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Preface

This second volume of The Enigmatic Photon opens with a
demonstration of the existence of the longitudinal wvacuum
field B'™ (Vol. 1) from a consideration of the Dirac equation
of one electron, e, in a circularly polarized electromagnetic
field, represented by the four-potential A,. This results in
the key inference that the interaction Hamiltonian formed
between the electron’s intrinsic angular momentum and the
field is governed entirely by B®™ . The latter is thereby
shown to be a fundamental intrinsic property of vacuum
electromagnetism. The second and succeeding chapters develop
the role of B! in field theory. Chapter two deals with the
Higgs phenomenon and spontaneous symmetry breaking of the
vacuum. The existence of the longitudinal B implies that
there is finite photon mass, which is made compatible in
Chap. 2 with gauge invariance of the second kind. In Chaps.
3 and 4, the non-Abelian nature of the relation between the
spin field B™ and the plane waves B and B@ is used to
develop a self-consistent view of vacuum electromagnetism
using an 0(3) gauge geometry. This leads to the non-Abelian
vacuum Maxwell equations in Chap. 4, the technical details of
which are relegated to Appendices. The latter provide
detailed checks on the self-consistency of the new theory, in
which Yang-Mills type isospin indices are identified with
circular indices, (1), (2) and (3), of three dimensional

space. In Chap. 5, a development is given of the role of B'®
in unified (electroweak) theory, in particular its role in
GWS theory. In Chap. 6, the effect of B'® on quantum
electrodynamics is developed, and it is shown that B is
consistent with the powerful results of QED, for example the
latter’s ability to produce the anomalous magnetic moment of
the electron with great precision. Finally, in Chap. 7, a
summary of the major results of both volumes is given, a
summary which shows that the discovery of B® is of central
importance in contemporary field theory. For example it
shows conclusively that the photon, if it is a particle, must

ix
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have mass, and means that the gauge group of electromagnetism
is 0(3), and not 0(2) = U(l) as thought conventionally.
Furthermore, the existence of B in the vacuum can be shown
experimentally by using powerful microwave pulses to magne-
tize an electron plasma set up in an inert gas such as
helium. The precise conditions for such an experiment are
given in Chap. 7. This technique isolates the field B
through its characteristic square root power density profile
(13/?), i.e., the magnetization set up by B"® in the plasma

is proportional to 1%, This is not possible if B® were

zero. The magnetization from the wave fields B®™ and B® is
to order I,. Thus B® is an experimental observable, and
exists in the vacuum, proving that the wave fields BW

and B and the spin field B are linked through the non-
Abelian defining algebra,

BW x B = 0 gd* o cyclicum,

in the vacuum. The numerous fundamental consequences of this
algebra are discussed throughout these two volumes, which
view electromagnetism in an entirely original way.

We owe a great debt of gratitude to Dr. Laura J. Evans,
whose highly professional camera-ready preparation was of key
importance to the whole two volume project.

Many interesting discussion before and during production
are acknowledged with several colleagues, including Keith A.
Earle, CGareth J. Evans, the late Stanislaw Kielich, Mikhail
A. Novikov, Mark P. Silverman, Boris Yu Zel'dovich, and
others. Last, but by no means least, Professor Alwyn van
der Merwe is acknowledged with gratitude for the opportunity
of producing these volumes in his prestigious series.

Charlotte, North Carolina, U.S.A. and
Craigcefnparc, Wales

Paris, France

July, 1994

Myron W. Evans

Jean-Pierre Vigier

Chapter 1. B® and the Dirac Equation

In Vol. 1, several methods were used to infer that there
exists in free space a spin field B®™ of electromagnetic
radiation, which is the recently discovered [1-12] magnetiz-
ing field of light. In the opening chapter of this volume,

the Dirac equation of motion is used to prove that B
emerges directly from the consideration of the action of
electromagnetic radiation on one electron. The Dirac
equation is a "~ relativistically correct and physically
meaningful quantum counterpart of the relation between mass
and energy in classical special relativity, and in the non-
relativistic limit reduces to a Schrddinger equation of
quantum mechanics. The Dirac equation for a free electron
indicates that it, the electron, has an intrinsic spin
angular momentum, which is essentially a consequence of the
geometry of space-time expressed in terms of spinors. This
spin angular momentum has eigenvalues th/2, has no classical
counterpart, and remains non-zero in the non-relativistic
limit [13] of the Dirac equation. In consequence, the Dirac
equation is able to account for the anomalous Zeeman effect
[14] and the results of the Stern-Gerlach experiment [15].
Its major importance is underlined by the fact that it
predicts the existence of anti-particles through the concept
of the Dirac sea [16], and for these reasons has supplanted
the direct quantum equivalent of the Einstein equation, the
Klein-Gordon equation of motion [17]. An inference based
directly on the Dirac equation is therefore based firmly in
fundamental theory. In what follows, the Dirac equation
reveals the presence of B® in the interaction of electromag-
netic radiation with one electron, and so B is an observ-
able and is present in free space, as inferred in several
different ways in Vol. 1. The magnetic field of light, B,
forms an interaction Hamiltonian with the magnetic dipole
moment formed from the intrinsic electronic spin. The latter
does not exist in classical field theory, and so this effect
of B® occurs in addition to its induction of a classically

based orbital electronic angular momentum as described in
Chap. 12 of Vol. 1.
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1.1 ORIGINS OF THE DIRAC EQUATION OF MOTION

The Dirac equation of motion emerged from the attempts
to apply the new quantum theory to special relativity. As
ably described in many texts [13~17], the direct attempt at
quantization of special relativity resulted in negative
probability density and energy eigenstates, which proved to
be physically uninterpretable. In this section, a brief
account is given based on Ryder [16], of the methods used in
the derivation of the Klein-Gordon equation for a particle
within the framework of special relativity.

From the classical theory of special relativity emerges
the following relation,

En? = mic* + p?c?, (1)

between energy and momentum. Here m, is the rest mass of the
particle, ¢ the velocity of light, and p its linear relativ-
istic momentum. In a frame of reference in which the
particle has no linear momentum, this equation reduces to
Einstein’'s equation for rest energy,

En = myc?, (2)

showing that mass is energy. The rest mass m, is frame
invariant, and therefore the rest energy remains the same in
all Lorentz frames of reference, a familiar result from
special relativity. The Klein-Gordon equation is the result
of applying the fundamental quantum mechanical axioms [17]
directly to Eq. (1);

A

- y a
En J%EE.

A
D ~-1ihV, 3

The wavefunction of the equation, denoted ¢, is that for a
particle with no spin, a scalar particle with only one
component, a particle that can also be interpreted as a
scalar field [16]. The Klein-Gordon equation of motion is
therefore an equation of relativistic quantum field theory.
Substituting Eq. (3) in Eq. (1) gives

o = -&24, (4)
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where
A1 @& g .= MoC (5)
:= =2 3c% vz, £ := 3

The Proca equation for a photon with mass, Eq. (9b) of
Vol. 1, is Eq. (4) with ¢ replaced by the gauge field A,. In
the non-relativistic approximation, the kinetic energy of a
free particle is the familiar expression

' (6)

where p = myv is the particle’s linear momentum. Applying the
fundamental axioms (3) to Eq. (6) gives the Schrédinger
equation of motion of a free particle,

2 ~ _i. 00
—é—;’;VZ¢ = lh—a—E. . (7)

Equation (7) is the non-relativistic approximation to Eq.
(4). The wave function of the two equations is ¢, and so the
conjugate product ¢*¢ is a probability density in the Born
interpretation of quantum mechanics, suggested in 1926 [18],

p =09 8

In special relativity, however, p must be the time-like part
of a current-density four-vector,

Je 1=, ipo), &)

and p must be covariant under Lorentz transformation. The
space-like component of j, is the probability current, 3,
defined by

= _ 3N s . 0
J= En—';(tﬁ V- $Ve*), (10)

which, using Eq. (3), can be written as
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- 1 * )y — 1 * - * —— 11
) —2m0(¢ pd+odp P —2m°(¢ pd-opd*), p=-p", (11)

which has the units of linear velocity. Since myJ has the
units of linear momentum it must form part of a momentum-
energy four-vector in special relativity, as indicated by Eq.
(9). Since j, is a four-vector it follows that the equation

a7

28 =g (12)
0x,
is a continuity equation in Minkowski notation. In vector
notation
v-4-90 - o, (13)
ot

which is a continuity equation for J and p. Equation (12)
is a conservation theorem which shows that j, is conserved,
essentially an outcome of Noether'’s Theorem [16]. Equation
(8) must therefore be an approximation to the correctly
covariant

- __ i% 0P _ . Op* 14
6= 2mocz(¢% T ) a4

A set of equations precisely analogous with Egqs. (9), (10)
and (14) can be constructed [18] for electric charge-current

density, whose four-vector is j;” = ey, where e is the

electronic charge, and which appears in the covariant
formulation of Maxwell’s equations for the interaction of
electromagnetic radiation and matter.

With these definitions, Eq. (12) can be expressed as

o Y " -
E’:ﬁ‘?ﬁ;“’m’ $0¢") =0, (15)

but it is well known [16] that this interpretation collapses
because p from Eq. (14) can become negative, whereas any
probability density must be positive definite to retain
physical meaning. The essential mathematical reason for this
is that the Klein-Gordon equation is a second order differen-
tial equation in which both p and dp/3t can be fixed arbi-
trarily at any given instant in time [16]. The equation
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cannot therefore be interpreted physically as a single
particle wave equation of quantum mechanics with wave
function ¢.

The Dirac equation of motion, on the other hand, is a
relativistically correct generalization of the Schrdédinger
equation which surmounts these difficulties through the use
of the appropriate space-time group SL(2,C) [16,17], which is
the group which represents the Lorentz transformation with
four-spinors. Comparison with experimental data of many
different kinds has shown that the Dirac equation is an
accurate description of nature at a fundamental level. It is
essentially a geometrical relation between different four-
spinors, and leads to a positive definite p provided that
there exist particles and anti-particles with an intrinsic
angular momentum with eigenvalues h/2. These are fermions
which obey Fermi-Dirac statistics. This type of angular
momentum is essentially a Lorentz transformation property of
four-spinors, and is therefore a direct consequence of
special relativity itself. It does not imply that fermions
spin about an axis fixed in the particle, so that the often
used term "spin angular momentum" is slightly misleading. A
vector field has an integral intrinsic angular momentum {19],
and the spinor field has half integral spin. These intrinsic
angular momenta exist regardless of the spatial description
of a field, such as an electromagnetic field. The intrinsic
integral spin field B of free space electromagnetism
corresponds to the intrinsic half integral spin of the
electron. The Dirac equation shows that one quantity cannot
exist without the other when considering the interaction of e
with a classical A,. The vector field B"™ has an intrinsic,
or built-in, angular momentum [19] of unity, and this, being
phase free, has nothing to do with the spatial distribution
of the transverse fields B™ and B™® (Vol. 1). In the same
way, the electron has a built-in half-integral angular
momentum, which has nothing to do with the spatial distribu-
tion of charge. Both types of angular momenta are relativis-
tically invariant and both are transformation properties. In
the non-relativistic limit, they are transformation proper-
ties under rotations in space, using vectors of the 0(3)
group for B®™ and spinors of the SU(2) group for the
electron. Thus B® is a fundamental and generally applicable
outcome of the Dirac equation of e in A, and multiplies a
magnetic dipole moment formed from the electron’s intrinsic
spin to form part of the interaction Hamiltonian. Without
this term, the electron’s spin could not contribute to the
Hamiltonian. We conclude that given the intrinsic spin of
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the electron, the Dirac equation describing the interaction
of e with A, implies the existence of the intrinsic spin
field B of free space electromagnetism through an irremov-
able interaction term in the Hamiltonian.

It is important to note that B in this description is
a classical field, and can be deduced from the classical
description of e in A, given in Chap. 12 of Vol. 1. The
intrinsic electronic spin has no classical counterpart, and
the classical Hamilton-Jacobi description of e in A, given
in Chap. 12 of Vol. 1 involves only orbital electronic
angular momentum and an induced magnetic dipole moment. The
quantum mechanical Dirac equation produces an intrinsic
electronic spin which gives rise to a permanent magnetic
dipole moment. The most rigorous treatment of e in A, occurs
in quantum electrodynamics [16] where the field is quantized.

1.1.1 RELATIONS BETWEEN SPIN COMPONENTS

The free space Proca equation (Vol. 1),
A 2 (16)
Oa, = -§%4,,

is a physically meaningful wave equation for the photon,
regarded as a particle with mass. This is so despite the
fact that Egs. (4) and (16) are identical in structure, and
despite the fact that Eq. (4) is not physically meaningful as

a wave equation. Particles (bosons) described by a gauge
field are therefore fundamentally different in nature from
fermions whether or not the bosons have mass. The Dirac

equation for a fermion of mass m, also has the same structure
as Eqs. (4) and (16),

6‘1’ = —22\"! (17)

but now ¢ is a four-spinor, and not a four-vector such as A,,
or a scalar such as ¢é. However, each (scalar) component of
both Egqs. (16) and (17) must obey Eq. (4) by definition,
since both A, and ¥ are made up of scalar components.
Whether these equations are physically meaningful or not
therefore depends on the nature of the wave-functions ¢, A,,
and ¢. The Dirac and Proca equations can both be derived
{20] by considering the transformation of spinors under the
Lorentz group, and are therefore simply relations between

Origins of the Dirac Equation of Motion 7

spin components in space-time. In the limit of zero mass,
the Dirac equation becomes the Weyl equation and the Proca
the d’'Alembert equation for free space electromagnetism,
respectively;

Oy = o, (18a)

0a, =o0. (18b)

These equations describe respectively the massless neutrino
(a fermion) and the massless photon (a boson). The Klein-
Gordon equation of motion, Eq. (4), cannot by definition be
a relation between spin components, because it describes the
scalar (one component and spinless) wave function ¢.

The way in which spin components are related in space-
time determines whether the particle being described is a
fermion (half-integral spin) or a boson (integral spin).
Since there is one space-time, A, and ¢ are two different
geometrical representations of wave-functions arising from
the same four dimensional source. In this chain of reason-
ing, the probability densities from the Dirac and Proca
equations must both be physically acceptable and positive
definite, and this is indeed the case. Following Barut [17]
for example, the Maxwell equations in matter can be written
as

oF,
B - e (19)
ox, €Tue

and this expression is also an equation of continuity (17},
because

i(fﬂ] = ei’:ﬁ = 0. (20)
Ix,\ 9x, dx,

Equation (20) is the result of the fact that F,, is an anti-
symmetric tensor,

- oA, %A, (21)
BT 9x, 9x,

One of the major advantages of the Dirac equation is
that it gives a positive definite probability density, and
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cures this ailment of the Klein-Gordon equation. This
advantage is illustrated [17] by a field-particle interaction
equation such as that describing the electron in the electro-
magnetic field,

(22)

oF, , —
a);:v = er = ec‘l’Yp""

This equation shows that the expectation value of the quantum
mechanical Dirac matrix Y, is the Maxwellian four-current.
The eigenfunctions used in the evaluation of the expectation
value of y, are the Dirac four-spinor ¢ and its adjoint
spinor, §. These concepts will be explained in the following
sections. Equation (22), illustrating the interaction of an
electron e with the electromagnetic field a,, shows that the
physically meaningful nature of the Dirac and Maxwell
equations is based on the presence of more than one spin
component in the particle or field being described. We shall
show that the (Maxwellian) spin field B'®, the newly recog-
nized (Vol. 1) magnetizing field of light, is a direct
outcome of the Dirac equation for the interaction of an
electron, e, with A,, i.e., a direct result of a fundamental
particle-field equation such as Eq. (22). The interaction
occurs through a term in the Hamiltonian eigenvalue of the
type

Htint) - _zeh o'B® .- _Ee-S.B“)’ (23)
0 0

vhere o is a Pauli two-spinor [16] and where 8 is the spin
angular momentum of the electron, with eigenvalues :h/2.
Therefore, the well known fundamental property 8 of the
electron must interact with an electromagnetic field,
considered classically, through the novel magnetizing field
B®™® | a phase-free magnetic flux density in free space, and
with B™® only.

The magnetizing field of light, B, emerges from the
Dirac equation of motion of e in the field of light in the
same way precisely as 9 emerges. Therefore B® is a funda-
mental property of the classical electromagnetic field (and
of the photon) in the same way that 8 is a fundamental
quantum mechanical property of the electron. This conclusion
rigorously reinforces the arguments for B presented in
Vol. 1 of this book, and shows that both 8 and B are
direct consequences of space-time geometry itself at the most
fundamental level in contemporary thought. It is therefore

Origins of the Dirac Equation of Motion 9

incorrect to assert that B® is zero, because this assertion
[21].destroys the validity of the Dirac equation itself.
Similarly, it is incorrect to assert that 8 is zero for the
electron.

1.2 GEOMETRICAL BASIS [16] OF THE DIRAC EQUATION
1.2.1 SPINORS OF THE SU(2) GROUP

The Dirac equation of motion is a description of the
Lorentz boost transformation [16], a description based on a
representation of space-time in terms of four-spinors rather
than four-vectors. Essentially, spinors, as the name
implies, introduce intrinsic spin into the space-time
trajectory of a fermion such as an electron or neutrino,
which thereby acquires a helicity [22]. Furthermore, the
fundamentally geometrical nature of spinors allows only two
components of spin, for example <8 = +H/2 as in Sec. 1l.1.
Since four-spinors and four-vectors are both methods of
describing space-time, there must have been an experimental
basis for the choice of spinors by Dirac {23]. This basis is
well known to have included the Stern-Gerlach experiment
{24], in which a beam of silver atoms travelling through an
inhomogeneous magnetic field is split into two components,
and two only; and the failure of the Klein-Gordon equation of
motion as described in Sec. 1.1.

Adapting the description by Ryder [16], the simplest
geometrical properties of spinors can be constructed from the
SU(2) group of unitary matrices with complex coefficients
{25, 26]. The main purpose of this volume is to derive in
various ways the rigorous basis for the novel B field, and
therefore we restrict our development of the theory of
spinors to the minimum necessary for comprehension.

