TGN )

The source of electric charge in this view is a symmetry of the action in Noether
theorem, a symmetry that means that ¢ must be complex, that is, that there mu
be two fields:

1

¢=—2(¢1+i¢z) (11¢

¢*:\/L§(¢1_i¢2) (117

These fields are regarded as independent functions in the method of function:
variation. In developing their concept of a magnetic monopole, ‘t Hooft an
Polyakov identified ¢ with a scalar component of the electromagnetic field,
component that they denoted F [46]. It is convenient for our purposes to identif
¢ with a scalar component B of the electromagnetic field in the vacuun
Therefore, there are two independent magnetic flux density components:

B=—(B, +iBy) (11¢

_g|_
[\)

Bx=— (B, — iBy) (116

5

The Lagrangian governing these scalar components is
¥ = (0,B)(0"B") (12¢

and is invariant under global gauge transformation, also known as ‘‘gaug
transformation of the first kind”

B—e B, B — B (121

where A is any real number. The Euler-Lagrange equation

ai’ﬂ—a oz 122
0B "\98(d,B) (
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with the Lagrangian (120) gives the d’Alembert equations:

OB =0 (123)
OB* =0 (124)

which are the relativistic wave equations in the vacuum satisfied by B and B’. For
example, if B and B* are components of a plane wave, they satisfy the
d’ Alembert equations (123) and (124).

However, in special relativity, the number A is a function of the spacetime
coordinate x*. This property defines the local gauge transformation

B — e 0B, pr_, Mg (125)

1
& = (8,B)("B*) — ig(B*0"B — BO"B*)A, + g*AAYB'B — 3 FFu
1
= (3uB +igA,B)(PB" — igAB") — 1 F¥'Fy (126)

or gauge transformation of the second kind. The Lagrangian (120) is invariant
under the local gauge transformation (125) if it becomes [46]: The 4-potential
becomes

1
Ay — Ay +—0,A (127)
8

where A is any number and the derivative 0, becomes the covariant derivatives:

D,B = (3, + igA,)B (128)
D,B* = (3, — igA,)B" (129)

acting respectively on B and B”. The Lagrangian (126) is gauge invariant under a
U(1) gauge transformation that introduces the electromagnetic field tensor F*Y.
Using the Euler-Lagrange equation (100) gives the vacuum field equation:

0, F*™ = —ig(B*0"B — BO"B*) + 2g%A¥|B|
= ig(B*D"B — BD"B*) (130)
= —gJ¥(vac)
where

J*(vac) = i(B*D"B — BD"B") (131)
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Therefore J*(vac) is a covariant conserved charge current density in the vacuun
The coefficient g of the covariant derivative has the units [47-61] of x/A © in th
vacuum. Using

g=— (132

has been shown recently [47-61] to explain the Sagnac effect and interferometr:
in general using an O(3) invariant electrodynamics. The coefficient g is the sam
on the U(1) and O(3) levels.

In SI units, Eq. (130) is

0uF* = —igc(B*D'B — BD"B")Ar (133

and shows that the electromagnetic field in the vacuum has its source in th
conserved J#(vac), which is divergentless.

In Eq. (133), Ar is the area of the electromagnetic beam, ¢ the vacuum spee:
of light and p, is the vacuum permeability in SI units.

The analysis can be repeated by identifying the scalar field ¢ with a scala
component A of the vacuum four potential A*. Thus Eqs. (118) and (119
become

1
A=—(AI+iA 134
\/5( 1+ iAz) (
1
A*Y=—(A —iA 135
\/i( 1 2) (
and the Lagrangian (120) becomes
£ = (0,A)(0"A") (136

Local gauge transformation is defined as

A — exp(—iA(x")A

137
A* — exp (iA(x"))A” (
and the gauge-invariant Lagrangian (126) becomes
1 .
£ = (OpA + igAyA) (O"A — igAVAT) — PN Ey, (138
Finally, the inhomogeneous field equation in the vacuum becomes
OWF™ = —igc(A"DVMA — ADVA*) (139
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in SI units. This form has the advantage of eliminating any geometric variable
such as Ar from the vacuum charge current density. The covariant derivatives
(128) and (129) become

DA = (8, +igA,)A (140)
D,A* = (8, — igA,)A* (141)

indicating the presence of self-interaction in the terms A,A and A A*. This self-
interaction is observed empirically [47-61] in a number of ways, including the
inverse Faraday effect and the third Stokes parameter defining the circular
polarization of electromagnetic radiation.

So it is also possible to use the form (139) for the vacuum charge current
density, a form that eliminates any geometric unit such as Ar that is not fully
relativistic. However, A is, strictly speaking, a potential energy difference and
not a field.

Using the Euler-Lagrange equation (122) with the Lagrangian (126) pro-
duces the two complex conjugate equations (reduced units):

OB = —ig(B3"A, + A,0"B) + g°A,A"B (142a)

OB" = ig(B**A, + A, "B*) + g*A,A"B* (142b)

or their representation in terms of the scalar A:

A = —ig(AQ*A, + A,0*A) + g?A,A"A (143a)
A" = ig(A*0"A, + A,0"A%) + g?A,A"A" (143b)

Equations (133) and (142) or (139) and (143) can be solved simultaneously,
because they are each two equations in two unknowns (B and A*) or (A and A*).

It can be shown on this U(1) level that the introduction of a Higgs mechan-
ism [46], namely, spontaneous symmetry breaking, produces three more va-
cuum charge current densities in addition to the Lehnert-type charge current
density (133) or (139). One of these is a Proca vacuum charge current density
that is gauge-invariant on the classical level. The Higgs mechanism is intro-
duced by considering the usual Lagrangian [46]

L =T -V =(0,4)(@¢7) —m'¢"¢ — M¢7¢)’ (144)
and adapting it for the electromagnetic field in the vacuum by writing it as

% =T -V =(3,B)("B") — m*B*B — \(B*B)° (145)
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or

L =T—V =(3,A)("A") — m*A*A — L(A*A)? (14¢

depending on whether ¢ is chosen to be B or A. The appearance of three ne
currents occurs for both choices and of course B is related to A through the vectc
equation:

B=V xA (147

In Eq. (144), it is well known that the mass m is regarded as a parameter that ca
become negative and that A premultiplies the self-interaction term. The adapt:
tion of the Higgs mechanism for the vacuum electromagnetic field therefor
automatically implies that scalar components of that field self-interact. The sell
interaction of electromagnetic fields on the received U(1) level is observable i
the Stokes parameters, energy and Poynting vector for example, and in nonlinea
optical phenomena of various kinds [47-61].
Considering Eq. (145), we obtain

oV, -
@—mB +2AB*(B*B) (148

. 2 . .
and if m”~ < 0, there is a local maximum at B = 0 and a minimum at

m2

at = |B|2: -
2A

ie, a=|B| (149

The scalar fields B and B" therefore become

B(x“) =a +%(31 + iBz) (150
B*(x*) :a+\%(31 —iB;) (151

so the Lagrangian becomes

¥ =0u(a+ B)o"(a+B*) —m*(a+B*)(a+B) — A((a + B*)(a + B))

(152)
It is interesting to develop this expression as
& = BB*(m* — \BB*) + - --
= —ABB*(2a’ +BB") + - -- (153)
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which can be expressed algebraically as

2 1 2 1
= —k(az +\/—“§Bl +5 (8} +B§)> <3a2 +~\/%Bl +5 (8] +B§)> +o-
A
= 0,B0"B* — 20a’B? — V2AB, (B} + B2) — 1 (B? + B} — 3rd* (154)

In contemporary thought, the Higgs mechanism has acted in such a way as to
produce a field component B; with mass, specifically, a scalar field with mass that
is gauge-invariant. Therefore, spontaneous symmetry breaking of the vacuum
introduces fields with effective mass.

Considering a local gauge transformation of the Lagrangian (145) produces
the gauge-invariant Lagrangian:

¥ = (8 +igAy)(a+ B)(@" — igA*)(a + B") = m*(a + B)(a + B")
—Ma+B)*(a+B)? - %F“VFHV (155)

Using this Lagrangian in Eq. (100) produces the following result (reduced units)
by functional variation:

. 2.2
3,F" = —ig(B*D*B — BD'B") — g-;"—A“ + 2v2g%aB A + v/2agd" B,

(156)
The term —g’m?A*/A implies that the electromagnetic 4-potential A" has

acquired mass. Simultaneously there appear two other terms. All four vacuum
charge current densities produce vacuum energy through the equation

En(vac) = JJ“(Vac)Ap dv (157)
Alternatively, Eq. (156) can be written from Eq. (146) in terms of the scalar A:
uy . * * 2 2Al1 2
O F"™ = —ig(A*D*A — ADMA*) — g’m =t 2v2g%aA A + V2agdPA,
(158)

Therefore, spontaneous symmetry breaking of the vacuum on the U(1) level
produces new vacuum charge current densities that act as sources for the
electromagnetic field and produce energy inherent in the topology of the vacuum.
The topology is described by gauge theory and group theory.
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In an O(3) electromagnetic sector [47-61], the Lagrangian (120) become
1 Ui
L = EﬁuB,@ B (15

where there are internal indices i to indicate the existence of an internal gau,
group of O(3) symmetry. In the complex basis ((1),(2),(3)), the Lagrangian c:
be expressed in terms of the physical magnetic field:

B = BPe) £ p1,(2) 4 B(3),0) (161

In vector notation, the Lagrangian (159) can be written as

1
ZziéuB-é“B (16

and using the Euler-Lagrange equation

0z _, (o7 ,
B~ \o.B (162

produces the vacuum d’Alembert equatjon
OB=0 (163
which in component form becomes
OBY =0; i=1,2,3 (164
The Lagrangian (161) is invariant under a global O(3) transformation
B = ¢’ (165
Wwhere J; are rotation generators of the O(3) group, and where A; are angles in th
physical internal space ((1),(2),(3)).
The local O(3) transformation corresponding to Eq. (165) is
B = ’Np (166

and the Lagrangian (161) is invariant under this if it becomes

¥ =DB-D'B — %Gw G"Y (167



32 M. W. EVANS AND S. JEFFERS

where the field B and the electromagnetic field G,,, are vectors of the internal
gauge space and where Gy, is a tensor of Minkowski spacetime. Field equations
are obtained from the Lagrangian (167) by functional variation using Euler—
Lagrange equations such as

of 0%\ 0¥
() =56 (16)

where A" is a vector in the internal gauge space and a 4-vector in Minkowski
spacetime. The field tensor in O(3) is defined [46-61] as

G" = "AY — 0'A* + gA¥ x AY (169)

In analogy with the Lagrangian (99), the factor — % is needed because of double

summation over repeated indices. So functional variation of the term —%Guv -G
gives 0'Gy. However, on the O(3) level, we must consider the additional terms

1
K = ‘Zg(G“V'Au x Ay +A* x AV -Gy)
1
= —78(Au (GY xAy) + 4%+ (Gyy x A7) (170)
which have the same premultiplier — % due to double summation over repeated

indices. From the terms (170)

0L
247 = E0w X A" = A" X Gy (171)

So the sum of terms (which appear on the left-hand side of the field equation)
from variation in the term —}‘Guv +G"in the Lagrangian (167) is

D'G,, = "G, + gA" x Gy, (172)

which is a covariant derivative in electrodynamics invariant under a local O(3)
transformation. We must also consider functional variation of the term

¥y =D,B-D'B = (0, + gA,x)B* (0" + gA"x)B (173)
which can be expressed as

F3=0,B0"B+gA,* (B x O"B) + gA"+ (B x O,B)
+8*((A4y*A")(B*B) — (A,*B)(B-A")) (174)
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We obtain

0% 5
A8 g(B x 0,B) + ¢g*(A,(B*B) — (A,*B)B)

=g(B x0,B) + ¢’B x (A, x B) (17
So the complete field equation obtained from the Lagrangian (167) by functior
variation is

D'Gyy = —g(DyB) x B = —gJ,(vac) (17

This equation in vector notation for the internal gauge space can be developed
three equations in reduced units
auG“V(l) — ig(Aff)G“V“) _AL3)GHV(2) — B@pvp® 4 B(3)DVB(2)) (17
(2) _ a3 1 1 3
3,6 = ig(AS )Grv() _AL )Gme) _ gBpvph 4 B(I)DVB(3)) (17
auGuvm — ig(AflUG“V(z) — AW _ gWpvp2) 4 B(Q)DVB(I)) (17

where a covariant derivative acting on a component such as B is
D'BY = "B — jg(A¥®) BB — AP B@) (18

Therefore there are several more vacuum current terms on the O(3) than on t!
U(1) level. The factor g is, however, the same on both levels. In SI units, the Eq
(177)-(179) become
(1 — oA 3 3 2
o,GM() = 1g(AH)G“V( ) _Afl el ))
~ ige(BPD'B®) — BOD'BD)Ar (18

If the field ¢ is identified with the space components of A in the bas
((1),(2),(3)), the following three vacuum equations are obtained
puv(l) __ 2) 3 3 V(2
0,G - zg(A“ G _Afl et ))
— ige(ADDYA®) — ABpYA®) (182

in which the vacuum currents have no geometric factor.
The structure of these vacuum charge current densities can be developed ¢
follows in terms of time-like, longitudinal and transverse components. In thi
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development, we take the real parts of A and A,,. The complete inhomogeneous
field equation in the vacuum is

"Gy + gAY x Gy = —g(D,A) X A (183)
where the right-hand side can be expanded as
Ju(vac) = g0, A x A + g2A X (A X A)) (184)

The longitudinal current density in vacuo is investigated, first in the plane-wave
first approximation, by taking the real part of the potential

A A(O) (i + -)e[(mtfxz) (185)
=—i
/3 J
which is
A=A Cising + Jeosd) (186)
RedAd = — (—isin® +Jcos

7 (
where

¢ =ot—«xZ (187)

The longitudinal current density is (in SI units)

2
Ji=-5 04 xA+2 A x(AxA;3) (189)
HoC Ho¢

and the vector magnitude is
A0 = |A| = (a} + 47)"” (189)

In general, the vacuum current density has a definite structure in the vacuum that
is much richer than in the first plane-wave approximation: a structure that has to
be computed because analytical solutions to Eq. (183) are not available.

In the plane-wave first approximation, the current density is therefore

T (vac) = 2% B (190)
HoC

in SI units and is directly proportional to the vacuum B® field. The structure of
Eq. (190) was first derived by considering the inverse Faraday effect as Eq. (243)
of Ref. 42. Equation (190) (above) was first derived phenomenologically on the
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O(Q3) level in Ref. 51 and first developed phenomenologically in Ref. 59
Equation (190) is its rigorous first-principles description in the vacuum. The firs
principles of gauge field theory therefore produce vacuum charge current den-
sities in the vacuum for all gauge group symmetries. There are several experi
mental reasons [42,47-61] for preferring O(3) over U(1) for electrodynamics.

The vacuum charge density is also structured in general, but in the planc
wave, first approximation is given by

K2A0

Jo=
Ho¢

(191)

because by definition, the time component of the vector A is zero. This is how if
differs from the 4-vector A¥, and why it is an independent variable in the method
of functional variation used to derive Eq. (183) from an O(3) invariant
Lagrangian.

The vacuum transverse current densities are also structured, and in general
they are

2

=2 0axA+E Ax@Axa) (192)
Ho¢ Ho¢
g g

Jo=—"—"0A xA+=—A4 x (A xA) (193)
Ho¢ HoC

In the plane-wave first approximation, they reduce to

Ji = —g*AA%i (194)
J> = g*AtAsj (195)

using the vector triple products:
AX(AxA)=—-AA% (196)
A X (A X Ay) = —AlA,j (197)

In ST units, the transverse vacuum current densities are given in the plane-wave
first approximation by

AA2
Ji= —g2ﬁi (198)
A2A
b= gzuchzj (199)
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It is emphasized, however, that there is no reason to assume plane waves. These
are used as an illustration only, and in general the vacuum charge current
densities of O(3) electrodynamics are richly structured, far more so than in U(1)
electrodynamics, where vacuum charge current densities also exist from the first
principles of gauge theory as discussed already.

The complete vacuum inhomogeneous equation is

0'Gyy = —gA" x G, — g(D,A) x A (200)

If =2 and v = 1, the left-hand side vanishes because G,; contains only Bj,
which is phaseless. The right-hand side gives the equation

By = gA A, (201)
which reduces in the notation that we have been using to
B® = —igd®) x 4@ (202)

In the usual complex circular basis used for O(3) electrodynamics [42], this is the
definition of the field B®.

Therefore, a check for self-consistency has been carried out for indices p = 2
and v = 1. It has been shown, therefore, that in pure gauge theory applied to
electrodynamics without a Higgs mechanism, a richly structured vacuum charge
current density emerges that serves as the source of energy latent in the vacuum
through the following equation:

En= J JHAdV (203)

Therefore, on the O(3) level, there are several sources of energy latent in the
vacuum. This conclusion is gauge-invariant because the Lagrangian is O(3)
invariant. It is concluded that potentials can give rise to physical effects in the
vacuum on both the U(1) and O(3) levels. These effects are reviewed experi-
mentally by Barrett [S0). The best known is the Aharonov-Bohm effect, which
Barrett has shown [50] to be supported self-consistently only by O(3) electro-
dynamics and not by U(1) electrodynamics. Both the O(3) and the U(1) group are
non-singly connected, the O(3) group being doubly connected in topology [50].
The latter dictates the structure of the field equations in gauge theory applied to
classical electrodynamics.

The wave equation in the vacuum for O(3) electrodynamics can be obtained
by functional variation in the Euler-Lagrange equation

w = {aw0) = (en) o
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with the gauge-invariant Lagrangian
1
¥ =D,A-D'A — ZG”V -G (205
obtained by a local gauge transformation on the Lagrangian:
1 H
K = EauA «0'A (206

The (?nly 'assumption therefore is that the Maxwell vector potential A exists in the
physical internal space of O(3) symmetry. The gauge-invariant Lagrangian (205)
can be developed as

&L =0,A0'A +g(A, x A-D"A +0,A-A* X A) 1 g% (4, x A)+ (A" x A)

(207)
=04 A+ g(A- (4 x A,) + A+ (0,4A%)) + (A, x A)- (4" x A)
(208)
Using the vector identity
Ay xA-A" XA =(A,-A")(A-A) - (A -A)(A-AY) (209)
gives the results
0% i 2
a—A = ga A X All —f—gapA x A -+ 2g A(AH‘AH)
~g'(A,(A-4%) - (4-4,)4%) (210)
and
3 0. "

The vacuum wave equation in O(3) electrodynamics is therefore

LA = —g0,(A" x A) + 8(3,4) x A" + g2 (A(A,-A*) — A, (A-4")) (212)

- Using

A X (A X A,) = A(A"-A,) — A, (A" A) (213)
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Eq. (212) simplifies to

A + g0, (A" x A) = g(0,4) x A" — g*(A x A,) x A¥ (214)
which can be written as

0, ((* + gA*x)A) = g(9,4) x A* + g?A" x (A x A,) (215)
This form further simplifies to

0,(D*A) = g((0, + g, x)A) x A¥ (216)

which becomes
0.(D'A) = g(D'A) x A, (217)

Therefore, we finally obtain the wave equation of O(3) electrodynamics in the
form

D,(D"A) =0 (218)

which is a d’ Alembert equation for A with O(3) covariant derivatives.

The derivation of Eq. (218) from Eq. (206) follows from local gauge invar-
iance, and it is always possible to apply a local gauge transform to the vector A4,
the Maxwell vector potential. The ordinary derivative of the d’Alembert wave
equation is replaced by an O(3) covariant derivative. The U(1) equivalent of
Eq. (218) in quantum-mechanical (operator) form is Eq. (13), and Eq. (212)
is the rigorously correct form of the phenomenological Eq. (25). It can be
seen that Eq. (212) is richly structured in the vacuum and must be solved nu-
merically. The vacuum currents present in Eq. (218) can be computed from the
right-hand side of the wave equation (212), and these vacuum currents follow
from local gauge invariance.

On the U(1) level, the starting Lagrangian is

¥ =0,A0"A" (219)
which on local gauge transformation becomes

1
L = (A +igAuA) (A" — igAMA") — 2PV (220)

Using the Euler-Lagrange equations

0¥ 0. 0¥ 0¥
i . — 21
oA a“<a<auA>>’ oA a“(@@m)) 221)
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we obtain

(A" = ig(0,AM)A" + igA, (3"A") + g2 A A A" (222,

which is Eq. (143), showing a richly structured vacuum charge current density
Equation (222) can be developed as

0. (0"A™ — igA*A*) = igA,(3"A*) + g’A,AMA (223)

that is
Ou(DHA*) = igA,(3"A™ — igA*A™) (224)
D,(D*A*) =0 (225)

which is a vacuum d’Alembert equation with U(1) covariant derivatives. To
obtain Eq. (225) from Eq. (219), the only assumption is that the Lagrangian is
invariant under the local U(1) gauge transform:

A — exp(—iA(x*)A (226)
Similarly, we obtain
O"DyA = —igA*(0,A + igA,A) (227)
and the d’Alembert equation
D*(DyA) =0 (228)

with covariant derivatives.
A possible solution of Eq. (228) is:

D,A=0 (229)
specifically
" = —igA, (230)
Define
KpEgAuzl%Ap (231)

and Eq. (230) becomes the following quantum ansatz:

. i
Op = —iky = T 5Pu (232)
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On the quantum level, Eq. (229) becomes an operator equation, and, using the
quantum ansatz, we obtain

DMDA=0; e, [OA=-K'A (233)

which is Eq. (12) (above). In fully covariant form, Eq. (233) becomes the gauge
invariant Proca equation:

N 2
OA" = —KquAu — _KIAM = _(%) AY (234)

Note that the Proca equation requires
KMk # 0 (235)

and has been obtained without the use of the Lorenz condition.
The equivalent procedure on the O(3) level is to choose a particular solution

DFA = (D" + gA"x)A =0 (236)

which, in the general notation of gauge field theory, is
My = igAMY (237)
giving again the quantum ansatz on the O(3) level. In the complex circular basis

A — AP 1 A1) £ AB)®)

A =40 440+ 40 (238)
and Eq. (236) becomes
(@ + ga"x)(AV + 4% + 4B =0 (239)
This equation can be developed as
O 40 = _ga® x40 (240)
oz
in other words, as
iKA@ =43 x 4 (241)
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which gives self-consistently the definition

B@* = —jgd® x 4D (242)
Similarly, we obtain

040 _ 4@ 4®

57 =gA¥ x A (243)

which gives the following definition:
B — h,'gA(2) % A®) (244)

Using the relation g = x/A©)
B cyclic theorem [42,47-61]:

in Eqs. (242) and (244) gives two equations of the

8(3) X B(]) — IB(O)B(Z)*

B % BB — ;pO g1~ (245)
t-follows from the quantum ansatz (237) that
_ 0 400 L 40 L 40) G) L (all) L 402

s @ +a® +a) = o)) x (4 J+4P + 40 =0
0 (1) (2) (3) (3) ( (246)

— 5y A+ AP+ al) = ea x AN+ 4P L aABy =0

hich is self-consistent because
3

Ay =aY =0 (247)

Finally, the time-like component of Eq. (236) is

10
10 40 2 3 3

AV + 4D £ AF) = gl 5 (A1) 44D a0 (248)
lich gives again Eqs. (242) and (244).
’. T;lerefore. the Proca equation can be recovered on the O(3) level from the
Special solution (236) as the operator equation:

¥

aual-l\ll — _gZAu(B)AS)\I’ (249)

s result is given in Eq. (22) of the preceding section.
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A Lagrangian such as Eq. (219) is made up purely of a kinetic energy term:

¥ =T =Q,A0"A" (250)
and a local gauge transformation on the Lagrangian produces

1
@ =T -V =0,A0'A" +ig(A,AQ"A" — AYATQA) + g AAAA" — P Py
(251)

where V is a potential energy term. In field theory [46], the ground state is the
vacuum, and the ground state is obtained by minimizing the potential energy V
with respect to a variable such as A or A", The minimum of Vin Eq. (251) with
respect to A, is the vacuum charge current density, which is a ground state of the
field theory and that is obviously a property of the vacuum itself. The ground
state defined by the minimum

ﬂ_ — FWv (252)

3(0vAy)

is the electromagnetic field, which is also a vacuum property. So the
inhomogeneous field equation

JH(vac

O F" = —L—) (253)
€

is a relation between ground states of the field theory, or a relation between

vacuum states. Similarly, a ground state such as

0y . .

is a vacuum property. It can be seen that Eq. (254) is a minimum because

>y a2
—_—= A
A2 2g°|A] (255)

is always greater than zero.

The source of the potential energy V in Eq. (251) is local gauge transforma-
tion, and so the source of V is the vacuum itself, as described by special rela-
tivity and gauge theory. The kinetic energy T appearing in Eq. (250) has no role
in defining the ground state of the field theory, because the ground state is de-
fined by the minimum of V with respect to a given variable, as just argued. In
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these equations, the physical A and A are excitations above the ground state o
vacuum, artd the vacuum gives no contribution to the global Lagrangian (250)
T.he potential energy V is part of the locally gauge-invariant Lagrangian tha
gives the field equation (253), a relation between vacuum properties. The va
cuum charge current density gives energy latent in the vacuum, and rate o
doing work by the vacuum. These are given respectively by ,

En= ij(vac)ApdV (256
and by

ow

e JJ(vac) -E dV (257

The volume Vis arbitrary and, from Eq. (257) standard methods [66], give the
vacuum Poynting theorem ,

U
E(vac) + V-S8(vac) = —J(vac)+E (258)

%1 law of conservation of energy and momentum for various vacuum properties.
e vacuum energy flow is represented by the Poynting vector S(vac):

V+S(vac) = —J(vac)-E (259)

Integrating this equation gives

S(vac) = — JJ(vac)-Edr~|— constant of integration (260)

Wwhere the constant of integration represents a physical component of energy flow
Whose magnitude is not limited by any concept in gauge field theory. The
[Thy.swal object J(vac) also emanates from the vacuum, and its magnitude ts not
illrltcnrted 1;)ecause the magnitude of A“ is not limited by vacuum topology. The
Vacui)lln t(:)\; orlt:)preszlrllged by l;S’(vac) 18 electromztgnetic energy flow generated by
it L0 lai):;rator ;2(111; Viiectsenvened, in principle, to other forms of energy
ma?'l;l}eeptlilzlswal me;ming of the vacuum Poynting theorem [46] in Eq. (258) is
e b Comi) 'ratc(:1 0 .change of electromagnetic energy within an arbitrary vo-
e vo]ilme ine .w1th the energy flowing out through the boundary surfaces of
field (o lf)er unit time, is equal to the negative of the total work done by the

um property) on the source, interpreted as vacuum charge current
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density. This is a statement of conservation of energy applied within the vacuum
and in the absence of matter (electrons). In the received view

J¥(vac) =0 (261)

and there is no vacuum Poynting theorem, but as argued already, the received
view violates gauge invariance, special relativity, and causality. In the correctly
gauge-invariant Eq. (253), work is done by the source (a vacuum property) on the
field (another vacuum property), work that can be transmitted to rate of change of

mechanical energy as follows [46]:
—— (mech) = J](Vac) <EdV (262)

In general relativity, gravity is curvature of spacetime, and so the ordinary
potential energy mgh emanates ultimately from the vacuum topology itself. Here
m is mass, g is the acceleration due to gravity, and & is a difference in height. The
electromagnetic field is orders of magnitude stronger than the gravitational field.
Special relativity is a special case of general relativity, and sometimes A" is
known [46] as a connection, in analogy with the affine connection of general
relativity. The gravitational field is the vacuum, and the electromagnetic field is
the vacuum. Mass and gravitational field, and charge and electromagnetic field,
are therefore all consequences of relativity and vacuum topology.

In this view, the structures of the vacuum and matter currents are identical:

Ji(vac) = — -5 (A"DFA — ADMAT); g =
Ho¢ A©
i ) (263)
JH(matter) = — 2~ (A’D'A — ADA”); g =1+
Hoc h

and one is transformed into the other for one electron and one photon by the

relation
K

— (264)

e
AQ) h
Therefore, the momentum of one photon is transformed to the electron
momentum

ik = eA” (265)

and the photon momentum and energy emanate from the vacuum itself, as just
argued. In this way, the elementary charge ¢ on the proton also becomes a
topological property, arguing in analogy with the way in which mass in general
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relativity is a property of the vacuum. Again, in analogy with general relativi
photons are formed out of the vacuum as gravitons are formed out of the vacuu
The rf;lallon (265) is true for all internal gauge group symmetries. In t)
foregoing, we happen to have been arguing on the U(1) level, but the conc;epts a
the same on the O(3) level. Therefore, charge e is the result of the field, which is
vacuum property. ’ &
The abgve is a pure gauge field theory. The Higgs mechanism on the U(
loe(v3e)1 f)rovlldel? fur’Fher sources of vacuum energy as discussed already. On tt
ev . .
o0 Ie ;:f,efl ef;g}yi.lggs mechanism can also be applied, resulting in yet mo
'Gauge ‘theory of any symmetry must have two mathematical space
Mmkowskl spgcetime and the internal gauge space. If electromagnetic theo
in the vacuum is a U(1) symmetry gauge field symmetry, there is a scalar inte
nal space of U(1) symmetry in the vacuum. This internal space is the space ¢
the scalar A and A" used in the foregoing arguments. In geometric form

A :A1i+A2j (266

is vector .in a two-dimensional space with orthonormal basis vectors i and
This space is the internal gauge space of the U(1) gauge field theory applied ;
vacuum electromagnetism. A global gauge transform is a rotation of A throu
an a¥b1tr§ry angle A. Such a process is described [46] by the O(2) grou i
rotations in a plane, homomorphic with U(1). The invariance of action underp th

same global gauge transformation res i
: ults in a conserved charge
divergentless current: B ©and.

ao 0:
These concepts stem from a variational principle applied to the action

S= Jg(AauA)d4x (268

Which is stationary [46] under the condition

A7 R
e (a(auA)) =0 (269)

which ; .
1 eleé(;l 1s the E.uler-Lag.range equation for A in the internal U(1) gauge space of
; o €f)magrll)etlc theory in the vacuum. The action is considered [46] in Noether’s
] m to be unchanged by re-parameterization of x* and A, that is, is invariant
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under some group of transformations on x* and A. It follows [46] that ther.e exist
conserved quantities that are combinations of fields and derivatives, which are
invariant under these transformations: energy, momentum, angular momentum,

and charge. .
For example, it can be shown that the energy momentum tensor due to A is

[46]
ot = 04A0,A — %&VlacAa“A (270)

For translation of the origin of space and time [46], Noether’s theorem gives

Jb = —0F = —0MAD.A + %asacAaC’A (271)

Vv

The conserved quantity in this case is the energy momentum
4 J 8%d%x =0 (272)
de)

in the internal gauge space. The energy and momentum of the field in the internal
gauge space are given by

En = J68d3x; p= Je?d3x (273)

Under the local gauge transformation (226) of the Lagrangian (2 1.9), the action is
no longer invariant [46], and invariance must be restored by adding terms to the

Lagrangian. One such term is
P = —gl'A, (274)

where g is a parameter such that gA,, has the units of 0. It is important to realize

that this is true under all conditions, including the vacuum, so if electromagnetic
theory in the vacuum is a U(1) gauge theory, then both g and A, must be
introduced in the vacuum. It is clear that

s (275)

satisfies the requirement that gA,, have the same units as 8,.. The 4-potential A, 1
introduced from Minkowski spacetime and, under local U(1) gauge transforma-

tion

1
Ay — Ay + gauA (276)
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where A is arbitrary. Local gauge transformation therefore results in the total
Lagrangian (251) that is needed to render the action invariant.