The SU(2) spinor is denoted by a two component column
vector with complex coefficients,

£
)

where the complex £, and §, are related to the real X, Y, and
Z Cartesian components of a three-vector of the rotation
group 0(3) of Vol. 1 by

%= (& EQ, (25a)

2-
2
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y - Eir8) (25b)

2i '
z = E,E,. (25¢)

Therefore
‘Rl = (Xz + Y2 ,,,ZZ)El - (Ef&g)é , (26)

which shows that the radius vector R is represented by two
spinor components or coordinates, £, and E,, as opposed to
three Cartesian coordinates. It may then be shown [16] that
an SU(2) transformation on E is equivalent to an 0(3) trans-

formation on the column vector (Y. A rotation of the R

Z,
vector in O(3) can be represented by a unitary transformation

matrix, whose inverse is equal to its transpose [25].
Similarly, the rotation of the spinor in SU(2) can be
represented by a complex unitary matrix, U, whose determinant
is unity,

a b
- (—b* a*)' la? +1p* =1, wvr=pur=1.  (27)

Here the superscript + denotes Hermitian transpose, which is
the transpose accompanied by complex conjugation of each
matrix element. The superscript -1 denotes the Hermitian
inverse, which is the inverse of the matrix accompanied by
complex conjugation of each element. The superscript #*
denotes complex conjugate, and the superscript T denotes the
transpose without complex conjugation. The SU(2) group is
the group of these 2 x 2 unitary, complex matrices [16]. A
transformation of the spinor § in SU(2) is equivalent to a
transformation of the three-vector R in 0(3), and is given
by

E-UE, & -EU, (28)

where [16]

U = (a‘ -b‘, — (29)

Geometrical Basis [16] of the Dirac Equation 11

The inner (or scalar) product of two spinors,

14

El) = E;E:, +£;E2: (30)

E'E := (& E;)(
is frame invariant, and the outer product,

51] eon  [E2E1 E 82 (31)
t= §.82) = .
' (Ez( i%) (525; Eza;]

is a Hermitian matrix, i.e., is a square matrix which is
unchanged by taking the transpose of its complex conjugate.
Under a SU(2) transformation, it becomes, from Egs. (28),

E€+ - U£z¢U+. (32)

In order to introduce the Pauli spinors o,, o,, and o,, note,
following Ryder [16] that

.. 0 -1 E; - ‘E; (33)
W (1 0)(ez) (EI]

transforms in the same way as § under SU(2). This property
is denoted by

£~ (€. (3%

Similarly, taking the complex conjugates on both sides

£ - (e (33)

and
£+ ' = (Et)‘l‘ ~ (CE)T = (_Ez zl)' (36)

Therefore
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& -E.8, &
es*~( )-ef. t= -H = : 37)
52 ( ? 1) [ "Eg 5152]

However, we know that
gg - UEEU (38)
S0

H ~ UHU* = UHU™! (39)
under SU(2). Using the notation

h:=o'r X+0,¥+0.2 =|° 1X+(0 _i)y
=6 r=0 o 0,7 = ,
X ¥ z 10 i o0

(1 o) ( z X—iY)

+ Z = , ‘

0 -1 X+iY -Z

it is found that h transforms under SU(2) in the same way as
H,

(40)

h -~ URU* := B/, (41)

and that this is equivalent to a rotation in 0(3) of the
three-vector

R = x1+Yv9 +zk. (42)

The transformation h-~h’ under SU(2) takes place via the
Pauli spinors o,, 06,, 0, in such a way that

det h = det h/, (43)

X2 +Yv24+ 72 =X/2+Y/2+Z/2 (l"l")

as required for a rotation of R in 0(3). Furthermore, if U
is unitary, i.e., if U* = U?, the transformation h-UhU* = h’/

Geometrical Basis [16] of the Dirac Equation 13

means that both h and h’ are Hermitian and traceless.
It is therefore possible to identify the elements of H
and h,

(5152 &3 ] =( z X—iY)l (45)

5% "5152 X+1Y -2

leading to Eqs. (25). Note that a factor 1/2 appears on the
right hand sides of Eqs. (25a) and (25b), and this is the
origin of the half integral spin of the fermion, a purely
geometrical consequence of H=h in Eq. (45). This point can
be clarified [16] by using the fact that under SU(2)

: *( Z* b‘)(zl) =( aE: +bf2)' (46)
- a EZ ~b 51 +a Ez

S0

§, ~af, +b, = E;: £, - -b%E, +ag, = E; (47)

Using Eqs. (25) in the transformed frame, e.g.,

z' = ELE, (48)

and similarly for X’/ and Y’; and eliminating E,, E,, &i, &

between the equations, it can be shown that £ -/ is equiva-
lent to

X' =Xcosa + Ysina, Y/ = -Xsina + Ycosa,

(49)
z! =z,

provided that a=e%%/2, p=o0, In 0(3), Eq. (49) is a
rotation through an angle a about the Zz axis [16]. There-
fore the transformation £ - &/ in SU(2) is entirely equivalent
to a rotation in 0(3). This can be so if and only if a
factor 1/2 appears in the exponent defining a, and this
factor 1/2 carries through to describe the intrinsic spin of
a fermion. To understand the origin of fermions it is
therefore necessary to understand the theory of spinors in
SU(2) and, as described in the following section, SL(2,C).
The unitary matrix U of SU(2) is therefore
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U=(a b)=(ei=/2 0 ) (50)

-b* a* o} e-ia/Z

and is equivalent to, i.e.
rotation matrix [16],

, isomorphic with, the 0(3)

cosa Sina O

R =|-sina cosa 0}, (51)
0 0 1
which is deduced from trigonometry in free space. The

isomorphism between U and R is denoted by

U«R, (52)

i.e., the complex unitary rotation matrix U of SU(2) is
isomorphic with the real unitary rotation matrix R of 0(3).
The two matrices describe a rotation in free space, one in
terms of two component spinors, the other in terms of three
component vectors,

The equivalent of the infinitesimal rotation generators
of 0(3) (see Vol. 1) can also be defined from U as follows:

] 1(1 0) (53)
2\0 -1}’

. ; s o . . A :
showing that the Pauli matrix 7" is an infinitesimal

rotation generator of SU(2), isomorphic with J, of 0(3).
Using a formal Maclaurin expansion for the infinitesimal
angles Ja,

Uda) = 1+

%%+ ... (54)
2 r

from which
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10 a 41 O P 1
1= —+ n—
(0 l)COS 2 .1(0 ._1)81 2

a . .
= cos - +io,8in <
2 z 2

elo#/? = 1+ioz—g-+. ..
(55)

to first order in «/2. Generalizing finally, to a finite
rotation through 6 about an axis & [16], we obtain, with
0 :=6n,

ele0/2 = glo-m/2 - cog —g- + io-nsing. (56)

This is the basic structure in space that gives rise to the
Dirac equation in the SL(2,C) group of space-time. For a
rotation about Z, for example, o:'m=o0, and Eq. (53) is
recovered. This derivation has emphasized that the Dirac
equation is a direct consequence of the geometry of space-
time, and therefore so is B® , which as we shall see, emerges
directly from the Dirac equation of e in A,.

The isomorphism between SU(2) and 0(3) in space is
extended to one between SL(2,C) and the Lorentz group in
space-time. In space,

U=eled2 up= gire (57)

and

-y o a

[Tx: Jy} = iJ,, et cyclicum,
(58)

a,| .8, ,
[——2—, —2—} = 1—2—, et cyclicum.

showing that the Pauli matrices become angular momentum
operators in quantum mechanics. This is the origin of terms
such as spin-half angular momentum. If @ - ¢ +2=%x then U~ -U;
R+ R, so R in 0(3) can be represented in SU(2) by either U
or -U. This finding is summarized in topology [16] by the
fact that there is a two to one mapping of the elements of
SU(2) on to those of 0(3). There is a global topological
difference [16] between the two groups.
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1.2.2 SPINORS OF THE SL(2,C) GROUP

There is an isomorphism between the SL(2,C) and Lorentgz
groups which is the geometrical basis of the Dirac equation
in space-time, an equation which describes the Lorentz boost
transformation in terms of four component spinors. The
Lorentz group contains three boost generators (Vol. 1) X,, R,
and R,, which can be expressed as 4 x 4 matrices, as well as
three rotation generators J,, J, and J,, which are also 4 x 4
matrices. In Vol. 1, the magnetic and electric components of
free space electromagnetism were expressed directly in terms
of these six generators, both in a Cartesian basis, (X, Y, 2)
and a circular basis (1), (2), (3). The 0(3) group on the
other hand contains only rotation generators which are 3 x 3
matrices in space, rather than 4 x 4 matrices in space-time.
The field B in the Lorentz group becomes directly propor-

tional (Vol. 1) to the J, rotation generator, and therefore
it must also have its counterpart in SL(2,C).
The Lorentz group is characterized by a Lie algebra
between the boost and rotation generators [16]:
[Fx. 3] = id,, et cyclicum,
[Reo &) = -1J,, " "
(59)
[Fe K] = iR, " "

A

[Jx. &) =0 for all X, Y, Z.

This algebra can be re-expressed directly, however [16], as
the SU(2) commutators:

[ &) = i4,, et cyclicum,
[B,, By} = iB,, " ", (60)
[4;. Bj) = o, (i, j =X, Y, Z).

where
A ;- %(ﬁw iR, B:= %(3—1’1?}. (61)

Since A and B both obey SU(2) type commutators, the Lorentz
group is a direct product group SU(2) ® SU(2) in which the

Geometrical Basis [16] of the Dirac Equation 17

infinitesimal operators A and B become complex. In Vol. 1
we saw that the magnetic part (8) of free space electromagne-
tism is proportional to & of the Lorentz group, and the

electric part (£) to R. This inference shows that & and B
could equally well be described in terms of complex SU(2)
combinations such as,

e:= %(§+if), (62a)

B:= LB-id. (62b)

Equations (62) are the basis for the description of the
Maxwell equations with four spinors and Dirac matrices [17].
The Lorentz group is therefore also the SU(2) ® SU(2) group
of vacuum electromagnetism, as well as the group of boost and
rotation generators. This means that B® is a real observ-
able, a generator of SU(2) ® SU(2) directly proportional to

J,. In other words B is a space-time field which exists
in vacuo, propagates with the transverse fields (Vol. 1) B

and B®, and is observable through its effect on the trajec-
tory of a single electron, an effect which is characterized

2
by a square root (Iy) dependence on the power density of

1
electromagnetic radiation. This characteristic I; dependence
emerges directly from the classical Hamilton-Jacobi equation
of e in A, (Chap. 12 of Vol. 1) and from the quantum mechani-
cal Dirac equation of e in A, (this chapter).

The Lorentz transformation is characterized in general
by two different types of two component spinor, which
transform as [16]

E-ME, m-DMm, (63a)
where

M= elo®/2g04/2 (63b)

and
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N = elo®/2g-0:8/2 = ryrr-1, (63c)

have unit determinants but are not unitary [16].
parity operator

Under the

g5, (64)

Here O denotes the parameter of a Lorentz rotation [16] and ¢
that of a Lorentz boost

325 LR (65)

Considerations of parity therefore lead to the introduction
of the Dirac four-spinor,

U GRS

The 2 x 2 matrix representation in this equation is shorthand
for a 4 x 4 matrix, because ¢ is a four component column

vector. Under Lorentz transformation [16],
(E) ) (ea-@—m/z 0 )(5) ) (D(A) 0 )(5) (67)
n 0 e®®+19/2)\n 0 D(A)/n)’
where
DAy = (DML, (68)

(cf. Eq. (63c)). The matrices D and D are functions of the
Lorentz transformation matrix, A, defined in Minkowski
notation by

(69)

The Dirac four-spinor ¢ is an irreducible representation of
the product group SU(2) ® SU(2) extended by P, and from Egs.
(62a) and (62b) can be constructed from complex combinations
of magnetic and electric field generators which behave
under £ as
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p

528 2%-2 (70)

Consideration of B is therefore of key importance to the
Dirac equation, and to the consequent prediction and observa-
tion of anti-particles. The helicity as well as the charge
of the anti-particle is opposite to that of the original
particle.

A pure Lorentz boost is described for finite ¢ by 6 =0,
and for £ := ¢, n :=¢, [16],

$p ~ e®¥3, = (cosh 12& +o-nsinh -gi)«tR, an)

where m is a unit vector in the direction of the Lorentz
boost. This is essentially one of the Dirac equations of
motion for a free particle; the other being generated by

application of £ to both sides of (71).

1.3 THE FREE PARTICLE DIRAC EQUATION

Considering a Lorentz boost transformation for a
particle originally with zero linear momentum in a given
frame of reference (p = 0, $40)) to a state where the particle
moves with momentum p$/p)), Eq. (71) becomes

&) = (cosh $ .0 nsinh g)%(o). (72)
Applying B,

dp) = (cosh % -6 -nsinh %)%(o). (73)
The parameter ¢ of the Lorentz boost is given by

cosh .@. = (1:_3:.)-;" sinh i = (.'L"l)% (74)
2 2 2 2
where, in S.I. units, without suppressing ¢ and h,

y = £, (75)
myc

The two Dirac equations (72) and (73), which interconvert by
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P, are thus,

En+m,c?+co-p

¢R(p) = Ad’lz(o)r (768)
(2myc?(En +myc?)?
2 _ .
bup) = 2T TCUP 4 (o), (76b)

(2myc?(En+myc?))?

where p is the relativistic momentum vector in the direction
of the Lorentz boost, which, as in Vol. 1, we take as Z of
the rest frame K. Note that Eqs. (76a) and (76b) are in S.I.
units, whereas most texts in contemporary field theory,
including that by Ryder [16], use units in which ¢ and h are
suppressed, i.e., are normalized, or set to unity. The
energy in these equations is the total relativistic energy,
given by

En = T+myc? = ymyc?, an

where T is the relativistic kinetic energy [27]. To convert
from normalized units, such as those of Ryder, to S.I.,
m~ myc?, P -~ cp, Dy 1= myC, etc. (78)
If the particle is in a frame in which there is no
relativistic linear momentum in the Z direction, its helicity
vanishes, and therefore there can be no distinction between
left and right hand spinors,

$40) = $,0). 79)

The Dirac equations can therefore be written in terms of the
four-spinor ¢ as

~m,c? (P, + o) (d)R(p)) _ (o) (80)
Apo-0'p) ~myc? |\ $uP) 0}’

where myc? =pyc, p,=myc. In terms of the dimensionless 4 x 4
Dirac matrices
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o1 {9 -9y (81)
R RS K
Eq. (80) is
(YoCPo +¥ 1P ~m,C2)Y(p) = O. (82)

Note that the Dirac matrices are written conventionally as
two by two square matrices, but each element is a two by two
matrix, the off diagonals being Pauli matrices.

In Minkowski notation,

YuPy = YiP1=YPor (83)

and the Dirac equation of motion becomes

Yoo, ¥(P) = ~mycY(p), (84)

where p,, the momentum-energy four-vector is, in Minkowski
notation,

pu = (p, _i_EEI} s = (pl.’ jpo), (85)

and the four-vector of Dirac matrices is, in the same
notation,

Yy i= (Y30 110)- (86)

The minus sign in Eq. (84) is the result of our use of
Minkowski notation, which is used for the sake of clarity,
and to aid comprehension for non-specialists who wish te
understand the origins of B in the Dirac equation and who
may be unfamiliar with the contravariant covariant notation
of field theory. The physical meaning of the equation is of
course independent of space-time notation and units.

The Dirac equation (84) is more accurately described as
the Dirac equations, and this point is emphasized when the
rest mass of the particle is zero. 1In this case we recover
the decoupled Weyl equations of motion,

Po+oP)dP) =0, (p,-oP)dp) =0, (87)
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traditionally used for the neutrino.
neutrino is defined then by

The helicity of the

A= 9P (88)

For our present purposes, note that the Dirac equation
quantizes into

. m,C
1*»52;* = 2%y, (89)

using Egs. (3), the fundamental axioms of quantum mechanics.
The Dirac equation (89) of a free particle is an eigen-
equation of quantum mechanics, with wave-function ¢. It
leads to a positive definite probability density as demon-
strated below, and can therefore be interpreted as a free
particle equation in relativistic quantum mechanics. In
demonstrating the existence of B from the Dirac equation;
the particle is the electron, e, interacting with A, .

Applying the operator iy“3§7 to both sides of Eq. (89),
B
2 @ myc (90)
= 0
Y,.Yv*é;{:—g;{:‘l’ = ( % )1!’.

and using the definition of the d’Alembertian,

.- 2.2, (91)
dx, 9x,
and the notation
[Yur Y] 1= VYo * V¥ (92)
Eq. (90) becomes
1 Ay - [mc) (93)
E[Ypl Yv] l"‘ - Y 'I"

However, the energy momentum mass relation, Eq. (1), must
apply to this analysis, because the overall aim is to find a
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physically acceptable equivalent of Eq. (1) in quantum
mechanics. Each component of the four-spinor ¢ must

therefore satisfy Eq. (1). This is possible if and only if
the Dirac matrices satisfy the relation

[Yur Y] = 28, (94)
where 38, is the unit matrix for p =v and is zero otherwise.

This allows the Dirac equation to be written in the same form
as the Proca equation,

2
é]q, = _(moc) ¥, (95)
which is Eq. (17).

1.3.1 PROBABILITY CURRENT AND DENSITY FROM THE DIRAC EQUATION

The Dirac equation gives a probability density which is
positive definite, and for this reason is an acceptable
particle equation in quantum mechanics. The probability
four-current j,, analogous to Eq. (9) is constructed by
taking the Hermitian conjugate of Eq. (89), noting that

. . . (96)

This procedure gives the Dirac equation,

f.ov 3 me 97)
iVYy———] =0,
“’(*“ax.: **)

in S.I. units. Here ¢' is a row vector, and the operator

9/3x, operates to the left on this row vector [16]. Multi-
plying by v, and using

Yi¥o = “Yo¥ir (98)

gives the Dirac equation
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5 99
$(in 9 m"c) =0, 9

o +
X, h
where § is the Dirac adjoint spinor,

- (100)
¥ =¥y, .

The probability current four-vector from the Dirac equation
is defined as the unitless expectation value,

_ 3 (101)
o = Wy,b.
The four-vector j ™ 1is conserved because
852 3 - (102)
—gi*'z 5}7(¢Yp¢),
b B
but
iYngL =-£%Sw, and similarly for ¥. (103)
m
Finally therefore
) (104)
aj LG e — IO
ATy o,

n
Moreover, the probability density, the time-like component of

Ju» 1s given by

(DY _ 3 (105)
Jo =¥y, ¥ = ¥y,

i.e., is simply the product of the Dirac spinor with its own
Hermitian transpose. This product is positive definite in
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the theory of complex numbers [28]. If the components of the
spinor are denoted ¢,, ¥,, ¥, and ¢,, following Ryder [16],
then

L2 TR AR L AR AR AL (106)

which is the sum of squares of moduli, i.e., must be positive
definite and rigorously non-negative.

1.3.2 ENERGY EIGENVALUES OF THE DIRAC EQUATION

Considering a particle in a frame of reference in which
it is at rest, with zero Z axis linear momentum, therefore,
the Dirac equation becomes, setting p=0,

YoPo¥ = mycy. (107)
Multiplying both sides by y,,
bV = Yomcl, (108)

which is a quantum mechanical wave equation. However, the
wave function ¢ is a four component spinor, and so we have
four wave equations, and four eigenvalues of p,. Since rest
energy is cp,, there are four eigenvalues of the rest energy
operator c¢p,. By definition of the 4 x 4 matrix vy,, the
eigenvalues of rest energy from Eq. (108) are
+myc?, -myc?, and -myc?. There are two positive and two
negative eigenvalues of rest energy from the Dirac equation
of motion. The two positive eigenvalues correspond to the
degenerate energy eigenstates of the spin 1/2 particle.
However, there are also two corresponding negative energy
eigenstates.

Dirac circumvented this difficulty through his postulate
of anti-particles and through the postulate of the Dirac sea,
as described in numerous texts. For our present purposes we
note simply that anti-particles have been well verified
eéxperimentally, making the Dirac equation one of the most
powerful and generally applicable of all equations of motion.
Its prediction of B is therefore based firmly in well
accepted fundamental relativistic quantum theory.

+myc?,
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1.3.3 STANDARD REPRESENTATION OF THE DIRAC EQUATION

Contemporary field theory employs the standard repre-
sentation of four component Dirac spinors and Dirac matrices,
a representation which is briefly explained to complete our
survey of the Dirac equation of a free particle. 1In the next
section, the standard representation will be used to de-
rive B directly from the Dirac equation of a particle, the
electron, in the classical electromagnetic field A,. This

indicates that B® is also a new fundamental field in
quantum electrodynamics where the field is quantized with
path integral formalism [16].

In the rest frame, with p=0 and En=myc?, the Dirac
equation becomes

B YD) = Yomc¥(P). (109)

which is a first order partial differential equation in ¥.
The solutions can be written in the forms [16]

(110a)

2
Y =u{0) exp(—i mohc t:),

2
¥ = v(0) exp(i m‘jhc t), (110b)

which are respectively the positive and negative energy
solutions. These are plane wave solutions with positive and
negative energy spinors:

1 [0 0
0 1 0
(1) = (2) = (1) =
u'*(0) 0 ut? (o) 0 vt (0) NG
0 0 0
(111)
0l
0
(2) =

11

in the standard representation where vy, is diagonal
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10 0 O

Y(sa) {01 0 0 (112)
o 00-10
00 0 -1

In condensed form

10 - 113
Yésm=(0 _l)=5YoS 1, (113)
where
5= (1 1) (114)
JyzZ\1 -1
Therefore,
yis® S=5Y,, (115)
and the four-spinor is given by
(116)

A2l
¢ ¢, —_\/E R—¢L.

The equivalent of the Lorentz boost transformation matrix in
standard representation is

cosh % e-nsinh %

h

MR = gMg1 = (117)
o-nsinh 4 cosh 4
2 2
The plane wave spinors are therefore
¥'® (2) =u® (p) exp(-i%JZ), (118a)
¥ ® (2) =vie (p) exp(iEZ), (118b)

which are respectively the positive and negative energy
solutions, with @=1 and 2 in each case.
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Specifically, in S.I. units:

1

u® (p) =MD LW (p) = { }z Dy ’
2m,c?

Px*ipj)C
¢

1

u 2 (p) = MISR) ;(2) (0) = 4 3 (px_ipy)c
2myc?

-p,C

(119)

pic
¢

v (p) = MRy (g) = { (Px+ ipyc '
2myc? ¢

0]

1
0

gpx-ip,,kc
¢

)% ~PzC

V(Z)(p) =M(S’R)V(2)(o) = 4
2myc?

where { := En+ myc?.

1.4 THE DIRAC EQUATION OF e IN A,: PROOF OF B‘® FROM FIRST
PRINCIPLES

The Dirac equation of e in A, is obtained by replac-

ing p, in Eq.

_ i
(84) by the sum P, + €A, where A, :—(A, c).
This is the well known minimal prescription, whose origins

can be found in gauge invariance of the second kind (e.g.
Refs. [16] and [17] and Vol. 1). In this view, electromagne-
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tism is the product ea, that keeps the action invariant under
gauge transformation of the second kind in the presence of
the field. The gauge potential therefore couples to the
four-current J, with stre.ngth. e, which is the charge of the
scalar field ¢. The derivative

_( a , ieA (120)
o (- 5

transforms covariantly under gauge transformation, as does
the scalar field itself.
The Dirac equation of e in A, is therefore

YuPy * €A @) = ~mcP(P), (121)
or in vector notation
(Yo(En + ed) - cy (P + eA) ¥ = myc 2. (122)
In the standard representation this splits into
(En + ed)u - co - (p + eA)v = m,c?u, (123a)
-(En + ed)v + co - (p + eAyu =m,c?v, (123b)
from the second of which
v=(_cop+ed) }, (124)
En+mc? +ed
In the rest frame approximation
En ~ myc?, (125)

(i.e., when there is no net linear Z axis electron momentum),

v ~ (m)u (126)

2m,c? + ed
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So Eq. (124) becomes, with W := En-myc?,ll := p+ea,

Ay = A2 2N0 ) . . 127
(2mo+e¢/cz 6’¢’)u (127)
which becomes
Wy = (MM - ed))u' (128)
2m,
in the limit
e <« 2m,c?. (129)

1.4.1 EMERGENCE OF B(® FROM EQUATION (128)

Equation (128) is a wave equation of quantum mechanics
which gives the Hamiltonian eigenvalue

Wu = Hu, (130a)
g = (oI _ e, (130b)

2m,

with, from spinor algebra [16],
(0 I = (p+edy’ +ioc (p+el)x(p+eA). (131)

Since H is a Hamiltonian, it is a constant of the motion of
the electron e in the classical electromagnetic field,
represented by A,. In Chap. 12 of Vol. 1 the Hamilton-Jacobi
equation was used to show that in a frame of reference in
which the net electronic angular momentum is zero, the
classical electron trajectory in A, is a circle, generated by

the field B . The classical Hamiltonian, furthermore, is

Hclass = %%@+9A)2"e¢- (132)
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The Hamiltonian

H, (133)

_ io |,
spin = Zp P +el)x(p+ ey,

therefore occurs in addition to H,,,, and is inherently
quantum mechanical in nature. By considering A to be a

A
vector, and § to be a vector operator, P = -iWV, of quantum

mechanics, the following commutators are obtained:

ihdA
[ﬁj' Aj] = ﬁiAj -Ajﬁi = - ax1j, (1348)
- Ap, - B,A, = 1A 134b)
[Ai 4 ﬁj] - Aiﬁj ﬁin = _8_3;’ (

where the terms A;f; and A;0; have been defined to be zero.
This means that p operates on A but A does not operate on p.
Adding (134a) and (134b) gives [16]

. .. [0A, JA,; _ 135
‘lth = —lh('é;i - aX;) = [p_i: AJ] + [Ai' .ﬁj]l ( )

where B, is the magnetic flux density,
B, = 3([Bir A5] + [Ass B5])- (136)

The various terms in H,,, can be developed in more detail
with this result.

In general, the vector potential A of an electromagnetic
field is a complex quantity (Vol. 1) and in the circular
basis (1), (2), (3) of that volume can be represented by A‘¥
and its complex conjugate A® ., These are transverse plane
waves, through which the usual transverse magnetic wave
fields can be defined,

(137)

8(1) = va(l)' B(ﬂ) = va(ﬂ).

such as AW xA@® in Eq.
and contribute to Hg,,.

(133) are
These are

Conjugate products
therefore non-zero,
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considered in the next section. When A is pure real,
however, it follows {16] that Eq. (133) can be expressed as

. €h
Hepin = 2—"—,(;0 B,

(138)

where B is a magnetic flux density defined by the operator
sum [161},

B:=VxA-= %(ﬁxAH!xﬁ). (139)

In this equation, p is a vector operator of quantum mechan-
ics, not a classical momentum vector. It defines the intrin-
sic (irremovable) transverse linear momentum operator of the
electron, corresponding to the intrinsic spin angular
momentum operator, whose non-zero eigenvalue is the universal
Dirac constant % of quantum mechanics. The Hamiltonian H,,,
is therefore to order one half in the power density of the
classical electromagnetic field (watts per square metre). It

is proportional to B at order one, and to the electronic
spin angular momentum, %6, at order one. The concept of
intrinsic electronic spin does not exist in classical
physics, because there %-0, and therefore the transverse
components of P appearing in Eq. (139) also disappear in
classical physics. On the other hand, the vector A is a
classical vector potential, and is non-zero in classical
physics.

Equation (138) shows that the magnetic flux density B
appearing in the spin part of the Hamiltonian, #H, is

spin s
independent of time. The only time-independent (i.e., phase

free) magnetic component of vacuum electrodynamics is B'®
(Vol, 1) and so

_ ¢&h _ . €
Hspin = 5 o B =+ 2m,
Q Q

(140)

for the interaction of e with A,. For one sense of circular

polarization (e.g. right (R))

ehB (0

141
s (141)

(R) _
Hspin =%

4

and for the other (left (L))
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ehB (@
Hh = +SE2, (142)

because the sign of B® changes when the sense of circular
polarization is reversed.

Equation (140) is a fundamental, first principles,
demonstration of the existence of B'® as an observable of
free space electromagnetism, because H,,, is a direct result
of the Dirac equation of e in A,. It shows that circularly
polarized electromagnetic radiation generates a magnetic
field in vacuo, a field which is the fundamental entity of
magneto-optics.

In deriving this result, use has been made of the
operator-vector definitions [16],

(143)

0A - oA
3 = aa j s = —A-_-i
Bxa, : ihaxj, (Axp)k 1= 1k .’

which link Egqs. (136) and (139). )

The importance of the result (140) for magnetic effects
of electromagnetic radiation cannot be overemphasized,
because B is the fundamental magnetizing field. In Eq.
(140) it is viewed as a classical field, because the Dirac
equation describes the trajectory of e in the classical A,.
The spin Hamiltonian H,,;, is built up from the dot product
of B with eho/(2m,) which disappears in the classical limit
h~0. Therefore H,,;, has no classical counterpart for this
reason, despite the fact that B'® is a non-zero, classical
field. Intrinsic electron spin has been well known and used
for over sixty years, but the simple additional inference
respresented by Eq. (140) appears not to have been made,
despite the fact that both the electron spin and B™® are
derived simultaneously from the same equation of motion of
one electron in the classical electromagnetic field.

1.4_.2 COMPLEX A,: SECOND ORDER PROCESS

Since Hg,;, in Eq. (140) is a Hamiltonian, it is time
independent, showing that B® is a phase free, time indepen-
dent, and observable component of vacuum electrodynamics.
Equation (4) of Vol. 1, furthermore, relates B to the plane
waves B and B , which are complex conjugates in the basis
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(1), (2), and (3) of Vol. 1. These magnetic plane waves are

defined by Eqs. (70) and (71) of that volume. In these equa-
tions (Vol. 1)

CB(O)

(0
A = CB 7 g, peib, a@ - —id+ Peit, (lh4
2o (i1+ 3 e ( ) )
and it follows from the minimal prescription,
by » D, +eA, (145)

for the motion of e in 4,, that the transverse momenta of the
electron are in general complex operators, represented in the
same basis by the complex conjugate pairs

p® = p@s (146)

In so doing, it is understood that measurable quantities
(physical observables) are real, as in electrodynamics in
general. Thus, for example, the conjugate products A1 x 4@
and p® x p® are pure imaginary in the representation (144),
but contribute to Hg;, in Eq. (133) by multiplying the
imaginary io/(2m,) . Dimensionality shows, furthermore, that
these conjugate products must be phase free, magnetic fields
akin to B®, i.e., relations such as (Chaps. 3 and 4)

Bl(s) - i%’(A“’ x A (21 (147)

are expected, where B¥ is a magnetic field.
of Vol. 1

Using Eq. (12)

A 2@ - i(g)zBm)Bm, (148)
(0]

and so
(149)

@ _ _ef Vg
= -Z{ L)' gtoig®
B se)

Assuming that B® = ™
arrive at

then without loss of generality we
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2
eB® = W'k = _7\_‘;’_5 (150)

jn order for Eq. (147) to be valid.
To interpret Eqs. (147) and (149) requires that

ea® - (pm = WP = —ﬂ(\?m). (151)

i.e., the electron momentum operator B is generated from
the product of the electronic charge e and the field vector
potential A,. Anticipating a quantized field interpretation,
then the electron momentum is generated from the photon
momentum operator corresponding to the classical A‘W/e. This
is an example of an electron property being created from the
equivalent photon property. In order therefore to interpret

Eq. (150),
(h‘()photon - (ﬁ)eleccron . (152)
From Eq. (151) in Eq. (147)
B = V) y q @, (153)

which is formally identical with the usual classical equation
of B with VxaA.

By considering the possibility of a non-zero A'¥ x A® in
the Dirac equation, the meaning of Eq. (12) of Vol. 1 can be
clarified in terms of Eqs. (150) and (152), in which momentum
is taken from the classical field and used to create the
electron momentum operator $, which is finally quantized
according to the fundamental axiom used in Eq. (151). With
this prescription, Eq. (147) becomes formally identical with
Eq. (139), but physically, the electron momentum $ in Eq.
(139) is not obtained from photon momentum. The Dirac spin
Hamiltonian from Eq. (147) is therefore

h
Hsm’n,l = E%l_;o.ax(”l (151’)

which can be written as
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HSPiﬂ. 1 = —( 2".“K ) ° (h‘)photon (155)
Mo J e1ectzon

to emphasize the fact that electron spin has been captured
from the electromagnetic field itself, a process which is
second order in A, as Eq. (147) indicates on the right hand
side.

The existence of B from Eq. (12) of Vol. 1 therefore
leads consistently to the second order Dirac spin Hamiltonian
(155), in which the photon (i.e., the quantized field)
representation has been anticipated.

1.4.3 COMPLEX A,: FIRST ORDER PROCESS

The first order process with real A leads to the spin
Hamiltonian (140), in which the presence of the classical
electromagnetic field is represented solely by B, which is
in turn proportional to the square root of field intensity
(i.e., power density). The process just described in section
1.4.2. is, on the other hand, to order one in power density.
The field B® is formed to first order from

@ - 1w @y 4 |a@, z™ o) (156)
B 1;,(p xAB), + 1A xp e'd,
Z,

which is formally identical with Eq. (139). However, in Eq.
(156), the momentum vector operator P is considered to be a

complex quantity in the basis (1), (2), (3), and therefore
the operator

5, = 1P (157)
* h
now has real and imaginary components. The physically

meaningful part of B from Eq. (156) is its real part, and
Eq. (156) reduces to

B - (ﬁ,}"Ay‘” -p}“,q}”)e(” (158)

Eam

using the semi-commutators [16]
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(2)
BW xa®), 1= -2 _ _[p, af), (159)

ax}“

paey) .. 9af? (2) Al
(‘(’) Xp ) HEd lh-——u—) = [Aj ’ pj ].
k Ox4

Equation (158) indicates the observation of B@® through
the intrinsic electronic spin, and the first order spin

Hamiltonian (140). The latter is to first order in the
magnetic flux density magnitude, B!, of %he class%cal
electromagnetic field. It is a non-zero, time invariant

quantity (a Hamiltonian eigenvalue) and therefore iqd%pende?t
of the electromagnetic phase. It must therefore originate in

the interaction of B with the quantized electron spin. The
only way in which intrinsic electron spin can be observed in

this context is through the observable field B‘®, for example
in a Zeeman splitting due to B of a pump laser. Such an

experiment indicates the presence of B®™ in vacuo, and at
first order the splitting should be proportional to the
square root of the pump laser’s power density.

1.5 COMPARISON WITH THE CLASSICAL EQUATION OF MOTION OF e
IN A,

From Eq. (132) the Hamiltonian eigenvalue of e in A, in
the Dirac equation also contains the term

H

C.

60
tass = 5Pt SB) (B ), (160)

where V = -Yi + Xj is the same operator as for the spin term.
Unlike the latter, Eq. (160) has a classical equivalent [15}.

If A, is the vector potential of B® (Vol. 1), then [15]

B = VxA, A,=1B9xr:=2p0vV, (161)

(r:=Xx1+YJ+7Zk),
where ¥V = -Yi+XxJ is a possible representation in Cartesian

coordinates. Therefore V:A, =0 and the term in A in Eq.
(160) becomes [18]
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1) = L a.p=_CS g3 ep = . & g3y,
H moAp 2mOB Xr-p 2%8 rxp. (162)

In order for this to be non-zero, rxp must be in the same

direction (Z) as B® . This is possible if and only if both

r and p have components transverse to the direction of B®¥,
This reasoning identifies p as transverse electron linear
momentum, and identifies rxp as Eq. (399) of Vol. 1,

g3 = Jzk =rxp = (Xpy- pr)k' (163)

which is the orbital angular momentum of the electron in the
classical field B® . Then

H = ze T .gd = g .ga (164)
My

where m® = -(e/2m;) 7® is the induced magnetic dipole moment
of Eq. (403) of Vol. 1, obtained from the classical Hamilton-
Jacobi equation of the motion of e in A,. This leads us to
expect that there is a Hamilton-Jacobi formulation of the
Dirac equation, and this is indeed the case [29]. In Chap.
12 of Vol. 1 we have seen that J® is given relativistically
by Eq. (402) of that volume,

2
® 02(.)2+e2}3(°’2

g - e?c? B |z, (165)

(m )
where ® is the electronic cyclotron frequency set up, i.e.,
induced, by B'®. On the other hand, the Dirac spin Hamilto-
nian, Hg,;, of Eq. (140), is the result of the intrinsic
electronic angular momentum, which is not an induced angular

momentum. The complete Hamiltonian in B® is therefore

spi

H=HY +q_. = _C (303 4 3q).B®, (166)
2m,
and the complete magnetic dipole moment is

m® = __2%(‘7(3) +he). (167)

0

Finally, the expected magnetization, if N is the number of
electrons in a plasma subjected to irradiation by a circular-
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ly polarized electromagnetic field is

M® = Ngp®, (168)

consisting of terms to zeroth, first, and second order in
B®  Equation (168) is the result of the Dirac equation in
its Hamilton-Jacobi form. The classical result is Eq. (165)
without the term in ho, because classically, h- 0, giving Eq.
(405) of Vol. 1.

Equation (168) is a simple prediction whose experimental
investigation reveals in theory the presence of B‘® through
its square root power density dependence. It shows clearly
that the Dirac constant, %, is an angular momentum (the
spinor o being unitless). 1In one sense, the angular momen-
tum % of the photon has been given up, or has been transmut-
ed, to that of the electron. It is therefore possible to
talk of the photon giving up all its angular momentum to the
electron in a process of magnetization by light. This
angular momentum obviously has no dependence on field
amplitude B ; for the photon it is »k, for the electron it
is ho. The difference is due to the fact that the photon is
a boson, the electron a fermion.

The equation (168) is therefore the rigorous description
from first principles of the inverse Faraday effect for N
electrons in a plasma.



Chapter 2. B® and the Higgs Phenomenon

In Vol. 1 the emergence of B® was related to photon
mass, the upper limits on which are listed in contemporary
standard tables on particle mass [28]. Higgs has suggested
[29] that there exists a scalar field, the Higgs field, that
gives rise to photon mass through spontaneous symmetry
breaking. In this chapter we aim to link the Higgs phenome-
non with the field B®*, and to show that the latter is a
vortex line, or soliton, in non-linear field theory. In
superconductors it becomes an Abrikosov line, but also exists
in the vacuum, whose non-trivial topology is well established
in the contemporary literature [30].

The cyclically symmetry 1link between the complex

conjugate wave fields B™ and B®@ , and the novel spin field,
B®  is given in Egqs. (4) of Vol. 1, and is

B(l)x8(2)=1‘B(O)B(3)" B(H)XB(3)=iB(0)B(1)"
(169)

B y piv) =1'B(0’B(2)'_

These equations are consistent with Maxwell's equations in
free space when the mass of the photon (anticipating the
quantized interpretation of light) is identically zero. The
existence of finite photon mass is not therefore a necessary
condition for the existence of B® . It exists in free space
when the photon mass is identically zero. However, the fact
that the transverse wave fields imply the existence of the
longitudinal spin field through a non-Abelian set of equa-
tions (169) suggests that the object known as the photon has
three degrees of polarization (1), (2), and (3) in free
space. Since photon mass (through the Proca equation, for
example) suggests three degrees of space-like polarization
there appears to be a link between photon mass and the spin

field B, which is a real, physical field. The Higgs field
[29] also makes the photon massive through spontaneous
symmetry breaking, but in the GWS theory of fields [31], a
theory which unifies successfully the electromagnetic and

41
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weak fields, the photon mass is forced to be zero by model-
ling. Nevertheless, GWS is based on the Higgs phenomenon,
and on the idea put forward by Higgs of spontaneous symmetry
breaking. Contemporary gauge theory asserts that the photon
mass is identically zero, but as discussed in Vol. 1, it is
easily possible to make the equivalent assertion,

AA =0, (A" .= (A, iA:))), (170)

where A, is the four potential. Equation (170) satisfies
gauge invariance, while leaving open the possibility of non-
zero photon mass. Equation (170), however, implies that

|a] 1= A© (171)

and excludes the Coulomb gauge [32], because the time-like
part of A, is not zero, being equal to the magnitude of the
space-like vector potential A. This becomes the condition
for the existence of finite photon mass if the latter is not
to be identically zero, and if gauge invariance is to be
retained as a principle of physics. Finally, fundamental
symmetry considerations lead to the conclusion that the
cyclically symmetric relationms,

AW X A = _A©O)(GABN 2@ (A< _ja(0a0)s
(172)

(1AP)x a® = 2013,

between components of A can be satisfied if and only if the
longitudinal part of A is pure imaginary. The magnitude of

the scalar potential A, (the timelike part of A), is
therefore

[a0] = cla|, 173)

i.e., is the modulus of A, which in the circular basis (1),
(2), and (3), is

A :=(A® . 4W 4 2. 2@, 21 .Am-)'; . (174)

This view excludes the Coulomb gauge because in that gauge it

43

is asserted that the components of A are transverse and there
is no longitudinal component A, and no time-like compo-

nent, A® or scalar potential. For these reasons, the
Coulomb gauge is inconsistent with the fact that 24, is a
four-vector, and inconsistent with the simul taneous existence
of photon mass and gauge invariance. This conclusion is
consistent with the fact that the Proca equation is consis-
tent with the Lorentz gauge condition,

9B, _ o, (175)

axb

but not with the Coulomb gauge {32].