Therefore the Lehnert equation (253) correctly conserves action under a local
U(1) gauge transformation in the vacuum. Such a transformation leads to a va-
cuum charge current density as the result of gauge theory itself, because U(1)
gauge theory has a scalar internal space that supports A and A*. These must be
complex in order to define the globally conserved charge:

0= JJOdV (277)

from the globally invariant current:
JH = i(A"O"A — ADMAY) (278)

in the internal U(1) space of the gauge theory.

The existence of a vacuum charge current density in the vacuum was first
introduced phenomenologically by Lehnert [45,49], and it has been shown
that the Lehnert equations can describe phenomena that the Maxwell-Heaviside
equations are unable to describe. The reason for this is now clear. The vacuum
Maxwell-Heaviside equations do not conserve action under a local gauge trans-
formation in the internal scalar space of a U(1) gauge field theory. In order to
conserve action, a locally gauge-invariant charge current density of the type ap-
pearing in Eq. (253) is needed in the vacuum, and it has just been argued that
such a conclusion has a solid basis in gauge theory. If the charge current density
were absent, there would be no scalar internal space for U(1) gauge theory ap-
plied in the vacuum to electromagnetism. It follows, as argued already, that the
vector potential A, and the electromagnetic field tensor F* are the result of lo-
cal gauge transformation and originate in the vacuum topology.

There is empirical evidence that electrons and positrons annihilate to give
photons, and this process is represented symbolically by

e +et =2y (279)

This process cannot be described classically, because positrons are the result of
the Dirac equation, but it illustrates the fact that a vacuum current (of photons) is
made up of the interaction of two Dirac currents, one for the electron, one for the
Positron, and these are both matter currents. Therefore, there is a transmutation
of matter current to vacuum current. On the classical level, this can be described

’, in the scalar internal gauge space as

=4 (280)
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where ¢ is a matter field and A is the scalar component of an electromagnetic
potential. As shown in Egs. (263), the matter and vacuum fields have the same
structure. The coefficient g in the vacuum field is k /A(O) and is e/# in the matter
field. The process

ik — eAV (281)

is therefore a transfer of photon linear momentum to an electron, as in the
Compton effect. As soon as h is introduced, Planck quantization is also
introduced. Since e is a property of neither the electromagnetic field nor the
Dirac electron, the equation

hk = eA© (282)

can be regarded [47-61] as a Planck quantization of the factor g in the vacuum:

K 4
8= 40 "k (283)

The Lehnert equations are a great improvement over the Maxwell-Heaviside
equations [45,49] but are unable to describe phenomena such as the Sagnac ef-
fect and interferometry [42], for which an O(3) internal gauge space symmetry
is needed.

IV. DEVELOPMENT OF GAUGE THEORY IN THE VACUUM

Gauge theory can be developed systematically for the vacuum on the basis of
material presented in Section II. Before doing so, recall that, on the U(1) level, A¥
exists in Minkowski spacetime and there is a scalar internal gauge space that can
be denoted

A = Ay + Ay j = Axi + Ayi (284)

The internal gauge space has local symmetry, and is a physical space. In complex
circular notation, the vector in the internal gauge space can be written as

A = A 4 AW (285)

indicating two states of circular polarization. Therefore, we have AR and A*?)
in the vacuum. Circular polarization becomes a prerequisite for the conserved Q
of Eq. (277). In the notation of Eq. (285)

1

(Ax —iAy); A®) = 7§(AX + iAy) (286)

1

AN =
V2
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Circular polarization appears in general if

Ay = A9 exp (—i(or — kZ)) (28
Ay = A9 exp(—i(or - kZ)) (28

Yvhere we have included the electromagnetic phase on the U(1) level. The scal
internal space in the vacuum is therefore described by the following two vecto

1 1
A = —— ] . * .
\/E(AX+’AY)v A _\/E(AX_IAY) (28

Global gauge transformation on these vectors produces a shift in the electr
magnetic phase

Ax — ADexp(—i(or — xZ + A)) (29
Ay — AQ%exp(—i(or — xZ + A)) (29

‘ where A is an arbitrary number. So under global gauge transformation, tl

electromagnetic phase in the vacuum is defined only up to an arbitrary A. Und
local gauge transformation

Ay — A exp (—i(or — xZ + A(xY))) (29
Ay — AQexp(—i(or — kZ + A(x"))) (29

fmd the U(1) electromagnetic phase is defined up to an arbitrary number A, whic
18 a function of the spacetime coordinate x*. In consequence, it has been show
elsewhere [42,47-61] that U(1) gauge theory applied to electromagnetism dog
not describe interferometry or physical optics in general.

There is an interrelation between the A and A" vectors of the scalar intern:
gauge space and components of A*(") and A*? in the vacuum

AW = jAgeV (29
A® = —iAyel (29¢

1) _ 4%
lSo that AV = A@* is a vacuum plane wave. It can be seen that, on the U(1) leve
ocal and global gauge transformation introduce arbitrariness into the electrc

E Magnetic phase factor:

7 = exp(—i(or — xZ)) (29¢
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Dirac attempted to remedy this flaw on the U(1) level by defining the electro-
magnetic phase factor by [42]

Y = exp <ig *Au(x“)dx“> (297)

On the O(3) level, vacuum gauge theory is defined by a Clifford algebra
A, = AEIZ)e(l) +Afll)e(2) +A£3)e(3) (298)
A= AP £ ADe@ L 43)0) (299)

where A, is a vector in the internal gauge space of O(3) symmetry and a 4-vector
in Minkowski spacetime. In the internal gauge space, the Maxwell vector
potential is defined as

A=Axi+Ayj+Azk =APel) 1 AW® 1 4B (300)

indicating by ansatz the existence of a nonzero A® in the vacuum. The latter
describes the Sagnac effect with precision as demonstrated elsewhere [42] using
a non-Abelian Stokes theorem. On the O(3) level, the electromagnetic phase
factor is a Wu—Yang phase factor denoted

y = Pexp (ig &Aﬂx*‘)dx“) (301)

where parallel transport is implied [42] with O(3) covariant derivatives. In the
vacuum, the factor g is given by Eq. (275) for all gauge group symmetries. There
is again a relation between the internal vector A and components in the vacuum
of the four vector A*. For example

AD = jage®;  AD = —iave®; AP =Azk (302)

So it becomes clear that the description of the vacuum in gauge theory can be
developed systematically by recognizing that, in general, A is an n-dimensional
vector. On the U(1) level, it is one-dimensional; on the O(3) level, it is three-
dimensional; and so on. The internal gauge space in this development is a
physical space that can be subjected to a local gauge transform to produce
physical vacuum charge current densities.

So in the general case where A is an n-dimensional vector [46], a local gauge
transform on this vector is represented in the vacuum by

A(xH) — A'(x*) = exp (iMA“(x*))A(x")
= S(xM)A(M) (303)
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where M? are the generators of the group that describes the symmetry
internal gauge space, and where the index a is summed from 1 to 3 w
internal gauge group is O(3). It follows that

3uA' = S(Q,4) + (,9)A

so 0,A does not transform covariantly. This is the basis of the gauge princi
the principle of parallel transport in the vacuum for any gauge group syr
Parallel transport in the vacuum produces the vector 5A, where

0A = igM"Ajdx"A

So the product gM“A{ is the result of special relativity in the vacuum, ¢
adjusted for correct units. Ryder [46] simply describes A} as “‘an additior
or potential;” Feynman describes it as ‘“‘the universal influence.” There:
argued in the foregoing section, both the potential and the electromagnel
in the vacuum originate in local gauge transformation, which, in turn, ori
in special relativity itself.

The covariant derivative in the vacuum for any internal gauge group s
try is therefore defined by

DyA = (3, — igM"A%)A

and is valid for an n-dimensional A and for any internal gauge group
generators are represented by matrices M [46]. The U(1) covariant deriv
the vacuum is given by M = —1, resulting in

DyA = (0, +igAy)A
On the O(3) level, the covariant derivative in the vacuum is given by

] Considering a rotation A = SA in the vacuum, the covariant derivative tran
= as

DyA — D/A' = SD,A

(0, —igA,)A" = S(0, — igAL)A



which [42] leads to the law governing A, under gauge transformation in any
gauge group:

IR _
Al =SAS! —g(GHS)S . (311)
It is also possible to consider the holonomy of the generic A in the vacuum.,
This is a round trip or closed loop in Minkowski spacetime. The general vector

A is transported from point A, where it is denoted A4 around a closed loop with
covariant derivatives back to the point A ¢ in the vacuum. The result [46] is the

field tensor for any gauge group
i ,
Gy = g[Dp,DV] = 0,A, — OvAy, — iglAL, AV (312)

and the field tensor is the result of rotating the vector A in the internal space of the
gauge theory in the vacuum. It is seen that the field tensor is a commutator of
covariant derivatives, and therefore originates in local gauge transformation. On
the U(1) level, the field tensor in the vacuum is

Fy = 0A, — 0VA, (313)
and on the O(3) level is
G, =04, — 04, +gA XAy (314)
The field tensor transforms covariantly [46] because
Ay — Al o= SAap
AAil — AZ:T = SAA;l (315)

in the vacuum.
Similarly, transport of the generic A around a three-dimensional closed loop

[46] produces the Jacobi identity

Z [Dov[Duva” =0 (316)

cyclic

for any gauge group symmetry in the vacuum. On the U(1) level, it is the
homogeneous field equation

Q™ =0 (317)

and on the O(3) level, the homogeneous field equation:
D,G" =0 (31¢

The complete set of vacuum field and wave equations on the U(1) level
therefore

GHF“V =0 (31¢
J¥(vac

OuF™ = — ) (32

DDA =0 (321

and the complete set on the O(3) level is

@“G“V =0 (322
D'Gyy = —gc(D,A) x A (322
D,(D"A) =0 (324

All these results are derived essentially by considering a rotation of the gener:
vector A in the internal space of the gauge theory in the vacuum.
In order to demonstrate that spontaneous symmetry breaking can affect th

energy inherent in the vacuum, consider the globally invariant Higgs Lagran
gian:

L =0(a+A)"(a+A") —mi(a+A")(a+A)— M(a +A")(a+A))
(325

It has been demonstrated already that local gauge transformation on thi
Lagrangian leads to Eq. (153), which contains new charge current density term
due to the Higgs mechanism. For our present purposes, however, it is clearer t
use the locally invariant Lagrangian obtained from Eq. (325), specifically

L = (0, +igAy)(a+ A)(@" —igA")(a + A")

—nP(a+ A)(a +A") — Ma + AV (a+ A" — %F“"Fw (326

with the Euler-Lagrange equations:

a_a%:a(ay). 0y _ (o
0A "\9(0,4))" oA “(@(GHA*Q (327,



Such a procedure produces the equations:

D, DFA* = —m*A™ — 20A*(AA"
1 m (AA7) (328)
D.D'A = —m*A — 20A(A*A)

where we have used @ = a*. So the effect of the Higgs mechanism is to generate
the inhomogeneous wave equations (328) from the homogeneous wave equations
(225) and (228) by spontaneous symmetry breaking [46] of the vacuum. The
charge current densities on the right-hand side of Eq. (328) can be used to
generate the equivalent matter charge current densities as discussed later in this

section.
Without the Higgs mechanism, the Lagrangian (325) is

&L = 0,A'A" — m*A™A — MATAATA (329)
and using Egs. (327) produces the wave equations:

OA" = —(m* + 20A*A)A7

(330)
OA = —(m? +20MA%)A
At the Higgs minimum
2 jap= =T 331
@ =1aP= -5 (331)
Eqgs. (330) become
04 = (332)

JA=0

At the local Higgs maximum [46] for m* < 0, that is, at m = 0, Eqs. (330)
become

[JA* = —2A(A"A)A*

[JA = —2M(AA7)A (333)

and Eqgs. (328) become

D D'A* = —2)A*(AA)
D,D'A = —2)\A(A*A)

(334)

So both the globally and locally invariant equations of motion of the internal
gauge space [the Euler-Lagrange equations (327)] are different at the Higgs
maximum and minimum. The minimum and local maximum are different ground
states of the field, and are different vacuum states. The difference between the
Higgs maximum and minimum represents potential energy difference within the
vacuum itself. The Higgs mechanism is well known to lead to electroweak theory
and to the existence of the Higgs boson, so it is well established that in the
vacuum, there is a usable difference of potential energy, the different minima of
which lead to different ground states of the field theory and to different vacua. In
nineteenth-century classical electromagnetism, on which a text such as that by
Jackson [66] is based, such concepts do not exist. There is no vacuum charge
current density, and there are no potential energy maxima or minima in the
vacuum itself.

It is well known that there is an interesting analogy between spontaneous
symmetry breaking of the vacuum and the Landau-Ginzburg free energy in
superconductors. The latter is obtained from the locally invariant Lagrangian
(325) in the static limit [46]

GpA =0 (335)

where the mass term is defined as m> = a(T — T,) near the critical temperature
T..AtT > T, m* > 0 and the minimum free energy is at |A| = 0. When
T < T.,m* < 0 and the minimum free energy is at |A|*= —(m?/2)) > 0. This is
an analogy with the case of spontaneous symmetry breaking in the vacuum,
where there is a difference of free energy (or latent free energy) on the classical
. level that can be used for practical devices.

The effect of the Higgs mechanism can be seen most clearly by minimizing
- the Lagrangian (251) with respect to A:

07 ,

This minimum value defines the ground state and the true vacuum through the

D"A" =0 (337)
D'A =0
This means, however, that the vacuum charge current density disappears:
JH(vac) = ——5 (A*DMA — AD*A*) = 0 (338)

Hoc



It thus becomes clear that the vacuum charge current density introduced by
Lehnert is an excitation above the true vacuum in classical electrodynamics. The
true vacuum is defined by Eq. (337). It follows that in the true classical vacuum,
the electromagnetic field also disappears.

Using the Higgs Lagrangian (326) however, the true vacuum is defined by

)
égznphum*—muf—zwvavzo (339)

and the true vacuum itself carries a charge current density. The charge current
density in the true vacuum is described by Eq. (339), which is consistent with the
fact that the Lehnert charge current density implies photon mass, as does the
Higgs mechanism.

The transfer of the energy associated with this true vacuum charge current
density to a matter current is achieved by adjusting the value of the coupling
constant g such that the vacuum value g = K/A(O) becomes e/h in matter.
The resulting equation is

e (340)

specifically
hik = eA”) (341)
which classically gives the minimal prescription:

p—cA (342)

The momentum p is derived from a limit of general relativity, and so is derived
from the structure of spacetime. Therefore eA is also derived from the structure
of spacetime, or from the vacuum itself. The meaning of e is reinterpreted as the
minimum value of

K

10 (343)

e=nh

and this minimum value is the charge on the proton.
At the Higgs minimum, the Lagrangian in the internal space of the u
gauge theory is

¥ =dyadta* —mla*a ~ AMa*a)? (344)

which, on local gauge transformation, becomes
. . * * * l
L = (8, +igA,)a(d — igA*)a” — m*aa* — \(aa ) — ZF“VF“V (342

The equations of motion of the field at the Higgs minimum (the minimu
potential energy of the vacuum) are the Euler-Lagrange equations

() Wy,
da  "\o(Qua))’ da=  "\d(d,a%) (

0r _, (o .
A GG (347

and using the globally invariant Lagrangian (344) in Egs. (346) gives the resu

Oa" = —(m* + 2ha*a)a” = 0
; (34
Oa = —(m*+2kaa*)a=0

and, using the locally invariant Lagrangian (345) in Egs. (346) gives the resul

D,(D*a") = —(m* + 2ha*a)a” =0

" (346
D,(D"a) = —(m" 4+ 2\aa")a =0
Equation (348) is the globally invariant wave equation defining a, and Eq. (34¢
is its locally invariant equivalent. Using the locally invariant Lagrangian (345) i
Eq. (347) gives the inhomogeneous field equation (SI units)

O F" = —igc(a’D"'a — aD"a”™) (35C

where the charge current density on the right-hand side is obtained from the pur
vacuum by local gauge transformation and local gauge invariance. Both the lefi
and right-hand sides of Eq. (350) are defined by the minimum of potentiz
energy, and by the minimum value that A can attain. This minimum value is ¢
and is the vacuum expectation value of A [46], associated with a nonzero potentiz
energy that gives rise to A* and F" by local gauge invariance. Therefore th
So‘ur.ce of an electromagnetic field propagating in the vacuum is the Higg
minimum value of A, which is denoted a. If we do not use a Higgs mechanisir
then the vacuum expectation value of A in the internal gauge space of the U(1

. Bauge theory is zero, and the globally invariant Lagrangian disappears
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Therefore, in the presence of a Higgs mechanism
(0/A]0)= o? (351)

and in its absence:
1{0A]0)*= 0 (352)

The Lagrangian (345) can be written as [see Eq. (158)]
L =g d?A AN + - (353)
and if the photon mass is identified as

2¢%d? (354)

2
"y

the Lagrangian (353) gives a Proca equation that is locally gauge invariant on the
U(1) level. Therefore, application of the Higgs mechanism in this way has
produced one massive photon from one massless photon. The scalar field a
remains unaffected, so degrees of freedom are conserved. Therefore, this theory
identifies photon mass as the result of local gauge invariance applied at the Higgs
minimum, that is, the minimum value that the potential energy of the globally
invariant Lagrangian can take in the vacuum.
This minimum value provides the true vacuum energy

En(vac) = JJ“(vac)AudV (355)
and a rate of doing work:

dw

W(vac) = JJ(vac) -Edv (356)

The Poynting theorem for the true vacuum can be developed as in Egs. (258)—
(262). The true vacuum energy (355) comes from the vacuum current in Eq.
(350), which is transformed into a matter current by a minimal prescription as
discussed already. This matter current in principle provides an electromotive
force in a circuit. It is to be noted that the local Higgs maximum occurs atA = 0
[46], so the local Higgs minimum occurs below the zero value of A.

The overall conclusion is that there is no objection in principle to extracting
electromotive force from the true vacuum, defined by the minimum value, a,
which can be attained by A in the internal scalar space of the gauge theory,
which is the theory underlying electromagnetic theory.
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On the O(3) level, the globally invariant Lagrangian corresponding to Eq
(344) is

1 m2 2
3’:T—szauma“a—?a-a—?»(a-a) (357

with potential energy:

2

V:m?a-a—H»(a-a)2 (358

Here, a is a vector in the internal space of O(3) symmetry. The equation o

motion is
0% oY 0%
— =0, =0 '
Ca " <6ua> <6“a> (359,
and produces, from the Lagrangian (357), the result
Oa =m’a + ha(a-a) =0 (360
which is a globally invariant wave equation of d’Alembert type for the three

components of a. Local gauge transformation of the Lagrangian (357) produces
[cf. Eq. (205)] the following equation:

1 2 1
c.?’:iDua'D“a—m?a-a—X(a-a)2—ZGuV-G”V (361

Use of Eq. (359) produces the wave equation
D"(D,a) = m*a + \a(a-a) =0 (362)

The Euler-Lagrange equation

0% o 0
aar = ° (a<aw>> (363)
produces the field equation
D'G,, = —g(Dua) x a (364)

Wwhere the current on the right-hand side is a current generated by the minimum
value of A in the internal O(3) symmetry gauge space. This minimum value is the
vacuum and is denoted by the vector a
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The Lagrangian (361) can be written as
¥ =gA, xaA" xa+--- (365)
and produces three photons with mass from the vector identity
(Ay x a)+ (A" x a) = (A, *A")(a-a) — (A -a)(a-AY) (366)
and the term
L =g (a-a)A,-A") + - (367)

One of these is the superheavy Crowell boson [42], associated with index (3) in
the ((1).(2),(3)) basis, and the other two are massive photons associated with
indices (1) and (2). The superheavy Crowell boson comes from electroweak
theory with an SU(2) electromagnetic sector and may have been observed in a
LEP collaboration at CERN [44,56].

On the O(3) level, the vacuum current (SI units)

JH(vac) = 2 (DHa) x a (368)
HoC
gives the vacuum energy
En= JJ”(vac) *A,dvV (369)

which can be transformed into a matter current by the minimal prescription
(342). This matter current is effectively an electromotive force in a circuit. Gauge
theory of any internal gauge symmetry applied to electromagnetism comes to the
same result, that energy is available from the vacuum, defined as the Higgs
minimum. This appears to be a substantial advance in understanding.

In order to check these results for self-consistency, the locally invariant
Higgs Lagrangian, when written out in full, is

L =0,(ap +A)"(ao +A)" —ig((ao + A)"*(ap + A)— (ap + A)D* (ap + A)")A,
+ g* A, A" (ag +A) —m*(ap+A)(ag+A)*

RO
—M((ao +A)(ag +A))* - 2P Fan (370)
where aq is the minimum value and where the complex scalar field is

A=-L (A +idy) (371)

1
V2
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in the internal space. In this Lagrangian, a, is a constant so the Lagrangian (¢
can be written as

1 1 1
L = = Fu P + gagA A" + 5 (Qud)” + 5 (8,A42)°
— 2hajA3 + \/EgaoAuapAz +- (3
At its minimum value, this Lagrangian is
2= lp. i gaa

= _Z pv +g aOA”A (3

which gives the following locally gauge-invariant Proca equation:
OuF™ +mAY =0 (3

The photon mass is identified as argued already by

m; = 2g2|aé‘ (3

and if we further identify
2 K -
&= 2|ad| Sl

we obtain the de Broglie guidance theorem in SI units:
Ao = my,c? (37

So, as argued already, the photon mass is picked up from the vacuum, that
from the minimum value of the locally invariant Higgs Lagrangian (370). Tl

“, conclusion means that the Lehnert charge current density that leads to the Pro
~ ©quation [45,49] is also a property of the vacuum, as argued above. In order

show this result, the constant ag is expressed as the product of two complex fiel

aand a . To illustrate this by analogy, one can show that the dot product of tv
| conjugate plane waves gives a constant

A0 . A0 .
A2 _ %(1 - ij)-e@%(i +ij)e”® =4 4@ (37

; but the individual plane waves are functions of coordinates and tim
. Analogously, therefore, a and a” are functions of x*. The vacuum Lagrangi:



¥ = 0uad’a’ — ig(a*®"a — ad¥a")A,
1
+g?A A d? — mPata — Ma*a)® — ZFquuv (379)
From Eq. (373), it is known that this Lagrangian is
1
L = " A AMa — ZF“VFuv (380)

There is therefore a balance between globally invariant Lagrangians:

% =0,ad"a" —mPa*a — Ma*a)?
= ig(a*®*a — ad"a*) A, = gJ"A, (381)

The globally invariant vacuum energy is therefore:

1
En= JJ“AudV = _Jauaaua* —mla*a — Ma*a)*dV (382)
8

and is defined in the internal space of the gauge theory being considered [in this
case of U(1) symmetry]. It can be seen that the vacuum energy is essentially a
volume integration over the original globally invariant Lagrangian

L = d,ad"a* —mPa"a — Ma*a)? (383)

used in the Higgs mechanism. We have defined the mass of the photon by
Eq. (375), and so the locally gauge-invariant Proca wave equation is

A, = —2¢°a2A, (384)

Energy is usually written as the volume integral over the Hamiltonian, and not
the Lagrangian, and Eq. (382) may be transformed into a volume integral over a
Hamiltonian if we define the effective potential energy

V = —m?a*a — \(a*a)? (385)

which is negative.

The locally gauge-invariant Lehnert field equation corresponding to Eq. (374)
was derived as Eq. (350). The photon picks up mass from the vacuum itself, and
having derived a locally gauge-invariant Proca equation, canonical quantization
can be applied to produce a photon with mass with three space dimensions.

V. SCHRODINGER EQUATION WITH A HIGGS MECHANISM:
EFFECT ON THE WAVE FUNCTIONS

In order to measure the effect of vacuum energy in atoms and molecules, in
simplest case of the hydrogen atom, it is necessary to develop the nonrelativi:
Schridinger equation with an inbuilt Higgs mechanism. The method used in t
section is to start with the Lagrangian for the Higgs mechanism in matter fiel
derive a Klein—-Gordon equation, and from that, an Einstein equation, then to t:
the nonrelativistic limit of the Einstein equation, and finally quantize that to g
the Schrodinger equation with a Higgs mechanism. It turns out that the Hi;
minimum is at an energy %mc2 below the vacuum minimum with no Hi;
mechanism, meaning that this amount of energy is available in the vacut
Some examples of the effect of this negative potential energy on analyti
solutions of the Schrodinger equation are given in this section.

The starting Lagrangian on the U(1) level for a free particle, such as an el
tron, is the standard Lagrangian for the Higgs mechanism:

L =0,060"" — m> " — M P)* (3¢

Using Eqgs. (115) and (221), this Lagrangian gives the Klein—Gordon equatic

(O + (m* + 20" $))d" =0 (3¢
(O+ (m* + 2009 =0 (3¢

in which ¢ and ¢* are considered to be complex-valued one-particle we
functions. It can be seen that the effect of the Higgs mechanism is to increase
mass term m” to m* + 21" ¢.

This additional effective mass is introduced from spontaneous symme
breaking of the vacuum. The two Klein—-Gordon equations therefore take
the form

(O +m)d* = ~21(09") 9" (3¢
(O+m?)d = —24(dd")d (3¢

The classical equivalent of these equations is the Einstein equation for ¢
particle

En* = p*? + mict + 20 (")t (3¢
The Higgs mechanism has produced an additional rest energy:

Eng(Higgs) = 2M(pd™)c* (3¢
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In Eq. (391), En is the total energy, and the equation can be written as follows:
prct = En® — En(z)

o\ —1
= mjc* (1 - ”—2> —mdct — 20 ()¢ (393)
(4

To reach the nonrelativistic limit of this equation, the right-hand side is expanded
as

2
pic = m2c4u—2 — 20 {$?)c* (v < c) (394)
c
which, for u < ¢, results in the nonrelativistic equation

2
pict = mzc“u—7 - 2X<¢2>c4 = En? — En}) (395)
o2

which has the same form as the original, fully relativistic, equation (393). The
nonrelativistic equation (395) can be written as

m?u?® = p* + 2X<¢2>02 (u <) (396)
that is
Loy PP ko)
mu =—+ <¢ >c (397)

The left-hand side is the nonrelativistic kinetic energy of one particle. It can be
seen that the Higgs mechanism changes the classical nonrelativistic expression

1 2
En=-mié=2—=T (398)

to Eq. (397). The Schrédinger equation without the Higgs mechanism is obtained
by applying the quantum ansatz

En — ih%; p — —ihvV (399)
to Eq. (398), giving
P g (400)
ot 2m

The Schro

L 00 A A
—ihgy = V20 + ~(¢7)? (401

2 . .
where (¢7) is the expectation value of the wave function. At the Higgs minimum
this expectation value is [46]

m2

2 —_ -
(6% = -2 (402
and so the Schrédinger equation at the Higgs minimum is

L0 W 1
_ipY L 2 .
! ot Zm(1> 2™ ¢ (403,

which can be written in the familiar form

Eng = Ho = (T +V)o

404
S (404)
2m

where
V= _1 2 A 2\ 2
= —5me’ = min E<¢ Yo (405)

is a negative potential energy produced by spontaneous symmetry breaking of
the vacuum. The Schrédinger equation (404) shows that the Higgs minimum (the
symmetry broken vacuum) is at an energy:

. 1
V(Higgs) = Emc2 (406)

below the vacuum for the ordinary Schrédinger equation (400). The vacuum
expectation value for the ordinary Schrédinger equation is

(¢*) =0 (407)

We h?.VC therefore derived a nonrelativistic Schrédinger equation for a
free particle with an additional negative potential energy term V = —%mcz.
In order to apply this method to the hydrogen atom, the relevant Schrodinger



equation is

h2
(- _Z_lez - VCoulomb + V) d) = End) (408)
&1
Vicoulomb = 4_1“:;; (4083)

where Vioutoms 18 the classical Coulomb interaction between one electron and
one proton and p is the reduced mass:

m,ny,
=P 409
= (409)

The Higgs mechanism is the basis of electroweak theory and other elemen-
tary particle and gauge field theories, so it can be stated with confidence that to a
good approximation the energy %mc2 is released from the vacuum when a shift
occurs between the Higgs minimum and the ground state of the hydrogen atom.
The challenge is how to find a mechanism for releasing this energy. Mills [67]
has found a working device based on the postulated collapse of the H atom
below its ground state. The Schrddinger equation with a Higgs mechanism
shows that there is an extra negative potential energy term that may account
for the energy observed by Mills [67]. This possibility will be explored later
by solving Eq. (408) analytically to find the effect of Von the states of the H
atom. First, however, we illustrate the effect of Von analytical solutions of the
Schrodinger equation, starting with the free-particle solution.

The wave function for Eq. (404) is well known [68] to be of the form

» " 2m(E - V)\'
d):A/emZ—}—B/e_mZ; K,—_— ( m( hz )) (410)
where the particle momentum is given by k. The scheme in the following
equation group explains the role of the two parts of the wave function:
— p=h; U =A'e"?

, (411)
<—p=hKl; \JJ:BIG-"(Z

In the Schrédinger equation (404), the maximum value of the vacuum potential

energy is the Newton vacuum
V=0 (412)

and its minimum value is the Higgs vacuum, or minimum of the symmetry-
broken vacuum:

1
‘/::—En'lc2 (413)

In Newtonian mechanics, the particle cannot be found below V = 0, therefo:
Newtonian mechanics always corresponds to V = 0 [e.g., Eq. (398)], and th
represel}ts, classically, an insurmountable barrier to a particle such as an electrc
attempting to enter the Higgs region below V = 0. In quantum mechanic
however, an electron may enter the Higgs region by quantum tunneling, whic

occurs when E < V = 0. The wave function for this process is well known {
be [68]

d) = AC_KZ (4 14

and has a nonzero amplitude. An electron of energy 1.6 x 107'° J incident on
barrlf,sr gf (giirg)ht 3.2 x 107" J has a wave function that decays with distanc
as e , and decays to 1/e of its initial value after 0.2 nm, about th
‘diameter of an atom [68]. Therefore, quantum tunneling is important on atomi
sca‘lles. So quantum-mechanically, an electron can enter the Higgs region an
gain negative energy. This means that it radiates positive energy [46]. Th
maximum amount of energy that can be radiated is determined by the minimur
value of the Higgs region, which defines the ground state, namely, the Higg
vacuum. This is a result of Eq. (404) for a free electron. To see that negative
energy states En are possible, write Eq. (395) as

En* = p*c* + En} (415

and its solutions are
En = +(p*c* + En})"/? (416
The states of the hydrogen atom must be found from Eq. (408). When V = (

the ground state of the H atom is well known [68] to be determined b
the expectation value |

4
pe 1
En=——""—: =
reRTe i 1 (417
from the Schrodinger equation:
B h2 v2¢ €2
2u 47t80rd) =End (418
When Vis not zero, Eq. (418) becomes
B hz vzq) 62
21V ey &= (B = V)0 (419
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and the electronic orbital energy becomes

pet 1

_ - 420
32262t n (420)

En =

Here, n is the principal quantum number. So, for V = 0 the electronic orbital
energy in the H atom becomes less negative as n increases. However, if we add
V < 0 from the Higgs region to the ground state of H determined by n = 1, the
electronic orbital energy falls below its ground state. This emits energy in the
same way as an electron falling from a higher to a lower electronic atomic orbital
emits energy. The energy emitted by driving the H orbital below its ground state
has been observed experimentally by Mills et al. [67], repeatedly and repro-
ducibly. The Higgs mechanism on the U(1) level accounts for this energy
emission.

VI. VECTOR INTERNAL BASIS FOR
SINGLE-PARTICLE QUANTIZATION

Conventional single particle quantization is based on the quantum ansatz (399)
applied to the Einstein equation (415) to produce the Klein—-Gordon equation

(O+m)p =0 (421)
(O +m?)e* =0 (422)

where ¢ is regarded as a single-particle wave function. In the nonrelativistic
limit, the Schrodinger equation is obtained as demonstrated in Section Iv.

Formally, the Klein-Gordon equations (421) can be obtained from the U(1)

Lagrangian [46]
£ = (3,0)(0"¢") — m*$¢’ (423)
which is globally invariant. Usually, the Lagrangian (423) is applied to complex

fields, but formally, these can also be wave functions. On the U(1) level, they take
the form

(bx — idy) (424)

-

1

o' = o = —(dx +idy) (425)

S

2
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On the O(3) level, there are three wave functions;

o = \i@ (dx — ithy)
d)(z) = \/LE (bx +idy) (42
0% = ¢,

and it is possible to collect these components in vector form through the relatic
¢ = ¢Pell) +¢e® + 60 = i+ pui + 0k (42

where &y, Oy, ¢, are real-valued. The unit vectors of the circular basis a
defined as

e =—=(i—4)

i+ =

Qﬂ
2
I
=
SRR

Qn the O(3) level, therefore, the probability density of the Schrédinger equatio
is

p=9"e = ¢®ol = oIl (425

- and there are three Schrédinger equations:

2 oo 0p!"

A m_ _;

2mV ¢V = —ih P

K2 5 ad)(?)

i @ _ _;

2mV ¢ = —ik y (4292
R o¢

A (3 _ _;

2mV ¢ = —ik P

4 Wwhich identify d)(l) , d)(z), d)(3) as angular momentum wave functions. Atkins [48
as shown that angular momentum commutator relations can be used to deriv
e laws of nonrelativistic quantum mechanics. So the internal O(3) space, in thi
stance, corresponds to ordinary three-dimensional space. In a U(1) interna
pace, the third component ¢ of angular momentum is missing and th
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» functions are ¢! and $®. In Newtonian and nonrelativistic quantum
1anics, the internal space is therefore O(3). The probability currents of the
odinger equation are

B aoe) g Dgg@
i = i GOV - IV (430)

ok e
j =iz (0PVeE — ¢ vel) =0 (431)

e complex circular basis. In a more general spherical harmonic [68] basis for
.-dimensional space, the angular momentum wave functions are eigenfunc-
s such that

in,m) =Y(0,¢) (432)

re

Ylml(ead)); =1 m=0,%£Il (433)

he spherical harmonics. Therefore, it is also possible to describe the internal
) basis of electrodynamics in terms of spherical harmonics.

'he probability densities of the Klein—-Gordon equation [46] in an O(3) inter-
nasis contains terms such as

Ch (0000
p:’m<¢”7—¢” o 434

» term is usually written as

o h (00 09
P = me <¢ o ¢ or ) (435)

in general can become negative. So the Klein-Gordon equation is abandoned
eneral as an equation for single-particle quantum mechanics. However, for
shoton with mass, the probability density from the Klein—Gordon equation is
tive definite, because it is possible to use the de Broglie wave functions:

¢ = d)(z) = exp (i(or — KZ))
¢ = o) = exp(—i(or —x2))

(436)
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;;;;; to give
B ho
=3 (437
When mass m is the rest mass, the de Broglie theorem states that
moc? = hay (438

and p = 1. For the free photon with mass, the Klein—-Gordon equation gives .
positive definite probability density because the derivative a¢<‘> /ot is no
independent of d)(z). The equation shows that the free photon with mass can als
take on negative energies. Therefore, the vector ¢ in this case can be interprete:
as a single-particle wave function. The probability 4-vector for the photon witl
mass is given by [46]

= i (§°0 — (447)0) (439

2m

which for the de Broglie wave function gives

: hx :
Jz=—— (440
me :
The 4-current /* is conserved:
0" = i=— ("0 — 601" |
=5 (@' 00 - 90¢") a1
If we define
A =A@ + AW +A(3)e(3)
=Axi + Ayj + Azk (442:

- there emerge four Klein-Gordon equations that all give a positive probability
density:
(O+mHa¥ =0, i=0,1,2,3 (443)

T ar.l O(3) invariant theory. In a U(1) invariant theory, there are only twc
uations:

(O+mH)AY =0;  i=1,2 (444)
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The four Klein—-Gordon equations are for the photon regarded as a scalar particle
without spin. If the scalar components A®, A, AP A® are regarded as fields
and quantized, a many-particle interpretation of the photon emerges, and they are
recognized as bosons, which have integral spin. Therefore, in an internal space
that is globally invariant under a gauge transform, the four equations (443) give,
after field quantization (second quantization), a globally gauge invariant Proca
equation

(0 4 m?)A* =0 (445)
where the 4-vector is defined as
AM — (A(O),A(l),A(Z),A(3>) (446)

To an excellent approximation, the four Klein-Gordon equations (443) are
d’Alembert equations, which are locally gauge-invariant.

However, there remains the problem of how to obtain a locally gauge-
invariant Proca equation. To address this problem rigorously, it is necessary
to use a non-Abelian Higgs mechanism applied within gauge theory.

The starting point of our derivation is the globally invariant O(3) Lagrangian
of the Higgs mechanism

L =0,A-0"A" —mPA-A" —M(A-A") (447)
where A and A™ are regarded as independent complex vectors in the O(3) internal

space of the gauge theory. Application of the Euler-Lagrange equations (204)
give the following results:

aa;f = -m’A* — 20A*(A-A") ,
Ny i * (448)
s -m°A—2)A(A-A")
Therefore, at the Higgs minimum
* m _
AA' = =) (449)

The wave equation obtained from Egs. (204) and (448) with the Lagrangian
(447) is

MA = —m’A — 204 (A-A7) (450)

THE PRESENT STATUS OF THE QUANTUM THEORY OF LIGHT 7:
and, at the Higgs minimum, reduces to
0"0,4 =0 (451°

If we define:
A =A@ +A(1)e(2) +A(3)e(3) (452

then four globally invariant d’ Alembert equations are obtained:

gAY =0
0A® =0
) (453)
0A® =0
DA(O) =0

The locally invariant Lagrangian obtained from the Lagrangian (447) is

* l v * *
& =D,A-D'A _ZGuV'G“ —mPA-A —1A-A )2 (454)

where it is understood that
A—ay+A

. . . (455)
A" —a;+A

The following Euler-Lagrange equation is used next with the Lagrangian (454):

0¥ 07
oA, (a@vAu)) (436)

The Lagrangian (454) contains terms such as
D,A-D'A™ = (O, + A x)A - (D" —A*x)A*
= 0,A-0"A" 4+ gA, X A-T'A” — gD, A A" x A"
—g*(Au x A)+ (A" x A") (457)

and a field equation emerges from the analysis by using

0¥
—— =gA x A" — g2 (A*(A-A") — A*(A-AY))
oA,

= —g0"A" x A + g% (A" xA") x A

= ~gD'A* x A (458)
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giving
D,G" = —gD"A™ x A (459)

At the Higgs minimunm, this field equation reduces to the locally gauge-invariant
Proca equation

D,G" = —g’ay x (A" x aj}) (460)
and the Lagrangian reduces to
1
K = —ZGP\,°G“" — g% (A, x ap)* (A" x ap) (461)

Therefore, it can be seen that the mass of the photon in this analysis is derived
from the Higgs vacuum, which is the minimum of the potential energy term in
the Lagrangian (454). The field equation (460) is O(3) invariant and, therefore,
the existence of photon mass is made compatible with the existence of the BY
field, as inferred originally by Evans and Vigier [42]. The Higgs mechanism is
the basis of much of modern elementary particle theory; thus this derivation is
based on rigorous gauge theory that is locally O(3) invariant.

VII. THE LEHNERT CHARGE CURRENT DENSITIES
IN O(3) ELECTRODYNAMICS

We have established that, in O(3) electrodynamics, the vacuum charge current
densities first proposed by Lehnert [42,45,49] take the form

Ju(vac) = g0, A x A + g°A x (A X A)) (462)

In this section, we illustrate the self-consistent calculation of these charge current
densities in the plane-wave approximation, using plane waves in the X, ¥, and Z
directions. In general, the solution of the field equation (459) must be found
numerically, and it is emphasized that the plane-wave approximation is a first
approximation only. In the internal space, there is the real vector:

A = Axi+ Ayj + Azk (463)

and by definition

Ay =Axi+Auyj +Auzk (464)
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First, we consider a plane-wave propagating in the Z direction, so that

A A0 ¢ A
= ———sinpi+-—=cosdj+Azk 4€

and adapt the following notation:
Az = Aszk = —Azk (4¢€

Elementary vector algebra then gives

2°A x (A x A3) = K*(—Axi — Ayj + Azk) (46
and
8074 x A = kA <k+isin¢i—icos¢j) (46
V2 V2

The i and j terms must cancel, so we obtain the following, self-consistently:

A0 A0

Ax = ———=sin¢; Ay = — 46
X 7 ¢ ¥ ﬁcoscb (

The Lehnert vacuum current density for a plane wave in the Z direction
therefore

k24

Ho

7z =72 k (47

If this is used in the third equation of Eq. (83), the B cyclic theorem [47-61]
. Tecovered self-consistently as follows. Without considering vacuum polarizatic
and magnetization, the third equation of Egs. (83) reduces to

VxB® =0 (47

: because B is phaseless and E is zero by definition. This must mean that there is
~ balance of terms on the right-hand side, giving

kB3 — —igA“) % B

47
kB3 = —igA(z) x BW (
50 that

KAQBG>* — _jea) « @) (47
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giving the B cyclic theorem self-consistently: and are accompanied by a vacuum charge density:

1 2) _ p(0)p(3)* 74 : 240

BWY x B® — ;OB (474) : p:ZK “
o o

The Lehnert charge density for a plane wave propagating in the Z direction is

obtained similarly as These results are obtained self-consistently from using plane waves in the X

21240 and X directions.

HoC

(475)

VIII. EMPIRICAL TESTING OF O(3) ELECTRODYNAMICS:

If a plane wave is now considered propagating in the X direction, the vector INTERFEROMETRY AND THE AHARONOV-BOHM EFFECT

i internal space is defined as . o .
e n P In order to form a self-consistent description [44] of interferometry and

Aharonov-Bohm effect, the non-Abelian Stokes theorem is required. It
necessary, therefore, to provide a brief description of the non-Abelian Sto
theorem because it generalizes the ordinary Stokes theorem, and is based on
following relation between covariant derivatives for any internal gauge grc
symmetry:

A© A© .
A=———sindj+—=cosdp k+ Axi (476)
N RSN

and it can be shown that the Lehnert vacuum current in the X direction is given
self-consistently from Eq. (462) by

Ho

i (477)

1 v .
Jx =12 %Dudxu:_EJ[DuaDV]dcp (4(

M] Finally, if we consider a plane wave propagating in the Y direction, the vector 1n This expression can be expanded in general notation [46] as
the internal space is given by

. 1 . . v
b 40 40 %(6ll —igA,)d* = — EJ [0, — igA,, 0y — igAy]do* (4¢
“ A=———gsinbk+—=cosdi+Ayj (478)
‘1\1 \/§ ¢ \/§

and the vacuum current density is given by

where g is a coupling constant, and A, is the potential for any gauge gro
symmetry [44]. The coupling constant in the vacuum is

j (479) g=—= (4¢

A0)

as used throughout this review and the review by Evans in Part 1 of this thre

i to obtain self-consistent results from Eq. (462), it is necessary .
Therefore, in order to obtain se oo e T

!

‘ . . . . .

N to consider plane waves in all three directions. This is as far as an analytical
| approximation will go. In order to obtain solutions from the field equation (459),
i computational methods are required. o

In summary, the Lehnert current densities in the Z, X, and Y directions, re-

spectively, are

%ap dx* = [0,,8,] = 0 (48

| are zero because by symmetry

j (480)

0,0, = 8,0y (48
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SO
{wudx“ _ —%j 0, &) daH’ =0 (487)
It can also be shown, as in the earlier part of this review, that
[Au, 0] = —0vA; [0, AV]) = O, Av (488)
Therefore a convenient and general form of the non-Abelian Stokes theorem is
1 %
f{;Audx“ = —EJGpvdGu (489)
where the field tensor for any gauge group is
Gy = 0,A, — 0A, — ig[Ay, AV (490)

Equation (489) reduces to the ordinary Stokes theorem wher.l U(1) covariant
derivatives are used. First, define the units of the vector potential as

A, = (¢,cA) (491)

and the units of the U(1) field tensor as

r E1 Ez E3 1
o T T =
_ _E_l 0 B; —-B»
Fo= c (492)
wv =
_B -B; O By
c
— E B, —B 0
| C =

Summing over repeated indices gives the time-like part of the U(1) Stokes

theorem:
%d)d: = 51_2 (J Exdc"™ + jEch°2> (493)
c

where the SI units on either side are those of electric field strength multiplied by
area. Summing over the space indices gives

1 i
pavae = =3 [ruao” (4
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which can be rewritten in Cartesian coordinates as

AxdX = J Bydo'?

AydY = J Bydo™

AzdZ = J Bydc*Y
or as the vector relation
ng-dr = JB-dAr

which is the ordinary Stokes theorem in Maxwell-Heaviside ele
the vacuum, A is a plane wave and is perpendicular to the prog

%Ade:O, VXAszO
which is self-consistent with Az = 0 for Maxwell-Heaviside el
If electrodynamics is a gauge theory with internal O(3) gaug
try, however, there are internal indices and the vector potentia
A, = Af)e“) +A£ll)e(2) +Af)e(3)

The field tensor is similarly

Gy = GEIZV)e(l) + Gillv)e(Z) + GSv)e(B)
where

el 5 g2 — jp03)s

In O3) electrodynamics therefore, Eq. (482) gives a term such

3€A§3)dx3 = —i% (J A", AP do"? + J A", A% do?

which reduces to

3€A<Z3)dz = —igJ[AQ),A(Y”]dAr = JB?)dAr
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Both A and B® are longitudinally directed and are nonzero in the vacuum.
Both A® and B® are phaseless, but propagate with the radiation [47-62] and
with their (1) and (2) counterparts. The radiated vector potential A® does not
give rise to a photon on the low-energy scale, because it has no phase with which
to construct annihilation and creation operators. On the high-energy scale, there
is a superheavy photon [44] present from electroweak theory with an SU(2)x
SU(2) symmetry. The existence of such a superheavy photon has been inferred
empirically [44]. However, the radiated vector potential A is not zero in O(3)
electrodynamics from first principles, which, as shown in this section, are
supported empirically with precision.
On the O(3) level, there are time-like relations such as

(503)

%Aodxo = JaoAv - aVAQ — ig[Ao,Av] dO’mV)

1

2
which define the scalar potential on the O(3) level. The constant A® can be
expanded in a Fourier series:

2

1 1
AZZAZ<%—4(COS¢—ZCOS2¢ +§cos3¢+---)> (504)

where o is chosen so that

b=t —xZ+ o (505)
is always one radian. So both the scalar and vector potentials in O(3) have
internal structure.

The non-Abelian Stokes theorem gives the homogeneous field equation of
O(3) electrodynamics, a Jacobi identity in the following integral form:

1

%Dp a + EJ D, D]dc* = 0 (506)

To prove this, we again use
1 ,
%Du av = — EJ D, Dy) o™ (507)

to obtain the identity

1

EJ([D“’DV] — [Dy,Dy])da* =0 (508)
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whose integrand is the identity
[DuaDv] - [D;uDv] =0 (50!

From this, we obtain the Jacobi identity

Z [Ds, [Dy, D[] =0 (51¢

SHTRY

straightforwardly for all group symmetries, including, of course, O(3). Tt
homogeneous field equation in O(3) can be written in differential form as

DHG“V =0
= D'G" + D"G"* + D'G™ (51
and the equivalent in U(1) electrodynamics in the differential form is
F™ =0
= "W 4+ HFVE - VP (512
As discussed in the earlier part of this review, Eq. (511) is an identity betwee

generators of the Poincaré group, which differs from the Lorentz group becaus
the former contains the generator of spacetime translations

p =10y, (51:

a group generator that also obeys the Jacobi identity. So we can write

>~ [Po, [0y, D =0 (51

SRTRY

which is:
DG =0 (51¢

and it follows that Eq. (515) can be written as

3,G" =0
N (51€
A xG" =0
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The homogeneous field equation (515) of O(3) electrodynamics therefore
reduces to

vV x EW 4 B _,
ot
@)
vV x E® +az;t =0 (517)
oB®
ot 0

Equation (515) can be expanded into the O(3) Gauss and Faraday laws

VB = ig(A®-BO) — B2 .A®)) =0 (518)

0B
VX EW 4 = —ig(cAYB? — cAPB® + 4D x E® — AP x E?))
(519)

which are homomorphic with the SU(2) invariant Gauss and Faraday laws given
by Barrett [50]:

V:B=—ig(A-B - B-A) (520)

0B
V x B+ = ~ig([A0.B] + A x E ~ E x A) (521)

The vacuum O(3) and SU(2) field equations, on the other hand, are more
complicated in structure and highly nonlinear. The O(3) inhomogeneous field
equation is given in Eq. (323) and must be solved numerically under all
conditions.

These field equations are therefore the result of a non-Abelian Stokes theo-
rem that can also be used to compute the electromagnetic phase in O(3) elec-
trodynamics. It turns out that all interferometric and physical optical effects are
described self-consistently on the O(3) level, but not on the U(1) level, a result
of major importance. This result means that the O(3) (or SO(3) = SUQ)/Z2)
field equations must be accepted as the fundamental equations of electrody-
namics.

If we define

A0 = |A(Z3)|; g= (522)

K
A0)
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then an equation is obtained for optics and interferometry:
% dZ =x JdAr (523

which relates the line integral on the left-hand side to the area integral. Multi
plying both sides of Eq. (523) by k gives a relation between the dynamical phas
and topological phase on the right-hand side [44]:

K% dZ = «* JdAr (524

Application of an O(3) gauge transform to Eq. (502) results in

48— 4P 1 Lo,n0
8 (525
BY — sB)s!
So after gauge transformation
1
_‘f) <A<Z3> + gaZA<3>> dzZ = JSB‘Z”S-l dAr (526)

. 3. ... .
and if A(Z) is initially zero (vacuum without the Higgs mechanism), the gauge
transform produces the nonzero result:

f};azA(3)dZ = AN = JSB(Z”S—ldAr (527)
which is the Aharonov—Bohm effect, developed in more detail later.

The time-like part of the gauge transform gives the frequency shift [44]:

aAB)

0 — 0+
ot

=0+0 (528)

e left-hand side of Eq. (523) denotes a round trip or closed loop in Minkowski

:;cetiine [46]. On the U(1) level, this is zero in the vacuum because the line
ntegra

f};dz - KJdAr (529)
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reduces in U(1) to a line integral of the ordinary Stokes theorem and is zero. In
0(3) electrodynamics, Eq. (529) is a line integral over a closed path with O(3)
covariant derivatives and is nonzero.

In the Sagnac effect, for example, the closed loop and area can be illustrated

as follows:

C A

There is no Sagnac effect in U(1) electrodynamics, as just argued, a result that is
obviously contrary to observation [44]. In O(3) electrodynamics, the Sagnac
effect with platform at rest is given by the phase factor [44]

exp (zi{> k) °dr> = exp (ix*Ar) (530)
A-C

because on the O(3) level, there is a component k) that is directed in the path r.
The phase factor (530) gives the interferogram

>
Y = cos (2 —C?Ar + 2nn> (531)

as observed. The Sagnac effect with platform in motion is a rotation in the
internal gauge space given by Eq. (528), which, when substituted into Eq. (530),
gives the observed Sagnac effect to high accuracy:

QA
Ay = cos (4(0 5 " 2nn> (532)
c

The Sagnac effect is therefore due to a gauge transformation and a closed loop in
Minkowski spacetime with O(3) covariant derivatives.

If we attempt the same exercise in U(1) electrodynamics, the closed loop
gives the Maxwell-Heaviside equations in the vacuum, which are invariant un-
der Tand that therefore cannot describe the Sagnac effect [44] because one loop
of the Sagnac interferometer is obtained from the other loop by T symmetry.
The U(1) phase factor is of — KZ + o, where o is arbitrary [44], and this phase
factor is also T-invariant. The Maxwell-Heaviside equations in the vacuum are
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also invariant under rotation, and are metric-invariant, so cannot describe 1
Sagnac effect with platform in motion.

Physical optics, and interferometry in general, are described by the phe
equation of O(3) electrodynamics, Eq. (524). The round trip or closed loop
Minkowski spacetime is illustrated as follows:

OA AO

over one wavelength A of radiation. If k = k/A”), the area is shown straig
forwardly to be

)\‘2
Ar = P (53

and if g is proportional to x /A(?), the area is proportional to A2 /7. Only the Z a3
contributes to the left hand side of Eq. (524), which correctly describes .
physical optical and interferometric effects. The closed loop is zero in U(
electrodynamics because the line integral in Eq. (524) is zero from the ordina
Stokes theorem. Therefore Maxwell-Heaviside electrodynamics cannot descri
optics and interferometry. The root cause of this failure is that the phase
random on the U(1) level.

The description of Young interferometry for electromagnetism is obtain
immediately through the fact that the change in phase difference over traje
tories 1 and 2 illustrated below

8 given by

_ K 3
AS#W 271A( )'dI‘:KAr (531
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where A®? = |A®|, and where A® is directed along the path r in the vacuum.
Equation (536) gives the correct result for Young interferometry for vacuum
electromagnetism:

Ad =xAr = 2Tﬂ:Ar (535)

The change in phase difference of the Young experiment is related through the
non-Abelian Stokes theorem to the topological

Ad =g J B¥dAr (536)

which is an integral over the B field of O(3) electrodynamics. The Young
interferometer can therefore be regarded as a round trip in Minkowski spacetime
with O(3) covariant derivatives, as can any type of interferometry or physical
optical effect. If an attempt is made to describe the Young interferometer as a
round trip with U(1) covariant derivatives, the change in phase difference (534)
vanishes because the vector potential in U(1) electrodynamics is a transverse
plane wave and is always perpendicular to the path. So on the U(1) level

A8 =0 (537)

and there is no Young interferometry, contrary to observation. The same result
occurs in Michelson interferometry and therefore in ordinary reflection [44].

The O(3) description of the Aharonov—Bohm effect relies on developing the
static magnetic field of a solenoid placed between the two apertures of the
Young experiment as follows

B = —igA) x A (538)
where

A0 .
A = AP =T (i + j)e™ (539)

V2

are nonpropagating and transverse. On the O(3) level, the following gauge
transformations occur:

1
Al — Al + -3,
@) _, 4@ f @) 540
Aj A, +§apA
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This means that on O(3) gauge transformation

A 40 —f-A(])I
A® 5 A® L 4

In regions outside the solenoid, the static magnetic field is represented
SBS! = —igd(1)' 5 o)
and is not zero. The Aharonov-Bohm effect is therefore described by

e

Ad
/]

J SBP)s~1.4s

as observed [46]. On the U(1) level, the static magnetic field is represer
B=VxA

* but in regions outside the solenoid

B:Vx<1VA>:0
8

and the magnetic field is zero. So there is no Aharonov—Bohm effect on tl
evel because B is zero in the integral (543). This has also been pointed
arrett [50] with an O(3) invariant electrodynamics.

Therefore, in this section, several effects have been demonstrated to
scribable accurately by O(3) electrodynamic and to have no explanation ¢
Maxwell-Heaviside electrodynamics. It is safe to infer, therefore, the
lectrodynamics must replace U(1) electrodynamics if progress is to be

IX. THE DEBATE PAPERS

There has been an unusual amount of debate concerning the development «
lectrodynamics, over a period of 7 years. When the B field was first pre
4'8], it was not realized that it was part of an O(3) electrodynamics homom
ltl'l Barrett’s SU(2) invariant electrodynamics [50] and therefore had :
asis in gauge theory. The first debate published [70,79] was between Barr
. Evans. The former proposed that B® violates C and CPT symmetry. T
Trect assertion was adequately answered by Evans at the time, but it -
ear that if B® violated C and CPT, so would classical gauge theory, a red
absurdity. For example, Barrett’s SU(2) invariant theory [50] would vic
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and CPT. The CPT theorem applies only on the quantum level, something that
Barron did not seem to realize.

In chronological order, the next critical papers to appear were by Lakhtakia
[71] and Grimes [72]. Both papers are obscure, and were adequately answered
by Evans [73]. Neither critical paper realized that the B field is part of a clas-
sical gauge theory homomorphic with the SU(2) invariant theory by Barrett,
published earlier in a volume edited by Lakhtakia [50] himself. This fact reflects
the depth of Lakhtakia’s confusion. Critical papers were published next by
Buckingham and Parlett [74] and by Buckingham [75], essentially duplicating
Barron’s argument. If these papers were correct, then classical gauge theory
would violate CPT and T, a reduction to absurdity. This has been pointed out
by Evans [42] and by Evans and Crowell [76]. The next critical paper to appear
was by Lakhtakia [77], answered by Evans [78]. Lakhtakia had already pub-
lished Barrett’s SU(2) invariant theory [50] 2 years earlier, so his critical paper
is invalidated by the fact that the SU(2) and O(3) invariant theories discussed,
for example, in the preceding section, are homomorphic. Then appeared a paper
by Rikken [79] answered by Evans [80]. The former claimed erroneously that
B is a nonradiated static magnetic field and set about finding it experimentally
on this basis. His estimate was orders of magnitude too big, as pointed out by
Evans [42] and in the third volume of Ref. 42. The correct use of B gives the
empirically observed inverse Faraday effect [42].

These papers were followed by a letter by van Enk [81], answered by Evans
[82]. Although not denying the possibility of a B®, van Enk made the error of
arguing on a U(1) level, because, again, he did not realize that B® is part of an
O(3) invariant electrodynamics and does not exist on the U(1) level. All critical
papers cited to this point argued on the U(1) level and are automatically incor-
rect for this reason. This error was next repeated by Comay [83], who was
answered by Evans and Jeffers [84]. Comay attempted to apply the ordinary
Abelian Stokes theorem to B> and is automatically incorrect because the
non-Abelian Stokes theorem should have been applied. The Lorentz covariance
of the B cyclic theorem was next challenged by Comay [85], and answered
by Evans [86]. The B cyclic theorem is the basic definition of B® in an
O(3) invariant gauge theory, which is therefore automatically Lorentz covariant,
as are all gauge theories for all gauge group symmetries. Comay [87] then
challenged the ability of B® theory to describe dipole radiation and was an-
swered by Evans [42,88]. It is clear that an O(3) or SU(2) invariant electrody-
namics can produce multipole radiation of many types. These comments by
Comay are therefore trivially incorrect, not least because they argue again on
the U(1) level.