-It is well known that the Higgs phenomenon leads to the
inference [29] that the photon becomes massive in supercon-
ductors, and to the existence of B!® as a vortex in topology,
recognizable experimentally as a quantized flux, an Abrikosov
line. The same Higgs Lagrangian also leads to the Proca
equation in superconductors {16]. Mathematically, the Proca
equation for the massive photon in free space is the same
precisely as the Proca equation for the massive photon, and
for the Abrikosov lines, in superconductors. It has been
argued in Chap. 12 of Vol. 1 and in the opening chapter of
Vol. 2 that the motion of e in A, is governed entirely by a
free space B, a B™ yhich is linked to the ordinary

transverse B® = B@* from the standard free space Maxwell
equations by the non-Abelian (169). Therefore, if photon
mass is accepted as a possibility, B® is a topological
vortex in free space, and is a consequence of the vacuum
topology and spontaneous symmetry breaking. The experimental
observation of B™ in the inverse Faraday effect (Chap. 7 of
Vol. 1) would then become evidence for the Higgs field in the
vacuum. If photon mass is asserted by axiom to be identical-
ly zero, then B'® becomes a topological consequence of the
existence of the Maxwellian B and B® through the non-
Abelian equations (169). As argued in Vol. 1, if photon mass
is asserted to be identically zero, the range of electromag-
netism becomes infinite, and therefore exceeds the known
dimensions of the universe. It is impossible therefore to
test this assertion experimentally. In contrast, the
arguments for finite photon mass or classical equivalent have
been developed from the time of Cavendish [33], and are ably
reviewed in the recent literature [34]. Numerous experiments
have been carried out to derive upper limits on finite photon
mass, and these limits are available in standard tables. It
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is no longer asserted in the literature that the mass of the
neutrino is zero, so that the notion of a massless particle
is being questioned. Nonetheless, the GWS point of view
leads to the existence of massive bosons but simultaneously
asserts by modelling that the photon mass is identically
zero. Essentially, therefore, the Higgs phenomenon leads to
a massive photon which is accepted in superconductors, but
conventionally re jected in the vacuum, despite the fact that
the same Higgs Lagrangian (and consequent Proca equation) is
used in both superconductors and in the vacuum. Therefore
the contemporary point of view appears to assert that photon
mass is acceptable in superconductors but not acceptable in
the vacuum, i.e., accepts the Proca equation in superconduc-
tors but rejects it in the vacuum. This is mutually incom-
patible - an equation of natural philosophy must be generally
applicable, if the photon is asserted to be massive in
superconductors it must be massive in the vacuum. If the
Proca equation is valid in superconductors and if the photon
mass is a property of the photon, and not something given to
the photon by its interaction with superconducting material,
then the Proca equation must be valid also in the vacuum.

2.1 CYCLICALLY SYMMETRIC EQUATIONS FOR FINITE PHOTON MASS

In this section the Einstein equation (1) is used to
show that the non-Abelian equations (169) remain the same in
structure in the presence of finite photon mass provided that
the scalar amplitude B‘? is replaced by B exp(-{Z), where £
is the rest wave vector given by myc/h where m, is the
intrinsic and irremovable photon mass. As argued in Vol.
1, € is a minute quantity, difficult to detect experimental-
ly, but is, nonetheless, related directly to the well
accepted notion of rest energy, myc?, for a particle with
mass. Our derivation in this section is based on the well
accepted fundamental axioms of quantum mechanics, which in
Minkowski notation become

9 (176)

r

b, = %xu = ~1h axb

where p, =(p, i(En/c)) is the particulate energy-momentum
four-vector and x, = (x, i{w/c)) the wave four-vector of radia-
tion. Here ® is the angular frequency and x the space part
of the wave vector of matter waves. The matter wave is an
electromagnetic wave if the mass of the particle is the
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photon mass. It is asserted conventionally that if the
photon mass is zero, the axioms (176) still apply. In three
dimensional notation the axioms of guantum mechanics are

A A

. P = ¥ = -ihV, 77y

and historically, it was de Broglie'’s inference of matter
waves that led to the development of wave mechanics in
material such as atoms and molecules as well as in radiation.

Using the axioms (177) in the Einstein equation (1)
leads to the following relation between the angular frequen-
cy, ®, and the wave-number «x,

0?2 = c2x2 + E2, (178)

If the mass m, is identically zero, this relation becomes

=9 (179)
C

which is the conventional relation between x and ® for an
electromagnetic wave propagating in the vacuum. Using the
axioms (177), Eq. (178) is the Proca equation,

R O N - - 180
o8, <= (g5 V) - o N
if the wavefunction is identified with A,. The Proca

equation is therefore intrinsically quantum mechanical in
nature and as discussed in Chap. 1, is the same in structure
as the Dirac equation. When m, =0, and in the classical
limit, the Proca equation (180) becomes the d'Alembert
equation,

Oa, = o, (181)

which is an expression of the vacuum Maxwell equations.
Defining x := /- ix”, Eq. (178) is a quadratic in x:

x? = x2 -x2 - 2ixk”, Re(x?) = &: -§2 (182)
c
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and so k is in general a complex quantity when the mass m, is
non-zero. Specifically,

=2, k1=, (183)
c

is compatible with Eq. (178). This allows the identification
of the rest frequency of radiation of finite mass,

N, = myc?, (184)

which is de Broglie’s Guiding Theorem (Eq. (1) of Vol. 1).
In the particle interpretation, this means that the photon
has a rest frame, a rest mass, and a rest energy. The speed
of light c therefore becomes a postulated universal constant
of special relativity, because a photon of finite mass does
not propagate at c.

From Eq. (183) the phase of an electromagnetic plane
wave becomes

exp (i) = exp(i(ot - x'2) exp(-£2), (185)

i.e., is the usual phase multiplied by the exponential exp

(-8Z), a real quantity. The complex conjugate of the phase
becomes

exp (i$)*) = exp(-i(wt - ¥'2)) exp(-£2), (186)

and the cyclic relations (169) remain the same, provided that
the scalar flux density magnitude, B, is replaced by
B et ag indicated already. Similarly, the scalar vacuum
magnitude, E®  of electric field strength is replaced by
EW®etZ  The spin field

B® = B0 g-tzgd g g (187)

is therefore a solution of the Proca equation, as are the
wave fields
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(0)
B = B____e‘tz(l'i +j)e*i(0t-x'z)'
V2
(188)

B - E‘/(_;_)_e—iz(_ii .,.j)e-l(ut:-x’z),

Since these fields are solutions of Proca's equation,
they are also generated by the Higgs phenomenon in the
vacuum, a phenomenon which relates photon mass to spontaneous
symmetry breaking, an essential ingredient of unified field
theory. However, it is important to note that finite m, is
not a necessary condition for the existence of the non-
Abelian relations (169), i.e., B exists when m,=0 identi-
cally and is a solution both of the d’Alembert and Proca
equations in the vacuum. It is clear that B from the
d’'Alembert equation has no exponential decay, whereas B
from the Proca equation decays exponentially according to Eq.
(187), and so must ultimately vanish completely as Z ap-
proaches infinity.

2.2 LINK WITH THE HIGGS PHENOMENON

In the theory of fields and particles, the spontaneous
breaking of gauge symmetry leads to the Proca equation, in
the sense that massive bosons are predicted, and in unified
field theory of the GWS type [16], are observed experimen-
tally. The Higgs boson has a finite mass, but has not been
observed experimentally. However, the realization that B
exists in the non-trivial topology of the vacuum means that
the photon must have three space polarizations, which is
exactly what is inferred on the grounds that the photon may
have mass, i.e., by the Proca equation. The latter is a
result of the Higgs Lagrangian, as described by Ryder [16].

The experimental observation of B in the inverse Faraday
effect, which is magnetization by light, lends support to the
Higgs theory. Evidence for the Higgs phenomenon, and the
Higgs boson, therefore becomes available through a combina-
tion of data from the inverse Faraday effect, which shows the

existence of B, and the evidence recently reviewed by
Vigier [34] for photon mass, evidence which is assembled from
several different sources. Standard tables no longer list
the photon mass as identically zero, but as an upper limit
inferred from experimental sources. Taken with the emergence

of B™, therefore, the upper limit on photon mass is also an
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upper limit on the mass of a Higgs boson — the massive
photon. The existence of B jn electromagnetic theory has
consequences in unified field theory which will be explored
later in this book, and as we have seen, finite photon mass
is not incompatible with gauge invariance provided that
AA, = 0. The field B® appears therefore to be compatible
in every way with the Higgs phenomenon and non-trivial vacuum
topology. 1In this section, the Proca equation is derived
from the Higgs Lagrangian which leads to the massive photon,
an inference which is accepted as experimentally plausible,
i.e., no attempt is made to model out the photon mass as zero
as in the GWS (or sU(2) @ U(1)) theory. The same Higgs La-
grangian is used in subsequent sections to show that B® is
a topological string, i.e., a quantized magnetic flux density
in one (Z) dimension. This string of magnetic flux density
propagates in free space, i.e., through the non-trivial
topology of the vacuum. The same Higgs Lagrangian gives rise
to the equivalent of B® in type II superconductors, i.e.,
to Abrikosov lines. Although the vacuum is not a supercon-
ductor, the topological features of both vacuum and supercon-
ductor allow the existence of B, The Maxwellian point of
view is therefore a limit in which the photon mass is
identically zero.

It may be significant that the algebra (169) that
links B® to B® and B®@ ig non-Abelian, i.e., the cross
products of fields are non-commutative. The same is true of
the non-Abelian algebra between components of the vector
potential, Eqs. (172), and the algebra,

EM x E® = _E(O)(igﬂ))" 3(2) X (iE(S)) = _E(O)E(l)"
(189)

(iz(:’)) X E(l) = _E(O)Bﬂ)',

between electric field components, Spontaneous symmetry
breaking of a non-Abelian gauge theory leads to the GWS
unified field theory [16], which is renormalizable. For this
reason, massive bosons are acceptable in GWS and have been
found experimentally. The existence of a massive photon is
therefore not incompatible with renormalizability in quantum
electrodynamics, and finite photon mass has been worked into
GWS and SU(5), for example in papers by Huang [35]. It is
therefore clear that B™ is compatible with renormalizability
in QED, and this subject is addressed later in this volume.
Even in the absence of photon mass and in the absence of a
Higgs field, the non-Abelian algebra (169), (172) and (189)
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remains valid, showing that the U(l) group of electromagne-
tism, the group of all numbers of the form

(190)

el® = cosa+ isina,

should always be viewed as including the case a = 0. If a is
identified with the electromagnetic phase, then « = 0 implies

Wt-x'r=2nn, (191)

where n is an integer. This is precisely the string condi-
tion [16]

e® = -2nn, (192)

where ® is the magnetic flux associated with the vortex
line, so that the string-like magnetic flux is identified
with

® - —Jé(x'r—-wt). (193)

This finding is consistent, furthermore, with the fact
that non-linear, classical field theories in general produce
solitons [16]. The non-Abelian relations (169), (172) and
(189) are also non-linear, and significantly, B® is a
solution which is a stable configuration with a well defined
energy which is nowhere singular. The field B‘® therefore
has all the characteristics of a soliton solution, being the
expectation value of the photomagneton of quantized magnetic
flux. In recent years [16] non-Abelian gauge theories have
predicted the existence of vortices, magnetic monopoles of
the 't Hooft-Polyakov variety [36], and instantons, which are
soliton solutions to the gauge field equations in two space
dimensions (i.e., a string in three dimensional cylindrical
space). In the same way that the stability of soliton
solutions in non-linear field theories is a consequence of
topology, the stability of B®™ in free space is a direct
consequence of the existence of the complex conjugate wave

fields B™ and B@ . In other words B® is linked topologi-
cally with B® and B® , all three fields being proportional

to rotation generators of the Poincaré group of spacg-time.
The topology of the U(l) group ensures the stability of
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the B'® vortex in the vacuum, a vortex line that carries
magnetic flux of finite energy.

The structure of the Proca equation of field theory can
be deduced as follows from the Klein-Gordon equations for a
complex, scalar field, denoted by

O+ &3)e = o, (194a)
@+ E)o - o, (196D)
where E¢:=(n%c)/h, in S.I. units, where % and ¢ are not
suppressed. In writing the Klein-Gordon equations in this

way, quantization has already been assumed, because of the
presence of the Dirac constant, h. In a classical approach,
as described by Ryder [16], the scalar field ¢ is not a
single particle wave function before canonical quantization,
but can be regarded as a generalized coordinate, i.e., ¢
replaces a coordinate x and the time t of the function x(t)
is generalized to X,. In this view, the two Klein-Gordon
equations are classical wave equations in which the parameter
m, is not immediately identifiable as the mass of a point
particle. Canonical quantization of the complex Klein-Cordon
field produces, interestingly, particles and anti-particles
with the same mass but opposite charge, spin being unconsid-
ered because we have a scalar field. If it is possible, as
we have asserted, to produce a Proca equation from the two
Klein-Gordon equations (194a) and (194b), then if these are
classical, so must be the Proca equation itself. Canonical
quantization of this classical Proca equation then proceeds
satisfactorily, because the particle has three space-like
polarizations [16]. If the particle is a photon, then
introducing the mass parameter m, means introducing a third
space-like polarization, which is precisely what is indicated
by the non-Abelian equations (169), (172) and (189).

The two Klein-Gordon equations (194a) and (194b) can be
obtained from the Lagrange equation of motion,

:0’
% ox, a(_ag)
axh

(195)

using the Lagrangian,
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=M 3 a1, 249 196
% 2m, dx, Ox, 2 "¢ oo’ (196)

in S.I. units. In this classical approach m, is a parameter
with the units of mass, a parameter that is generated by the
wave equations (194a) and (194b), which originate as de-
scribed in Chap. 1 of this volume, from the Einstein equation
of special relativity. In that classical particle equa-
tion, my is the particle mass.

Applying the contemporary principles of gauge invariance
to the Lagrangian (196) results in the introduction of a
four-vector A,, which has all the properties of the potential
four vector of electromagnetism [37]. In order to preserve
gauge invariance, and the principles of special relativity,
the Lagrangian (196) must be modified to

= 1 ; a® _ .
- —27"7(%38’% ”eA"‘b)(h_a’Tu leA“(b) (197)

1 1
- _2.m¢cz¢¢t - _ZeonvF;\. ’

where €, is the free space permittivity, F,, the field four-
tensor of electromagnetism, and e the charge on the electron.
Using the quantum prescription (176), the Lagrangian (197)

becomes the classical

@ = 1 (ipd+ ieA ) -ip.b" - ieA b
2%(11’»<b ieA,b)(-1ip,b* - 104,47 (198)

1 1 .
- Em'tcz‘b‘b' - ZGOF“VFW '

in which the Dirac constant % has disappeared. Note that
nothing has yet been mentioned of spontaneous symmetry
breaking, which will be interwoven into these considerations
at a later stage. The mass parameter m, appearing in Eq.
(198) originates in the complex Klein-Gordon field, and not
the electromagnetic field, which introduced itself through A,
as a consequence of special relativity expressed through
gauge invariance. Readers are referred to Ryder [16] for
more details of this process. The Lagrangian (196) of the
complex Klein-Gordon field is not compatible with special
relativity because, essentially speaking, it allows action at
a distance. The Lagrangian (198) is made compatible with
special relativity by the introduction of A, through the
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covariant derivative

(199)

which shows that eA, has the same S.I. units as -ih(3/0x,) .
Electromagnetism is therefore seen to be a property of space-

time itself. This deduction was repeatedly reinforced in

Vol. 1 through the fact that B®™ is directly proportional to
a rotation generator of the Poincaré group of space-time, and
is therefore physically meaningful in the vacuum.

The Lagrange equation

oL I A& Y.,
dA, dx, a( aA”) ! (200)
ox,

with the Lagrangian (197) leads to the Proca equation,

B

(D— e_:l’?i),q, - -ed,, (201)

where the current Jy is defined as in Chap. 1 by

o (e 80, 3
J Wu(‘t“ ¢_¢;)_ (202)

L axh axh

Note'thaF ?here.is a term in A,A, in the Lagrangian
(197), which is identifiable as a mass term. This makes its
appe?rance on the left hand side of the Proca equation (201)
and is consistent with gauge invariance. The right hand side
describes the interaction of e with a current J which is
premultiplied by the Dirac constant %. In classicé& physics,
however, this is zero, so the right hand side of the Proca
equation (201) has no classical equivalent and vanishes in
classical physics. The left hand side remains the same if m,
can be regarded as a classical mass. This result is equiva-
lent to asserting that the complex Klein-Gordon field has no
linear momentum, which is represented entirely by the
electromagnetic field in the entirely classical Lagrangian,

- e? «_ 1 . 1 -
QO mA"A“¢¢ Em¢C2¢¢ - ZGOFLWFDV ’ (203)
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equivalent to the classical Proca equation

) D_Ej‘l’ﬂ) - o. (204)
[o- =)

This is recognizable as the vacuum Proca equation which
obtains conventionally when the source of the electromagnetic
field is infinitely distant. The mass term in this equation
is obtained from the product

g2 .= - 2208 (205)

my

and has been given up to the electromagnetic field by the
complex Klein-Gordon field. In quantum physics, the Dirac
constant h is not zero, and so the current term on the right
hand side of Eq. (201) is restored. This can be regarded as
the source of the electromagnetic field, a source which
resides in a charged, complex scalar field. Therefore the
Proca equation (201) describes an interaction process in
which linear momentum is conserved. In this view, therefore,
quantum physics asserts that the source of electromagnetism
can never be infinitely distant, as in classical physics,
because in quantum physics, % is non-zero. The charge e is
not quantized in this view, and is introduced through the
product eA,.

It is inferred that if the electromagnetic field’s
source is the complex Klein-Gordon field, then the latter
gives up mass to the former, a mass term described by Eq.
(205) .

In this view, therefore, the classical electromagnetic
field can never be without mass, because it would have no
source. As in Chap. 1, the Proca equation,

O+ £2)a, = 0, (206)

is obtainable directly from the Einstein equation (1) by
regarding A, as a wave function and using the quantum
prescription (176). Equation (206) is therefore a wave
equation equivalent to a free photon. Identifying the two
mass terms gives

£ - (mOC)z . %" (207)
b m,
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where m, is the intrinsic, irremovable, mass of the free

photon,
The current term,

oo :=(Eﬁﬂf)g , (208)

1
my

is a London equation in the wvacuum, and if & vacuum resis-
tance R can be defined, and if Ohm's Law can be assumed to

apply,
E, - R(M)A , (209)
% B
showing that there is an electric field E, generated directly
by A, through the Proca equation. This is discussed by Moles
and Vigier [38]. The existence of the field B follows

directly from Ampére’s equation,

Vx B = glern (210)

which gives

VB - g2gta (211)

The solution of this equation is

B - g otz (212)

which identifies the rest wave-number of Eq. (183) of this
chapter as
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£ o= x, - (__ejb_sb:)%, (213)
N

Equation (212) is of course consistent with the Proca
equation (206).

2.2.1 SPONTANEOUS SYMMETRY BREAKING

Spontaneous symmetry breaking is characterized [39] by
the equation

b 1= |¢7 = -gé, (214)

where M is a parameter. In this view, introduced by Higgs
[#40] and others, the wvacuum becomes the state of lowest
potential energy, the minimum value of

V(d)) = M2¢2 + l¢d’ (215)

given by Eq. (214)., The vacuum is no longer necessarily the
state in which the field is absent. Therefore the field has
a vacuum expectation value, given by

oo = oldlo?, (216)
vacuum eigenstates being denoted by |0>. From the equation

¢min HE - I i(“%)zr (217)

mass becomes something that ensures the minimization of
energy — an embodiment of a variational principle. Therefore
spontaneous symmetry breaking (SSB) adds a background energy
to the universe, and is characterized by the addition of the

term A¢* to the Lagrangian (203). From Eq. (213), the photon
mass m, can be expressed directly in terms of the mass
parameter M, and in this sense, the photon picks up mass from
the vacuum as it propagates. This notion is furthermore
consistent with the recent inference [41] of vacuum friction,
which explains how light intensity can be lost exponentially
as the light beam propagates through the vacuum. Since light
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intensity (watts m™?) is defined in S.I. units by

I, = €,cE(®)? =-£;CB(N2, (218)
0

where p, is the vacuum permeability and €, the vacuum
permittivity, then a massive photon implies that intensity
decays exponentially along the propagation axis (Z). If so,
then electromagnetic energy density, defined by

U, = —;:(EOE"")Z + Illl;Blo)z)' (219)

is lost as light propagates (Tolman's tired light [41]), and
the range of electromagnetic waves becomes finite, even if
they are propagating through a vacuum. These inferences
require a vacuum resistance R, as in Eq. (209), or vacuum
friction.