Two papers by Raja et al. [89,90] erroneously claimed once more that B is
a static magnetic field and should have produced Faraday induction vacuo.
These papers were answered by Evans [91,92]. In the O(3) invariant electrody-
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namics defining B(3), the latter is a radiated, phaseless, field, and does not pro-
duce Faraday induction.

Independent confirmation of the invariance of the B cyclic theorem was next
produced by Dvoeglazov [93], but he did not argue on the O(3) level as re-
quired. His argument is therefore only partially valid, but produces the correct
result.

Comay [94] then repeated the earlier arguments [69,74] on C and CPT
violation and was answered by Evans and Crowell [76], who showed that all
gauge theories trivially conserve CPT and C on the quantum level. Comay again
made the error of arguing on the U(1) and classical levels, whereas B® exists
only on the O(3) level and the CPT theorem exists only on the quantum level.
The argument by Comay using the Stokes theorem [83] was next duplicated by
Hunter [95], who again argued erroneously on the U(1) level. The reply to Hun-
ter [96] pointed this out. Next in chronological order, Hunter again duplicated
Comay’s argument [97] and was again replied to by Evans [98], on the correct
0(3) level. Additionally, Comay and Dvoeglazov [99,100] have argued erro-
neously on the U(1) level concerning the Lorentz covariance of the B cyclic the-
orem, something that follows trivially from the O(3) gauge invariance of the
gauge theory that defines B®.

The preceding section, and a review in Part 1 of this compilation, supply
copious empirical evidences of the fact that the B> field is part of the topo-
logical phase that describes interferometry through a non-Abelian Stokes theo-
rem. Therefore, the early critical papers are erroneous because they argue on a
U() level.

X. THE PHASE FACTOR FOR O(3) ELECTRODYNAMICS

The phase factor in classical electrodynamics is the starting point for
quantization in terms of creation and annihilation operators, and so it is
important to establish its properties on the classical O(3) level. In this context,
Barrett [50] has provided a useful review of the development of the phase factor,
and Simon [101] has shown that the phase factor is in general due to parallel
transport in the presence of a gauge field. On the O(3) level, therefore, the phase
factor must be due to parallel transport around a closed loop in Minkowski
Spacetime (a holonomy) with O(3) covariant derivatives and is governed by the
hon-Abelian Stokes theorem, Eq. (482). This inference means that all phases in
9(3) electrodynamics have their origin in topology on the classical level. This
inference is another step in the evolution of understanding of topological phase
effects. As pointed out by Barrett [50], the origin of such effects was the
development of the Dirac phase factor by Wu and Yang [102], who argued that

€ wave function of a system will be multiplied by a path-dependent phase
’factor after its transport around a closed curve in the presence of a potential in
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ordinary space. This process is now understood to be the origin of the non-
Abelian Stokes theorem (482) and to explain the Aharonov—Bohm effect. The
phases proposed by Berry [103], Aharonov and Anandan [104], and Panchar-
atnam [105] are due to a closed loop in parameter or momentum space. These
effects occur both on the classical and quantum levels [SO].

Originally, Berry [103] proposed a geometric phase for a nondegenerate
quantum state that varied adiabatically over a closed loop in parameter space.
This occurred in addition to the dynamical phase. It was shown later [50] that
the effect is present without the need for an adiabatic approximation, and is also
present for degenerate states. Aharonov and Anandan [104] showed that the ef-
fect is present for any cyclic evolution of a quantum system, and Bhandari and
Samuel [106] showed that the effect is closely related to the geometrical phase
discovered by Pancharatnam [105]. The topological phase, therefore, has its ori-
gin in topology, either on the classical or quantum level, and is equivalent to a
gauge potential in the parameter space of the system on the classical or quantum
level.

There are at least three variations of topological phases [50]:

1. A phase arising from cycling in the direction of a beam of light

2. The Pancharatnam phase from cycling of polarization states while keeping
the direction of the beam of light constant, a phase change due to polari-
zation change

3. The phase change due to a cycle of changes in squeezed states of light

If the topological phase is denoted ®, then it obeys the conservation law

(C) =—g %A dr (546)

and occurs on the classical level from polarization changes due to changes in the.
topological path of a light beam. The angle of rotation of linearly polarized light
is a direct measure of the topological phase at the classical level. An example of
this is the Sagnac effect, which can be explained using O(3) as discussed already.
The Sagnac effect can be considered as one loop in the Tomita—Chiao effect
[107], which is the rotation of the plane of polarization of a light beam when
propagating through an optical fiber.

The next level in the evolution of understanding of the electromagnetic phase
is to consider that all optical phases are derived from the non-Abelian Stokes
theorem (482), so all optical phases originate in the phase factor

1
y=-expl|igdD,dx" ) =exp| —=ig|[D,, Dy dc"
H 2 H

(547)
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which originates directly in the non-Abelian Stokes theorem (482). Therefore, ¢
the O(3) level, all optical phases are topological in origin. We have brief
discussed how the phase factor reduces to a line integral over the dynamic
phase and this property of Eq. (547) is also reviewed in Part 1 by Evans [44].
has been argued that the most general equation (547) reduces to

Y = exp (ig %AMx“) = exp (—i% J G do-”v> (54

for a round trip in Minkowski spacetime for all internal gauge group symmetrie
D The notation used in Eq. (548) is the condensed notation used by Ryder [46],
 which the field tensor is in general defined by

Gu = 0,4, — DA, — iglA,, A,] (54¢

In free space, as argued already, the factor g is k /A,
If we attempt to apply Eq. (548) on the U(1) level, relations such as

Y = exp (ig %A -dr) = exp (igJB-dAr) (55(

are obtained. In free space, on the U(1) level, A is, however, a plane wave, and
therefore always perpendicular to the path r of the radiation. Therefore, on tt
U(1) level in free space

%A-drsz%iAr:O (551

: On the O(3) level in free space, however, relations such as

Y = exp (igiﬁA“) -dr) = exp <ig JB(3) -dAr) (55:

are obtained, where A® is parallel to the path of the radiation. Using g = x/A{
I free space, Eq. (552) reduces to

Y = exp <i4;1<(3) -dr) = exp (igJB(3) -dAr) (55:

_ and the left-hand side can be recognized as a line integral over what is usuall
; termed the dynamical phase. By definition, the line integral changes sign o
. traversing a closed loop from O to A to A to O, and this fundament:
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mathematical property is responsible for all optics and interferometry as argued
in this review and in Ref. 44. This inference is an evolution in understanding of
the phase in optics and electrodynamics.

The B® field appearing on the right-hand side of the non-Abelian Stokes
theorem (553) changes sign [47—62] between left- and right-handed circularly
polarized states, and a linearly polarized state is a superposition of two circu-
larly polarized states. This inference gives rise to Pancharatnam’s phase, which
is due to polarization changes and also to the phase caused by the cycling of the
tip of the vector in a circularly polarized electromagnetic field. Therefore, we
reach the important conclusion that the B® field is an observable of the phase
in all optics and electrodynamics. It has been argued briefly in this review and in
Part 1 of this series [44] that the B® field provides an explanation of the Sagnac
effect.

The U(1) phase factor in the received view, on the other hand, is well known

to be
v = exp(i(wt —x-r+a)) (554)

where o is an arbitrary number. So the phase factor (y) is defined only up to an
arbitrary o, an unphysical result. If oo =0 for the sake of argument, the phase
factor () is invariant under motion reversal symmetry (7) and parity inversion
symmetry (P) [44]. Since one loop of the Sagnac effect is generated from the
other by 7, it follows that the received phase factor () is invariant in the Sagnac
effect with platform at rest and there is no phase shift, contrary to observation
[44]. The phase factor (553), on the other hand, changes sign under 7 and
produces the observed Sagnac effect. The phase factor (554) is invariant under P
and cannot explain Michelson interferometry or normal reflection [44]. The
phase factor (553) changes sign under P and explains Michelson interferometry
as observed [44]. We have argued earlier in this review that the phase factor (553)
also explains Young interferometry straightforwardly.

Therefore, the distinction between the topological and dynamical phase has
vanished, and the realization has been reached that the phase in optics and elec-
trodynamics is a line integral, related to an area integral over B® by a non-
Abelian Stokes theorem, Eq. (553), applied with O(3) symmetry-covariant de-
rivatives. It is essential to understand that a non-Abelian Stokes theorem must
be applied, as in Eq. (553), and not the ordinary Stokes theorem. We have also
argued, earlier, how the non-Abelian Stokes explains the Aharonov-Bohm effect
without difficulty.

We also infer that, in the vacuum, there exists the topological charge

1
&m = V({)Apd/\:p (555)
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where Vis a volume, and for one photon, the quantum of electromagnetic energy,
the phase becomes

d):g(};A(”-dr:gJ'Bm-dAr:il (556)
where g = k/A©)_ The flux due to one photon is classically

~ (0)
‘B@) caar=A_ 1 (557)
) K

e
and so we have the quantum classical equivalence
eAY = fix (558)

which is a Planck quantization. In quantum theory, the magnetic flux of one
photon is +7/e, depending on the sense of circular polarization.

It can be shown that the Sagnac effect with platform at rest is the rotation of
the plane of linearly polarized light as a result of radiation propagating around a
circle in free space. Such an effect cannot exist in the received view where the
phase factor in such a round trip is always the same and given by Eq. (554).
However, it can be shown as follows that there develops a rotation in the plane
of polarization when the phase is defined by Eq. (553). It is now known that the
phase must always be defined by Eq. (553). Therefore, proceeding on this infer-
ence, we construct plane polarized light as the sum of left and right circularly
polarized components:

Re(i — if)e'® = cosdi+ sindj (559)
Re(i — ij)e™™ = cosdi — sindj (560)

Wht?re .the phase factor ¢'® is given by Eq. (553). Plane-polarized light at the
beginning of the 180° round trip of the Sagnac effect is therefore

(i —if)(e® + e ) = 2icosd (561)

The round trip of the Sagnac effect in a given—say, clockwise—direction

Produces the effect
(i — if)e @) 4 (i — if)e(4=ds) (562)

Where

b = g<1>A(3> dr=g ‘ BY -dAr (563)



is generated by the round trip over 27 radians. The extra phase factor for the left
circularly polarized component is ¢;, and the extra phase factor for the right
circularly polarized component is —¢g because B changes sign between senses
of circular polarization. The effect of the round trip in the Sagnac effect on the
plane of linearly polarized light is therefore

(cos (b + bs) + cos (¢ — bs))i + (sin(¢ + bg) + sin($ — &)} (564)
Using the angle formulas
cos(A + B) = cosAcos BF sinAsinB
(565)
sin (A £ B) = sinA cos B = cos A sin B
the effect can be expressed as
2cos d(icos g — jsindg) (566)

The original plane-polarized light at the beginning of the round trip is described
by

2cos §i (567)
so the overall effect is to rotate the plane of polarized light. Therefore, a linearly
polarized laser beam sent around an optical fiber in a circle arrives back at the
origin with its plane rotated as in Eq. (566). This is a description of the Sagnac
effect with the platform at rest. Spinning the platform produces an extra phase
shift that is described [44] by a gauge transformation of A® [a rotation in the
physical O(3) internal space]. This extra phase shift produces an extra rotation in
the plane of polarization of linearly polarized light.

Therefore, it becomes clear that the Sagnac effect is one loop of the Tomita—-
Chiao effect [107], which is the rotation of the plane of a linearly polarized light
beam sent through a helical optical fiber. In both the Sagnac and Tomita—Chiao
effects, the angle of rotation (or phase shift) is a direct measure of the phase
factor (), whose origin is in topology. A circle can always be drawn out into
a helix of given pitch (p), length(s), and radius (7). This can be seen by straigh-
tening out the helix into a line, and bending the line into a circle. So the Tomita—
Chiao effect must reduce to the Sagnac effect for this reason. The former effect
can be expressed in general as

o= 2n(1 —’—;)gJB@)-dAr (568)

gJB(” “dAr = +1

Therefore, the Tomita—Chiao effect reduces to the Sagnac effect w

condition
2 (1 - 3) _ 1
S

that 1s

1
2n

p
S
or when the pitch:length ratio of the helix is this number, which
consistently less than one (the length s is always greater than the pitch

The received view, in which the phase factor of optics and electrodyn
given by Eq. (554), can describe neither the Sagnac nor the Tomita—-C
fects, which, as we have argued, are the same effects, differing only by
try. Both are non-Abelian, and both depend on a round trip in Mi
spacetime using O(3) covariant derivatives.

Having argued thus far, it becomes clear that the phase factor (553
generalized and put on a rigorous footing in topology [50]. It is precise
ned from a set of angles associated with a group element, and only ¢
angle can correspond to a holonomy transformation of a vector bundle
a closed curve on a sphere. For example, in a SU(2) invariant electrody
there is a single angle from the holonomy of the Riemannian connecti
§phere. Thus, we infer that gauge structure appears at a very fundamen
in all optical effects that depend on the electrodynamical phase. We
dinfer new effects, for example, if the helix of the Tomita—Chiao exper
spun, an effect equivalent to the Sagnac effect should be observable. 1
e.ral conclusion is that all electrodynamical phases are non-Abelian, ar
flzation proceeds naturally on this basis. For example, Berry’s phase 1
inferred in quantum mechanics. We can conclude that all phases are topc
The properties of the phase factor (548) on O(3) gauge transformati
been shown [47] to explain the Sagnac effect with platform in motion.
nsed notation, gauge transformation produces the results

_ i
A, =SA,S5" _g(auS)ASP1
G, =5Gu,s™!
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where S is defined by

S = exp(iM?A%(x")) (573)
In the O(3) gauge group, M? are rotation generators, and A are angles in thr.ee-
dimensional space, which coincides with the internal gauge space. Botatlon
about the Z axis leaves the B field unaffected. In matrix notation, this can be
demonstrated by

0 —-B; O cosa sina O 0 -Bz; O coso. —sina O
Bz 0 O0|=]|—-sina cosa O] |Bz 0o O sine. cosa O
0 0 0 0 0 1 0 0 O 0 0 1
(574)
The gauge transformation of Az has been shown [44] to be given by
1
Az — Az +—0z0 (575)
8
Therefore, the phase factor on O(3) gauge transformation becomes
exp (igf#(AG) + Va) -dr) = exp (ig JB(3> -dAr) (576)
and using the property
T}EVowdr =0, ie, Vx(Va)=0 (577)

it is seen that the phase factor is invariant under an O(3) gauge transformation.
The phase factor, however, contains only the space part of the complete expres-
sion (548). Gauge transformation of the time part gives the result [44]

oo

=3 (578)

o— ot Q

which explains the Sagnac effect with platform in motion. . .
On the U(1) level, the ordinary Stokes theorem applies, and this can be writ-

ten as

f{m-dr:-[v x A +dAr (579)
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which is gauge-invariant because of the property

%vx.dr:o (580)
which is equivalent to the fundamental vector property:
Vx(Vy)=0 (581)

However, as argued, A is always perpendicular to the path r on the U(1) level, and
so the phase factor (548) cannot be applied on this level.

Barrett [50] has interestingly reviewed and compared the properties of the
Abelian and non-Abelian Stokes theorems, a review and comparison that makes
it clear that the Abelian and non-Abelian Stokes theorems must not be confused
[83,95]. The Abelian, or original, Stokes theorem states that if A(x) is a vector
field, S is an open, orientable surface, C is the closed curve bounding S, dl is a
line element of C, n is the normal to §, and C is traversed in a right-handed
(positive direction) relative to 7, then the line integral of A is equal to the surface
integral over S of V x A-n:

j@A-dl = L (V xA)nda (582)

and, as pointed out by Barrett [50], the original Stokes theorem just described
takes no account of boundary conditions.

In the non-Abelian Stokes theorem (482), on the other hand, the boundary
conditions are defined because the phase factor is path-dependent, that is, de-
pends on the covariant derivative [50]. On the U(1) level [50], the original
Stokes theorem is a mathematical relation between a vector field and its curl.
In O(3) or SU(2) invariant electromagnetism, the non-Abelian Stokes theorem
gives the phase change due to a rotation in the internal space. This phase change
appears as the integrals

jQA“) -dr = JB(3) -dAr (583)

which do not exist in Maxwell-Heaviside electromagnetism. There is a profound
ontological difference therefore between the original Stokes theorem, in which
B® g zero, and the non-Abelian Stokes theorem, in which B®® is nonzero and of
key importance. Therefore progress from a U(1) to an O(3) or SU(2) invariant
electromagnetism is a striking evolution in understanding, as argued throughout
Ref. 44 and references cited therein and in several reviews of this volume.
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Equation (482) is a simple form of the non-Abelian Stokes theorem, a form
that is derived by a round trip in Minkowski spacetime [46]. It has been adapted
directly for the O(3) invariant phase factor as in Eq. (547), which gives a simple
and accurate description of the Sagnac effect [44]. A U(1) invariant electrody-
namics has failed to describe the Sagnac effect for nearly 90 years, and kine-
matic explanations are also unsatisfactory [50]. In an 0O(3) or SU(2) invariant
electrodynamics, the Sagnac effect is simply a round trip in Minkowski space-
time and an effect of special relativity and gauge theory, the most successful
theory of the late twentieth century. There are open questions in special relativ-
ity [108], but no theory has yet evolved to replace it.

By using the O(3) invariant phase factor (547), we have also removed the
distinction between the topological phase and the dynamical phase, reaching,
as argued earlier, a new level of understanding in all optical effects that depend
on electromagnetic phase.

For example, the description of the Aharonov-Bohm effect and other types
of interferometry become closely similar. The Young interferometer, for exam-
ple, is described by

K K
— Gegr—=—_|1BA.
0 +2—1A dr 20 JB as (584)
and the Aharonov—-Bohm effect can be described by
e e e
—¢ AP-4 :-JB<3>-ds =-o® 585
A i,l " A (585)
In both cases, the magnetic flux
3% = JB<3> -dS (586)

is generated by the round trip in Minkowski space with O(3) covariant
derivatives (holonomy) on the left-hand side of Egs. (584) and (585). So the
original magnetic field inside the solenoid does not contribute to the Aharonov-
Bohm effect, as pointed out by Barrett [50], and the U(1) invariant description
[46] of the effect is erroneous. The effect is due to the magnetic field B® of O(3)
electrodynamics. The Sagnac, Michelson, and Mach-Zehnder effects, and all
interferometric effects are similarly described by Eq. (584), and all interfero-
metry and optics originate in topology. The only difference between these effects
and the Aharonov—Bohm effect is that in the latter, interaction with electrons
takes place, so the factor k/A”) is replaced by e/ in a minimal prescription.
The interpretation of Eq. (584) is that the potential A® is defined along the
integration path of the line integral. The field B is defined as being perpendi-
cular to the plane or surface enclosed by the line integral. Neither A® nor B®
exists in a U(1) invariant electrodynamics. Effects attributed to the topological
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phase, such as those of Pancharatnam and Tomita and Chiao, reviewed already,
do not exist in a U(1) invariant electrodynamics, but are described by Eq. (584)
in an O(3) invariant theory. Equation (3) is for circularly polarized radiation pro-
pagating in a plane, and so allowance may have to be made for the geometry of
a particular experiment. We have illustrated this with the Tomita—Chiao effect.
The key to this evolution in understanding is that there exists in an O(3) invar-
iant electrodynamics, an internal gauge space with index (3). The existence of
this index gives rise to the non-Abelian Stokes theorem (584). The internal space
on a ((1),(2),(3)) level is considered to be the physical space of three dimensions
and not an isospace. Therefore, a rotation in the internal space ((1),(2),(3)) is
a physical rotation in three-dimensional space. The spinning platform of the
Sagnac effect is an example of one such rotation, about the axis perpendicular
to the platform, and results in Eq. (578), which, as shown elsewhere [44], gives
the observed Sagnac effect, again through Eq. (584). Such concepts are avail-
able in neither a U(1) invariant electrodynamics nor gauge theory, which con-
siders the internal space as an isospace.

Therefore, it has been shown convincingly that electrodynamics is an O(3)
invariant theory, and so the O(3) gauge invariance must also be found in experi-
ments with matter waves, such as matter waves from electrons, in which there is
no electromagnetic potential. One such experiment is the Sagnac effect with
electrons, which was reviewed in Ref. 44, and another is Young interferometry
with electron waves. For both experiments, Eq. (584) becomes

{)K(” -dr = *Ar (587)
and for matter waves
m204
o? =i + # (588)

where my is the mass of the particle. The Sagnac effect in electrons [44] is
therefore the same as the Sagnac effect in photons, and is given [44] by

Ar mict  mict
Ap = AT 2 oy Mg 0
0 =25 ((o+ 07 — (0 - 0) - B+ 180)
400Ar

;' from the gauge transform (578). This is the observed result [44]. The Young
- 4 effect for electrons is similarly

Ap = (J;z k) edr (590)
—1
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and also more generally for particles such as atoms and molecules, the famous
two-slit experiment.

On this empirical evidence, it is possible to reach a far-reaching conclusion
that all wave functions in quantum mechanics are of the form (590). For exam-
ple, the electron wave function from the Dirac equation is

Positive energy: ¥ (r) = u™® (p)exp (—i%p-dr) (591)
Negative energy: ) (r) = v (p)exp (i %p-dr) (592)
instead of the conventional [46]
V(r) = u® (p)exp(—ip+r) (593)
Y (r) = v (p)exp(ip-r) (594)

The path and area in Eq. (584) and in wave functions such as those of the photon

and electron are given by the following sketch:

The shaded area in this sketch is not arbitrary, as it is determined by the right-
hand side of Eq. (587). The line integrals OA and AO change sign, and this
accounts for reflection of matter waves and for the Sagnac and Young effects in
matter waves, such as electron waves. Therefore, the electron is an O(3) invariant
entity, as shown by the Sagnac effect for electron waves [44]. It follows that the
Dirac equation should be developed as an O(3) invariant equation.

The Fermat principle can now be reworked into an O(3) invariant form and
the principles of quantum mechanics on a nonrelativistic level developed from
it. In so doing, we modify the discussion by Atkins [68] for an O(3) invariant
treatment. Fermat’s principle of least time is the basic law governing light pro-
pagation in geometric optics. In the received view, light travels in a straight line
in geometric optics, but the physical nature of light is a wave motion. These two
fundamental aspects are unified in the sketch following Eq. (594), constructed in
an O(3) invariant theory, in which the phase now correctly describes both the
wave nature of light and the fact that it travels in a straight line in the vacuum
or a uniform medium. The U(1) invariant phase shows only the latter property of
light, and consequently is a number invariant under motion reversal symmetry
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(T) and parity inversion symmetry (P). Similarly, particles travel in a straighi
line by Newton’s first law, but de Broglie demonstrated that particles have &
wave nature-wave particle duality. Therefore, the phase in classical electrody-
namics becomes the wave function in quantum mechanics, and the general and
" important conclusion is reached that both the electromagnetic phase and the
wave function of particles are O(3) invariant. We have already argued thal
this new general principle is supported by the Sagnac and Young effects in
matter waves. In retrospect, it is not surprising that the wave function should
reflect wave—particle duality, for both the photon and matter waves.
A simple example of the Fermat principle may be used to show the weakness
“ inherent in a U(1) invariant phase. Fermat’s principle states that the path taken
by a light ray through a medium is such that its time of passage is a minimum.
‘= Pollowing Atkins [68], consider the relation between angles of incidence and
reflection. The least-time path is the one corresponding to the angle of incidence
being equal to the angle of reflection, giving Snell’s law. However, reflection is a
parity inversion, under which the U(1) invariant phase

Plot—x-r)=ot—k-r (595)
does not change [44]. This is seen at its clearest in normal reflection. Therefore,
“the U(1) invariant phase cannot describe normal reflection and Snell’s law, and
violates Fermat’s principle. The O(3) invariant phase

¢ :f{;mdt—ffk-dr

-on the other hand, changes sign on reflection, because of the property of the path

p(%.dr) ——fear

d 5o is in accordance with the Fermat principle. This conclusion is a major
olution in understanding because Fermat’s principle is at the root of quantum
echanics, in particular, the time-dependent Schrédinger equation.

Following Atkins [68], the propagation of particles follows a path dictated by
‘Newton’s laws, equivalent to Hamilton’s principle, that particles select paths be-
€en two points such that the action associated with the path is a minimum.
erefore, Fermat’s principle for light propagation is Hamilton’s principle for
. icles. The formal definition of action is an integral identical in structure
.th the phase length in physical optics. Therefore, particles are associated
th wave motion, the wave—particle dualism. Hamilton’s principle of least

(596)

(597)
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action leads directly to quantum mechanics. The final touch to this development
was made by de Broglie. Therefore, a particle is also described by an amplitude
V(r), and amplitudes at different points are related by an expression of the fol-
lowing form [68]:

Y(P2) = T (Py) (598)
If this is to be O(3) invariant, the phase in quantum mechanics must take the form
(597). In the classical limit, the particle propagates along a path that makes the
action § a minimum. Therefore, the O(3) invariant phase is proportional to S
through the Planck constant. It is concluded that the O(3) invariant phase in
quantum mechanics is given by

o= f};K-dr (599)

The amplitude describing a particle in O(3) invariant quantum mechanics is

V= Ygexp ¢ = Yoexp /Y (600)
where S is the action associated with the path from P; (a point at x;, #;) to P, (a
point at x, ;). An equation of motion can be developed from this form by
differentiating with respect to time #;:

9 i
&W(L 1) = —ﬁEn\ll(x, 1) (601)

The rate of change of the action is equal to — En, where En is the total energy
T+ V

as
“_ _E 602
5 n (602)

Therefore, the equation of motion is

0 ias

= t)=—— t 603

S0 =2V (603)
and if En is interpreted as the Hamiltonian operator H, the O(3) invariant time-
dependent Schrédinger equation is obtained:

HY = ik % (604)

THE PRESENT STATUS OF THE QUANTUM THEORY OF LIGHT

So, if the O(3) invariant wave function is defined as

wZZmep(—i§mdt_§K.m>
S:—ﬁ(%mdﬁ—%xwﬁ>

where

the energy is given by

En=ho=——
n (1)) at

which is the energy for one photon. Equation (605) is the O(3) inva
Broglie wave function.

XI. O(3) INVARIANCE: A LINK BETWEEN
ELECTROMAGNETISM AND GENERAL RELATIVITY

In order to develop a Riemannian theory of classical electromagnetis
necessary [109] to consider a curve corresponding to a plane wave:

f(Z)=(i—ije®

In terms of the retarded time [] = ¢t — Z/c, the U(1) phase ¢ is o,
retarded distance is Z — Zy = c[r]. The electromagnetic wave propagate
the Z axis, and the trajectory of the real part is

fz(Z) =Re(f(Z)) = (cos P, sind, d)
which is a circular helix. The curve (609) is a function of Z with Zy regarn
constant in partial differentiation of f(Z) with respect to Z. More gene
Z-dependent phase angle must be incorporated in ¢, which becomes {4
- JR(Z) = (cos(k(Z ~ Zp) + ), sin(x(Z — Zy) + D), x(Z — Zy) + P)

 Frenet’s tangent vector (7) is obtained by differentiation:

fr(Z)
oz

= KT = (—«xsind, kcos P, x)
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In elementary differential geometry, therefore, the electromagnetic helix
produces a nonzero T, and tangent vectors are characteristic of curved spacetime
in general relativity. The scalar curvature in elementary differential geometry is

R = ‘asz(Z)\ = [k*(cos ¢, —sing,0)| = K’ (612)

072

and this is also the scalar curvature of the electromagnetic wave in general
relativity, specifically, the scalar curvature of Riemann’s tensor, obtained by
suitable antisymmetric index contraction. The electromagnetic field therefore
becomes a property of spacetime, or the vacuum.

The metric coefficient in the theory of gravitation [110] is locally diagonal,
but in order to develop a metric for vacuum electromagnetism, the antisymme-
try of the field must be considered. The electromagnetic field tensor on the U(1)
level is an angular momentum tensor in four dimensions, made up of rotation
and boost generators of the Poincaré group. An ordinary axial vector in three-
dimensional space can always be expressed as the sum of cross-products of unit

vectors
I=ixj+jxk+kxi (613)
a sum that can be expressed as the metric
g =g} (614)

where the gffy coefficient in three dimensions is the fully antisymmetric 3 x 3

matrix. This becomes the right-hand side in four dimensions. In the language of

differential geometry, the field tensor becomes the Faraday 2-form [1 10]
1 o B

FZEFade Adx (615)

where the wedge product dx* A dxP between differential forms is an exterior
product. Equation (615) translates in tensor notation into

F = Fypdx® ® dx® (616)

We have argued here and elsewhere [44] that the plane-wave representation
of classical electromagnetism is far from complete. In tensor language, this in-
completeness means that the antisymmetric electromagnetic field tensor on the
O(3) level must be proportional to an antisymmetric frame tensor of spacetime,

Rfft), derived from the Riemannian tensor by contraction on two indices:
A
RY =R}, (617)
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(A) . . . ..
Therefor.e Ruv) 1S an antisymmetric Ricci tensor obtained from the index
contraction from the Riemann curvature tensor. Further contraction of Rffi) leads
to the scalar curvature R, which, for electromagnetism, is k2. The contraction
must be

1
_ L (A puva
R =158 RWA) (618)
The principle of equivalence between electromagnetism and the antisymmetric
Ricci tensor is

K

(4) _ —
RHV = gGHV = m

Gy (619)

whose scalar form is

R=gG© (620)
0) - .

where G is a scalar field amplitude and where R = «? is the scalar curvature of
vacuum electromagnetism, whose metric coefficient is antisymmetric. In this
view, vacuum electromagnetism is the antisymmetric Ricci 2-form [110], and
gravitation is the symmetric Ricci 2-form.

Geodesic equations can be developed for the vacuum plane wave from the
starting point [110]

e 4
T dh

+Ih . x"k® =0 (621)
_where «* = dx*/d). is the wave 4-vector and I _ is the affine connection. The
- symbol D in Eq. (621) is therefore a covariant derivative. In the received view, on
the U(1) level, Eq. (621) becomes

dx* =0 (622)

which the wave-vector does not vary along its path. Equation (621), on the

ther‘hand, has a parameter that varies along the ray, and the world line is a helix.

j sisa conclusion reminiscent of the fact that the O(3) electromagnetic phase is
escribed by a line integral, as developed in the previous section.

“A relation is first established between x* and the A* 4-vector:

K
b
K= Al (523)
sing this equation in Eq. (621) gives
dA*  « dAY K
L T TH pgvgpo Y 2 _
I +A(0) It AYAS = 7 +mA =0 (624)
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where A is a scalar. The contracted affine connection I'* is proportional to A" in
general gauge theory, and we adopt this rule to give
K

™ — A

no (625)

which is an equivalence principle between field and frame (or vacuum)
properties. Such an equivalence does not appear on the U(1) level if the ordinary
derivative replaces the covariant derivative.

Equation (625) can be written as

dA¥

2
AM =0
o K

(626)
where the dimensionality of X is k2, the inverse of the Thomson area of a photon
[42], and if A = Z?/2, Eq. (626) become

d?A¥
— +RA" =0

— (627)

This has the form of a geodesic equation [111], and is obeyed by a plane wave.
Similarly, we obtain:

(628)

an equation that is also obeyed by a plane wave. Now, subtract Eq. (627) from
Eq. (628) to give the d’ Alembert wave equation:

OA* = (R—R)A* =0 (629)
which is the Proca equation
mic?
(A" = —#A” =0 (630)

whose right-hand side happens to be zero because we have used a plane wave to
derive it. The Proca equation (629) is an equation of a spacetime or vacuum
whose curvature is R = k2, and not zero.

Equations (627) and (628) are special cases of the usual definition of the
Riemann tensor in curvilinear geometry
— Apwy = RE, A (631)

pvk

Apvic

THE PRESENT STATUS OF THE QUANTUM THEORY OF

where Aj is a general 4-vector field [111]. Equation (631) can

(DyD¢ — DDy)A, +RY Ay =0

uvk

and this is a Aeodesic equation. Multiply Eq. (632) by the antis
coefficient guv) to obtain

g&c)(DvDK - DKDV) + g(vj)Rk Ay =0

pvk

and identify

2
R= ng)Rﬁvx; a7z g&c) (DyDy — D Dy)
This procedure reduces Eq. (631) to Egs. (627) and (628), which
obtained by tensor contraction.

Electromagnetism can therefore be defined geometrically i1
ordinates, and has vacuum properties such as scalar curvature, m
affine connection, and Ricci tensor that manifest themselves f
level:

_ A pa)
Gy =~—R{j

This equation can be written in precise analogy with the Einste

(A)
R
Ay _ K
Tpv = ho <T>

where Tﬁé) is an antisymmetric electromagnetic energy-mome
R = x2 is the scalar curvature in O(3) electromagnetism. Eq
herefore a rotational Einstein equation. The scalar curvature in
sm is defined through the antisymmetric metric coefficient (gffz

3
.

2 A
R=x* =g Ry

g ‘e .analogous definition of scalar curvature in gravitation is gi
metric g,

R(grav) = g*'RY)
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and the symmetric part of the Ricci tensor Rffv) , that is, through the equation

R(S) — K

aw T ThAky

(639)

If O(3) electromagnetism [denoted e.m. in Eq. (640)] and gravitation are bot.h to
be seen as phenomena of curved spacetime, then both fields are derived
ultimately from the same Riemann curvature tensor as follows:

(4)
R 640
T (em.) = ho 1“; (640)
(8) = _64_ RS — lg R (641)
Tp.v (grav.) - 8k pv 2 pv
A 42
Ry = R+ R (642)

The unification of O(3) electromagnetism and gravitation using these concepts 1
summarized in Table L.

TABLE 1
Some Concepts in the Unified Theory of Fields
Concept of Quantity Gravitation Electromagnetism
K
Riemann tensor RY,, R? :;
p— o
Ricci tensor RLSV) =R}, R(}:,) = Rm-JV
Metric coefficient gy (diagonal) g (off—(;i)lag(;))nal) 2
Scalar curvature R= g“"RLS\,) R=g¢g""Riy =x
! )
s — G )
Einstein tensor RLV) — ngR = GEN Ry
2
c 8k Ay _ K (A)
E S ) T
Field equation Ew) = c.“T‘(‘") Ry e Lo
N K h
o= ——MMA"
Connection Fﬁv Fw, 2o MM
Poincaré Poincaré

Local group

bi
Group generator Feynman Jacobi

Bianchi identity

Identity DRy, + DR, + DR}, =0 id(entity(l( =1)
A) _
Energy-momentum Tﬁsv) (translational) T = ol
tensor

ho o4 .
= FREW (rotational)
Electromagnetism is a

noninertial frame
3
k (Einstein’s constant) 10

Gravitation is a
noninertial frame

Equivalence principle

Universal constant
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The electromagnetic field equations on the O(3) level can be obtained froi
this purely geometrical theory by using Eq. (631) in the Bianchi identity

DGy + DyGyy + DyuGux = R, Ay + Ry Ay + R, Ar

UVK

= DPRKHV + DHRgvp + DVR'{pp =0 (643

with appropriate index contraction. The end result is the Feynman Jacobi identit
discussed in earlier sections of this review

D,G"

0 (644

an identity that can be written as
D,G" =0 (645

The O(3) field equations can be obtained from the fundamental definition c
the Riemann curvature tensor, Eq. (631), by defining the O(3) field tensor usin
covariant derivatives of the Poincaré group.

Equation (643) is also a Bianchi identity in the theory of gravitation becaus
G, is derived from the antisymmetric part of the Riemann tensor, whose sym
metric part can be contracted to the Einstein tensor.

Similarly, Eq. (643) can be developed into an inhomogeneous equation of th
unified field. First, raise indices in the Riemann tensor and field tensor:

G = gvpgkpoc; Rﬁvx _ gvpchRﬁpG (646
From the equivalence of G,y and Rw in Eq. (635), individual terms in th
identity (643) can be equated:

DG = R (6472
DVGKI'1 = RéKuAk (647b
D,G™ = R4, (647c

Consider the antisymmetric part of the Riemann tensor in Eqs. (647) by suitablc
ontraction. In Eq. (647¢), for example, the contraction is A = p. The resul
uces to the O(3) inhomogeneous field equation of electromagnetism in the

J¥(vac)
€0

DLG™ = RO, = (648
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where the term

JV(vac) = gRI"A, (649)
is the O(3) charge current density, which can be seen to exist in the vacuum as

argued earlier.
There are well known similarities between the Riemann curvature tensor

of general relativity and the field tensor in non-Abelian electrodynamics. The
Riemann tensor is

‘)ipv = a\’r‘;xu - 6}1]:;‘;“, + Fiprgv - Fivrgp (650)
and is made up of a Ricci tensor and a Weyl conformal tensor. The following

contraction of indices

Ry = oy, — 9, I%, + TR, 15 — S N (651)
leads to an expression similar to the field tensor as argued. The holonomy [46] in

general relativity is

1
AV = 5R;‘MVPASGx (652)
which can be compared with the holonomy in gauge theory
AV, = —ig DSV Gl (653)

In both cases, the ASH factor is a hypersurface. This suggests that the Ricci
tensor is in general complex, and given by

Ry = R + iR (654)
where the real part is symmetric and the imaginary part is antisymmetric. Barrett
[50] has pointed out that O(3) gauge theory is non-Minkowskian in general, and
requires an extrapolation of twistor algebra to non-Minkowski spacetime,
requiring the presence of a Weyl tensor, complex spacetime, and curved twistor
space. In 03) electrodynamics, therefore, Minkowski spacetime applies only
locally, and Minkowski vector spaces are tangent spaces of spacetime events.
The Weyl anti-self-dual spacetime is independent of the self-dual spacetime.
There is conformally curved, complex spacetime, as reflected in the complex
Ricci tensor discussed already. The Weyl tensor is not zero. A complex spacetime
[50] is defined by a four-dimensional complex manifold, M, with a holomorphic
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metric g, A differential function defined on an open set of complex
holomorphic [50] if it satisfies the Cauchy—Riemann equations. With 1
holomorphic coordinate basis x* = (x°, x!, x?, x?), the metric is‘ a4 x.
holomorphic functions of x*, and its determinant is nowhere vanishing

tensor becomes complex-valued as ar i
gued already. Self-consist
checked that the determinant of the metric e

0 -1 -1 -1

10 -1
fb=11 1 0 -1
1 -1 1 0

is nonzero, (i.e., —1). So the use of an antisymmetric Ricci tensor

from first principles.

XII. BASIC ALGEBRA OF O(3) ELECTRODYNAMI(
AND TESTS OF SELF-CONSISTENCY

- In this section, some elementary detai i
, y details of the complex circular bas
» generated by ((1),(2),(3)) are given. The basis vectors are

e — 1 I

=-——=(-J); i=—(et) 1 @

N AL ;e e

@_ 1, .1

e =—({i+1i); — (D) _ @
\/‘2‘ J) J \/i(e e )

e® =k

b Within a phase factor and amplitude, eV = e@* is the vectorial I
oglplex desc(rll)pt1(()2n of right and left circularly polarized radiation.

nit vectors eV, e, and > form the O(3) cyclic permutation relati

el x e — jo0*

e % e — jell*

e x el = jel®*

' close:ly SiII'lilaI‘ complex circular basis has been described by Silver
ee-dimensional space. This space forms the internal gauge spac

leCtI()dynamICS as ar gued ah eady I]l tlle C()]lll) €X CIr Cula] baSlS t]le L
3 . 1 i i N
ot pIOduCt iS

eV e — @ . o) — 3.3 — 1

eV oo — 2.2 _ g
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i i asis
as compared with the same concept 1n the Cartesian b
jei=jj=kk=1

i-j=i-k:j-k:0

Vectors are defined as

A __—__—A(n +A(2) +A(3)

_ 40 4 AU 4 AGE!)
where
1 . (2)%
A = (A —iAy) =4
V2
A®) = Az

The dot product of two vectors is therefore
( 3),,03)
AB = A(l)B(Z)e(l) ce? +A(2)B(l)e(2) etV +A(3)B(3)e( )l

_ A(I)B(2) +A(2)BU) +A(3)B(3)

The del operator in the circular basis is defined by

1 .
0 _ L gy v V== (Vyx — iVy)
0 i gy VW= (Vx+iVy
0 3). v =V,
vz :522\7 .

and the divergence of a vector is therefore

Ooa = VAR + 7PA + T340

and the gradient of a scalar is

Vo = V“)d)e(z) + de)em + V(3)¢e(3)

The curl operator in the complex circular basis 18
RUONPIS ed i j k
O =iy v@ T =|Vx Ty V2
AL A® AB) Ay Ay Az
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and the vector cross-product is

\ ell) o2 L03) i j k
(659) AxB=—i|A) AQ) AB) | =|Ax Ay Ay (667)
gy gy BB By By Bz
It is helpful to exemplify the basis by calculating the vector cross-product in
detail and comparing it with the Cartesian counterpart. This procedure shows that
{660) the ((1),(2),(3)) and Cartesian representations are equivalent when correctly
‘worked out.
The ¢ component can be developed as
(661) — ie®(AMBA _ A@p0))
A1 1 ) 1 . 1 .
= —1 7§(AX + lAy)%(BX — lBy) — 75(14){ — lAy)—2 (Bx + lBy)
—AxBy —AyBX (668)
(662) ind is equivalent to the Cartesian component obtained from the well-known
- pression
i Jj k
Ay Ay Az| = (AxBy —AyBy)k+--- (669)
By By B
(663) The other two components are evaluated by developing the sum
B = -—i[e(l)(A(z)BB) _ A(3)B(2)) — e (A(])BG) _ A(3)B(l))] 4
A1 1 Az
=—i|l—={i—ij)l—=(A iAy)By; ——(B ]
lL/i(l U)<\/§(X+l y)Bz \/E(X+IBY)>
(664) Los ( ! . Az . )}
——({+§)|—=(Ax — iAy)By ——=(Bx — iB +e-
\/E( if) \/E(X v)Bz \/5( X v)
=i(AyBz — AzBy) — j(AxBz —AzBx) + - -+ (670)
(663) .- ) . .
and again we obtain a result equivalent to the Cartesian sum.
~ A conjugate product such as AV x A is evaluated as
e o2 B
(666) ~ilA® 0 0 |=-iA"k (671)
o Al 0
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and is the same as the Cartesian equivalent:
i j k
AP AP 0| =-iA"% (672)
AD AP o

In the logic of the complex circular basis, unity is expressed as the product of two
complex conjugates, referred to hereinafter as complex unity

12 = 1@ (673)

where

_Llaoy, @ :—lﬁ(l+i) (674)

V2

Therefore, developments such as the following are possible:

1

2) _ 112 = 12 =
e = 1@ 1@ = 11D =1 1 (675)

AN 4P = A@e) AW e@ — A4 — A2
Since the product 191D s always unity, it makes no difference to the dot

; 1 (2)
product of unit vectors or of conjugate vect(ozr)s such as AV and A, but the dot
product of a vector AW and a unit vector e 18

1 ) .
AW @ = A@ 1) @ = 3 (Ax — Ay (1 +1)

= %(Ax — iAy +iAx +Ay) (676)
Similarly [42], the dot product of a complex circular Pauli matrix ¢ and a unt
vector e@ is
olee® = %(cx — icy +icx +Oy) (677)
leading to
(c)) -e(2>)(c(2) ) = e ee® £ ig® eV x e (678)

and the prediction of radiatively induced fermion resonance.
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As we have argued, the basis ((1),(2),(3)) defines an internal space in ele
trodynamics, and was first applied as such by Barrett [50] in an SU(2) invaria
gauge theory. As a consequence of this hypothesis, we can write

AF = Ar2)p(1) +A“<l)e(2) +Au(3)e(3) (67¢

so A" is developed as a vector in the internal space. The object AK(D AM?) ar
A*3) are scalar coefficients in the internal space. The boldface character A*

simultaneously a vector in the basis ((1),(2),(3)) and a 4-vector in spacetime.

we consider to start with the received view of ordinary plane waves, the boldfac
character in this case is a vector of three-dimensional space in the bas
((1),(2),(3)) and so is also a vector in the internal space of O(3) electrodynamic
As we have argued, the phase factor ¢/® on the O(3) level is made up of a lir
integral, related to an area integral by a non-Abelian Stokes theorem. In order
expand the horizon of the gauge structure of electrodynamics to the O(3) leve
an additional spacetime index must appear in the definition of the plane wav

and the (1) and (2) indices must become indices of the internal space. This
achieved by recognizing that

A0
Al(l) :A;’l) =i e*'d) :Al(z)*
yoA0 . (68
0 A

AN — 430 — 402) — 432 — ¢
These equations define two of the scalar coefficients of the complete 4-vector A

AMD — (O,A(l))

AR = (0,4 (681

~ adeduction that follows from the fact that AV’ = A‘®" are transverse and so ca

have X and Y components only. The scalar coefficients A*") and A*? are ligh
like invariants

A“(UAS) :A“(Z)Aﬁz) =0 (682

1 of polar 4-vectors in spacetime. The third index (3) of the non-Abelian theor

¢ must therefore be in the direction of propagation of radiation and must also be
R light-like invariant

AMIAD) =0 (682

f in the vacuum.
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One possible solution of Eq. (683) is
AMB) — (cA(O>,A(3)) (684)
where
A =140 (685)
Such a solution is proportional directly to the wave 4-vector
@) = (ck, ke®) = gAH® (686)
and to the photon energy momentum:
p0) = hgAM®) = Bk (687)

in the vacuum. Therefore, the complete vector in the internal ((1),(2),(3)) space is
the light-like polar vector

A" = (0,4 + (0,41)e + (cA®, 4%))e® (688)

and has time-like, longitudinal, and transverse components, which are alll
physical components in the vacuum. On the U(1) level, the time-like and longi-
tudinal components are combined in an admixture [46]. .

Similarly, the field tensor on the O(3) level is a vector in the internal space:

G = el L G GO (689)

and the coefficients G*() are scalars in the internal space. They are also antisym-
metric tensors in spacetime. General gauge field theory for O(3) symmetry then
gives

G = grgvx — avArx _ igA“(z) « AV

GHV@r — pra Y@ _ VAR _ igA“m « AY( (690)

GO — ora VB _ VARG _ igA“(l) « AV
which is a relation between vectors in the internal space (( 1),(2),(3)(2. The Cross-
product notation is also a vector notation; for example, A % AY0) g a.cross—
productof a vector A*@ with the vector A" in the internal space. In forming the

cross-product, the Greek indices are not transmuted and the complex basis 18
used, so that the terms quadratic in A become natural descriptions of the
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“ empirically observable conjugate product. As we have argued, th
coefficient g = x/A(? is a scalar in both the internal gauge space and sp
3 i In field—~matter interaction, g changes magnitude [44]. The field tensc
] O(3) level is therefore a vector in the internal space and is nonline:
L potential. It contains the longitudinal field B® in the vacuum. The field t
b the U(1) level does not define B(3), which exists only on the O(3) level
j Equation (690) is a concise description that contains a considerable
B of information about the O(3) theory of electromagnetism in the vacuui
L mation that is available without assuming any form of field equation.
] portant to give details of the correct algebraic form of reduction of E
¢ Consider, for example, the equation

y

GHY()x — ghg v _ gvqr(lx _ igA“(z) x AY3)

which consists of components such as

Gl2(1)* — 61A2(1)* _ a2A1(1)* _ igg(l)(2)(3)A1(2)A2(3)
where £(1)(2)(3) is the Levi—Civita symbol defined by

e =1 = —gnee =

ow take the vector potential as defined already with

en we obtain

G12(1)* — 61A2(1)* _ a2A1(l)* _ lg(Al(Z)A2(3) _A1(3)A2(2))
=0
is is a self-consistent result because there is no Z component of G*(!)

18 defined as transverse. Both the linear and nonlinear components are
Consider next the element:

G13(1)* — 61A3(1)* _ a3Al(l)* _ igg(l)(2)(3)Al(2)A3(3)
— 61A3(2) _ a3Al(2) _ lg(A1(2)A3(3) _A1(3)A3(2))
— _(63 + lgA3(3))Al(2) — _(a% + iK)A1(2)
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where we have used

g %; A = AP = A (697)
A

i 1B3@ ic component:
There are two contributions to the field element G ~*~, a magnetic p

—3PAlY (697a)
and
_igA¥AlD (697b)
In vector notation, Eq. (696) is a component of
2B = ¥ x A1) —igd® x A
— (v —igA®) x AWV
_ 1y __L_p® g (698)
=V xA B(0>B X
Furthermore:
BAlD = ixa'® (699)
and so it follows that
[ pG) g 700
B“):VXA“):—WB x B (700)
Similarly:
[ po) . g® 701)
B(Z)IVXA(Z):—E(O_)B XB (
e first

Therefore, the definition of the field tensor in O(3) electrodynamics gives th
two components of the B cyclic theorem [47-62]

B® x BV = iBOB®"
B x B®) = ;B0

(702)

iti ! 2 e curl of vector
together with the definition of B and B*” in terms of th

potentials:
BY =v xAY

B® =v xA?

(703)
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It is convenient to write this result as

1
H(vac) = —B — M(vac)
Mo

where H(vac) is the vacuum magnetic field strength and b is 1

permeability. The object M(vac) does not exist on the U(1) level
termed vacuum magnetization:

B x )

M(l)(vac) = — l“ B(O)
0

‘ The objects M(l)(vac) and M(z)(vac) depend on the phaseless vacuu
field B and so do not exist as concepts in U(1) electrodynamics. Tl
itself is defined through

G = AV gvARO) _ jogqr(l)  4V0)

» with (3) aligned in the Z axis. So, by definition, the only nonzero com

G203 — _ G213 — B(Z3)

BY = —ig(A!(NA2® _ 41 420))

B%())B(l) « B

B® = B = _jgal) x A = _
ing the third component of the B cyclic theorem B(!) x B®?) = iB{
Lthe vacuum magnetization:

1

——— B « g
ipg B) *

M3 =

the U(1) level, A" x A® is considered to be an operator [44] o
:5'”. with no third axis, but on the O(3) level it defines B as argl
' Therefore, on the O(3) level, the magnetic part of the complete 1
ﬁned as a sum of a curl of a vector potential and a vacuum ma
fherent in the structure of the B cyclic theorem. On the U(1) lev
Bo B® field by hypothesis.
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The following field coefficients can be calculated:

GOI(Z) _ (ao + lgA0(3))A1(2) GIO(Z)
G — (ao +ig Ao(3)) A22) G
G =0 (711)
Gi3® (63 +igA3(3))A ( G
G23(2) (63 + lgA3(3))A2(2) — __G32(2)
G2 =g
so that
GO = GO = (30 4 iga®@)Al 12)
G2 = RO = _jg(A 1(1) 42(2) _A1(2)A2(1))
The three field tensors are therefore the transverse
o -—gW g 0
E'® 0 0 cB) 113
oD = GV = 2200 0 0 S (713)
0 —cB*Y) B 0
and the longitudinal:
0 0 0 0
0 0 —cB® 0 4
=" = g 0 0 (714)
0 0 0 0

On the O(3) level, there also exists a vacuum polarization, because the com-
plete electric field strength is given in the vacuum by

e
2EY = — af; - lgcA(O)A(z)
t
=— (ﬁ + lgcA(0)>A(2) =2EW" (715)
Using g = k/A”, then
EY = — U2 _ —ickA® = —iaA® (716)
T
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and it is convenient to express this result as

DP(vac) = gE? + P® (vac) (717

where D(z)(vac) is the electric displacement in vacuo, and where the vacuur
polarization is

PP (vac) = —iggwA? (718
The vacuum polarization is well known to have an analog in quantun
electrodynamics [46], the photon self-energy. The latter has no classical analo;
on the U(1) level, but one exists on the O(3) level, thus saving the correspon
dence principle. The classical vacuum polarization on the O(3) level is trans
verse and vanishes when @ = 0. It is pure transverse because, as follows, th
hypothetical E® field is zero on the O(3) level
aOAB(B a3AO(3)*
=0

GO3 _ lg(AO(l)A3(2) _ A3(2)A0(1))

(719

giving

GB — g8 — 9B — g (720
the vacuum. In the presence of field-matter interaction, this result is no longe:
e because of the Coulomb field, indicating polarization of matter.
In the presence of field-matter interaction [44]

Hpv(i)* _ Mpv(i)*

= g (721

here i = 1,2, 3. Here
— 34D
M) = isog’A“(z) x A3

Fie = grgvl)

(722

Cyclic permutation, with g’ < g empirically [44].

i There are therefore obvious points of similarity between the O(3) theory of

Prectrodynamics and the Yang-Mills theory [44]. Both are based, as we have

g ed, on an O(3) or SU(2) invariant Lagrangian. However, in O(3) electrody-

,f?,f' cs, the particle concomitant with the field has the topological charge

E/AO) 1n O(3) electrodynamics, the internal space and spacetime are not inde-
lldent spaces but form an extended Lie algebra [42]. In elementary particle
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theory, the internal space is usually an abstract isospin space [46]. The overall
structures of O(3) electrodynamics and of Yang-Mills theory are the same.

XIII. QUANTIZATION FROM THE B CYCLIC THEOREM

The B cyclic theorem is a Lorentz invariant construct in the vacuum and is a
relation between angular momentum generators [42]. As such, it can be used as
the starting point for a new type of quantization of electromagnetic radiation,
based on quantization of angular momentum operators. This method shares none
of the drawbacks of canonical quantization [46], and gives photon creation and
annihilation operators self-consistently. It is seen from the B cyclic theorem:

B x B? = iB(O)B(3)*
B® x B® = iB"B"" (723)

B® x B = iB(O)B(z)*

that if any one of the magnetic fields B, B®, or B® is zero, this implies that the
other two will also be zero. The B cyclic theorem can be put in commutator form
by using the result that an axial vector is equivalent to a rank 2 antisymmetric
polar tensor

1
B, = EgijkBij (724)

where & 18 the Levi—Civita symbol. The rank 2 tensor representation of the axial
vector By is mathematically equivalent but has the advantage of being accessible
to commutator (matrix) algebra, allowing BY, B, and B® to be expressed as
infinitesimal rotation generators and as quantum—mechanical angular momenturil
operators. These methods show that the photon has an elementary longitudinal
flux quantum, the photomagneton operator B®, which is directly proportional to
its intrinsic spin angular momentum [421.

The unit vector components of the classical magnetic fields BV, B?, and
B® in vacuo are all axial vectors by definition, and it follows that their unit
vector components must also be axial in nature. In matrix form, they are, in
the Cartesian basis

0 00 0 0 -1 010
i—lo o 1]y Jj=|00 0} k=|-1 0 o] (729
0 -1 0 1 0 O 0 00
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and in the circular basis

0 0
1 i 0 0 -
m = 1 i 0 1
V) = 0o o 1] e2=211g
: ’ = 0 1| e®=|-
V2[-i -1 o V2|i o1 o] (1)8:
(72

The 1attel‘ [0rm a commutator L‘le €01 iC 1S mathematic y € vale
al b a Wh h i i i
: ] : g Y h all qlll al nt

[6(1)78(2)] — _ie(3)* (72

flcg;abtrl:l'lz (75;3)harﬁi %1727) therefore represent a closed, cyclically symmetri
in which all three space-like components are cani

. ful. The cycli
commutator basis can be used to build a matri ation o pac
' . atrix representation of the th
like magnetic components of the electromagnetic wave in the vacuurr:ee P

B = jB0)(1)id
B — _iB(0,(2)~it (72
B®) = BB

hl g h mmut
om w Cll emerges the co utative Lle al eb]a equivale (o] € vector lal L

B p@7 = _;p0gB3)+

s algebra can be expressed in t infini
erms of the infinitesimal rotati
O(3) group [42] in three dimensional space: orion generalon

, 0 0
) () 1 I 0 0 1
" = —1e = % 0 0 —i ; ](2) — ie(z) — L 0 0 .
- [
J 0 V2
-1 —i 0
0 -1 0
= _ie(3) i 0 0
0 (73(
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eld matrices and rotation generators are linked by
Y = _B0) y(1)i®

B = _BO) j@) o (731)
g® = iB® J®

i i ie algebra
i etic fields (729) is part of the Lle a
so the commuive F e o s magncomponent is directly proportional to the

; 3)
ime. The real and physical B . al 0 the
Oftsgigst;?rferator J® whichis a fundamental property of spacetime, In wht
rotal ,

the matrices (730) become

00 10 o 010
0
L 1| 00 =0 J<2>#L 0.10
J()::/’i—llOO’ V211 -
00 00 0 0 0 0
0 —i 00
o 09 (732)
= 0 0
0 0 0

n the vacuum on the O(3) level are directly

I folows that mogrel e or f the Poincaré group [42], and electric fields

proportional to rotation generators O

i erators. _
s rectly proportional to boost gen e
are’;jtllree(r:ot}zllé)onpgenerators form a commutator algebra of the following typ

the circular basis:

g, J@) = -y (733)

which becomes

Uy, Jy] = i)z (734)

ithi i i ith the com-
in the Cartesian basis, and which is, within a facth h, identical wﬁznics o
1r?mtator algebra of angular momentum operator.s in quantutrln me;c e ﬁems,
inference provides a simple route to the quantization of the mag
i

giving the result

(3)
(1) JO e o) = l-B(o){h’ (735)

B — —B<°>J—h—ei¢; B — —BO—e
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where B are now operators of quantum mechanics. Such a quantization sct
can exist only on the O(3) level. In particular, the longitudinal B® i
photomagneton operator, which is a stationary state in quantum mechanics

These results can be generalized to electric fields using boost operators,
which in the Poincaré group are also 4 x 4 matrices:

EW = EOg (D,
E® = O k() ,-id (
iE®) — (EO g (3)

Therefore, electric fields are boost generators, whereas magnetic fields
- rotation generators. It follows that the Lie algebra of electric and magnetic f
in spacetime is isomorphic with that of the infinitesimal generators of
Poincaré group [42]. The latter type of Lie algebra can be summarize
follows:

O, IO = —gOr...
K, KD) = —je®*...

KV, ] = —ik®)... (
KW, sV} =0...

This isomorphism is conclusive evidence for the existence of the longituc
' B® in the vacuum.