The symmetry broken Higgs Lagrangian has been shown in
recent years to produce a soliton solution, a vortex line of
quantized magnetic flux which in type two superconductors is
an Abrikosov line [42]. This vortex is stable in two or more
dimensions [16] if and only if there is also present a gauge
field such as an electromagnetic field represented by a,.
The vortex line appears in two dimensional space, or three
dimensional space with cylindrical symmetry (both character-
ized by U(l), the group of numbers ei®), and is therefore
identifiable directly with B in the vacuum. Thus, the
field B'® emerges from the Klein-Gordon equation of an
electron in A,, as deduced in Chap. 1 for the Dirac equation
of e in A,. For reasons discussed there, the Klein-Gordon
equation must be replaced by the Dirac equation in order to
produce a physical probability density and in order to
produce a correct description of anti-particles, but each
component of the Dirac equation must also satisfy a Klein-
Gordon equation. As discussed by Ryder [16], the Dirac
equation with considerations of SSB leads directly to the GWS
unification of the electromagnetic and weak fields. In this
view therefore the association of B® ywith photon mass
becomes inevitable, so that the well known experimental
observation [43] of B in the inverse Faraday effect becomes
indirect but persuasive evidence for the existence of photon
mass and therefore for a Higgs boson.

The close relation between SSB and the non-Abelian
algebra (169) that defines B in the group 0(3) of rotations
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in 3-D space can be developed as follows. In the conventional
view of vacuum electrodynamics [44-46], the electromagnetic
energy density is defined by the transverse, wave fields, and

by these only,

U= _1(,_1_ (BW . g, gla) . ga)y)
2L ko (220)

+ GO(E("’ c g, mia). z(z)'))’
in the circular basis {47] of Vol. 1,

e = @@ - _:/3:2__(1—1'.1), o =k, (221)

The energy (220) can be denoted in Minkowski notation by the
product of the electromagnetic four-tensor F,, with the

complex conjugate tensor F,,. In the circular basis these
tensors must be defined by

0 cB3) -cBf2) ~ip(D)
-cB¥ 0 cB ) _iE(Z)

Ha I T R T
iEl  {gEft@ iE) 0
(222)
0 CB(B)' _CB(Z)t iE(l)*
. -cB 0 cBV* g
F“' Hid s

cB)r _og1)» 0 ig (3
-igpW* -~ jgp@es _jgBGI* ¢

in order to obtain a positive U from the tensor product

qg%vﬂg. From the principle of gauge invariance of the second
kind [16], the term U must be subtracted from the complex
Klein-Gordon Lagrangian density to maintain consistency with
special relativity. Therefore the term equivalent to the
energy U in the gauge invariant Lagrangian density is

1

genomass = 4 GOvaFJv . (223)
The non-Abelian algebra (169) and (189), however, indicates

that this must contain terms due to B and -iB® /¢ in the
vacuum, i.e., real and imaginary field terms that are phase
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free and which require for their definition the involvement
of the third polarization space axis (3), defined by the unit
vector

e™ =k, (224)

which is in turn identified precisely in the circular basis
(221) with the cartesian unit vector k in the propagation
axis Z of the light beam. In the particle interpretation
therefore, the photon has three space dimensions. This is
precisely the outcome of SSB, which in the presence of
electromagnetism produces a vortex line, B in the vacuum,
which in type 1I superconductors becomes an Abrikosov line.
Furthermore, the structure of the non-Abelian algebra (169)
is maintained exactly for the electromagnetic field with mass
provided B is replaced by B®e-tZ,

The existence of B® and its dual (Vol. 1) -iE® /c in
the vacuum therefore leads to the replacement of (223) by

1 -
Lrace = —zeoFmF;‘,e 2tz
= _%[_1_ (B@W B+, g2) . g(2)s, g3 . pla)s) (225)
Bo

+eo(z(1) R B2) . p2)r , B(D) .5(3)*))9-252_
The exponential in Eq. (225) is represented by

e22 ~ 1 -2z +2822%+ ..., (226)

’

and the difference (mass correction) between the Lagrangian

densities in the presence and absence of electromagnetic mass
becomes

1

AL = L nase = Lnass = 3 €oF v F;v(EZ -&227%), (227)

an energy difference with the same structure as the SSB

energy introduced by Higgs, Eq. (215), and with a winimum
defined by
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The field B'® in the vacuum can therefore be considered in
terms of spontaneous symmetry breaking in this way. Qualita-

tively, B has a rod-like symmetry which can be spontane-
ously broken to produce B or B® in the plane perpendicu-

lar to B™ . The latter is independent of phase, and so the
symmetry breaking can produce any value of the phase without

[i}

_%eonvF;v(E _2532) = 0. (228)

affecting the magnitude or direction of B®, i.e., the
fields B and B® can be oriented randomly with respect
to B'® and still produce the same value of B, This

process is directly analogous with the spontaneous bending of
a rod in any direction as described in Ryder [47].
Continuing the analogy between SSB, intrinsic photon
mass, m,, and B@ K it is seen that -{Z plays the role of
M29?; E2zZ2 plays the role of Ad*; and AY¥ plays the role of
V. 1In the absence of intrinsic photon mass, the usual vacuum
state occurs at AL =0 (i.e., Z=20), in which case
(229)

Qno mass = QMSE'

The symmetry broken vacuum state, on the other hand, is given
by a minimum in the difference AY, a minimum defined by

gA_) =0, (230)
az
so that £Z2 =1/2. At this minimum point
A)iq = ~F€oFrFon- (231)

The SB vacuum state, which no longer indicates the absence of
the electromagnetic field tensor F,,, but is a minimum of the
electromagnetic field between vacuum eigenstates, is there-
fore displaced by Eq. (231) from the usual vacuum state. If,
following the Higgs method [16], we define the minimum of the
electromagnetic Lagrangian to occur at z = 1/(2§), at which
the numerical value of the Lagrangian is set to zero, then at

Z =0, the numerical value of the same Lagrangian function

must be —(1/4)e@ﬂnfﬁv, which represents a local maximum at
Z =0. This conclusion can be checked through the fact that

the value of
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- 1 »
Lnass 1= =5 oFprFuve (232)

at Z =0 is of course -(1/4)¢,F,,F,,. If the exponential is
not approximated by the first two terms of a Maclaurin
series, as in Eq. (226), its minimum occurs at Z - =, and the
condition £z = 1/2 represents a characteristic correlation
distance of the exponential decay of the Lagrangian function
with photon mass. The Lagrangian decays to zero in this case
only as Z approaches infinity, in which limit gauge invari-
ance (and special relativity) can no longer be maintained.
However, since the radius of the universe is finite, the
condition Z~ « is unphysical, so that for all physical situa-
tions, gauge invariance is maintained by the presence of
electromagnetism.

If the exponential is approximated as in Eq. (226),
however, the approximation, a Maclaurin series, is valid only
for £z<1, beyond which it is mathematically invalidated.
Therefore inferences based on Eq. (226) are valid if and only
if £z<1, which fixes the range of validity. The minimum in
Eq. (231) occurs by definition only within the range of
validity of the Maclaurin series. For all practical purposes
EZz is always much less than one because the numerical value
of £ is less than of the order (Vol. 1) 10 m?. Therefore
the Maclaurin series is approximated excellently by its first
two terms as in Eq. (226) in all laboratory experiments in
physical optics. 1In cosmology, however, Z can approach the
known radius of the universe in order of magnitude. In
summary, the appearance of an exponential decay in the
Lagrangian (232) is analogous with spontaneous symmetry
breaking, i.e., the existence of finite intrinsic photon
mass, m,, implies that the vacuum state of electromagnetism
is a minimum of the electromagnetic field, and not the state
in which the field is absent. In the following section, it
is shown that the conventional symmetry broken Higgs Lagran-
gian leads directly to the inference that B® is a vortex
line, or soliton soclution, of the non-linear complex Klein-
Gordon equations in the presence of electromagnetism, the
latter being an inevitable consequence of gauge invariance of
the second kind. Thus, B! is also an inevitable consequence
of gauge invariance.
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2.2.2 B AS A VORTEX LINE IN THE VACUUM

In Chap. 1 it was shown that the vacuum B is a
consequence of the standard Dirac equation of e in A,. Since
Klein-Gordon equations describe the evolution of individual
spinor components and also of scalar components of A,, it
follows that B must also emerge from the Klein-Gordon
equation of e interacting with the electromagnetic field,
using the same minimal prescription introduced through the
same covariant derivative, Eq. (120). In proving this result
in this section, it is also demonstrated that B'™ is a vortex
line in the vacuum, a soliton solution of the appropriate
non-linear field equations. Since electromagnetism itself is
a consequence [16] of the need to keep the complex Klein-
Gordon Lagrangian invariant under gauge transformation, the
demonstration in this section proves that the vacuum vortex

line B™ is an inevitable consequence of gauge invariance in
the complex Klein-Gordon equation of field theory. It is
important to note, however, that this conclusion holds
whether or not the photon is regarded as having intrinsic
mass, m,, and is valid in the presence or absence of sponta-
neous symmetry breaking. However, as argued already, it
seems overwhelmingly probable that B® indicates the
existence of non-zero m,, which as shown in Section 2.2.1, is
mathematically analogous with spontaneous symmetry breaking.
The latter is a key ingredient of unified field theory.
If B is asserted to be zero, while B® and B'® are main-
tained to be non-zero, then field theory in general is
invalidated. The belated recognition of B therefore rein-
forces field theory as currently understood, and the infer-
ence that B®™ is non-zero in the vacuum is a major step
forward in contemporary understanding. Experimental investi-
gation of its characteristic square root power density
dependence would therefore be of key importance.

The development in this Section is based on the Higgs
Lagrangian (197) with the addition of the symmetry breaking
term -A{dpd*):. This Lagrangian in Eq. (200) produces Eq.
(201), a Proca field equation. If we set ¢ =¢* =0 in Eq.
(201) we recover the vacuum d’Alembert equation E]Ap= 0 of
which B® is a solution (Vol. 1). In the quantized interpre-
tation the d'Alembert equation is equivalent to the equation
of motion of a free particle, the photon free of the Klein-
Gordon field. If this latter is taken to be the field of an
electron interacting with the electromagnetic field repre-
sented by A,, then the interaction equations are obtained
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from the symmetry broken Lagrangian (197) in the two Lagrange
equations

o9 _ oL 233
% ol ag) 239
o _ o4

giving two non-linear equations which must be solved simulta-
neously [48],

E}K—%DP(Dptb’) = —%m¢c2¢* - 204", (235)
(u- ez%)zﬁ“ - —ed, . (236)

The covariant derivative D,plays the same role in these
equations as in the Dirac equation (121), which was solved
for e in the presence of A,, but without a symmetry breaking
term. In Egs. (235) and (236) there is a complicated
interdependence of the Klein-Gordon and electromagnetic field
due essentially to the principle of gauge invariance of the

second kind, i.e., to the conservation of local as well as

global symmetry. In addition, the vacuum is represented by
2\3

'¢Ivac =a= (—-ZMI) ’ (237)

and the field ¢ is parameterized [16] as

$ = x(r)einel (238)

where

Xry~0as I-0,
(239)
Xr) ~ aas r — .

This means that the limit ¢~0 as r~0 is associated with
finite energy, and with a finite B® field which is a vortex
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line of quantized magnetic flux, a stable soliton solution of
the coupled non-linear field equations (235) and (236).
Therefore, as anticipated, a stable B™ emerges from the
Klein-Gordon equation of motion as well as from the Dirac

equation of motion of e in 4,. For further details the
reader is referred to the original paper [48] or to the
description given by Ryder [16] in reduced units. By a

suitable parameterization of A, in polar coordinates, the
field B®™ is given in this view a radial dependence, i.e.,
a dependence on the radial coordinate r. In the limit r-o0,
B™® from Eqs. (235) and (236) is finite, and can be identi-
fied with B of the non-Abelian algebra (169). As r-e,
B disappears, i.e., it has a finite radius. Note careful-
ly, however, that there is no dependence of B on 2z, the
propagation axis perpendicular to r. Therefore B™ exists
in the free photon as an infinitely narrow flux vortex line.
The presence of the Klein-Gordon field gives B®™ a finite
radius through the use of spontaneous symmetry breaking.
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The geometry of gauge fields plays a central role in
contemporary field theory. Electromagnetism is conventional-
ly asserted to be the U(l) sector of unified field theory,
where U(1l) is the group of numbers of the form ei®*, or the
group (0(2)) of rotations in a plane. Unified GWS field
theory, for example, is then built on a product group such as
SU(2) © U(l). However, equations such as (169), (172) and
(189) are non-Abelian because of the presence of vector cross
products, while the U(l) group is Abelian. 1In Vol. 1, it has
been shown that B, B® and B®™ form a Lie algebra of the
non-Abelian group of rotation matrices in space, 0(3);
matrices which are isomorphic with the Pauli spinors of
SU(2), another non-Abelian group. In this chapter, a poten-
tial model for B®, B® and B®™ is constructed from the
general theory of gauge field geometry [16], and the momen-
tous conclusion reached that electromagnetism is a non-
Abelian gauge field, described by the group 0(3) in three
dimensional space, rather than the group 0(2) := U(l) of
rotations in a plane. This means that all field theories
based on the assertion that U(l) is the sector of electromag-
netism must be fundamentally modified. For example GWS
theory must be constructed from a direct product group
SU(2) ® 0(3) rather than SU(2) ® U(l). Essentially speaking,
our current appreciation of unified field theory is incom-
plete because the role of B® in the electromagnetic sector
has not been realized. Relations such as (169) become
Abelian if and only if

BW yx @ - g@ y g =5 o, (240)

an assertion which is contradicted experimentally in data
which have been available for some thirty years, for example
in the inverse and optical Faraday effects, discussed in
detail in Chap. 7 of Vol. 1, and in light shift data in
atomic spectra [49], which have been available since about
1960 [50].

65
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The general theory of gauge field geometry [16] is used
in this chapter to infer that the electromagnetic four-tensor
is described for electromagnetism as the 0(3) sector, rather
than the U(l) sector, by the non-linear

A, oA, .e
T E, ok, e A (241

where S.I. units have been used as throughout these volumes,
so h has not been suppressed. From Eq. (241) we obtain

B = -igai, aP, (242)

showing that B is defined in the non-Abelian 0(3) electro-
magnetic sector by a commutator, which is the quantized
version of the conjugate product,

B® - _4 x? AW a2 (243)
B(O)

This type of conjugate product has been discussed in detail
in Chap. 1 of this volume, in the context of the Dirac
equation. The indices (1), (2) and (3) appearing in Eq.
(242) play the role of isospin indices in the well known
Yang-Mills formalism [16] of non-Abelian field theory.

The extension of the group symmetry of electromagnetism
from 0(2) (or U(l)) to 0O(3) is a direct consequence of the
experimental existence [51] of the conjugate product B x B

and therefore of B . The experimental presence of B® in
the vacuum means the presence of a physical third axis, an
axis which as we have seen in Chap. 2 is already recognized
in some contexts as a soliton solution, a quantized flux
line, which in type II superconductors is an Abrikosov line.
The group 0(2) is Abelian, the group 0(3) is non-Abelian, and
the new non-Abelian dimension of electromagnetism in the
vacuum is strongly indicative of the existence both of photon
mass and of magnetic monopoles of the type first proposed by
't Hooft [52] and Polyakov [53]. Further experimental and
theoretical work on B® therefore becomes centrally impor-
tant, because it is the physical key to the philosophical
transition from 0(2) to 0(3) in the electromagnetic sector of
contemporary unified field theory. It is particularly
important in this context to experiment on the magnetization
of electron plasma by circularly polarized electromagnetic
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radiation, as described in Chap. 12 of Vol. 1.

Although B has been indirectly recognized [16] as a
soliton solution, its link with B® and B™@, the cyclically
symmetric vacuum equations (169), was recognized only in 1992
{1-12}, and it is this link that shows conclusively that
electromagnetism in the vacuum is described by O(3) and its
rotation generators, as developed in detail in Vol. 1. In
previous chapters of Vols. 1 and 2 it has been demonstrated
rigorously that B emerges from all the standard equations
of one electron in the electromagnetic field: the classical
relativistic Hamilton-Jacobi equation (Chap. 12 of Vol. 1);
the Dirac equation (Chap. 1 of this volume); the complex
Klein-Gordon equation (Chap. 2 of this volume). For the free
field, B'"™ is a solution of the d'Alembert and Proca
equations. There is no further reasonable doubt therefore of
the existence of the non-Abelian relations (169), (172) and
(189) in the vacuum, relations which signal the emergence of
electromagnetism in the vacuum as a non-Abelian gauge theory.
The indices (1), (2) and (3) of the basis (221) now emerge as
isospin indices. The familiar definition of the electromag-
netic four-tensor in U(1l) (or 0(2))

F. = A _ 93 (244)

B 9x, ox,'

is generalized within the rigorous [16] mathematical theory
of gauge geometry to

(1)+ _ (1)» (1)« . ©F 5 (2) (3)
Gw'*=3,a -8, - 124", A7),
(2)e _ (2) (2) > O a (3} (1)
Guv' " =3,4,4" - 3,4, - i 74, a, B (245)

(3)+ _ (3)» (3) = . €f 5 (1) (2)
Gy " =9,4,%" - 9,4/ —1¥[A“ . A7),

in which the superscripts (1), (2) and (3) are isospin
indices and where the space-time subscripts are defined in
the usual Minkowski notation

-=i = i 246
9, : g x, Y, 2, ict). (246)

The charge e in Eqs. (245) is a quantized field quantity, as
discussed in detail later using the Cartesian X, Y and Z for
the space indices. The presence of the Dirac constant % in
the non-Abelian equations (245) is due to the usual quantum
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mechanical axiom (176) linking the momentum-energy four-
vector by to the wave four-vector K, .
Therefore the non-Abelian definition of F., Egs. (245)

automatically quantizes the electromagnetic ff%ld, produciné
the photon. In other words, the extension of electromagne-
tism from 0(2) to 0(3) produces quantization from fundamental
geometry, an outcome which is an entirely natural consequence
of the fact that space is three dimensional, and which is
consistent with our contemporary appreciation of the vacuum
iFself as a geometrical concept with a non-trivial, non
simply-connected, topology, based, not surprisingly, on 0(3).
It is this vacuum topology that allows the existence of the
Aharonov-Bohm effect {16]. The equations (245) being a
consequence of a rigorously geometrical theory of gauge
fields [16] are consistent with gauge invariance of the first
and second kind, and are the fundamental equations of the
well known Yang-Mills theory of fields and particles.

3.1 GENERAL GEOMETRICAL THEORY OF GAUGE FIELDS

The essential difference between an 0(2) and an 0(3)
theory of gauge fields is summarized through the fact that in
0(2), rotation through an angle A, takes place in a plane
while in 0(3) it takes place about an axis perpendicular té

the plane. Rotations in a plane through an angle A, can be
described by

¢§=¢1COSA3+¢ZsinA3, ¢£=—¢1sinA3+¢zcosA3, (247)

where ¢, and ¢, are field components [16]. However, the same
rota?lon about an axis, 3, perpendicular to the plane
requires the addition of

& - ;. (248)

The field therefore becomes a vector field ¢ with components
(d1- &., §;) in three dimensional space. In the U(l) (or 0(2))
theory of electromagnetism, Eq. (248) is missing, so that the
action is invariant under Eq. (247) only, i.e., invariant to
a rotation in the (1,2) plane through an angle A,. Rotations
in two dimensions form the group 0(2), which is also the
group U(l). Thus gauge transformations of the first kind
generate 0(2) in this two dimensional world. Under gz (1,2)
plane rotation, a quantity Q is conserved, a quantity which
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is identified as unquantized electric charge. Therefore in
Abelian (U(1l)) electrodynamics (AE) electric charge is not a
quantized quantity. In non-Abelian electrodynamics (NAE),
which is indicated experimentally by B®, it can be shown as
follows that charge is quantized through the equation

_ L x 249
e‘?'(B(o))‘“(A(o))' (249)

which supplements the usual quantum mechanical axioms,

En = hw, P = hx. (250)

Equation (249), derived later in this Section, is a third
fundamental axiom of quantum mechanics, and shows that field-
charge in NAE is subject to particle-wave dualism. 1In the
same way that energy occurs in units of frequency, and linear
momentum in units of wave-number, e occurs in units of x/A®
or x3/B® | The non-Abelian electromagnetic field is automat-
ically quantized, and charge, e, becomes a property of the
field itself, through x?/B!® . This type of charge quanti-
zation does not occur in 0(2) electrodynamics, but is a
direct consequence of the rigorous geometrical theory of non-
Abelian gauge geometry applied to 0(3). Charge quantization
occurs in a three dimensional, but not in a two dimensional,
theory of electromagnetism, illustrating the central impor-
tance of the field B as observed in the inverse Faraday
effect (Chap. 7 of Vol. 1) and other magnetic effects of
light.