There is also a relation between polar unit vectors, boost generators,
lectric fields. An electric field is a polar vector, and unlike the magnetic f
cannot be put into matrix form as in Eq. (724). The cross-product of two |
it vectors is however an axial vector k, which, in the circular basis, is et
pacetime, the axial vector k becomes a 4 x 4 matrix related directly to thi
%Aitesimal rotation generator J® of the Poincaré group. A rotation generat
‘therefore the result of a classical commutation of two matrices that play the

f polar vectors. These matrices are boost generators. In spacetime, it is tt
re

[Kx,Ky| = —iJy (
nd cyclic permutations. In the circular basis, this algebra becomes
(KD K] = —jelh ¢

erefore, although polar vectors cannot be put into matrix form in th
ensional space, they correspond to 4 x 4 matrices in spacetime. In th
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dimensional space, the electric component of the electromagnetic field are
oscillatory fields that can be written directly in terms of the unit vectors of the

circular basis:

E© : E©) .
D =E_i—ijet;  E¥ =—% i+ij)e® 740
7 (i —ij) 7 (i + i) (740)
In spacetime, the equivalents are

ED = E(O)K(l)eid’; EQ = E(O)K(2)e-i¢ (741)

The phase ¢ is aline integral on the O(3) level. The boost generators appearing in
Eq. (741) are written in a circular basis

000 1 0 0 0 1
w_ L 0 0 0 —i o L 0 0 0 .
K . K (742)
V2] 00 0 O V2] 0 0 0 0
1 i 0 0 1 —i 0 0

and correspond to the complex, polar, unit vectors ¢V and ¢'? in Buclidean space.
It is not possible to form a real electric field from the cross-product of E"
and E@, and this is self-consistent with the fact that on the O(3) level there is no
real E [42].
The complete Lie algebra of the infinitesimal boost and rotation generators of
the Poincaré group can be written as we have seen either in a circular basis or in
a Cartesian basis. In matrix form, the generators are

0001} [0 000} [0 0 00}
0000 0 0 0 1 00 00
Ky = ; Ky = ; Kz=
0 0 0 0 00 O
100 0 0 —1 0 0] 0 0 -1 0]
00 0 0] [0 0 i 0] 0 —i 0 0]
0 0 —i 0 000 i 00
=10 =100 o P o 0 0
0 0 | | 0 0 0 O] Lo 0 0]
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The relation between fields and generators in spacetime can be summarized a;

B = _pO) ()i — ;p(0) (1) id
B = _BO) @) —ib _ _;p(0),(2) ,~id
B® — ;g0 3 — g0,(3)
ED — gO) g (1) it (744
E® = O g2 —id
{E®) — (FOg(3)
leading to the Lie algebra:
[3(1)73(2)] — ;B0 g3
[E(]), E(Z)] = jE©2,03)~
[EW B = iBOGED). .. (745
[E(l),B(l)] —
where we have used the notation
iell) = J(l); —ie® = j@, ie® = j®
el = J(2); —iell) = J(l); e = —j® (746

i

TE}g t‘ype of L1§ algc;bra ogcurs on the O(3) level, but not on the U(1) level. Sinc
is purely imaginary, it has no physical meaning.
1;:32?;:’ tl:ie L¥e algebr'a of the magnetic and electric components of th
e bOostan dspln ﬁelds in free space is isomorphic with that of the infini
et ev.a(lin rotation generators of the Poincaré group in spacetime. Ex
et h1 c.:ncle (presented in Ref. 3 and in this review) suggests that B¢
i r[; sta .afmd the the'ory of elegtromagnetism in the vacuum is rela
unthSiC); 0 ga rrous if and only if the longitudinal fields B® (physical) and iEC
oyeal) 3 z a.ccolilnted fpr thrgugh the appropriate algebra. If B® and iE®
i electroma, nseltlilt ebrecelved view [U(}) level], then the isomorphism is lost
e Totation egn e tSm J{g:)comes incompatible with relativity. If B® were zero
e ot generator J* would be zero, which is incorrect. Similarly, if /E®
L ero, the boost g.enerator K would be incorrectly zero.
'.L.»a urfntli of A, the e}genvalues of the massless photon are —1 and +1, anc
3 of the photon with mass are —1, 0, and + 1. In three-dimensional si)ace
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the latter are obtained from relations such as:

TP = 11V
J3e@ = —1e (747)
733 = 0et®
where J& is the rotation generator:
0 —i O
IO —iePx =|i 0 0 (478)
0 00

(3 a5 an operator as well as a unit vector.

In the same sense [112], there is no paradox i.n the use of the sc;ll(la; spt;zﬁ)crz;l
harmonics as operators. The rotation operators 11 spacg are ﬁrst-r;;n 9;::3) 1inea;
which are irreducible tensor operators, and under. rotations, trax}s orlm utlh Linear
combinations of each other. The T operators are directly proportlcillla tot. i s
spherical harmonic operators. The rotation operators, J, of the full rotation group
are related to the T operators as follows

There is no paradox [112] in the use of e

7, =i, T =iJ; Ty =iJ% (749)

and to the scalar spherical harmonic operators by
) 172 . 172
g (3 el (i) 2.
-1 \dn ’ r\4n

BY. B®, and B® are also operators of the full
, tations of the full rotation

~

i3\ e
07 p\dn

(750)

This implies that the fields :
rotation group, and are therefore irreducible represen

group. Specifically

1/2 '
B = B(O)r<ﬂ3ﬁ> Ylle@

1/2 .
B — B<o>,(4_;‘_> yle-it (751)

1/2
)

B3 = B(O)r<

w|y

THE PRESENT STATUS OF THE QUANTUM THEORY OF LIGHT

which shows that B®) = ? 0 violates the fundamentals of group theory
BD, B®, and B® are all nonzero components of the same rank 1 scalar spl
harmonic Y,; M = —1,0, 1. Furthermore, since the operators JO JP
are components in a circular basis of the spin, or intrinsic, angular momen
the vector field representing the electromagnetic field, the fields B, B
B® are themselves components of spin angular momentum. It is also cle
J is a lowering (annihilation) operator

JWe@ = 110): JWeB) = 1M JDe(l) — 0@

)
and that 1(2) is a raising (creation) operator:
g P

T2e® — eV, J@pB) — _1g®.  J2) — 11,0)

! ’

The total angular momentum J* is also an eigenoperator, for example:

J2e® =1(1+1)e®;  1=1
- The operator J® is therefore also an intrinsic spin, and can be identified
novel quantization method based on the B cyclic theorem with the intrinsi
- ofa photon with mass, with eigenvalues — 1, 0, and + 1.
For a classical vector field, its intrinsic (spin) angular momentum is id
able with its transformation properties [112] under rotations, and within a
B, the rotation operators are spin angular momentum operators of the sp
boson. Recognition of a nonzero B® is therefore compatible with the eij
ues of both the massive and massless bosons. The vector spherical harn
112] are specific vector fields that are eigenvalues of j* and of j, where j
operator for vector fields of infinitesimal rotations about axis (3). They ha
finite total angular momentum and occur in sets of dimension (2 + 1) tha
{ in standard form the D representations of the full rotation group, and are
f fore irreducible tensors of rank j. Defining the total angular momentum
sum of the “orbital” angular momentum / and intrinsic (spin) angular m
tum J, we have

j=1+J
And the vector spherical harmonics are compound irreducible tensor ope
112]:

L _ [yl L
Y=Y el,

; ey are formed from the scalar spherical harmonics Y¢,, which form a cor
et for scalar functions, and the e operators, which form a complete set fi
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vector in three-dimensional space. Therefore, the vector spherical harmonics
form a complete set for the expansion of any arbitrary classical vector field:

in a Cartesian basis. For this vector, the I operates on the Ax, Ay, Az and J,
operates on i, j and k. Thus, I7 operates on the spatial part of the field and Jz, on
the vector part.

Therefore the operator for infinitesimal rotations about the Z axis contains
two “angular momentum” operators, [ and J, analogous with orbital and spin
angular momentum in the quantum theory of atoms and molecules. The infini-
tesimal rotation is therefore formally a coupling of a set of spatial fields trans-
forming according to DV with a set of three vector fields [e(l),e(z), e(3)],
transforming according to D™, Equation (756) is an expression of this coupling,
or combining, of entities in two different spaces to give a total angular momen-
tum. It follows, from these considerations, that the vector spherical harmonics
are defined by

Yi, =Y (mn[lILM)Y , en (758)

mn

where ({1mn|l1LM) are Clebsch-Gordan, or coupling, coefficients [112]. For
photons regarded as bosons of unit spin, it is possible to multiply Eq. (758) by
(110M|11LM) and to sum over L [112]. Using the orthogonality condition

Z (jrm} jom — M| jy o) (1 J2dml Jimy jam — ma) = Spym (759)
J
it is found that
141
Y30, dew = > (1OM{IILM)Yyy, (760)
f 2

which is an expression for the unit vectors e, in terms of sums over vector
spherical harmonics, that is, of irreducible compound tensors, representations of
the full rotation group.

On the U(1) level, the transverse components of ey, are physical but the long-
itudinal component corresponding to M =0 is unphysical. This asserts (w0
states of transverse polarization in the vacuum: left and right circular. However,
this assertion amounts to eg = e(® = 70, meaning the incorrect disappearance
of some vector spherical harmonics that are nonzero from fundamental group
theory because some irreducible representations are incorrectly set to zero.

THE PRESENT STATUS OF THE QUANTUM THEORY OF LIGHT 131

This point can be emphasized by expanding B in terms of Wigner 3-j symbols
[112], which yields results such as

Yl B V3V, — ¥,
vovi o on

showing that B® is nonzero and proportional to the nonzero vector spherical
harmonic Yy, on a fundamental level. Therefore, the fundamentals of group
theory are obeyed on the O(3) level, but not on the U(1) level.

All three of e, e@, e can be expressed in terms of vector spherical har-
monics. Thus, in addition to the nonlinear B cyclic theorem, the following linear
relations occur

B<3) — B(O)e(3) — 2B(0 (761)

B3 — p0,0) — ‘/TQC,B«» () + @) + BOp

ol

— Y2 BO) () _ @)y 1 O (762)

where the coefficients are defined by the following combination of scalar and
vector spherical harmonics:

2 v} 2 Y
a=—Z\yi_y1_ J c=—=vr %
\/Q Yl_Yfl \/Q Y1+Y11

1 1
b= \/§<Y111 + Y111>; d=V2 Y1111 — Y1111
- e

(763)

On the O(3) level, therefore, B is nonzero because B'” and B® are nonzero.
On the U(1) level, the plane wave is subjected to a multipole expansion in
terms of the vector spherical harmonics, in which only two physically signifi-
ant values of M in Eq. (761) are assumed to exist, corresponding to M = +1
and — 1, which translates into our notation as follows:

e =el): eo = e (764)
the O(3) level, the case M = 0 is also considered to be physically meaningful.
consequence, there is an additional, purely real, 2l pole component of the
ectromagnetic plane wave in vacuo corresponding to B, The vector spherical
monics YL, with 1 = L are no longer transverse fields, and the vector e,
thl} is longitudinal, can also be expressed in terms of the L = 1, M = 0 vector
herical harmonics as in Eq. (761). The longitudinal B, according to Eq.
61), can be expanded for all integer 1 of that equation in terms of vector
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£ 1 for M =0 in Y5, defines a different

spherical harmonics. Each value o
— 1 components in the expansion of

nonzero component of B®. Therefore the L
B are dipolar fields.

As an example of these methods, consider the B cyclic theorem for multipole
jon, which can be developed for the multipole expansion of plane-wave
B® field is irrotational, divergentless, and fundamen-
ts of the plane wave

radiat
radiation to show that the
tal for each multipole component. The magnetic componen

are defined, using Silver’s notation [112] as

B1 = B(O)eid’e,

B_, =BYe e, (765)

where the basis vectors in Silver’s spherical representation are related by

e_| X e = —ieg (766)

in cyclic permutation. The phase factor on the O(3) is a line integral, as argued in
this review and elsewhere [44]. The B cyclic theorem in this notation is therefore

B_, x B, = —iBYBy (767)

In order to develop Eq. (767) for multipole radiation, we use the following
expansions [112]:

e = Z i'(21 4 1)ji(kZ)Pi(cosB)
]

| (768)
em =31 37 (OM|ILLM) Yy
0 p=|I-1)

tion, and P, is

where [ is the /th multipole moment, j; the Ith modified Bessel func
) is expanded

the Ith Legendre polynomial. The basis vector e,, (M = —1,0,+1
in terms of the Clebsch-Gordan coefficients (110M|11LM) and the vector spheri-
cal harmonics Yk, and normalized with the scalar spherical harmonic Y.

In deriving Eq. (767), we have used on the left-hand side the conjugate pro-

duct of phase factors:

e =1 (769)

Using Eqs. (768a) and (769), it is seen that the product is unity if we sum over all

multipole components with 1 — o0 in Eq. (768). In all other cases, the B cyclic

theorem is
B_, x B, = —ixBUBy (770)
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where x is different from unity. It is given as follows for the first few multips

x = 9j%Pf, for
= 25/2P5 for

l =
=2 (
=493P; for =

In this notation

Pi(cos®) = (2m(21 + 1)) /2 v (6)
Jilkr) = (‘%)(%%)]0(“) '

It is 1mpor.tant to note that By in Eq. (770) is the same as By in Eq. (7
phasele:ss, irrotational, and divergentless. The factor x arises purely frlom
tr.uncatlon of the infinite series (768a) in individual multipole components
discussed by Silver [112], the e, vectors are polarization vectors for
electrom..agnetic wave, but are also spin angular momentum eigenfuncti
Tautologically, therefore, Eq. (767), the B cyclic theorem, is a spin an
mom.entum equation for the photon, with M = —1,0, 1. ’The photon E
fupcﬂon, therefore, has components ¢*%e;, e~*%e_,, andyeo. The observable
this tl}eory are therefore energy and By. The complete vector fields B;,B _ 1,B
fies.cnbed in terms of the vector spherical harmonics, and the B cylc’lic_til’eo(
indicates the existence of an intrinsic magnetic field Bg, which is described b
. transformation of the frame under rotation. As is well known in classical ang?
morqentum theory, only the By component remains sharply defined w
rotation. The components B, and B _ | are defined only within an arbitrary pl
factor. Within £, this is the quantum theory of angular momentum [1 12]y °
Since B® is time-independent, it obeys .

BG) = _Vd, (;
where @y is determined by the Laplace equation:
Viop =0 (;

‘Antalo.gously, a Coulomb field can be expressed as the gradient of a sc

’vacent1a1~that obeys. the Laplace equation in a source-free region such as

‘ ull;um1 in conventional electrostatics. To find the general form of B -

ipole expansion, we therefore solve the L. i |
ston, aplace equation for ®

valuate the gradient of this solution ! !
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) can be written as

(776)

in spherical polar coordinates. The general solution (775
@5 = (AF + Br ) Ym(8, )

al harmonics and A and B are constants. Here, m
m —m to m. The solution of Laplace’s
duct of radial and angular functions. The
cal or tesseral harmonics, which form

here for the two indices ! and m. The
2isa

where Y;,(0, $) are the spheric
and [ are integers, with ! running fro
equation is therefore obtained as a pro
latter are orthonormal functions, the spheri
a complete set on the surface of the unit sp
integer | defines the order of the multipole component; [ = lisadipole,! =
quadrupole, | = 3 is an octopole, and | = 4 is a hexadecapole.

The most general form of B from the Laplace equation is therefore

B® = —V(Ar + Br)Yim(0,9) (777)

This is the phaseless magnetic field of multipole radiation on the 0O(3) level. The
solution (777) reduces to the simple

B® = B0e® = Bk (778)

whenl=1,m=0r=2,0=0A4= _B©_ B =0, and V = (8/0Z)k. More
generally, there exist other irrotational forms of B?:

1. B® for dipole radiation: =1, m=-1,01

2. B® for quadrupole radiation: =2, m=-2,...,2 (779)

3. B® for octopole radiation: =3, m=-3,...,3

tational for all n on the O(3) level.

ors appear as a by-product of this novel
quantization scheme, sO that B? is rigorously nonzero from the symmetry Of
the Poincaré group and the B cyclic theorem is an invariant of the classical field.
The basics of infinitesimal field generators on the classical level are to be found
in the theory of relativistic spin angular momentum [42,46] and relies on the

Pauli—Lubanski pseudo-4-vector:

The B® fields for n-pole fields are irro
As argued, infinitesimal field generat

1
wh = _Egmppp Jup (780)
where e (with 212 = 1) is the antisymmetric unit 4-vector. The antisym-
metric matrix of generators Jy, 18 given by
0 K K> K3
—Ki 0 —J I
= 781
Tvo -K, 3 0 —J) ( )
—Ky =D ] 0
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“fhere every element is an element of spin angular momentum in four dime
sions. The energy momentum polar 4-vector is defined by

Pt =("p) = <% ,p> (78

T‘he inﬁqitesimal generators can be represented as matrices or as combinations «
d}ffi:lrer}tml o%erators [46]. The Pauli-Lubanski operator then becomes a produ
of the J,, and p, operators. Barut [113] shows t i \
O et i ] shows that the Lie algebra of the W

[W“7 WV] = —iﬁpvoppo-Wp (78:

whlch is a four-dimensional commutator relation. The theory is relativisticall
covan?nt and, of course, compatible with special relativity. Equation (783) i
the Lie algebra [42] of intrinsic spin angular momentum because rotglty(
4 gene.ra.tOFs are angular momentum operators within a factor 7, and this 121l .
- relativistic quantization to be considered. Similarly, translatic;n generat;lrso“
| cnergy ’momentum operators within a factor A This development leadsa:
: .ngn.er s famous result that every particle is characterized by two Casi
¢ invariants gf the Poincaré group, the mass and spin invariants [46] o
Our pa31c ansatz is to assume that this theory applies to the vacilum elect
‘ n.lagnetlc.ﬁ.eld, considered as a physical entity of spacetime in the theo ofC )
. cial relgtmty. The intrinsic spin of the classical electromagnetic ﬁcflyd i SP}‘}
magnetlc. ﬂu.x density B. Infinitesimal generators of rotation corres ond1S t'
those of .1ntr1.nsic magnetic flux density in the vacuum. Boost generat%rs NS
pi(t);]l(thI'th 1.ntr.insic electric field strength. Translation generators correzg(r)rri
e | zsufléﬂg\sg: fully covariant, field potential. Thus, the symbols are trans

J—B, K—E  P—A (784

In Cartesian notation, the Pauli i
‘ , auli-Lubanski vector of particle th
-vector of the classical electromagnetic field partcle theory becomes
wh = _l Mvp o
=-3 £ wFup (785
a-ﬂ(iftl.le.Lie algebra (783), a Lie algebra of the field.
it is assumed that the electromagnetic field propagates at ¢ in the vacuumr

en we must consider the Lie algebra (783) in a li i iti
atefod by » o ot gebra (783) in a light-like condition. The latte

A“ = (AO7AZ)

A% = A, (786
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The basic ansatz is that there is a field vector analogous to the Pauli-Lubanski
vector of particle physics, a field vector defined by

W= P, (787)

where F™ is the dual of the antisymmetric field tensor. This vector has the
following components:
WO = —B'A, — B’A, — B3A3
W' = B'Ay + E°Ay — E°A3
W2 = B%A, — E°A, + E'A;
W3 = B3A, + E*A, — E'A,

(788)

If it assumed that for the transverse components

B=VxA (789)
that A and B are plane waves
A0) )
A=—=lii +j)e
B© . (790)
B =" (ii +j)e'*

V2
and that the longitudinal E® is zero, then Eq. (788) reduces to

Wo = AzBz
Wy = AoBx + AzEy
Wy = AgBy — AzEx
Wz = ApBz

(791)

These assumptions mean that
A* = (4%,0,0,4%; A'=A° (792)

can be used as an ansatz. Conversely, the use of this definition means that the
transverse components are plane waves, and for the transverse components,
B=V =A.

In the Coulomb gauge, the vector W* vanishes, meaning that there is no cor-
respondence between the particle and field theory for the Coulomb gauge, or the
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received view of transversality in the vacuum. The final result is therefore
U 40
Wt = A%(Bz,0,0,B7) (79:

.which is C(')mpa.ltible with the Lie algebra of a light-like particle. This correspon(
in the particle interpretation to the light-like translation generator:

P =" pz); P’ =p; (79¢

- The Pauli-Lubanski pseudovector of the field in this condition is

W = (AzBz, AzEy + AoByx, —AzEx + AoBy, AoBy)
= Ao(Bz, Ey + Bx, —Ex + By, Bz) (795

and the Lie algebra (783) becomes, in ¢ = 1 units:
[Bx + Ey, By — Ex] = i(Bz — Bz)

[By — Ex, Bz] = i(Bx + Ey) (796
Bz, Bx + Ey] = i(By — Ex)

which has E(2) symmetry. In the particle interpretation, Eqgs. (795) and (796

orrespond to

WY = (pzJz, pzKy + poJx, —pzKx + poly, polz) (797

[Jx + Ky, Jy — Kx] = i(Jz - Jz)
Uy — Kx, Jz] = i(Jx + Ky) (798
[Jz, Jx — Ky] =i(Jy — Kx)

fin the rest frame of a ph i i
photon with mass, the field and particl i— '
tors are respectively paricle Pauli-Lubansi

WH = (0, AoBx, AoBy, AoB;) (799)

W = (0, poJx, poly, polz) (800)

Bhe rest frame Lie al icle i i
'i’ =3 ey ie algebra for field and particle is respectively (normalized

[Bx,By] =iBy--- (801)
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and
[JX,Jy] =iz - (802)

The E® field algebra is compatible with the vacuum Maxwell equations written
for eigenvalues of our novel infinitesimal field operators. This can be demon-

strated as follows:
By = Ex; Bx - —Ey (803)

It is assumed that the eigenfunction (y) operated on by these infinitesimal field
generators is such that the same relation (803) holds between eigenvalues of the
field. Tn order for this to be true, the eigenfunction must be the de Broglie wave
function, specifically, the phase of the classical electromagnetic field. On the
O(3) level, this is a line integral, as we have seen.

The relation (803) interpreted as one between eigenvalues is compatible with
the plane-wave solutions

E©

EW — O == (i — if)e”®
7 (i— i)
pes (804)
B = BY* = 2 (ii +j)e'*
7y
which are special cases of the O(3) invariant electrodynamics defined by
1
(1) — @ — i i) G =
el =e T =—4U—-Yy); eV =k 805
\/E( i) (805)

It follows that the same analysis can be applied to the particle interpretation,
giving

oM =0, /M =0 (806)

in the vacuum. This is a possible conservation equation (relation between spins)
that is compatible with the E® symmetry of the little group of the Poincaré
group. This is the little group for a massless particle. On the U(1) level, therefore,
it is concluded that the vacuum Maxwell equations for the field correspond with
Eq. (806) for the particle, an equation that asserts that the spin angular
momentum matrix is divergentless. In vector notation, we obtain from Eqgs.
(803)—(806) the familiar U(1) equations

VB =0; V-E=0

B E (807)
vxE+ B 0 vxB- L%
ot c? Ot
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and thf: less famlllar relation between eigenvalues of spin angular momentum in
four dimensions:

oK
Uxl+ X _o  vxk-Y_y (808)
ot ot

On the O(3) level, particular solutions of the £® Lie algebra (796) give a total

of six commutator relations. Three of these form the B i
(B® = 1 units): cyclic theorem

[Bx, By] = iBz
[By, Bz] = iBy (809)
[B27 BX] == lBY

and the other three are

[Ex, Ey] = —iBz
[Bz, Ex] = iEy (810)
[Ey, Bz] = iEx
In the particle interpretation, these are i

, part of the Lie algebra of i
boost generators of the Poincaré group: gebra of otarion and
Ux, Jy] =iJz [Kx, Ky] = —iJz
My, Jz] =iJx  [Jz, Kx] = iKy (811)
Uz, Jx]| =iJy [Ky, Jz] = iKx

From these relations, we can obtain

B(l) X B(z) — lB(O)B(3)*
B x B®) = ;g0 g~ (812)
B(3) % B(l) — lB(O)B(Z)*

E(l) X E(z) — iczB(O)B(3)*

B® x EV) = jcBO ) (813)
BO® x E? — _jcgO g+
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where B® = B¢ Similarly, in the particle interpretation, and switching from
rotation generators to spin angular momentum, we obtain:

JU % _](2) — iﬁ.](3)*
JO % JB) = ing =
J(3) x J(l) — iﬁ.](z)*

(814)

where 71 is the quantum of spin angular momentum.
In the rest frame of a photon or particle with mass, we obtain, for field and

particle, respectively, Egs. (812) and (813); that is, there are no boost genera-
tors.

From this analysis, it is concluded that the B® component is identically non-
zero, otherwise all the field components vanish in the B cyclic theorem (812)
and Lie algebra (809). If we assume Eq. (803) and at the same time assume
that B® is zero, then the Pauli-Lubanski pseudo-4-vector vanishes for all Ag.
Similarly, in the particle interpretation, if we assume the equivalent of Eq. (803)
and assume that f3) is zero, the Pauli-Lubanski vector W* vanishes. This is
contrary to the definition of the helicity of the photon. Therefore, for finite field
helicity, we need a finite B®.

The precise correspondence between field and photon interpretation devel-
oped here indicates that E(2) symmetry does not imply that B is zero, any
more than it implies that J® = 0. The assertion B®) = 0 is counterindicated
by a range of data reviewed here and in Ref. 44, and the B cyclic theorem is
Lorentz-covariant, as it is part of a Lorentz-covariant Lie algebra. If we assume
the particular solutions (809) and (810) and use in it the particular solution
(803), we obtain the cyclics (809) from the three cyclics Eq. (810); thus we ob-

tain
[By, —By| =By
[Bz, By| = —iBx
[Bz, —Bx| = —iBy

(815)

This is also the relation obtained in the hypothetical rest frame. Therefore, the B
cyclic theorem is Lorentz-invariant in the sense that it is the same in the rest
frame and in the light-like condition. This result can be checked by applying the
Lorentz transformation rules for magnetic fields term by term [44]. The
equivalent of the B cyclic theorem in the particle interpretation is a Lorentz-
invariant construct for spin angular momentum:

J 5 J@ = g (816)
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concluded that the B component in the field interpretation is nonzero in the
-like condition and in the rest frame. The B cyclic theorem is a Lorentz-
ant, and the product B x B® is an experimental observable [44]. In this
sentation, B® is a phaseless and fundamental field spin, an intrinsic
erty of the field in the same way that J*¥ is an intrinsic property of the
on. It is incorrect to infer from the Lie algebra (796) that B®” must be zero
plane waves. For the latter, we have the particular choice (803) and the
a (796) reduces to

i(Bz ~ Bz) =0 (817)

h .doe‘s not indicate that By is zero any more than the equivalent particle
_ etation indicates that J, is zero.
n order to translate a Cartesian commutator relation such as

[Bx,By] = iB)B, (818)
((1),(2),(3)) basis vector equation such as
B x B = ;0BG (819)
r firstly the usual vector relation in the Cartesian frame:
ixj=k (820)
it vector £, for example, is defined by
i = uyi (821)

15 a rotation generator, in general a matrix component [46]. Therefore

Uy = i(JX)yz (822)
-product xj therefore becomes a commutator of matrices
Ux,Jy] = i/, (823)
0 0 0 -1 : 0 0 -1 0 00
1{-10 0 0 —3 0 0 o l 0 01
o] |1 o o 1o o] o -1 0
L .0
00 (824)
0 0
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This can be extended straightforwardly to angular momentum Operators
and infinitesimal magnetic field generators. Therefore, a commutator such as
Eq. (818) is equivalent to a vector cross-product. If we write B as the scalar
magnitude of magnetic flux density, the commutator (818) becomes the vector

cross-product

(Bi) x (B)j = B (BVk) (825)
which can be written conveniently as
(BxBy)' % x (BxBy)"/%j = iB"'Bzk (826)

However, the Cartesian basis can be extended to the circular basis using relations
between unit vectors developed in this review chapter. So Eq. (826) can be
written in the circular basis as

(ByBy)"%e) x (BxBy)'" e = —BOBe)" (827)
which is equivalent to
BY x B® = BBV (828)
where we define
B — B® — (BxBy)%eV);  B® = Bze® (829)

To complete the derivation, we multiply both sides of Eq. (828) by the phase
factor '9e~® to obtain the B cyclic theorem. The latter is therefore equivalent to
a commutator relation of the Poincaré group between infinitesimal magnetic field

generators. Similarly

[Ex, Ey) = ic’B"'Bz (830)

is equivalent to
EV x E? = ic2 BB (831)

XIV. O(3) AND SU(3) INVAR}ANCE FROM THE RECEIVED
FARADAY AND AMPERE-MAXWELL LAWS

The received Faraday and Ampere-Maxwell laws [111} in the vacuum asserts
that there are fields without sources, so the laws become respectively

VxE+%l;:0 (832)
1 0E

B————= 833

V x o1 ( )
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These .laws are useful but represent cause without effect, that is, fields pro
ing without sources, and the Maxwell displacement ’current’ iS an Emp
cons@ct, one that happens to be very useful. These two laws can be cl 2
U(l? invariant because they are derived from a locally invariant U(1) Le'cllssr1
as discussed already. Majorana [114] put these two laws into the form of . g
Weyl equation (Dirac equation without mass) .

Wi, —ipaVy — ip3y, =0
W\l’z - ip3\l/1 — ipl‘l’3 =0 (
W3 —ip1\, — ipa¥; =0

in which a combination of fields (SI units) acts as a wave function

1 .
\Lli_;Ei_lBi; l:1a273 (
and in which the quantum ansatz
p = —ihV, ih9—>En=W
ot a (

!Jas b.een used. It is shown in this section that the Majorana equations
‘}nv.anant, so the received view is self-contradictory. There is somethin arl?'
ms1de. the ;tructure of the Faraday and Ampére-Maxwell laws that remo%fe 1
\U(l) invariance [44]. It can be checked straightforwardly that Eqs (8355)
»3(834).lead back to Egs. (833) and (832). In condensed notation (t]hé: Maj
‘equations (834) have the form of the Dirac—Weyl equation: ’ v

(W +ap)¥ =0 (
€ structure of the Dirac—Weyl equation itself is [46]
(¥’po +¥pi)¥ =0 (

Eq. (837), ho .
. , however, the o ma . ‘
mponents trix is an O(3) rotation generator matrix

00 O
0 i o0

0 0 i 0
; Ay = 0 0 O s o3 = i
—i 0 0 0
o eying the O(3) invariant commutator equation

[Cl,‘,dk} = —iEileX], (i,k, [ = 1,2, 3) (:
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which is within a factor #, the O(3) invariant commutator equation for angular
momentum [42,44,46]. Therefore, the Majorana form of Egs. (832) and (833),
namely, Eq. (837), is O(3) invariant, not U(1) invariant. The determinant

condition
w —ip3 ipz
ip3 W —ip1|=0 (841)
—ipy ip1 w

gives the relation between energy and momentum for a massless photon, but at
the same time, the Majorana equation (837) can be written as a Schrodinger

equation

HY = WY¥ (842)
H=—ap (843)

which is usually a nonrelativistic equation for a particle with mass. This is
another self-inconsistency of the received Faraday and Ampere-Maxwell laws:
the latter ought to be a law for a particle with mass and ought to account for the
Lehnert current, as argued already. Operators such as

S=—iaxa (844)

are intended for the intrinsic spin of the photon, which however, must have
eigenvalues — 1,0, + 1 in order to be consistent with the O(3) angular momentum
commutator equation (840). The received view [42,44,46] produces eigenvalues
_1 and —+1 only, which is another self-inconsistency.

Equation (837) can be put into the form of an O(3) covariant derivative act-

ing on the wave function ¥

(60 - lng)lP = DolP =0 (845)
where
gA¢ = a'% =K
(846)
L
&7 A0

So the simplest form of the Majorana equation is

Do¥ =0 (847)
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and 1.s the time-like part of an O(3) covariant derivative acting on the
functllon Y. The form of Eq. (847) is not, however, fully covariant. Th Vt‘:al‘l,“
covangnt form of the vacuum O(3) field equations, as argued ;ellr ed .
fl?;liita:;;rly Egs. (3 1.8) and (323), which have a Yang—M ills structure Thiie}flz)r;
fajorana equation is part of an approximation to the O(3) i ari
equations (318) and (323). As argued alread i nV?rlam oo
mass through. the Higgs mechaiism. It do};’sﬂ:leoste :nglr t;)((l)l:sjlitll)?lelSt(g)“'Ie phc(i) o
phoFon mass .mto the Majorana equation (837), revealing that it is a o i
mation. This implies that the received Faraday and Ampére-Maxwell 1n apPrOXI
:11?2:(1;1:1111[1)11 atre E;}EO incomplete [42,44] and that U(1) invariant electrodyi\;]rsnlirclzsthi‘
: ete. The latter is seen dramatically in interferometry, as argued i i
Bewe\.xl/) and elsew}.lere [44]. For example, a U(1) invariant eleczlrodynailii(: éznt:;
escribe Sagpac interferometry, with platform either at rest or in motion;
cann(?t describe Michelson interferometry. An O(3) invariant elect dlon, e
descn.bes both effects self consistently. Oppenheimer [115] deri i;) l}llnamm:
equation as Majorana independently a few years later. et e s
The Majorana equation (837) can also be put in the form

¥(W+ap) =0 (848

. which is analogous with the corr i i
. esponding equation for Dirac— joi
ave function. The notation of Eq. (848) means that rac eyl adgoin

—

3 _
=i—; = (¥ )
p=izi  ¥=(¥) (849
he symmetric energy-momentum tensor (7,
w) of electromagnetism in th
acuum can be defined from the Majorana equation using the matrices 1 E

2000 = 1; 2001 = a5 2002 = 0; 2003 = o3
(-1 0 0 [0 -1 0
2(111: 01 0 ; 2(112: -1
L 0 0 1 0 00
[0 0 —1] [
1 0 0
2(113 = 0 0 0 s Uy = 0 -1 0 (850)
-1 0 0] 0 01
[0 0 0] 1 0 0
2(123: 0 0 -1 ; 2(133: 0 1 0
0 -1 0] 00 —1
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where

Apv = Ay (Ha v=012, 3) (85])

to give the result:

Tw = ‘Papv‘P (852)
Only eight of the nine matrices (850) are independent, and they form a basis for
the SU(3) group, which is used for strong-field theory [46]. Therefore, the
energy-momentum tensor is SU(3) invariant.

Therefore, if we start from a raditionally U(1) invariant pair of equations
(832) and (833), we find that thzy can be put into an O(3) invariant form,
and that the concomitant energy-momentum tensor is SU(3) invariant. It is
therefore interesting to speculate that an SU(3) invariant electrodynamics can
be constructed self-consistently, and is more general than the O(3) invariant
form developed here and elsewhere [44]. To view electrodynamics in the va-
cuum as a U(]) invariant theory is highly restrictive, self-inconsistent [44],
and in contradiction with ordinary data such as those from ordinary interfero-
metry and ordinary physical opticil effects such as normal reflection [44]. Ana-
lyses by Majorana, and later Oppenheimer, show that invariance symmetries can
be transmuted among each other jor the same set of equations, and so it seems
that there is no limit to the internal structural symmetry of electrodynamics on
both classical and quantum levels. It is necessary to check each set of equations
empirically as the theory is developed. The O(3) invariant electrodynamics [44],
for example, has been checked extensively with interferometry and other forms
of data [47-62] by several leading specialists. Broad agreement has been
reached as to the fact that a paradigm shift has occurred, and that the
Maxwell-Heaviside electrodynamics have been replaced by one where there
can be invariance under symmetry groups different from U(1). This paradigm
shift has extensive consequences throughout physics and the ontology of phy-
sics, in chemistry, and in cosmolcgy. The next section, for example, shows that
the dark matter in the universe cen be thought of as being made up of photons
with mass slowed to their rest frane by the Higgs mechanism. The Dirac equa-
tion itself is SU(2) invariant [46],and therefore a model of the electron must be
either SU(2) or O(3) invariant. Vigier has recently developed an O(3) invariant
model of the electron [116] basedon the development of an O(3) invariant elec-
trodynamics [42,45,47-62]. The Dirac equation is the relativistically correct
form of the Schrodinger equatior, and an example of an O(3) invariant Schré-

dinger equation appears in Eq. (342). We argued earlier that the phase of the

Schridinger equation must be ((3) invariant in general. Taking this line of
argument to its logical conclusion, then, Newtonian dynamics are also O3
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ariant. The latter is‘clear from the fact that Newtonian dynamics takes place
gihe space of three dimensions described by the rotation group O(3). Another
ght is obtained from the fact that the angular momentum commutator rela-
ns of quantum mechanics [68] are O(3) invariant.
- The O(3) invariance of the Majorana equati

quation (837) can be d
ly by the use of plane waves : Fmonsirated

A A0 "
Y (i +j)e
p_BY s
= = (i +i)e (853)
E© )
E:;§a~mw
_iB IE .
iB + _E= —2kiA (854)
refore, Eqs. (834) reduce to
B, .
W? = —ip2A3z + ip3A,
B, : .
W? = —ip3Ay + ip1As (855)
B3 .
W? = —ip1As + iprA;
; the four equations
W =p® = pgA®
pi = figA;; i=1,23 (856)

¥ over the O(3) invariant definition of the B field and two other similar
ons that are equations of the O(3) invariant field tensor as argued already:

. K ‘
Bz = —i i (Axd} —Aray)

0 (857)
€quations reduce in turn [42,44,47-62] to the B cyclic theorem:
B x B — jpO)pt) (858)



148 M. W. EVANS AND S. JEFFERS

i i tter is
showing that the Majorana equations are the B cyclic theorem. The la

i jorana
therefore O(3) gauge-invariant and Lorentz-covariant ‘because the Maj
equations are equivalent to equations with these properties.

XV. SELF-CONSISTENCY OF THE O(3) ANSATZ

A three-way cross-check of the self-cons.istency of the O(3) ar;lsatz1 c:;:; zzgclteiccl
out starting from Eq. (459), in which A is complfax because the :(g} omagne ¢
field in O(3) electrodynamics carries a topological charge 1((1/ . b oot
field A in the internal space of O(3) symmetry must depend on x* by

relativity and can be written as

A=A +4? + 4 (859)
where
A(O) ‘e = =i 2)x
AV = A = e = A% (860)

A = A0
It is now possible to check whether Eq. (459)., with its extra vacuum current, 18
compatible with Eq. (106) of Ref. 44, which is

10EY) ) g@ _ 4@ x B0y — L piA* x A (861)
Vme:gT_lé’(A x B — AT < B Ho

It follows, from the structure adopted for A in Eq. (860), that

DA* x A = 0°A® x A + %A1 x A
— kA x A — ixa® x A

= igBY x A — igB?® x A (862)

and so we obtain (863)

VxBY=0
P . (3) : ro.

which is self-consistent with the fact that B®is 1r.rotat10na1 and thatl E . ﬁozne

Another consequence of Eq. (459) is that it gives a vacuum polariza
v PO = p(vac) = 5 plAT xA (864)
Ho
. . 3)

density. The vacuum polarization P dOeSt
but appears from the vacuum charge curreIlt
). This vacuum charge curreft

where p(vac) is the vacuum charge

42]
not appear from the field tensor [ 2],
density term on the right-hand side of Eq. (459
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density term must always be present from fundamental gauge principles on the
O(3) level. So we have identified the concept of a vacuum charge density as the
divergence of a vacuum polarization.

The concepts of O(3) electrodynamics developed in this review and in Ref

44 scratch the surface of what is possible. The field equations must be solved
numerically to obtain all the possible solutions, and checked against empirical
data at each stage. Numerical solution of this nature has not yet been attempted.
The concept of radiatively induced fermion resonance [44], which might lead to
nuclear magnetic resonance and electron spin resonance without the need for
permanent magnets, is one obviously useful spinoff of O(3) electrodynamics
that has not been explored. These are two of several major advances that could
be made within the near future. On the high-energy scale, the concept of higher-
symmetry electrodynamics has led to the Crowell boson, which has been de-
- tected empirically, and, as reviewed by Crowell in this edition, leads to a novel
~ grand unified theory. The development of O(3) electrodynamics also gives bet-
- ter insight into the energy inherent in the vacuum, and shows beyond reasonable
. doubt that all optical phenomena are O(3) invariant, a major advance in the 400-
- year subject of physical optics. During the course of this development, it has
~ been shown that there are several internal inconsistencies [44] in the U(1) invar-
ant electrodynamics, and several instances, in particular interferometry, where
the U(1) theory fails. Two typical examples are the Sagnac and Michelson ef-
ects. The O(3) invariant electrodynamics succeeds in describing both effects
- with precision from first principles because of the use of a non-Abelian Stokes
| theorem for the electromagnetic phase, a theorem that shows that all interfero-
§ metry is topological in nature and depends on the Evans—Vigier field B®. The
b O(3) invariant electrodynamics carries a topological charge x/A® in the va-
b 'cuum, a charge that also acts as the coupling constant of the O(3) covariant de-
ivative. The concept of vacuum charge current density has been established
iself-consistently on the O(3) invariant level from the first principles of gauge
ficld theory. These are some of several major advances.
" Therefore, the empirical and theoretical evidence for the superiority of an
£9(3) invariant over a U(1) invariant electrodynamics is overwhelming. It is clear
t the process of development can be continued, for example, in quantum elec-
Brodynamics, electroweak theory, and grand unified theory, and the ontology of
hese developments can also be studied in parallel.

XVL. THE AHARONOV-BOHM EFFECT AS THE BASIS
OF ELECTROMAGNETIC ENERGY INHERENT
IN THE VACUUM

e Aharonov—Bohm effect shows that the vacuum is configured or structured,
d that the configuration can be described by gauge theory [46]. The result of
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this experiment is that, in the structured vacuum, the vector potential A can be
nonzero while the electric field strength E and magnetic flux density B can be
zero. This empirical result is developed in this section by defining an inner space
for the gauge theory, and by summarizing some of the results proposed earlier in
this review in light of the Aharonov-Bohm effect. Therefore the non-simply
connected U(1) vacuum is described by a scalar internal gauge space, and the
non-simply connected O(3) vacuum, by a vector internal gauge space. The core
of the idea being presented in this section is that the Aharonov-Bohm effect is a
local gauge transformation of the true vacuum, where

Ay=0 (865)
This type of gauge transformation produces a vector potential from the true
vacuum. Components of this vector potential are used for the internal gauge
space whose Lagrangian is globally invariant. A local gauge transformation of
this Lagrangian produces the topological charge

K
8= 10 (866)

the electromagnetic field, which carries energy, and the vacuum charge current
density first proposed empirically by Lehnert [49] and developed by Lehnert and
Roy [45]. These authors have also demonstrated that the existence of a vacuum
charge current density implies the existence of photon mass. Empirical evidence
for the existence of the vacuum charge current density is available from total
internal reflection [45,49]. The source of the energy inherent in vacuo is therefore

spacetime curvature introduced through the use of a covariant derivative:

D, =0, — igAy (867)
The product gA, in the covariant derivative is, within a factor #, an energy
momentum. Therefore, photon mass is produced by spacetime curvature
because, in a covariant derivative, the axes vary from point to point and there
is spacetime curvature. Similarly, mass is produced by spacetime curvature in
general relativity. Therefore, spacetime curvature in the configured vacuum
implied by the Aharonov—Bohm effect is the source of electromagpetic energy
momentum in the vacuum. There is no theoretical upper bound to the magnitude
of this electromagnetic energy momentum, which can be picked up by devices.
as reviewed in this series by Bearden and Fox (Part 2, Chapters 11 and 12; this
part, Chapter 11). Therefore, devices can be manufactured, in principle, to take
an unlimited amount of electromagnetic energy from the configured vacuum as
defined by the Aharonov-Bohm effect, without violation of Noether’s theoren.
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The gauge theory developed earlier in this review is summarized for the U(1)
and O(3) non-simply connected vacua using the appropriate internal gauge
spaces. The earlier calculations are summarized in this section. It has beegn dg
.mon'strated in this series, that there are several advantages of 0&3) gauge theof -
;;pplled to electrodynamics over U(1) gauge theory applied to elect,rodynamicsy
=_but th_e latter can be used to illustrate the method and to produce the vacuurr;
Poynting theorem that is an expression of Noether’s theorem for the structured
acuum. The theory being used is standard gauge theory, so the Noether theo-
N 1s_ conserved; that is, the laws of energy/momentum and charge current con-
ervation are obeyed. The magnitude of the energy momentum ibs not bounded
ve by gauge theory, so the Poynting theorem (law of conservation of elec-
magnetic energy) in the configured vacuum indicates this fact through the
ence of a constant of integration whose magnitude is not bounded above
1is suggests that the magnitude of the electromagnetic energy in the struct d
lassical vacuum is, in effect, limitless. "
The non-§1mply connected U(1) vacuum is considered first to illustrate the
od as simply as possible. This is defined as earlier in this review by th
bally invariant Lagrangian density T
¥ = 0,ATMAT (868)
e A and A* are considered to be independent complex scalar components of
vector potential obtained by gauge transformation of the true vacuum, where
0 [46]. Tjhe potentials A and A* are complex because they are ass;ciated
ha tc_tpologlcal charge g, which appears in the covariant derivative when the
grangian (868) is subjected to a local gauge transformation. The topological
e 8 should not be confused with the point charge ¢ on the proton Ir% the
ssical structured vacuum, g exists but e does not exist. The two scala'r fields
herefore defined as complex conjugates:

1

A= E(Al + iA3) (869)
A= \%(Al — iA») (870)
two independent Euler-Lagrange equations
Y o(L) (i
s (eem) o laoa) o
ce the independent d’Alembert equations of the structured vacuum:
A = 0; 0A" =0 (872)
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The Lagrangian (868) is invariant under a global gauge transformation:

A — e—ix\A_’ A* N eiz\A* (873)
where A is a number. Under a local gauge transformation, however
A — e——i;\(,\‘“)A, A» N eil\(,\‘“)Ai (874)

me coordinate x* by special relativity.

i aceti
where A becomes a function of the sp ) vacuum defined

Under a local gauge transformation [46] of the structured U(1
by the Lagrangian (868), the latter is changed to

1
& = DAD'AT = Fs (875)

Fuv is the U(1) invariant electromagnetic

as argued earlier in this review. Here,

field tensor
Fuv = 0pAv — 0vAy (876)
where the covariant derivatives are defined by
1 877)
A= (0, +igAnA (
Dy G i 75)

DrAT = (O — igA"AT

i the
Here, A, is the vector 4-potential introduced in the .vacucllllrrr:/ a?zrga;thgfe e
covariant derivative, and therefore introduced by spacet1mlf; i im‘/ariance o
tromagnetic field and the topological charge g are t;le reastl;O :1 e e, the
the Lagrangian (868) under local U(1) gauge transtorm .

results of spacetime curvature. ‘
By using the Euler-Lagrange equation

o )2
a"(a(a\,Ap) 0A,

he field equation of the u structured

(879)

with the Lagrangian (875), we obtain t

vacuum |
% 80
3 F = —igc(A"D*A — ADFAT) (880)

sit
a field equation that .dentifies the vacuum charge current density

J¥(vac) = —igceg(A"DMA — ADMAT)

(881)
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first introduced and developed by Lehnert et al. [45,49]. Equation (880) is an
inhomogeneous field equation of the configured U(1) vacuum, and gives rise to
the inherent energy of the configured vacuum

En= ']‘“(vac)A}1 dv (882)
‘and rate of doing work by the configured vacuum

aw

e JJ(vac)-EdV (883)

here E is the electric field strength of the field tensor F\v. The volume V is
bitrary, and standard methods of U(1) invariant electrodynamics give the
Poynting theorem of the U(1) configured vacuum:

dU(vac)
dt

+ V-S(vac) = —J(vac)+E (884)

re, S(vac) is the Poynting vector of the U(1) configured vacuum, representing
tromagnetic energy flow, and is defined by

V-S(vac) = —J(vac)-E (885)
rating this equation gives
S(vac) = — JJ(vac) «Edr + constant (886)

the constant of integration is not bounded above. The electromagnetic
flow inherent in the U(1) configured vacuum is not bounded above,
ning that there is an unlimited amount of electromagnetic energy flow
le in theory, for use in devices. Some of these devices are reviewed in this
on by Bearden and Fox [chapters given above, in text following Eq. (867)].
metimes, the constant of integration is referred to as the “Heaviside compo-
of the vacuum electromagnetic energy flow,” and the detailed nature of this
nent is not restricted in any way by gauge theory. The Poynting theorem
18, of course, the result of gauge theory.
€ non-simply connected O(3) vacuum, the internal gauge space is a vec-
ce rather than the scalar space of the U(1) vacuum. Therefore, we can
ize and collect earlier results of this review using the concept of an
etry internal gauge space, a space in which there exist complex
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vectors A and A*. The globally invariant Lagrangian density for this internal

space is
£ =0,A-FA” (887)
and the two independent Euler-Lagrange equations are
0F _ 5 (22, a;"ﬁza\,(i-";*> (888)
A \aA)  oA” oA
giving the d’Alembert equations
A =0; A" =0 (889)
Under the local O(3) invariant gauge transformation
A—elha; A=A (890)
the Lagrangian (887) becomes, as we have argued earlier
% = DADHA — Gy G (891)
and using the Euler-Lagrange equation
% =0y (ﬂ) (892)
04, \2(0.Ay)
the inhomogeneous O(3) invariant field equation is obtained
(893)

D,G" = —gD*A™ x A

as shown in detail earlier. The term on the right-hand side i§ the O(3) inva.rlz;lrzt
t density that is the non-Abelian equivalent of the right-
d numerically, but the

he energy of the O(3)

vacuum charge curren
hand side of Eq. (880). In general, Eq. (89'3) mlust bef solve
presence of a vacuum charge current density gives rise to t

configured vacuum
En(vac) = |j*(vac)-AudV (894)

. . ant
whose source is curvature of spacetime introduced by the O(3) Covj;ure
derivative containing the rotation generators J; of the O(3) group. The cur

THE PRESENT STATUS OF THE QUANTUM THEORY OF LIGHT 155
of spacetime is also the source of photon mass, in analogy with general relativity,

where curvature of spacetime occurs in the presence of mass or a gravitating
' object.

Therefore, in summary, the empirical basis of the development in this section
is that the Aharonov-Bohm effect shows that, in regions where F and B are both
zero, A can be nonzero. Therefore, the Aharonov—Bohm effect can be regarded
as a local gauge transformation of the true vacuum, defined by A, = 0, and the
Aharonov-Bohm effect shows that a nonzero Ay can be generated by a local
ge transformation from regions in which A, is zero. Therefore, in a struc-
pred vacuum, it is possible to construct a gauge theory whose internal space
~defined by components of A, in the absence of an electromagnetic field.
e latter is generated by a local gauge transformation of components of an
which was generated originally by a local gauge transformation of the
- vacuum where A, = 0. This concept is true for all gauge group symmetries.
L is well known that contemporary gauge theories lead to richly structured va-
na whose properties are determined by topology [46]. The Yang—Mills vacuum,
example, is infinitely degenerate [46]. Therefore local gauge transformation
produce electromagnetic energy, a vacuum charge current density, a vacuum
nting theorem, and photon mass, all interrelated concepts. We reach the sen-
e conclusion, that in the presence of a gravitating object (a photon with
, spacetime is curved. The curvature is described through the covariant de-
tive for all gauge group symmetries. The energy inherent in the vacuum is
tained in the electromagnetic field, and the coefficient g is a topological
e inherent in the vacuum. For all gauge group symmetries, the product
Is energy momentum within a factor 7, indicating clearly that the covariant
tive applied in the vacuum contains energy momentum produced on the
ical level by spacetime curvature. This energy momentum, as in general
ivity, is not bounded above, so the electromagnetic energy inherent in the
sical structured vacuum is not bounded above. There appear to be several
ces available that extract this vacuum energy, and these are reviewed in
compilation by Bearden and Fox. In theory, the amount of energy appears
€ unlimited.
he Aharonov—-Bohm effect depends on the group space of the internal space
in the gauge theory. If this internal space is U(1), the group space is a cir-
Which is denoted in topology [46] by S'. This group space is not simply
nected because a path that goes twice around a circle cannot be continuously
ed, while staying on the circle, to one that goes around only once [46]. A
going around the solenoid »n times cannot be shrunk to one around m
Where m # n. The configuration space of the vacuum is therefore not
connected, and this allows a gauge transform of the pure vacuum, to cre-
hat is known as a “pure gauge vacuum” [46]. In U(1) gauge theory, the

natical reason for the Aharonov—Bohm effect is that the configuration
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space of the null field (pure gauge vacuum) is a ring, denoted by S! x R in to-
pology [46]. The vector potential in the pure gauge vacuum is derived from a
gauge function that maps the gauge space in to the configuration space. These
mappings are not all deformable to a constant gauge function 7, which would
give a zero Vy in the pure gauge vacuum and a null Aharonov—Bohm effect.
This, then, is the conventional U(1) invariant explanation of the Aharonov—
Bohm effect.

The O(3) invariant explanation, as we have seen, uses an internal gauge space
that is the physical space O(3). This space is doubly connected [46). The group
space of O(3) is obtained by identifying opposite points on the 3-space S,
which is the topological description of the unit sphere in four-dimensional
Euclidean space, denoted E*. Opposite points on the 3-space S? correspond to
the same O(3) transformation. It is possible to show that this space is doubly
connected by considering closed curves S! in the group space of O(3). One
can consider paths [46] that may be shrunk to (are homotopic to) a point and
to a straight line. These are the two types of closed path S' in the group space
of O(3), with the implication that there is one nontrivial vortex in an 0O(3) gauge

theory.
The simplest example of the O(3) invariant Aharonov-Bohm effect is the

equation of interferometry

{m@ dr = JB@) -dS (895)

used in the region outside the solenoid where the vector potential sketched below

oft

The line integral is defined over the circular path, exactly as in the O(3) invariant
explanation of the Sagnac effect discussed earlier in this review and in Vol. 114,
part 2. The key difference between the O(3) and U(1) invariant explanations of
the Aharonov-Bohm effect is that, in the former, there is a magnetic field B®
present at the point of contact with the electrons. Agreement with the empirical

data is obtained because

is nonzero:

(896)

|B®)| =B (897)

that is the total magnetic flux inside the area S must be generated by

the static

magnetic field B of the solenoid. The fact that we are using an O(3) gauge theory
means that the configuration space of the vacuum is doubly connected. AS
discussed in the technical appendix, the vector potential A® in Eq. (895) can be
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g(%?iii:.r ?:nl;a\gng tz'een (gsegnse)rated by an O(3) gauge transformation that leaves
. Equation is the consequence of a r ip i i
; . ound trip in spacetime
gg;lg.para.llel Lransport‘wnh O(3) covariant derivatives. Therefore, the simplest
3 _) m\garlant e)'(planatlon of the Aharonov—Bohm effect simply means that it is
;ut:; :;ter erometric effect, Yery similar in nature to the O(3) invariant explanation
of the Sggnac effect or Michelson interferometry.
) tThe s1rpp1est example of the generation of energy from a pure gauge vacuum
o consider the case of an electromagnetic potential plane wave defined by

A=A+ A= ﬂ(ii 4 f)e{rx2)
NG (898)
:f_ e pure gauge vacuum is then defined by
A#0; E=0; B=0 (899)
and a Lagrangian density can be constructed which is proportional to
¥ =0,A-0'A (900)

lc bal gauge transformation of A in the pure gauge vacuum is equivalent to

tion of A thrqugh an angle A [46], producing a conserved quantity Q as thEl
ult of the invariance of the action under the global gauge transformat}i’on It cae
shown as follows that ( is proportional to conserved electromagnetic l;inetiz

En = i J B2 4y

m (901)
erated by the global gauge transformation of the pure gauge vacuum, which

€ the € vacu gaug anstrmathIl.

) (0)
A =i e—r(mt~KZ), _A —ilor—KZ
7 i Ay = 7° (wr=xZ) (902)

) 1 1 o .
J .)amv?rlant.theory, the pure gauge vacuum is defined by a scalar internal
pace in which there exist the independent complex scalar fields:

— 1 y
A= E(AI 1 iAs); — iAs) (903)

L
A _‘\/Z(Al
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These are complex scalar fields because there is an invariant topological charge
es

present, defined by

L (904)
8740

The Lagrangian density produced by these scalar fields is, as we have seen

L =0, A"A” (903)
and the global gauge transformation is defined by
A — e—~l‘AA. A’ — eix\A* (906)

. . . al
This type of transformation is not dependent on spacetime and is !)urelI)iI mt:;gr !
[46] in Noether’s theorem. Under a global gauge transformation, Noe
theorem gives the conserved current

JH = igc(A*MA — ATMAT) (907)
with a vanishing 4-divergence and a conserved topological charge:
0= [J"dv (908)
From Eq. (907), the conserved topological charge Q is
0= ;i—f]) J A2 gy = A—z(f)—) J B2 gv (909)
which can be written as
0= %En (910)
where
En=— J B©2av (911)
Ho

1= a 1 Wave
\4 € i (6] tic plane
i i 1C ener, L kora mOﬂOChI‘ m

i by the
Therefore it has been demonstrated that, in a pure gauge vacuum defined by

in the vacuum, the quantity g is also conserved because k and

wave A m i ity is a glob
lane wave A, conserved electromagnetic energy density 1s geneiated byag
[;auoe transformation, which is a rotation of A through the angle A.

o
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This is the simplest example of the generation of kinetic electromagnetic en-
ergy by a gauge transformation of a pure gauge vacuum defined initially by a
nonzero A and zero E and B. The more complete description of energy gener-
~ ated from the pure gauge vacuum is given by a local gauge transformation, as
- argued already in this review on the U(1) and O(3) levels. It is to be noted that
the conserved quantity Q has the following properties:

1. It is time independent.

- 2. It does not depend on the charge on the proton.

3. It is a classical quantity.

4. It is not integer-valued and when A is real it vanishes.

It can be shown as follows that the transition from a pure vacuum to a pure

gauge vacuum is described by the spacetime translation generator of the Poin-
group. The pure vacuum on the U(1) invariant level is described by the field

tions:
F™ =0 (912)
O F" =0 (913)
F™ =0; F™=0 (914)
e kinetic electromagnetic energy term in the Lagrangian
7 1 pv
J:—ZFWF (915)

0. In the pure gauge vacuum, the ordinary derivative is replaced by the
iant derivative, so the field equations (912) and (913) become

OuF™ = —iA F™ (916)
OuF"™ = —iA F™ (917)
A, is defined by
[ _
Ay =——(0,8)s" (918)
8
re the fields F¥ and F*Vare still zero. Therefore
FH =3"AY —0YAF =0 (919)
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and the contribution of the field to the energy in a pure gauge vacuum is zero.
However, there occurs an €ncrgy change from a pure vacuum to a pure gauge
vacuum, an energy change proportional to gA,. The origin of this energy change
is topological; that is, the energy change can be traced to the replacement of the
ordinary derivative 0, by the covariant derivative Dy,.

Essentially, this replacement means that the spacetime changes from one that
is conformally flat to one that is conformally curved; in other words, the axes
vary from point to point whenever a covariant derivative is used for any gauge
group symmetry. It is this variation of the axes that introduces energy into a pure
gauge vacuum. The covariant derivative in the latter is

D, =0, — igAy (920)
which can be written using the rule iy = ¥y as

B} (921)

This expression is equivalent [42] to
P, — Py + PL (922)

where P, is the spacetime translation generator of the Poincaré group. Within a
factor fi, the spacetime translation generator is the energy-momentum 4-Vector. It
becomes clear that the use of a covariant derivative introduces energy momentum
into the vacuum, in this case a pure gauge vacuum. Lagrangians, consisting of
components of Ay in the pure gauge vacuum when subjected to a local gauge
transformation, give the electromagnetic field and its source, the vacuum charge/
current density, first introduced empirically by Lehnert [49].