Note that Eq. (249) properly balances ¢ symmetry
(Chap. 2 of Vol. 1) and therefore conserves £&. In Egs.
(250), En and p are usually thought of as particulate
(properties of matter), and ® and x as undulatory (proper-
ties of waves). In AE, the electromagnetic wave is usually
thought of as uncharged, in NAE, the field can act as its own
source, and carries the quantized field charge defined by Eq.
(249). In the static limit, x -~ 0; B'® -0 and e remains
finite, becoming static, particulate, charge, the charge on
the static electron. In this limit, there is no radiation
(because there is no current, or moving charge) and so x
and B are both zero. Equation (249) indicates that under &
the sign of B! is reversed as well as that of e. In this
view, there is no distinction between particulate and
undulatory charge, an inference which is consistent with the
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view (Chap. 1) that action at a distance between charged
particles (two electrons) takes place through the electromag-
netic field or quantized photon. The latter is therefore the
agent of interaction at a distance between the two electrons.
Thus charge on the electron can be transmuted into the form
of a field, an inference which is described in quantum
mechanics by Eq. (249).

In analogy, gravitation in the theory of general
relativity [16] is the agent of interaction at a distance
between particulate point masses. The gravitational field
itself carries energy, which is equivalent to mass and is
itself a source of gravitation. In NAE, the electromagnetic
field carries the quantized field charge defined by Eq. (249)
and is its own source. An example of this is the by now
familiar

B x p® - jpg®™s* ot cyclicum, (251)

in which the non-Abelian cross product on the left hand side

acts as a source for B = B®* a5 the light travels in the
vacuum. Therefore, even in the absence of matter, the NAE
field couples to itself, generating B® in the vacuum.
Analogously, in general relativity [16] the real divergence
of the Einstein tensor G, is non-zero, and the gravitational
field self generates. Similarly, in considering the other
components of Eq. (251), for example

B x B - jpiglye, (252)

the cross product B xB®™ is the source of B®™* in the
vacuum, in the absence of matter. Finally, in the equation

B® x g - jploga@s (253)

the cross product B™ x B becomes the source of B®* in the
vacuum. Light propagation through the vacuum therefore
becomes understandable in terms of non-Abelian gauge geome-
try. There are direct analogies to this [16] in the curved
space-time of general relativity. The cyclic relations
(251), (252) and (253) are manifestations of the non-Abelian
vertex diagram [16],
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A A A R
ANAAAANAAA (254)

A

AN
A

i.e., the potential A of vacuum NAE itself emits gauge
particles, transverse and longitudinal photons. In Eq.
(254), A is now a vector with respect to an isospin space as
well as a four-vector in space-time. Since B®, B@ and

B®™ are known (Vol. 1) to be non-Abelian rotation generators
in the group 0(3), the isospin indices of NAE are (1), (2)
and (3), and the conserved quantity of NAE becomes isospin,
not the unquantized scalar charge of AE. Equations (251),
(252) and (253) are therefore relations between vacuum
magnetic field components in the isospin space defined by
(1), (2) and (3). This space is also defined by the circular
basis (221). The arbitrary isovector field [16] is defined
in this basis by

@ =0MeW +§e@ 4§ - $ 1+¢,]+é,k. (255)

In the general theory of gauge fields [16] an n compo-
nent field ¢ is subjected to the gauge transformation,

¥(x,) - ¥(x) = S ¥(x,), (256)

where

S(x,) = exp(iM2A%x,)). (257)

In these general gauge transformations, the isospin index a
is still summed from one to three, but M2 are now nxn
matrices representing group generators. For the 0(3)

group M® are 3 X 3 matrices, the 0(3) rotation generators
(Vol. 1), obeying the Jacobi identity

[[Mi0 My)e M)+ [[My0 Mo M)+ [[My, M), My] = O, (258)

There emerées a deeply interesting parallel between non-
Abelian electrodynamics and general relativity when we come
to consider the transformation property [16]
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N _gop, 3s (259)

ox, ox, 3&; :

This is not a covariant transformation because ¥ is a
function of isospin space as well as of the n dimensional
space occupied by its n components. Therefore the infini-
tesimal df involves the variation of ¢ with respect to both
spaces, and is covariant if and only if the isospace axes are
fixed, so that their infinitesimal variation is zero. The
vector that results from this procedure, known as parallel
transport in isospace [16] is denoted by ¢ + 3¢y . The latter
is measured with respect to the local iso-coordinate system
at x,+dx, and is parallel to ¢ measured in the local iso-
coordinate system at x,. Therefore 38§ is not zero because
the local iso-coordinate systems are different at x, and
Xp+dx,. If the isocoordinate system is different, so is the
vector itself, and ¢+ ¢ +38¢y. The general theory of gauge
transformation geometry then proceeds [16] by assuming that

8% = 1IMaldx, ¥, (260)

where g is a number, which in AE is the charge, e. The term

A, describes to what extent the axes in isospace differ from
point to point. The true derivative of ¢ is now defined as

Db = (b +d¥) - (b +89) = d - i Imealdc,y (261)

in Minkowski notation; the covariant derivative of the n
dimensional field ¢ transforming under a group whose
generators are represented by the matrices M2 appropriate to

the representation of ¢. Thus in S.I. units and Minkowski
notation,

Dy . =9 _;9pann 262
. D ax, idmealy, (262)

is a correctly covariant derivative.
In Abelian (0(2)) electrodynamics, M= -1 and g = e, so
that the isospin space is a scalar. In this case
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2 . e
D, : Ea+1hAW

L}

which is the (Cartesian) covariant derivative of AE. In NAE

00O 0 01 0 -1 0 264
M=]0 0 -1}, M2=10 0 0}, M*=1]i 0 0}, ( )
01i 0 -i 00 ¢ 0 O

in the 0(3) group, and can be identified with the Cartesian
components of the 0(3) rotation generators used in Vol. 1,

Je 1= MY,  J,1=M?, J, i= M3, (265)

The elements of these matrices can be defined by

(Ma)mn = —ieamn' (266)

It may be shown [16] that a vector rotated in isospin
space produces the commutator [D,, D,], through which may be
defined the non-Abelian field four-tensor G,,,

G =

(34 'é'%(JaAva)—————(J’A:)-j.%[J"A:, JaA'a], (267)

ox,

whose component form in the group 0(3) is,

.M el | 1) 4 (2) 268a)
- B g A,

. _aalrr el (3) (1) 268b
T s A (2685

. _aalMt aalvr 2) (3 268c¢
G'" = ok, - id[a*, A (268¢)

These are equations (245) with the identity e = g; and become
the familiar 0(2) definition of F,, as the four-curl of A, in
the Abelian 0(2) group. The difference between Abelian and
non-Abelian electrodynamics is embodied therefore in the non-

zero commutators [A,.m, a?], [a2, a/Y], and [a?, ], In
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0(2) electrodynamics, these commutators are asserted to be
zero, whereas the cyclic relations (169), (172) and (189)
show this assertion to be incorrect. In 0(3) electrodynam-
ics, the commutators are correctly taken to be non-zero.

3.1.1 THE QUANTIZATION OF CHARGE

‘The components of G,, must be electric and magnetic

fields. The Z component of B® is now well defined through
Eq. (268a), which reduces to

B, =6 = -6 = ~iZ[af", 2]
(269)
- _i_%(Aél)A;Z) _ A}]’A‘,§2))= —i%(A“" xA‘z’)z.
However, we know from Vol. 1 that
@®xa@), - ;B0 g0 (270)
X
which is a direct consequence of using the plane waves
(o)
A(l) = A(ﬂ)' - B id+ ei¢. (271)
—Jz’x( h
Comparing Eqs. (269) and (270) gives the result
e =1 X (272)

B ’

which is the equation of charge quantization referred to
earlier in section (3.1). Recall that this equation has been
derived from the 0(3) electrodynamics group with isospin
indices (1), (2) and (3).

The alternative form of Eq. (272),

Pl = eAa!® = %, (273)

clarifies the nature of the quantized field charge,

A0

e=,,( x ) (274)
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because w (and therefore eAf®) is the linear momentum
magnitude of the free photon. In AE it is not customary to
express the free photon momentum as eA(® because this term
is usually associated with the presence of charged matter
(e.g. an electron as in Eq. (157) of Chap. 1). The free
photon is on the other hand the quantized unit of light
energy in free space. Equation (273) of NAE demonstrates
that the linear momentum of the free photon itself is eA(®,
where e is the field charge, an undulatory equivalent of
particulate charge. This concept does not occur in AE.

3.1.2 ELECTRIC AND MAGNETIC FIELDS IN @G,

Let us recall that the field B"™ is implied by the cross
product B® x B® of fields B and B‘® which also occur in
AE. Therefore B and B mpmust take the same analytical
form in AE as in NAE, and the four-tensor G,, must produce
this result self consistently. In other words, G,, must
contain the plane waves B and B together with B®™, so
that all three components are produced self-consistently from
the same potential. The insights of this chapter have made
it clear that this is not possible self-consistently within
the structure of an 0(2) theory, because the fundamental
gauge geometry of 0(2) does not allow non-zero commutatdbrs of
the type appearing in G,, of Eq. (268).

In this section, Eq. (268) is developed to demonstrate
its structure in detail (See Appendix D). The overall
conclusions of this chapter thereby emerge as follows:

(1) In NAE, if the Abelian form of A®™ and A® is
assumed, the field tensor G,, produces the Abelian B
B®  EW and E® and self-consistently the intrinsi-
cally non-Abelian B*® and -i®®/c.

(2) In AE, the presence of B™® is indicated byB™
and B® (as argued in Vol.l and previous chapters of
this volume), but the Abelian field tensor F,, does not
produce B and -iE®/c self-consistently from the
Abelian A and A® . This is clear from the result

(3) 3
PO o aa> 8
R -

o, (275)

In order to account for B ywe have had to construct
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potential models, exemplified by that of Section 10.3 of
Vol. 1.

(3) In NAE, the concept of wave-particle duality
emerges for charge itself and the latter is quantized
through Eq. (274). 1In essence, this means that in 0(3)
electrodynamics the photon is the agent of action at a
distance between two electrons. The charge on the
electron appears in the free photon momentum, which is
defined as eA® =%h. In 0(2) electrodynamics, Tk is not
conventionally identified with eA‘® for the free photon.

Thus in NAE, the charge on the electron propagates as a
wave-vector through free space.

In vector form, the Eqs. (268) can be written as

@wY,, = Fwy - i%(A @ aty (276a)
(G(z) ')pv - (F(z) w)pv - i%(ﬂ(” x A(l))uv s (276b)
@), = (F® Vs = if(“ @ xamy (276c)

These relations are true for each combination of p and v
that defines an electric and magnetic field in F,,. For
example, puv = 12, 21, etc. define magnetic field compo-
nents; pv = 14, 41, etc. define electric field compo-

nents. Diagonal components vanish (pv = 00, ., 44).
Using the results (Eqs. (24) of Vol. 1),
. , B®
Ay a@ - jAfo g3 i - B(S)O,
K 277)

AD xa® = ja04Ms A0, 2 - ja(00) @

and dropping the pv subscripts in Eq. (276) for clarity
of notation,

GW = ) _ a0 (j4W),
h
G = p@ —i%A“”(iA"’), (278)

QB = p& +( ef(:’ )B(a) .
13
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Furthermore,

: 1)
iA(I) = iB® (_ii.q_j)ei@: —.___z

’

Vax @ 279)
R _ iB(O) s 1 g(l)
iA® = _\/5?( id+ e P

and therefore Eq. (278) reduces to

s w (1) iz(ﬁ)
W _p . IE @ _pa o 1B
et -F e+ 9T-F c (280)

g™ _pta - g

a result which has been derived with the charge quanti-
zation conditions

2 281
(%) 2{z) e

Since 0(3) electrodynamics is a theory of sgecial
relativity, the duality transformation can be applied to
Eqs. (280), giving

a‘;x) _ F,;” = Bu)' ap(z) - F‘;z) = B“),
(282)

7. AL
(3) (» _ -iE
Gp = !D = -——c— .

Equations (280) to (282) show that in 0(3) electrodynam-
ics, the field B and its dual -i®‘®/c emerge from the
field four-tensor G,, in addition to B p@ g) and

E®  which retain their Abelian form — transverse plane
waves., The isospin indices of 0(3) electrodynamics are
(1), (2) and (3) of the circular basis.

These conclusions represent a major development of our

contemporary appreciation of electrodynamics. For example,
the Maxwell equations themselves are generalized, as de-
scribed in Chap. 4.



Chapter 4. The O(3) Maxwell Equations in
the Vacuum

In this chapter the development of non-Abelian electro-
dynamics continues with an account of the 0(3) Maxwell
equations in the vacuum. It is shown that the charge
quantization condition

e = ’{Z%) (283)

reduces the 0(3) to the familiar 0(2) vacuum Maxwell equa-

tions for the transverse fields B® 6 B®@® g gpd @, In
the 0(3) structure, however, there occur self-consistently

Maxwell equations describing the vacuum spin fields B and
~-iB® /c. Electrodynamics is therefore the 0(3), and not the

0(2), sector of unified field theory. The traditional
methods of developing the Maxwell equations are followed,
i.e., they are divided into the vacuum inhomogeneous and

vacuum homogeneous equations. It is important to note that
throughout this chapter we shall be dealing with the Maxwell
equations for free electromagnetism, i.e., do not discuss the
interaction of free electromagnetism with matter. As seen in
Chap. 3, 0(3) electrodynamics implies that in the quantum
interpretation, the linear momentum of the free photon can be
described in terms of eA!®, where e is defined by Eq. (283).
Unlike 0(2) electrodynamics, the presence of this charge does
not mean that there is an electron present, because in 0(3)
electrodynamics the field is its own source. This 1is
precisely analogous with the well known Yang-Mills formula-
tion as described for example by Ryder [16].

4.1 THE 0(3) INHOMOGENEOUS MAXWELL EQUATIONS IN THE VACUUM
The 0(2) inhomogeneous Maxwell equations (IME) are

described in numerous textbooks. In Minkowski notation and
S.I. units they are

79
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Fw oy, (284)

dax,

where F,, is the electromagnetic four-tensor, an antisymmetric
tensor (Chap. 1) whose components are magnetic and electric

fields. 1In three dimensional notation, Egs. (284) are
B - -1 %E 285
V-E=0, VxB 556 (285)

equations which show that there is no matter present, so that
the source of free electromagnetism is infinitely distant, as
in the traditional 0(2) interpretation [54]. The IME are
conventionally asserted to apply only to the transverse plane

waves B, B@® = g ang g@  Some texts mention that they
also apply to phase free magnetic or electric fields, but
these are discarded as irrelevant to plane waves. The
development in Vol. 1 and Chaps. 1 to 3 has made this view
obsolete, because the presence of vacuum plane waves implies
the presence of the spin fields B®™ and -iB'®/c. The former
is physical and produces a number of physical effects when
free electromagnetism meets matter. Chapter 3 of this volume
has shown that in 0(3) electrodynamics, the free electromag-
netic field can be thought of as carrying its own source,
charge becomes quantized through Eq. (283). 1In the tradi-
tional 0(2) development, the source of free electromagnetism
must always be infinitely distant, so that the electromagne-
tism has taken an infinite time to reach the observer from
the source at the speed of light. This makes 0(2) electrody-
namics inherently unsatisfactory in nature, because the
radius of the known universe is thought to be finite, and no
source can be infinitely distant from the earthbound observ-
er. In the 0(3) development, on the other hand, this
difficulty is surmounted through Eq. (283), and furthermore,
the philosophical basis for free electromagnetism becomes
similar to that of free gravitation, as described briefly in
Chap. 3. Thus, 0(3) electrodynamics provides a natural
bridge between electromagnetism and gravitation, a bridge
that might close the gap between unified field theory and
general relativity.

The 0(3) counterpart of Eqs. (284) can be constructed by
replacing the 0(2) operator d/0x, by the 0(3) operator D,, as
defined in the circular basis in Appendix B:
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=9 s em (286)
D, ox * 2 -

The F,, tensor of 0(2) electrodynamics must be replaced ?y
the G,, tensor as described in Chap..3. The (%v.teqsor is
also a three component vector in isospin space, which is also
the configuration space expressed in the circular basis (1),
(2) and (3). As described in Chap. 3, this provides a self-
consistent potential model for 0(3) electrodynamics, a model
which recognizes that the conjugate products A xA¥;
BV x BB : and EMD xE@® zre non-zero. As described ?n
Chap. 3, 0(2) electrodynamics self-indicates that it is
incomplete and internally inconsistent, because these
products can be expressed in terms of B and -iE®/c,
fields which exist in the vacuum, and which add a third
physical dimension to a planar (0(2) or U(l)) theory, making
the latter obviously inconsistent with itself. Therefore,
the 0(3) IME equations are (see Appendix E)

D@, =0, (287)

which are equations for a vector in isospin space. The
individual components (Appendix E) of this equation in the
circular basis for the isospin (i.e., configuration) space
are (Eq. Bll),

(3) _ 288
DG =0, DGR =0, DGT =o. (288)

From the outset, therefore, the 0(3) theory is a theory in
three physical (isospin) dimensions, and takes account of the

existence of the spin fields B*™ and -iE® /c in the vacuum.
The charge quantization condition (Eq. (283) and
Chap. 3) implies that in the vacuum

A, (289)
a condition (Appendix E) which reduces Eq. (287) to

B _ o (290)

As described in Eqs. (280) of Chap. 3, the vacuum field
tensor G,, can be expressed (Appendix D) as follows:
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e, =F, +PF

» v * Py G,:f) = pp(f’ + g2 (291)

pv s

where F,‘f’ is the dual tensor of F,, in special relativity.
Equation (291) implies that the pv’th element of G,, is the
corresponding element of F,, plus the identical element of

Fy,,. Since F,, and its dual Fl,(f’ each obey the IME in the
vacuum, we obtain from Eq. (287) and the charge quantization

condition (283) the results

(D)
%ﬂg -0, 3(1;»' - o, (292)
X, %,

which contain the ordinary 0(2) IME for the transverse, plane
wave fields B, B® , EW and E® | In addition, Eqs. (292)
contain the required IME equations for the spin fields B
and -iE® /c.

In the 0(2) theory of electrodynamics, charge, e, is
conserved, while in the 0(3) theory, the conserved quantity
is h, which is an angular momentum, or isospin. Thus in 0(3)
theory, the conserved quantity is isospin. Charge, e, is
expressed in units of h through the condition (283), in the
same way that the energy and linear and angular momenta of
the free photon are expressed through units of %. In 0(3)
theory it is possible, formally, to express the IME as
(Appendix E),

. (0)
0(:‘,” = . A, va .= J(aff) (293)
ax, h R
where JP(EH) is an effective vacuum current, which is the

self-source or auto-source of the propagating electromagnetic
field. Since % appears in the charge quantization condition,
the 0(3) theory of electromagnetism is quantized from the
outset. This follows from the fact that charge is quantized
in 0(3) electrodynamics.

4.2 THE 0(3) HOMOGENEOUS MAXWELL EQUATIONS IN THE VACUUM
In the conventional, two dimensional, approach to vacuum

electrodynamics the homogeneous Maxwell equations in the
vacuum are (d, := 9/dx, etc.)
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O, Fyy + O F,, +3,F,, = 0, (294)

which in vector notation and S.I. units become

V:B=0, Vx E 5" ( )

In the 0(3) theory, the vacuum homogeneous Maxwell equations
are

D,@,, + D,G,, + D,G,, =0, (296)

whose components in the circular representation are

a e (1 _

0,Gpv’ *+ 0,Gyp’ *+3,Gpy =0,
(2) (2) (2)

9Guv' + 9,Gyp +9,Gp =0, (297)
(3 1) (3) _

3,6 + 9,6 + 9,65 = 0.

These equations allow self-consistently for the existence of
the spin fields B® and -i®™®/c, while the corresponding
0(2) equations apply conventionally to plane waves only.
Using the charge quantization condition (289) and the
condition (291) for G,, produces

B F + 3R + 3, Fi =0, i=1,2,3. (298)

The third of these equations can be expressed in vector
notation as

V-BY = 0, iVx B = _ag‘” =0 (299)
t

- ’

and shows that there is no Faraday induction due to -3B'™ /3t

in the vacuum, because the real and physical B! is always
linked through the homogeneous Maxwell Eq. (298) to the
imaginary and unphysical -iB'®/c, its dual in vacuo. Thus,
chopping a circularly polarized laser beam in the vacuum will
not produce a measurable, i.e., physical, electric field.
However, such an induction is observed in the inverse Faraday
effect, where B produces a real, physical magnetization in
& material sample [55]. This magnetization relies on a
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property tensor, in the simplest case the susceptibility of
a single electron, as described in Chap. 12 of Vol. 1 through
the relativistic Hamilton-Jacobi equation. If there is no
electron present, that equation shows that there is no
magnetization, no inverse Faraday effect, and therefore no
electric field due to Faraday induction, and no current in
the measuring induction coil [55]. Seen in another way, the
field -iE® /c is pure imaginary in the vacuum, has no real
part, and is therefore unphysical. It is an electric field
whose real part is zero, and its curl is always =zero.
Therefore the vacuum -3B® /3t is also zero from Eq. (299),

and the vacuum B®™ is a constant. Analogously, the angular
momentum of the free photon, %, is a constant. Special
relativity asserts that a longitudinal, non-zero electric
field iE'® in the vacuum is invariant under Lorentz trans-
formation (Vol. 1), so that its curl in the vacuum is zero.
Special relativity also implies that a longitudinal axial
vector such as B is relativistically invariant, and cannot
change with time. This is another way of saying that there
cannot be Faraday induction due to dB® /8t in the vacuum.

The 0(3) homogeneous Maxwell equations in the vacuum can
be expressed formally (Appendix E) as

= (310 (0) (0)
3,G,, *+ 9,6,, + 3,6, = ¥(Ap G+ 2,76,,+2/%,), (300)

and therefore allow formally for the existence of a magnetic
monopole. This conclusion is well known f{16] in the context
of 't Hooft Polyakov monopoles, which are derived by fixing
one isospin axis in configuration space and modelling the
potential A,.

4.3 THE DUALITY TRANSFORMATION AND THE 0(3) MAXWELL EQUATIONS

We have seen that the 0(3) Maxwell equations supplement
the 0(2) equivalents with the vacuum equations,

Vxpw - LIED o g opgm_ 9B

o,
c? dt at (301)

V.Eﬁ):o’ V.B(3)=0_

In Vol. 1 and in previous chapters of this volume it has been
asserted that E'® is pure imaginary if B® is pure real.
Thus, there can be no physical effect of E® , in contrast to
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B® | which is observable in many different ways. In classical
electrodynamics, B®™ and E®® from the 0(3) Maxwell equations
are purely irrotational and divergentless, and since E® is

pure imaginary (and henceforth denoted -iE'® t-o emPhasize
this property) there can be no Faraday induction in free
space due to Vx B?®  yhose real part is always =zero. (As
described already, however, B sgets up a real, physical, and
measurable magnetization in material matter, at its simplest
one electron, and this real magnetization can be detected by
an induction coil, as in the original series of experiments
by van der Ziel et al. [55] which demonstrated the inverse
Faraday effect.)

This section discusses the duality transformation of
special relativity as applied to 0(3) electrodynamics,
beginning with the duality transformation applied to Egs.
(301). It is deduced that -iE® /c is dual to B! within
0(3), non-Abelian, electrodynamics, meaning that if B® is
real and physical, -iE®/c is imaginary and unphysical.
This result reinforces the general symmetry arguments of Vol.
1, elementary arguments which show that a polar vector, such
as a real electric field, cannot be obtained from the vector
cross product of two other polar vectors or two other axial
vectors. Thus, the conjugate product E'Y x E® = c2p@ x g@
cannot produce a real electric field in vacuo, it alwa).rs
produces a real axial vector, a real and physical magnetic
field, B™ . This property means that the group of electro-
dynamics is the non-Abelian 0(3), not the Abelian and planar
0(2), since within 0(2), there is no allowance made for a
physical field in an axis orthogonal to the plane of 0(2).
This deduction means that quantum electrodynamics (Chap. 6)
must also be adjusted to account for B®, and similarly for
unified field theory (Chap. 5).

4.3.1 THE DUAL OF B‘® IN 0(3) ELECTRODYNAMICS

The dual of B'® is not zero, despite the fact that
symmetry forbids a real electric field in the (3) state. It
is shown in this section that it is a pure imaginary, vacuum
electric field -iE® /c which is unphysical according to the
rule that real fields are physical and vice versa. The only
physical effect of fields in state (3) occurs thro?gh B®
as shown already through the fundamental classical and
quantum equations governing the interaction of the electFo-
magnetic field with one electron, the simplest representation
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of matter. There appears to be no exXperimental evidence for
a real E®, but there is plentiful evidence, discussed
already in these volumes, for the existence of B .

The duality transformation of special relativity when
applied to B asserts that the Maxwell equations (301) of
0(3) gauge theory are invariant under the transformations

@ . “iE® iy icB®, (302)
C

i.e., the same equations are obtained if B® ig replaced
by -iB™ /c and if E'® is replaced by icB™ (in S.I. units).
The duality transformation (302) is a fundamental property of
tensors in Minkowski space-time, and means that if B ;= (O,
i.e., is defined as real, then B'® - -jg!® /c gives the imagi-
nary E™® = iE®k; and if E® := iE®k, then E©® - jcp!® gives
the real B = pB©®k.  This kind of transformation is dis-
cussed in Appendix C of Vol. 1. The 0(3) Maxwell equations
(301) are therefore invariant under the duality transforma-
tion if and only if B™ is dual to -iE™®/c and E™ is dual
to icB® In 0(3) vacuum electrodynamics, however, the
cyclic relations (251) between three physical fields ensure
that B™ is pure real, so is dual to the pure imaginary
-iE™ /.

This result is reinforced when we consider the tensorial
form of the inhomogeneous part of Eq. (301)

(3)
OFyw _ (303)
axb ’
where
o0  eBY o 0
- {3)
s _|7OBs 0 0 0 (304)
By . ’
0 0 0o -igf®¥
0 o iEf» o

with B® = g, g3 - g
Written out in full, Eqs. (303) are

¥y _ 0B (305a)

ox, S 9y
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9y _cgg_z"i - o, (305b)
Ox, X
oFy, _ _, 0B _ (305¢)
dx,  dicdt !
oFy _ 0B _ o (305d)
ox, 0z

Equation (305c) allows the electric field to be either pure

real, i.e., -9Ef®/8t =0 or imaginary, i.e., —aiEé”/at==9,
and the latter choice is taken because the 0(3) cyclic
relations (251) demand a real magnetic field as discussed

already. This is the basis of our statement that B® is dual
to -iE® /¢ in 0(3) vacuum electrodynamics. The Lorentz
invariant [56]},

LB = Fp‘e’p"‘j) =0, (306)

therefore vanishes in the vacuum, but if and only if B is
accompanied by -i®® /c. Similarly, the invariants from the
accompanying plane waves represented by states (1) and (2)
also vanish in the vacuum. Specifically,

LW = F..(v”F,.(v” =0, L = Fx)ﬂg) =0, (307)
where
0 0 -cBY -igY
o ,
v
g cBY -cBfY o 0
i iglv 0 0

and similarly for fﬁf’. The Cartesian components in Eq. (308)
are given by

BW .= 1.80y, Ep@w .- pM1.pMy, (309)
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and similarly for B'¥ and E®@ , yhere

ig(o) . 0
B;l) - 1B2 eit, By(l) = 32 eld,
v v (310
W _ B (1) iE® ‘
Exy™ = eit, By = -2 el
VZ V2

For the circular state (2), these Cartesian components are

given by the complex conjugates of those in Eq. (110), i.e.,
by

N IC o
B = -1 B0 e, g o B
vz vz (311)
o 0
b ASY _E\/'z' e, g - E oo

Thus, equations (309) represent complex Cartesian components
of circular states (1) and (2) respectively. These compo-
nents occur in vacuum 0(2) electrodynamics, and are un-
changed, as we have seen, in 0(3) electrodynamics. However,
Eq. (301) is self consistent if and only if the gauge group

of electrodynamics is 0(3). Clearly, the components in F,f\})

and F,f\,z’ are complex and oscillatory in general (i.e., contain
real and imaginary parts and depend on the phase ¢), whereas

: 3) - : .
those in F,J' are either pure real or pure imaginary, and are
phase free, i.e., independent of ¢.

The duality transformation applied to F{’ or F also
works in a slightly different way. For F{’,

B -—iic(—li, and EW® - jcB@, (312)
is equivalent to

B - —E:) , and E® - —cp(® (313)
For FS',

B® - -IED ong g@ - jepe, (314)

is equivalent to
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(o)
B Ec , and E© - cglo), (315)

On the other hand
i g
B _ll'c , and E® -« icB™, (316)

is equivalent to
(0 ig!® ©) o ;o510
B0 ~ ~ = and E® - icB9, (317)

These features mean that B and ®® are complex (i.e., have
both real and imaginary parts) and so are B® and E@®,

whereas B®™ is pure real and -iE'® pure imaginary. The
Cartesian components in the circular state (3) are

B = gV, -iEW® = -igik, (318)

with

Bz(l) = g, Ez(a) = g0 (319)

In 0(2) electrodynamics, the components (318) are unconsid-
ered, in 0(3) electrodynamics, they occur self-consistently
with the Cartesian components of the circular states (1) and
(2). The development of classical 0(3) electrodynamics has
repercussions in QED and unified field theory which are
described later in this volume; the occurrence of the
physical B field is self-indicated in 0(2) through the
conjugate product B® x B = jg{9p®*  and shows up in the
classical, relativistic, Hamilton-Jacobi equation of one
electron in the electromagnetic field (Vol. 1, Chap. 12).

4.4 RENORMALIZATION OF 0(3) QED

The occurrence of B in classical electrodynamics in
the vacuum means that the gauge group of electromagnetism is
0(3) throughout field theory, specifically in QED and unified
field theory. It is well known [16] that 0(3) gauge
theories are renormalizable in QED. Therefore, without
giving details, it is inferred that the vacuum 0(3) Maxwell
equations of this chapter are renormalizable in QED, essen-
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tially because the power counting argument allows this to be
so. The number of primitively divergent graphs is finite in
0(3) gauge theories when spontaneous symmetry breaking (SSB)
is absent, and the gauge, ghost and source fields can be
rescaled, meaning that the generating function T is finite
as € ~ 0 and that gauge invariance is preserved at each order.
The generating function in 0(3) QED can always be made finite
by the addition of counter-terms to obtain renormalized
generating functionals. For example, the zero and one loop
functionals can be made finite by the addition of counter-
terms that obey the Slavnov-Taylor identities. In 0(3) QED,
the only type of interaction between matter and the gauge
field is a vector interaction of the form 9.J, W, where W, is
the gauge field and J, the vector current of the Fermi matter
field.

- The vector current is conserved, leading to a Ward
identity for the vertex function. In non-Abelian gauge
theory, the Ward identity is generalized, and is essential to
the proof of the renormalizability of the gauge theory. 1In
unified field theory, however, renormalizability is assured
by the fact that the total contribution of the triangle
graphs is zero, so triangle anomalies cancel. This is a
condition on the fermion content of the theory, which is
satisfied if there exist quarks as well as leptons, and if
the quarks carry an additional SU(3) color label. It is also
well known that SSB does not affect the renormalizability of
Abelian and non-Abelian gauge theories using the 't Hooft
gauge, which introduces an effective potential. In incorpo-
rating B®™® into unified field theory, therefore, care must
be taken to ensure that renormalizability is maintained, but
since B'® occurs in classical electrodynamics, it must be
described consistently in QED (Chap. 6) and unified field
theory (Chap. 5). Therefore massive vector particles, such
as vector bosons, do not destroy renormalizability, The
existence of the intermediate vector boson of the Weinberg
Salam (WS) model actually depends on the SSB of a non-Abelian
gauge theory, and it is therefore natural to enquire, as in
Chap. 5, how 0(3) electrodynamics affects this model. At
first glance, WS is presumably extended from SU(2) ® U(l) to
SU(2) ® SU(2) (the Lorentz group), or some other variant
which would incorporate B and preserve the ability of WS
to reproduce the correct vector boson masses. The very name
vector boson arises out of non-Abelian gauge theory.

Work of this kind is already available [16] in the
theoretical anticipation of 't Hooft Polyakov (HP) magnetic
monopoles. This is based on enlarging the gauge symmetry of
electromagnetism [16] from 0(2) to 0(3), while simultaneously
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introducing SSB (Chap. 2). The theory can be developed with

an 0(3) symmetry group with a gauge field Fy,, wher? a is an
isovector index of the type used in this chapter, i.e.,

Fy = 8,47 - 3,47 + TepAVAS, (320)

from which magnetic monopoles are obtained by intr?duction of
a Higgs field and by modelling the vector potential. It is
therefore natural to picture B‘® as being produced by two
magnetic monopoles of the HP variety in 0(3) electrodynamics.
However, there is a well known difficulty {16] with the HP
monopole in that it cannot be obtained from the WS mod?l of
unified field theory, essentially because the conventional
U(l) (or 0(2)) sector is irregularly imbedded and non-
compact. Therefore HP monopoles do not exist in the WS
model, a situation which however, might be remedied if'the
electromagnetic sector is enlarged to 0(3). The 1aFter is a
description of three dimensional space, as 1is SU(2)
(Chap. 1), while 0(2) is a description of a flat sPa?e.
Magnetic monopoles might well be reinstated in a unified
theory based on an 0(3) electromagnetic sector. These
considerations are left to Chap. 5.

It is also known that the gauge group SU(2) plays a role
in unifying the concepts behind the Dirac and HP monop?les,
and also in the derivation of instantons [16}, solitons
(Chap. 2) which are localized in space and time. (We note

that the quantized version of B, the photomagneton [1-10]
is also localized in space and time.) The SU(2) gauge group
allows instantons to exist, furthermore, in the absence of
SSB, and the form of F,, in instanton theory is exactly the
same as in Eq. (320) of this chapter, so B® is well d?fined
in instanton theory, being based in 0(3) electrodynam1c§ on
the same equation for F,,, provided that the isospin indices
are the configuration space indices (1), (2) and (3) of.the
circular basis. The instanton solution to non-Abelian field
equations represents a transition from one class of.Yang
Mills vacua to another. The Yang Mills vacuum is infinitely
degenerate, consisting of an infinite number of homotopically
non-equivalent vacua. Finally, it is known that non-Abelian
gauge theories that occur in electroweak theory, QCD, SU{S)
and possibly, general relativity are richly structured with
many physical insights. The existence of B® in classical

electrodynamics is the key to unification of electrodynamics
with other concepts based on these non-Abelian geometries.
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4.5 ISOSPIN AND GAUGE SYMMETRY

In the rotation group 0(3), isospin is a conserved
quantity, a vector quantity, angular momentum. The charge
quantization equation (283) relates the angular momentum
magnitude % to charge, the conserved quantity of 0(2)
electrodynamics. This is achieved by identifying isospin
space with configuration space (1), (2) and (3) in the
circular basis. The third circular state (3) is the spin
state associated with the experimentally observable field
B . The latter therefore shows that isospin symmetry is a
local (or gauge) symmetry. In 0(3) electrodynamics, type one
gauge transformations are rotations in the configuration
space (1), (2), (3); whereas in 0(2) electrodynamics the
space is flat, i.e., the only circular indices considered in
0(2) are (1) and (2). The conjugate product B x B® of
0(2) theory indicates, however, that this flat space is not
self-consistent, because the conjugate product produces a
physical field, B®™, which exists in an axis orthogonal to
the flat 0(2) plane, and cannot therefore be in the plane.
It follows that self-consistency in classical electrodynamics
can be achieved only with a gauge theory that is not 0(2),

and the simplest generalization is 0(3). In this view
therefore electromagnetism, color, weak isospin, and hyper-
charge, are all non-Abelian concepts. Isospin is generally

understood to mean a conserved vector quantity and isospin
space to mean an internal symmetry space such as the configu-
ration space (1), (2) and (3) used in this chapter. The
vector quantity F,, of 0(3) electrodynamics carries isospin
(I = 1) and by definition acts as a source for itself in the
vacuum. The field F,, becomes a consequence of the existence
of a particle with isospin, which in 0(3) is identifiable as
the photon. This is a direct consequence [16] of the fact
that the symmetry group 0(3) is non-Abelian. In 0(3)
electrodynamics therefore, the electromagnetic field itself
may emit gauge particles and be self-propagating, in direct
analogy (Appendix C) with the gravitational field. This
analogy may ultimately allow the unification of electro-
magnetism with gravitation. Feynman rules for non-Abelian
gauge fields are well defined in QED, and Faddeev-Popov
ghosts [16] can be integrated out using the axial gauge.
Ward identities can be satisfactorily generalized to the non-
Abelian case in QED, so there is no fundamental objection to
the development of B in QED, a development which will
probably lead to a much richer electrodynamical structure
than 0(2), provided each stage of theoretical development is
checked against the available data, particularly much needed
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data on magnetization by light and electromagnetic radiaFion.
Finally, non-Abelian theories allow charge quanti za-
tion, because all isovector fields couple with the same
strength to the gauge field through a coupling consFant g.
If this is identified with electric charge, as in this
chapter, Eq. (283) identifies this as the field charge, e,
and identifies photon momentum in 0(3) as eA® =m. The
existence of this equation is another direct consequence of
the use of 0(3) gauge geometry for electrodynamics, which in
turn is a direct consequence of the existence of B'® through
the conjugate product. The emergence of B®™ from the
relativistic equations of one electron in the classical
electromagnetic field is conclusive evidence that 0(2)
electrodynamics is internally inconsistent. It is o€ the
utmost contemporary importance to devise accurate experimen-
tal detection of the characteristic square root power density
dependence of B in the radio frequency magnetization of an
electron plasma as described in simple one electron terms in
Chap. 12 of Vol. 1. Since B® x B® of 0(2) theory is
observable in the same experiment, there is no reasonable
doubt as to the existence of B® itself as an experimental
observable. In other words there is no way in which B can
be zero, because the non-zero observable BY x B = jp01 g3+,
It follows immediately that 0(2) electrodynamics is internal-
ly self-contradictory. This chapter has shown that 0(3)
electrodynamics incorporates the vacuum B‘® self consistent-
ly. 1In the next chapter we explore the consequences of an
0(3) electromagnetic sector for WS unified field theory.
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In previous chapters we have argued that the U(l) sector
of unified field theory must be replaced by an 0(3) symmetry,
and that this affects unified field theory. These assertions
are based on the experimental observation of the electromag-

netic field B® in magnetization by light. The enlargement
of electromagnetic symmetry to O0(3) must, moreover, be
carried out in such a way that preserves the ability of
unified field theory to reproduce experimental data in
particle physics, as in the well known CERN experiment in
1983 [57] which verified the theory of Weinberg and Salam
[{16], henceforth referred to as GWS unified field theory.
The product group of GWS is SU(2) ® U(l), the SU(2) sector
being non-Abelian. Masses of novel intermediate vector
bosons are predicted by the theory with the use of spontane-
ous symmetry breaking (SSB), sketched out in Chap. 2. The
gauge bosons, W*, which mediate the weak interaction [16] in
GWS are vector bosons, which arise from non-Abelian symmetry.
They are introduced as three gauge potentials, W,,i, which
carry a Cartesian isospin index i and which appear in the

covariant derivative of an isospinor L. The latter is defined
as the isospinor

Lo (1) az1)

where v, is a left handed electron neutrino and e, a left
handed electron. These particles have the same space-time
properties and can therefore be used in an isospinor with the
same parity. The doublet defined by the isospinor (321) has
the non-Abelian charge I, =1/2 where I, is weak isospin.
Under SU(2) gauge transformation, the isospinor transforms as