In the final part of this section, the method of local gauge transformation is
outlined in detail to show how the electromagnetic field and conserved vacuum
charge current density emerge from the local gauge transformation of the pure
gauge vacuum. The illustration is given for convenience in a U(1) invariant
theory, and leans heavily on the excellent account given by Ryder [46,
pp. 94ff.]. We therefore consider a local gauge transformation of a pure gauge
vacuum with scalar components A and A

A — exp(—iA(x"))A

) (923)
A* — exp(—iA(x"))A”

For A < 1
A = —IiAA (924)

E THE PRESEN
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and
CuA — O,A — i(0uA)A — iA(O,A) (92!
Therefore
8(0,4) = —iA(apA) - i(0,A)A (92¢
and
0A™ = IAA*
8(0,4™) = iA(O,A") + (B A)A (92

The effect of the 1
ocal gauge transform is to i
e effect o 1ge | o introduce an extra term O, A i
Covarianﬂatlollll qf the derivatives of fields. Therefore, 3,4 does not tian Iflth
covar desg, t :11: is, doe's not transform in the same way as A itself Thesese())cir
oy the invariance of the action under the local gauge transformatioi

because the change in the Lagrangian is

1% 07
8L = - bA+ - .
51 A 50,47 8(3,4) + (A — A*) (928

where (A — A*) denotes the iti
two additional terms in A”. Substituti
) . . t
Lagrange equation (888) into the first term, and using Eqs (8932;1?5;2;3 ?ﬂer-
. —~ , gives

0¥ @
=0, (—iAA 92 }
FEwY (—iAA) + 3(0.A) (—iAD,A — IAD,A)
g %A 20
@A) a(auA)( WA+ (A — AY) (929

- Tm 1S a tota 1
1 1 d \/CIgellCC, SO the Corres Ondlng Cllallge n the action 1

L = (0,A4)(0"A") — m?A*A (930)

r the Lagrangian then gives

8L = iBuA(A*DHA — AD"A") = JHD, A (931)

i s
fWhere the (SI) current is given by Eq. (907), in reduced units

JH = i(A*A ~ AD"AY) (932)
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s therefore not invariant under local gauge transformation. To restore

The action i
t be introduced into the pure gauge vacuum

invariance the four potential, A, mus
to give the Lagrangian

L= —ngAp

— —ig(ATO"A — AD"AT)A, (933)

defined in such a way that gA,,

where g is the topological charge in the vacuum,
1 gauge transformation means

has the same ST units as K. On the U(1) level, loca
that

1
A, — Ay + gapA (934)

so that
= —g(8J")A, — gJ"(8A,)
= —g(8JM)A, — JHOUA

5.2,
(935)

not invariant under a local gauge transformation, however,

The action is still
on the right-hand side of Eq.

because of the presence of the term —g(8JMA,
(935), a term in which

§J% = iB(AO"A — ADHAT)

= 2AAD"A (936)
so that
5.7 + 0.7 = —28Au(0"A)ATA (937)
Therefore, another term must be added to the Lagrangian £
Py = PAAMAA (938)
Using Eq. (934), we find that
5L = 282 A BAPATA = 224, (T M)ATA (939)
so that
8L +08%1+8L2=0 (940)
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Th i i

tra;clsﬁotal Lagranglan £+ ,Z. + &> is now invariant under the local gat
i theormat1onjbecfause of the introduction of the 4-potential A,,, which coup

current J, of the complex A ’
' W plex A of the pure gauge vacuum. The fi
: . eld A

tcontn;utes to the La.granglan, and since ¥ + %) + &, is invariant anuei
erm ¥3 appears, which must also be gauge-invariant. This can be so c;nl if-
electromagnetic field is introduced &

Fp = 3,4, —0,A, (o

1
L= __FW
3 4F Fyy (94

The total invariant Lagrangian is therefore
Gin=L+ L+ L2+ ¥

— a A . HoA* . * * 1
(0,4 + igA,A) (B"A™ — igAPA™) — m?A*A —7FFw (94

The Lehnert field equation i : .
quation is obt d - .
Lagrange equation ained from this Lagrangian using the Eule

oz 0¥
oA, m) =0 (94
‘giving in SI units
OF = —igc(A"D'A — AD"A”) (94

Is noted that the Lehnert charge current density
J¥ = —igggc(A*DM'A — ADMAY) (94

i gauge- i
3 thof(gie (c);)vgrlant and al;o conserved, and thus cannot be gauged to zero by ar
auge transformation. It is the di

S . irect result of a local gau
| tmmaa;t;zgcog zlldp;rue; gauge vacuum and acts as the source of the vagcuug
; e , as discuss i

N ed already. The covariant current (946)

%" =0 (947
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XVIL. INTRODUCTION TO THE WORK
OF PROFESSOR J. P. VIGIER
We append what we believe to be a comprehensive listing of the publications of
t a wide range of topics from the

Professor Jean-Pierre Vigier. They represen
interpretation of quantum mechanics, particle physics, cosmology, and relati-
vistic physics. What is remarkable about this list is not just the breadth of topics,
but the philosophical consistency that underlies the physics. Firmly rejecting the

chanics, particles of all types are, at all

orthodox interpretation of quantum me
times, regarded as objectively existing entities with their own internal structure.
Particles are guided by pilot waves, SO the dualism of orthodoxy 1s firmly rejected

in favor of realist ontology.

What follows is a brief account of Professor Vigier’s life and career as related
effers) in a series of conversations held in Paris during the sum-
sion of these conversations will appear in a
book being compiled by Apeiron Press and the Royal Swedish Academy to
mark the 80th birthday of Professor Vigier. A comprehensive biography of
this remarkable man, whose life has witnessed major revolutions both in physics
and in politics (his twin passions), remains to be written.

“Great physicists fight great battles”—so wrote Professor Vigier in an essay
he wrote in a tribute t0 his old friend and mentor Louis de Broglie. However,
this phrase could be applied equally well to Vigier himself. He has waged battle
on two fronts—within physics and within politics. Now almost 80, he still con-
tinues to battle.

He was born on January 16, 1920 to Henri and Frangoise (née Dupuy) Vigier.
He was one of three brothers, Phillipe (deceased) and Frangois, currently Pro-

fessor of Architecture at Harvard University. His father was Professor of English
at the Ecole Normale Supérieure—hence Vigier’s mastery of that language. He
a at the time of the Spanish civil war.

attended an international school in Genev

This event aroused his intense interest in politics, as most of his school friends
were both Spanish and Republicans. Vigier was intensely interested in both phy-
sics and mathematics, and was sent by his parents to Paris in 1938 to study both
subjects. For Vigier, mathematics is more like an abstract game, his primary in-

terest being in physics as it rests on two legs, the empirical and the theoretical.

All the young soldiers were sent to Les Chantiers de la Jeunesse, and it W'fls
there that he joined the Communist Party. The young radicals were involved 10
acts of sabotage near the Spanish border, such as oiling the highways to impede
the progress of the fascists. At that time, the French Communist Party was deep-
ly split concerning the level of support to be given to the Résistance. A few lea-
ders went immediately to the Résistance, while others, like Thorez, waver
the period before the Nazi attack on the Soviet Union, the party equivocat
with respect to the Résistance. At that time, Vigier was in a part 0

to one of us (S. J
mer of 1999. A more complete ver

ed. In

f France
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controlled by the famous communist leader, Tilli

oy e ‘ : 1, Tillion, who had participated i
iull reSis;gszi 1fli'1 Lhe Black Sea in 1918. Tillion immeIZiiatel)I') (:(:;alnnizt::lg
B o osance | ng] te.rs calleq the Organisation Spéciale. Vigier was in-
- e g paigns against both the Nazis and Vichy collaborators

In Geneva, Vigier was involved in communicati
: S ‘ . icating between the Fr ili-
;igzzspring (;lfnisgt:;fnfda?i Ru551a,- until he was arrested at the Frenchetr)lcc)?dzlliln
B ey oo ad f;n to Vichy. There, the French police interrogated him
mom ety v ;: ) cl).cumen.ts. Two police officers brought hincl by train

A e ;: ivered into the hands of the notorious Klaus Barbie
o escaasd ombed by the- English, and Vigier managed to jum .

A ﬂ;e erldpef t}(}) the mountains, and resumed his activities with thg
e Pams;) the war. He became an officer in the FTP movement
_:aune s ot Pt ns, meaning sh’ar'pshooters and supporters). When De
__ A COI((:je, part of the Reswtz'mce forces were converted to reg-

e Vioer v war started almost immediately after the defeat of the
it a I;rrllemb.er of the French General Staff while complet-
e 0rf ah .D. in mathematics in Geneva. Then the commu-
i ht e.General Staff and Vigier went to work for Joliot-
E govemmen,t o is tJ)ob for refusing to build an atomic bomb for the
ol acciden.ta] gier became unen‘lployed for a while and then learned
i aSSistaninei:/t;lng with Joliot-Curie, that Louis de Broglie was’
B e e p'h " en he met De Broglie, the only questions asked
o e imm. d.. in mgthematlcs?” and “Do you want to do phy-
| R e ﬁately in 1948, and with no questions asked about
e margi.n alizec()jug. svecretar}./ of Fhe French Academy of Science, de
| S [Wlt in thsms circles given his well-known opp’osi-
I - Em(’lr‘l errlp(rieta_tlon of quantum mechanics. Notwithstanding
i (Ce[;tre natig 1el ad difficulty in finding an assistant. Vigier entered
| o retiremenat 3& !a fechefc.he scientifique) and worked with De
| nt. Vigier’s pplmcal involvement at that time included

g Arencf.1 commur.u?t student movement.

- recemc,idemenfcz]i; pl'lys101st named Yevick, gave a seminar at the
B D Dot beacs 0 a\{ld Bohm. Vigier reports that upon hearing of
Bt bt 1ame rz}dmnt and commented that these ideas were first

P DonB% t1rn'e ago. Bohm had gone beyond De Broglie’s
o prepa:re Z : roglle charged Yigier with reading all of Bohm’s
| A srlr(limar. De Broglie went back to his old ideas, and

i (r: ng on the causal interpretation of quantum me-
B o fyB 0;1gress, de Broglie had been shouted down, but

o Bohm, there. was renewed interest in his idea,th t
coexist, eliminating the need for dualism. Vigier recalzlls
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that at that time, the catholic archbishop of Paris who exclaimed that everyone
knew that Bohr was right. upbraided de Broglie, and how de Broglie could pos-
sibly believe otherwise. Although a devout Christian, he was inclined to materi-
alist philosophy in matters of physics.

Vigier comments on tis days with de Broglie that he was a very timid man
who would meticulously prepare his lectures in written form—in fact, his books
are largely compendia of his lectures. He also recalls one particular incident that
illustrates de Broglie’s commitment to physics. Vigier was in the habit of meet-
ing weekly with de Broglie to take direction as to what papers he should be
reading, and what calculations he should be focusing on. On one of these occa-
sions, he was waiting inan anteroom for his appointment with de Broglie. Also
waiting was none other than the French Prime Minister Edgar Faure who had
come on a courtesy Visit in order to discuss his possible membership in the
French Academy. When the door finally opened, de Broglie called excitedly
for Mr. Vigier to enter as he had some important calculations for him to do,
and as for the prime ninister, well he could come back next week! For De
Broglie, physics took precedence over politicians, no matter how exalted.

De Broglie sent Vigier to Brazil to spend a year working on the renewed cau-
sal interpretation of quantum mechanics with David Bohm. Thereafter, Yukawa
got in touch with de Broglie, with the result that Vigier went to Japan to work
with him for a year. Vigier comments that about the only point of disagreement
between him and de Broglie was over nonlocality. De Broglie never accepted
the reality of nonlocal interactions, whereas Vigier himself accepts the results
of experiments such as Aspect’s that clearly imply that such interactions exist.

His response to the question “Why do we do science?” is that, in part, itisto
satisfy curiosity about the workings of nature, but it is also to contribute t0 the
liberation from the necessity of industrial labor. With characteristic optimism,
he regards the new revolution of digital technology as enhancing the prospects
for a society based on the principles enunciated by Marx, a society whose mem-
bers are freed from th2 necessity of arduous labor—this, as a result of the ap-
plication of technological advances made possible by science.

TECHNICAL APPENDIX A: CRITICISMS OF THE u@)
INVARIANT THEORY OF THE AHARONOV-BOHM
EFFECT AND ADVANTAGES OF AN 03
INVARIANT THEORY

In this appendix, the U(1) invariant theory of the Aharonov—Bohm effect [46] 18
shown to be self-inconsistent. The theory is usually described in terms of a
holonomy consisting of parallel transport around a closed loop assuming values

in the Abelian Lie graup U(1) [50] conventionally ascribed to electromagnetism:
t 18

In this appendix, the U(1) invariant theory of the Aharonov—Bohm effec
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criticized in several ways with r
: eference to the well—
e s¢ ell-known test of th
transporter\r:/;i)tlglcgllg by Ch~ambers [46] and a holonomy consisting of eaerfaflfg
2 spore with 3) covar@nt derivatives is applied to the AharonovFiB h
Simil;mi;r:lgattmg thehself-mconsistencies of the U(1) invariant theory C(l) s
etween the O(3) invariant i i and
B i covncr e rvestod nt theories of the Aharonov-Bohm and
It is wel i
well known that the change in phase difference of two electron beams in

the Aharonov-Bohm effect i i i
E is described in the conventional U(1) invariant the-

e el
AS_EJVXA.dSZﬁJB.dS

W hele the I“aglletlc ﬂux de lty ()[ l]le S( ile (0] (S (&1 V )

B=VxA

QOutside the solenoid, however

B=VxA=0 (A.3)
h . .
i;n:z}z;n; tht:;t the c]};ar;lge in phase difference in Eq. (A.1) is zero, and that
: onov—Bohm effect, vati ’
B o oo s oo y , c.ontrary to the observation. In the U(1)
R cuemetis remedy this self-inconsistency by using the fact that
: ide the solenoid, and so can be represented by a function of the

A=
3 Vy (A4)
;__Aharonov—Bohm effect is then described by [46]
Ad = E%V)(-a’r = (& = ¢ .B
h o =% -dS (A.35)

the . . .
: assertion that y is not single-valued. The analytical form of y is

. BR?
3 o) (A.6)
B is th i i
e magnitude of the flux density B inside the solenoid, R is the radius

solenoid, and ¢ is an
g angle, the ¢ component in cylindrical polar
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A.5) is self-inconsistent in several ways:
oyx=0 from Eq. (A.5), and there is no

dicting Eq. (A.5).
m of vector analysis states that

However, the interpretation in (

1. Outside the solenoid, B=0,s
Aharonov-Bohm effect, contra

2. For any function %, 2 basic theore

A7
U x (V1) =0 (A7)
. . . d
This theorem is also valid for a periodic function, sO outside the solenol
B=VxA=0 (A8)

d from Eg. (A.1), the Aharonov—Bohm effect again disappears. For

for y, an
example, if we take the angle
y =sin”! oy (|x] < a) (A9)
a
then:
vy = (@ -2V (A.10)
and
Vx(Vy) =0 (A.11)
or if we take the periodic function
§ = COSX; Uy = —sinxi (A.12)
then :
V x(Vy) =0 (A.13)

pirical result 1s obtained only if
, for a periodic function. So.the
1 to obtain the correct analytical

Another criticism of Eq. (A.5) is that the em
y — ¥+ 27, whereas in general, x— Y+ 21
value of n has to be artificially restricted to n =
and empirical result. .
The basic problem 1n a
i i ts
effect is that the field B is zero ou
V x A is zero, whereas A is not zero [46]. Att

theorem states that

U(1) invariant description of the {\haronO\'—Bol:gl
ide the solenoid, so outside the solenolid,

[V x A-dS = ({)A-dr

he same time, the U(1) Stokes

(A.14)
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s0 that the holonomy ¢ A - dr is zero and the effect again disappears for A outside
the solenoid because the left-hand side in Eq. (A.14) is zero.

In the O(3) invariant theory of the Aharonov—Bohm effect, the holonomy
consists of parallel transport using O(3) covariant derivatives and the internal
- gauge space is a physical space of three dimensions represented in the basis
-;’((1),(2),(3)). Therefore, a rotation in the internal gauge space is a physical rota-
;"jtion, and causes a gauge transformation. The core of the O(3) invariant explana-
“tion of the Aharonov-Bohm effect is that the Jacobi identity of covariant
derivatives [46]

> D6, [Py, D] =0 (A.15)

O,V

is identical for all gauge group symmetries with the non-Abelian Stokes theorem:

[ 1
+Dudx“ +§J[D“,DV] o™ =0 (A.16)

any covariant derivative in any gauge group symmetry. In the O(3) invariant
eory, the following three identities therefore exist

{)A(")-dr:JB(i)-dS; i=1,23 (A.17)

is, one for each of the three internal indices (1), (2), and (3). The quantities in
A.17) are linked by the following vacuum definition:

B3 = —jgA) x 42 (A.18)
vector potential A’ and the longitudinal flux density B are both phaseless,
g. (A.17) with i = 3 is the invariant equation needed for a description of the
aronov-Bohm effect

i{m) = J BIY-ds (A.19)

aronov-Bohm effect is therefore caused by a gauge transformation in a
whose configuration space is O(3). The effect is a gauge transformation
(A.19) into the region outside the solenoid because the left- and right-hand
~0f Eq. (A.19) exist only inside the solenoid. In general field theory, gauge
1ations of the potential and of the field are defined through the rotation

S = exp(iM A (x")) (A.20)
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nd on the
here M? are the group rotation generators and A¢ are angles that depe
w .
4-vector x*. Under a general gauge field transformation

i -1 Azl
A = SAST! - P (3,5)S (A1)
. A2
G = SGeS ! (A22)
In the O(3) invariant expression (A.19), the vector potential transforms accord ng
n

to
10a 3 (A23)
3, A0 o2l ,
A® — AP + 252°
and the magnetic field transforms as
B® — BY (A24)

1 i tside the
At the point of contact with the electrons, therefore, in the region ou

solenoid, the Aharonov-Bohm effect is caused by

li;?iem.d,:
g) oZ

i t with the
ic field present at the point of cgmgc
e of Eq. 25) is physically significant. The

JB(3) -dS (A25)

in other words, there is a . "
“eacon ankcli- tk;: tlk?;tt-t:lizdos(gd)essfnﬁgtrg internal space of t-he theory 015*ch
reason for ¢ lsof three dimensions: the vacuum with configuration space (J)is_
Physfcal e ected configuration space. Therefore, nonf? of the self-i.nc.on.s >
nons'lmply cOntn in the U(l; invariant theory are present in the O.(?») m;arlais
EflnCIreyS (I))fr etslfen Aharonov—Bohm effect. Agreement with the empirical data
€o |

obtained through the O(3) invariant equation:

A6 =2 B®.as (A.26)
k.

nstrates the simplicity with which the novel O(3)

and this analysis cenr™ o elf-inconsistencies of the U(1) description.

electrodynamics removes the s

ICS

. 0(3) ELECTRODYNAM

CHNICAL APPENDIX B: O( E

" FROM THE IRREDUCIBLE REPRESENTATIONS
OF THE EINSTEIN GROUP

I ] art l ()I Ih S ]ee—\}lil ime set Sa(ZIIS |l] ;l ] as (le]ll“ 1 atec ]lil‘ cleCtIO
h . Str
n

i €
magnetic energy is available from curved spac

time by using the irreducible
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representations of the Einstein group. The metric is expressed using a quaternion-
valued 4-vector, g*, with 16 components. If we define the scalar components of
q" as

¢ =("q""¢q7) (B.1)
the quaternion-valued 4-vector is defined as
o'qy = (¢°5°, q16", 267, g36%) (B.2)

n the flat spacetime limit, the g* is replaced by the 4-vector made up of Pauli
“matrices:

GIJ — (00301702, 03)

(B.3)
field tensor given by Sachs in his Eq. (4.19) contains, in general, longitudinal
s well as transverse components under all conditions, including the vacuum
ed as Riemannian spacetime. Sachs’ Eq. (4.16) shows that the electro-
etic canonical energy-momentum tensor (T") is spacetime curvature in
isely the same way that gravitational canonical energy momentum is
etime curvature. Therefore, code must be developed to solve Sachs’ Egs.
6) and (4.18) in order to understand electromagnetic phenomena in general
ity for any given situation. Sachs’ Eq. (4.16) shows that electromagnetic
gy is available in the vacuum, defined as Riemannian curved spacetime, and
be used to power devices.
e electromagnetic field propagating through the curved spacetime vacuum
ys has a source, part of whose structure is the quaternion-valued T*. This
is the most general form of the Lehnert vacuum 4-current [45,49]. Gen-
relativity [117] also shows that there is no electromagnetic field if there is
rvature, so a field cannot propagate through the flat spacetime vacuum of
ell-Heaviside theory. The latter’s notion of transverse plane waves propa-
g in the vacuum without a source is therefore inconsistent with both gen-
relativity and causality, because there cannot be cause without effect (i.c.,
without source).
| general, all the off-diagonal elements of the quaternion-valued commuta-
m [the fifth term in Sachs’ Eq. (4.19)] exist, and in this appendix, it is
by a choice of metric, that one of these components is the B® field dis-
in the text. The B field is the fundamental signature of O(3) electro-
mics discussed in Vol. 114, part 2. In this appendix, we also give the most
al form of the vector potential in curved spacetime, a form that also has
tudinal and transverse components under all conditions, including the
im. In the Maxwell-Heaviside theory, on the other hand, the vector
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have transverse components
tent with general relativity,

ded electrodynamics.
he most general form of the elec-

e vacuum is generally considered to
is 1 is
only in the radiation zone, a result that is 1ncons

i d Lehnert’s exten
0(3) electrodynamics, an
(1:1 Vol. 114, part 1, Sachs has shown that ¢

tromagnetic field tensor 1s

potential in th

. - ot A ch g
= QG (ko g + G Ko+ 4 Kpudy 8 )

L R (B.4)
+5 (204 ~ 444)

. . . .
Whele K A 1S the cur vature tensor dcﬁlled mn terms ()f the Spln—afﬁne C()Ill’leCIl()
P

[117] -
Kph = 0pSh. — 0.8 — 02y + Q. .
¢ flux (Weber), and where R is the

The asterisk in Eq. (B.4) denotes
e sign of the time com-

3©) has the SI units of magneti

scalar curvature in inverse square meters. ster
quaternion conjugate, which entails [117] reversing

ponent of the quaternion—valued g*. Thus, if

where 0 =

6
¢ =".d"d D) (B.6)

then
¢ = (—¢"d".4" ) (B.7)

i instei is proportional
The metric in the irreducible representation of the Einstein group 18 prop

to [117]
¢'q” +q9'¢" #0

1 ' ducible 1
and replaces the familiar metric g** generated by the reduc

the Einstein group and used to describe gravn'aglont.h"g o
1 i i tations unifies
ble by irreducible represen . '

i : ture of one Lie group: the

netic fields inside the struc 4 . e ¥
Fnagortant result shows that electromagnetic energy 18 avallllzzl e o U
oo time in the same way that gravitational energy IS avai
spaceti
i - ted concept. ‘
spacetime, a well-accep -
’ The demonstration by Sachs [117] that elegtromagn:;ates
from the vacuum (Riemannian curved spacetlme) gen

classical electromagnetic theory available. I

(B.8)

epresentations of

herefore, the replacement
itational and electro-

Einstein group. This

nergy 1s availal?le
the most precx(siz.
ts notable successes [42] include®
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the ability to reproduce the Lamb shift in hydrogen without renormalization; the
 ability to produce the Planck distribution of blackbody radiation classically: the
correct prediction of the lifetime of the muon state and electron—-muon mass
splitting. The Sachs theory also shows the existence of physical longitudinal
‘and time-like components of the vector potential in the vacuum, predicts a small
‘but nonzero neutrino and photon mass, and establishes grounds for charge quan-
tization. These precise predictions firmly establish the possibility of obtaining
ectromagnetic energy from the vacuum, and firmly establish the existence
the B field as one of the possible longitudinal components of the tensor
4) in the vacuum (Riemannian curved spacetime). It follows that O(3) elec-
ynamics is also a theory of curved spacetime, and that the extended electro-
mamics of Lehnert is a transitional theory in flat spacetime, but one that has
veral notable advantages over the Maxwell-Heaviside theory, as reviewed by
hnert in Part 2 of Vol. 114. The Lehnert theory also gives the B field in the
cuum.

Equation (B.4) shows that the electromagnetic field in general relativity is
on-Abelian, and acts as its own source. The gravitational field also acts as
own source, in that the gravitational field is a source of energy that, in turn,
vitation. In gravitational theory, the Einstein curvature tensor is equated
the canonical energy-momentum tensor. In electromagnetic theory, the
applies, as in Sachs’ Eq. (4.16). Gravitation is therefore an obvious man-
tion of energy from the vacuum; electromagnetic energy from the vacuum
-also available in nature, a result that has been confirmed experimentally to the
ision of the Lamb shift. Therefore, there is an urgent need to develop code
olve the Sachs field equations for any given experimental setup. This code
will show precisely the amount of electromagnetic energy that is available in the
icuum (Riemannian curved spacetime).

The quaternion-valued metric ¢ can be written as

p_ | 9t9z qx —igy B.9
i [qx+iqy QO_QZJ (B9)

_ 10 gx ]|, _ |1 0 —igy
‘IX— [QX 0:l7 qy_‘ l:qu 0 (BIO)
dxqy — qvqx = i(gxqy + qvqx)oz (B.11)
4xqy + qvqx = i(gxqy — qyqx)oz (B.12)
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-valued parts, the
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indivi omponents gx and gy mu -om| d i1 -
md:;;duai;::i;: strfl)cture of O(3) electrodynamics 10 quaternion value
e re

by a choice of metric
AR
Y

qY:m:e

Ay i (B.13)

— — et
qx = A(O) e,
M — A@* is part of the
agnetic phase factor and where A = A7 18P o
Yy s as described in the text, and whose

developed in Vol. 114, part 2. The

where ¢ is an electrom :
vector potential of O(3) electrodynamic

phase factor is a Wu~Yang phase factor as
choice of metric in Eq. (B.13) leads to

B.14
gxqy — qrqx = 20z ( )

i * 3) electro-
iving the phaseless and longitudinally directed B field of o(3)
gl
dynamics

B® = +lgop (B.15)
4

1 1 .15) represent
. The two s1gns 1n Eq. (B.1 ‘
B L the result (B.15) 1s the

Within a factor of 3 : '
nification scheme based on an antisymmetric

where ®© is a magnetic flux i
left and right circular polanz.auon.
same as that obtained [42]usingau
Ricci tensor.

It can therefore be 1 ‘
nian curved spacetime, as 18
Both O(3) and SU(2) electrodynam

jrreducible repr .
" flzpﬁseer:’t:oduzy[tlhleﬁ The B® field in vector notatl
uo g .

spacetime by

theory of Rieman-

icsisa
nferred that O(3) electrodynamic et i

homomorphic SU(2) theor 5
o ics are substructures of general relativity

instei tin-
esentations of the Einstein group. a con y
on is defined in curve

g = —igA(l) <« A® (B.lﬁ)

. . . A . .
Whlle mn the ﬂat SpaCCUIIlC 0f IV[aX W ell—I IeaHSlde theOIy 1t Va]llslles.

B = —igA xA =0

it may therefore be inferred th ‘
aningful magnetic flux dens'lty
of an infinite set of longitu
field tensor (B.4). This result h
of the Lamb shift.

From general relativity,
and that it is a physically me
phaseless B® component 1s one
oscillatory, components of 'the
experimentally t0 the precision

in the vacuum.

as been testeé

(B.17)

ist.
at the B field must e>}h :

dinal, and in generd
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In general, all the off-diagonal elements of the commutator term in Eq. (B.4)
exist and are nonzero. For example

9097 — 9295 = 290920z (B.18)

‘which is a real and physical, longitudinally directed, electric field component in
the vacuum. Such a component is in general phase-dependent. If the metric is
chosen so that

AB)
90=49z =75 =1 (B.19)
we recover the longitudinal and phaseless electric field component:
J
1
EG) = 7 PR (B.20)

is in-built parity violation in the Sachs theory [76], so the distinction
ween axial and polar vector is lost. This is the reason why the Sachs theory
ws a phaseless E® to exist while O(3) electrodynamics does not. There is no
violation in O(3) electrodynamics. The question arises as to what is the
rpretation of the phaseless E® in general relativity. The empirical evidence
a radiated B field is reviewed in Vol. 114, Part 2 and in the text of this
ew chapter. An example is the inverse Faraday effect, which is magnetization
duced by circularly polarized radiation. However, there is no electric
valent of the inverse Faraday effect; that is, there is no polarization produced
A circularly polarized electromagnetic field. The phaseless E® present in the
m in general relativity may, however, be interpretable as the Coulomb field
veen two charges in the radiation zone. The Coulomb field is missing in
cwell-Heaviside theory, where the electric field is pure transverse, and as
out by Dirac [42], this result cannot be a proper description of the fact
e a longitudinal and phase-free Coulomb field between transmitter and
er must always be present.

€ most general form of the vector potential can be obtained by writing the

Foy1 = apA; — &,A’; (B.21)
Or potential is therefore obtained as

.2
AY:Z

(Kng" + ¢} ) g} dx® (B.22)
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and can be written as

(2 (kg + g @ (B.23)
AL =4, (% (kprg" + 4 Kpy) dx >
In order to prove that | )
Jq*dxp:q:ldx" (B.24)
y |
we can take examples, giving results such as
ay (B.25)

jq*ldxz = —jQXdYZ—f]x.

q)( no fUIlCUOIla e[)e de ce o . Ihe ﬁeld
because haS ]. d 1 T n. ()VCIaH str ucture ()f the

tensor is therefore the quaternion—valued

Foy = C(0pq; — aa,q;) + D(gpq; — q.{q;) (B.26)
where C and D are coefficients:
€= %J (Kprg" + 475 7 (B.27)
R
D= %—

i i ge field
(B.26) has the structure ofa quatermon-valued non-Abelian gauge

Equation
denote
theory. If we - -
i
Eg. (B.26) becomes | . N
Foy = 0p A, — 0,A, — if(ApA] — A..,Ap)

g g € t ()]y W CA. i u te i() -V d Ihe l’ules
her .18 q aternion alue ’

Wthh iS a e[leIal auge ﬁ ld he -,,

[_- ﬁel( thCOI y deVeloped in the text ard n pa]’t 2 Of Vol_ l 14 can b.e a]) )v]ed
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(o] q‘ . s >

spacetime.
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