L~ e /2iver 1= gr, (322)

where 8 is a 2 x 2 matrix and t/2 are the Pauli matrices of

95
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Chap. 1. Since there is no right handed neutrino (from
parity violation [58] experiments on beta decay), the right
handed electron does not form an isospinor with a neutrino,
and is represented in GWS by an isosinglet,

R = e,. (323)

This is represented in the non-Abelian charge state I,=0.
This should not be confused with the non-Abelian coupling
constant g, which is identified in magnetic monopole theory
with the electronic charge e. 1In this representation, the

neutrino is labelled I, = 1/2, and the left handed electron

by Iy =-1/2. The relation between electric charge, ©Q, and
these non-Abelian conserved quantities is given by [16]

L:=o=z$—%, R:=0=13-1, (324)

so that the neutrino has zero electric charge in this non-
Abelian representation. Under gauge transformation, the
pertinent Cartesian covariant derivatives are

- R S - i/
DL = 9,L S9v WL, DLL=9,L+ 59K, L, (325)

D,R = 3,R+ ig'X,R,

where g and g’ are coupling constants [16]. These arise in
conventional GWS because e, can be subjected to a U(1)
transformation, while the isospin doublet (321) undergoes an
SU(2) transformation. The X, potentials in Eqs. (325) are
therefore consequences of a U(l) gauge transformation within
the structure of GWS theory. If this were to be generalized
to an SU(2) (or 0(3)) transformation, the overall symmetry of
GWS would become that of the Lorentz group SU(2) ® SU(2).
This U(l) gauge symmetry in conventional GWS leads to a
conserved weak hypercharge,

0=13+ ¥ (326)

as first suggested by Weinberg [59]. The gauge field corre-
sponding to this U(l) symmetry is therefore not the photon
field, but X, (and W,) become parts of the electromagnetic
four-potential
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'
A, = 9%t 9Ky 2 gin @, + X, co8 0, . (327)
(g2 +g’??
The U(l) transformation which gives rise to X, is
ep ~ elfe,, (328)

and is therefore a transformation on the right handed
electron e,. Clearly, the above is the briefest of sketches
of GWS theory, but is enough to show that its overa%l
structure is based on gauging in SU(2) and U(1). It is
clear, however, that GWS theory gives the results

AM = g gin@,+ X cos B,

(329)
A = w*3in6,+ X cos 6,,
where 0, is the Weinberg angle defined by
6,=cost—9 (330)

(g’2 ,,.g/z)%
Therefore the experimentally observable field B is given
by

K2
Bi{® (331)

B = _4 x? AW xa@ - _4
B0
x (W sin 0, + X cos 8,) x (% sin 6, + X cos 6,),

1 (2) 1 2)
which involves cross products such as W x i, x@ x x@,

and cross terms. In conventional GWS, however, W: is fixed
in isospin axis 3 and A, and X, are isospin scalars.. Isospin
space is not identified with configuration space in conven-
tional GWS and the Higgs field which is used in the theory
[16] is fixed in isospin axis three.

With the introduction of isospin indices (1), (2) and
(3) as in Chaps. 3 and 4 for A,.m, however, the potential
functions W,f and x, of conventional GWS must also take. on the
same isospin indices, which become indices of the circular
basis of physical, three dimensional space. Although the

Weinberg angle is fixed experimentally [16] as 6, = sin™/0. ,
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the following results are obtained as theoretical limits,

2
BO - it w w®,

(332)

2
B® - —i—B“mxmxx“’.
1
g'~0

These limits show that W, and X have the units and polar-
ization properties of A, the electromagnetic vector poten-

tial. So if A, is generalized to A", both w} and X, must
be generalized in the same way, meaning that w D is no longer

fixed in isospin axis 3, and that x,,‘" is no longer an isospin
scalar. These modifications to GWS theory must also be
carried out in such a way as to maintain agreement with

experimental data. If this is achieved, then W'f” and x,}"
would become components of A,“) as follows,

A = A + yxD, (333)

. : . 1

where x and y are simple scalars, and considerations for al?

in isospin space would also be considerations for W,‘.f) and
[£3)

x?.

5.1 SUMMARY OF THE NON-ABELIAN FEATURES OF w,® AND x*

In this section we summarize the non-Abelian theory
of A,,“’ in the isospin space (1), (2) and (3). The properties
herein summarized for A‘® also apply to Wy and to x*

The field tensor G,y is defined in the circular basis from
Appendix B by the commutator of covariant derivatives

h
G,y = E{D"' D], (334)
which reduces to

Guy = [9ur A+ %(Aw a), (335)

(cf. Ryder’'s [16] Eq. (3.165)). This is a relation between
scalar components of the isospin vector @,,, and can be
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exXpressed as

e 336)
le =[all+ iAl" Av]. (
Therefore the scalar components of @, can be built up fFom
the four-curl of A, using the 0(2) covariant derivative
instead of the ordinary derivative 9., i.e.,

e 337)
a“"'a“"' sA“. (

With the charge quantization condition

A, (338)

the field tensor G,, reduces (Appendix D) to the 0(2) scal!ar
F,,, the ordinary antisymmetric field tensor of non-Abelian
theory. Therefore by replacing 9, of the vacuum 0(2) theory

. e
of the electromagnetic sector by 9, + A Ve obtain one scalar

component of G,, in 0(3) theory.

The transition from 0(2) to 0(3) theory is completed l?y
adding the isospin indices of 0(3), using the circular basis
as described in Appendices A and B,

Gy =3, a2 - i%[A“m , 3], et cyclicum. (339)

Finally, the charge quantization condition (338) is applied
to each component,

B = LA, (1) =), (), ), (340)

thus identifying A,,‘“ as momentum operators in the isospin
space (1), (2) and (3). The field tensor g,, is thus

identified as the sum of four-curls,

" = o, a2~ i[7. A™, (341)

and becomes similar in structure to the ordinary four-curl
definition of F,, in 0(2).

For example, the field B®  and its dual -i®®™ /¢ are
obtained from XY components and Z4 components of the tensor
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(3) « s
Gy _as follows. Firstly, the magnetic fielgq B is
obtained from

(3) _ (3 _ L (3)= ;
Bz =Bz "= Gey) " =8, afP"] - i[af", af?] (362)
= _i(a}{l)A;Z) - a}(,l’A);”) = -i(@W xa@y

(beca'use A™* has no Y component by definition of (3) as the
Z axis of configuration space). Using Eqs. (340), this

definition of B becomes identifiable as a curl of a vector
potential, i.e.,

B® -y, o) Vi = - jgt (343)

and the components have been identified as a momentum

operator V% in the circular state (1), which is also a
differential operator of the same circular state. This is a
transverse momentum or differential operator. Similarly,

reversing the X and Y subscripts reverses the sign of the B
component in this definition,

{ ;
B =B = et = 100 af - a®a). (344)

Using the same procedure for the Z and time component 4 of
the four-vectors produces a hypothetical real electric field,
defined by its Z component,

G = B - [3;(30), Aj’"] —i[a,‘;”, Af’"]. (345)

By definition of A™ and A® ag transverse plane waves they
have no Z or 4 components, however, so the second commutator
vanishes, leaving

Gt = ~1m < [o®, A, (346)

However: the (3) component of Ap(” is independent of time and
?urely irrotational, so the first commutator also vanishes,
indicating that there is no real Z axis electric field. This

is consistent with the fact that if B® ig real, then
-iB® /c is pure imaginary. Other relations of this type are
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summarized in Appendix D.
In general, therefore, the charge quantization condition

of Chap. 4 is the scalar part of the vector relations,

eA,,u) __.gha'(‘-ﬂ' (_i) = (1) ' (2)1 (3) ' (347)

which identify photon linear momentum as eA,,“’ in free space.
The only non-zero, time-averaged linear momentum component is
that in the Z axis, as discussed in Chap. 11 of Vol. 1.
These relations give physical meaning to the vector potential
in free space as a 1linear momentum four-vector, which becomes
a differential operator using the axiom of quantum mechanics,

p,,w - 7’3.(;” . (348)

The charge e therefore makes A,f” directly proportional to p,
in free space, meaning that electromagnetism in free space is
the agent of interaction between two electrons.

Therefore the field tensor of 0(3) can be expressed as

Gp(v”. - [a;o)' A,,(”'] _ i'%[Al‘(n' A'(z)]’ (349)

where the scalar differential operator is the magnitude of
the vector 9, defined in isospin space by

3,= 8,‘,” +a|(.z) . al(‘a) . (350)

Therefore there also exist cyclic relations such as

a,‘," x 3 = 1'8,‘,‘”6?”, (351)

between the various differential, or momentum operators.

The essential outcome of these considerations therefore

is that A,“’ couples to the field momentum p,“’ through the

charge e. Therefore A,,m becomes physically meaningful as a
field momentum four-vector, which in the quantum theory is a
photon momentum. Therefore, in GWS theory, W,‘:’ and x,f"
become components of this photon momentum. These consider-

ations flow naturally from the fact that if A and A® are
defined as 0(2) plane waves, the vector cross product
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AM x A is non-zero, and proportional to B 5 physical
magnetic field orthogonal to the plane of definition in 0(2)
theory. Taking isospin components as (1), (2) and (3) of the
circular basis of configuration space, we define the covar-
iant derivative D, in terms of A% x A® and also the field
tensor G,, in terms of

o

- e =
G,, = [a, +£a,, Av] = 2, ny. (352)
These procedures define the field tensor G,, as the four-curl
from the covariant derivative of A, in 0(2), or as the

commutator [y D] of 0(3). Since Al,(”=xm(,f’+yx.,‘” it is

clear that W,‘,f) and X,,“) must follow the analysis for A‘.“’,

the proportions x and y being fixed by experiment. From the
algebraic relations

AW - _1%‘_’ - CB:’, Al = 3:’ - cB(f)”, (353)

it becomes clear that W)’ and x? are magnetic fields which
are also subjected to the link between 0(2) and 0(3) theory.
This link is forged by replacing d, of 0(2) theory by the
0(2) covariant derivative 0, + (e/h)Ap, which acts in 0(3)
through Eq. (B12) of Appendix B. These procedures take place

in free space electromagnetism. Finally in this section, we
can write

Gp(va)' - 8,(,0) xA,,(”'— ia,?) % Av(z)’ (354)

and for space indices, 3" x A,>* becomes identifiable as the

ordinary curl Vx A®* of 0(2). Thus 8" x 4 in this context
is also a type of curl operation in 0(3). It is not consid-
ered, of course, in 0(2), because 4™ x A® is not considered
conventionally. However, it is non-zero in 0(2) as well as
in 0(3), and as we have seen, self-indicates the existence of
B The latter mediates physical effects of magnetization
by light, and so we conclude that 0(2) theory self-indicates
the need for 0(3) theory.

Therefore, the SU(2) ® U(1l) product group symmetry of
GWS must also be expanded to take account of the expansion of
its electromagnetic sector from U(l) to 0(3).

Specific Effects of B‘® in GWS Theory 103
5.2 SPECIFIC EFFECTS OF B IN GWS THEORY

In this section it is shown that the existence of B in
vacuum electromagnetism provides the additional inference
that there exist three circular polarization states ((1), (2)
and (3)) for the vector bosons W, and X. The major features
of GWS theory are maintained intact in the presence of B,
and the latter does not affect the ability of GWS to produce

the experimentally observed boson masses and characteristic.ﬁ
violating effects which have been detected [60]. It is
straightforward to work B into GWS theory provided that a
careful distinction be maintained between the abstract
isospin space (1,2,3) and the physical frame ((1), (2), (3))
used in Chaps. 3 and 4 for the electromagnetic potential A,,“’
in 0(3) theory. These two frames and spaces are not the
same. This is readily inferred from the fact that w,, is a
four-vector and proportional (Sec. 5.1) to A, of tt.le u(l)
sector. Thus, in an 0(3) theory of electromagnetism, we

obtain components such as N,m, Il,m , and '3(3) , i.e. - .the
isospin index 3 becomes associated with three space 1nd1c4:=,s
(1), (2) and (3). In this sense, the U(l) sector of'GWS is
enlarged to 0(3). Since W,, and X, are parts of A, in GWS,
they are plane waves if A, contains circular components (L
and (2) which are also plane waves,

(0) 0)
W}z(iiﬁ)e“' "s‘”=%(-ii+ﬁe~“, (355)

W =

and

., . 20 (3) 356
WD X WD = O WD = O (i), (356)

with cyclic permutations. Equation (356) is directly analo-
gous with
A % 2 = _alo)ja 1My, (357)

(2)
with cyclic permutations, so that if mY and w* are polar
vectors, iW¢¥ is an axial vector. Similarly,

xW = _X‘/‘; {1+ Hett, X = %(—ii + De-1¢, (358)
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and

X x @ = _x (@ gy, (359)

with cyclic permutations. Thus, both W{? and X are de-
scribed by 0(3) gauge geometry, as for A . As in Chaps. 3
and 4, the conjugate product A™ x A@ 1ig an intrinsic part
of 0(3) gauge geometry in an isospin space which is also the
configuration space in the circular basis (1), (2) and (3).
Before proceeding to a more detailed discussion of the effect

on GWS of the novel vector boson components Wi and X, a
brief review is given of the key aspects of unified field
theory [16,47,60]. In GWS, weak isospin (71,) is locally
conserved through a scalar interaction between the isospinor

L, and a boson W in weak isospin space, a scalar interaction
of the type [47]

W, W,-iw,

gL'oL - N= g[ve EL] ] = —Ve”"s\’e
2 Wy +iW, -W, 2 (360)
—gELW3eL + ‘/—%VEW+9L + %ELW_ve,
where
1 s
W, := — (W, ¥ iW,). (361)
£ \/2( 1 2)

Equation (360) shows that in this view, the interaction
between ¥V, and v, (i.e., the neutrino interaction) 1is
mediated by the same boson W, as that between the electrons.
Therefore, in GWS, Wy, cannot be identified directly with A,
because the neutrino does not interact with the electromag-
netic field. The neutral weak boson is introduced therefore
to ensure that the interaction of the electron neutrino (v,)
with the unified (electroweak) field is different from that
of the electron. 1In order for this to be so, X, must be a
scalar in the isospin space (1, 2, 3) and must interact with
an isoscalar L*L, where L* 1= [Vor 8] is the hermitian
conjugate of L defined in Eq. (321). The structure of GWS
depends specifically on the fact that F, is a vector and X,
is a scalar in the isospin space (1, 2, 3). The introduction
of B® into GWS must be done in such a way as to conserve
this key feature. 1If W, were made an isovector, for example,
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we would again obtain the result that the neutrino and ele?-
tron would interact with the unified electroweak field, this
time through the same combination of bosons (componentf of W,
and the putative X,) and this is not physically meaningful.
The isoscalar nature of X, cannot therefore be changed to
that of a vector in the same abstract isospin space (1, 2,
3). 3 . I3

Since L*L is an isoscalar, GWS has the additional field
particle interactiomn [47],

Ve = g—,(G'X"v + é'xpe). (362)

J I _
T rrx, = L[, z

v2

ey

The combined interaction in GWS is therefore, in simplified
terms [47]},

/ 1=, g
9 r+1x, - r*oL W, = =V (g'X, - g, )V

2 (] 2 " 2 0( (] 3ll) e (363)
+ %EL(g’Xp + giy,)e, - —% Vo, 0L+ EH V).

A more detailed description of the theory is given by Ryder
{16], but for our present purposes we note from gq. g3§3)
that electromagnetism can be identified in this simplified
description [47] as

364
A“ = g’X,. + gWBp' ( )

and more properly [16] as the normalized Eq. (327), using the
Weinberg angle 6,. The conserved quantity associated with ?@
is weak hypercharge, Y¥, to which the gauge field W, is
coupled. Similarly, electric charge, @, couples to the
electromagnetic gauge A,, and weak isospin, I¥, to the vector
boson W, = (W,,, W,,, W.,). The conserved quantities are related
by

o=+ X! (365)

14

in analogy with the Gell-Mann-Nishi jima relation of strong

force theory [47], where YJ, the analogue of Y¥, is given
for the strong force by B + S, where B is baryon number and
S is strangeness. The physical bosons in GWS are therefore
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A, and Z,, given by

Z, = Wy, co80,-X,8in0,, (366a)

a four-vector orthogonal to A,. The physical bosons A, and Z,
are both weighted mixtures of W, and X,

The GWS model is completed [16, 47 60] by a model
mechanism of non-Abelian SSB, whereby the boson Z, acquires
mass, but A, is left massless The neutrino couples to the
z, field only, and not to the electromagnetic field, but the
1eft handed part of the electron couples to both A, and the
weak Z, field, introducing parity violating effects into
atomic and molecular spectroscopy [60]. The hypothesis of I¥
and Y¥ conservation therefore necessitates the introduction
of four gauge fields, Ay, 2Z,, W, and W, ; the field z, gives
rise to neutral current processes which have been observed
experimentally. The W, and Z, bosons have also been observed
at the predicted masses prov1ded that Higgs SSB is incorpo-
rated in a well- deflned but delicately modelled way.

With the advent of B in the electromagnetic field, we
have seen that the W,, and Z, bosons acquire three states of
circular polarization, (1), (2) and (3). The mass of 2, is
determined in GWS by the premultiplier in the releriant
Lagrangian of the term m*/4)(gw,, - 9'x,) [16]. Expanding
the w,,w,, term, for example,

Wy Wy, = AR MO AN R A A W gz, (366b)

which contains the additional Wf® - wf®* - w02 analogous with

the additional A®-Aa®*-a™2 jp electromagnetism. From
Appendix D, however, it is clear that

A . 2@ (2 = g (367)

because [A®]| = A Therefore B! makes no difference to
Wy W,, or to X,X,, and from Eqs., (327) and (367), it makes no
dlfference to the cross term Wy, X,. It would therefore appear
that B makes no difference to the observed masses of Z, and

W, , unless the premultiplier of transverse terms such as
(1) | go(1)s (2) | (2
WY P ™ w®* were for some reason different from that

of the longitudinal terms such as Wi» - w™* - w22 This does
not appear, however, to be very likely, because mass is a
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scalar Lorentz invariant. Four-vector properties such as

can appear as terms in a Lagrangian provided they are
premultiplied by a scalar, a term that indicates [16] the
presence of mass. Thus, the premultiplier of Zz,Z, in the GWS
Lagrangian indicates that 2, has mass, a mass that is
relativistically invariant and thus cannot have different
transverse or longitudinal components.

It is clear in summary that B does not affect the
ability of GWS to predict the correct masses of Z, and W,,,
but leads to the novel polarization state (3) for massive

bosons, 2z, Wy, % and x5'. The states X® and AR
contribute to B, and are therefore observed in phenomena

of magnetization by electromagnetic radiation, for example at
microwave frequencies.

A,,‘”A(” Wf“W;‘,f’ and so on are also Lorentz invariants, and

5.3 SSB AND PHOTON MASS IN GWS

In Vol. 1, and in previous chapters of this volume, we
have argued that longitudinal photon polarization, indicated
by the existence of the physical B'® field of light, means
that the photon cannot be massless, because a massless boson
has two degrees of polarization in the vacuum. This result
is derived from special relativity [22], as first demonstrat-
ed by Wigner. In a boson, these states correspond to angular
momentum eigenvalues zh, i.e., to states with quantum number
J =21, The state 0 is disallowed because the particle
travels at the speed of light, and this leads to the result
that the little group [16,22] is E(2), the group of rotations
and translations in a plane. The E(2) group is, however,
unphysical, and this means that the existence of a massless
particle travelling always at the speed of light in all
frames of reference is also unphysical. As soon as the
particle (our boson) acquires mass, however tiny, then
J =0, +1, and there are three states of physical polarization
in the vacuum. The anomaly of the E(2) group is removed, and
the particle becomes physical and relativistic, the range of
electromagnetic radiation becomes finite, meaning that its
intensity diminishes with distance. Therefore a photon with
mass has three states of helicity, +1, 0, -1. 1In the Higgs
mechanism discussed in Chap. 2, the extra helicity state 0 is
obtained from a theoretically massless scalar particle, i.e.,
from the Higgs field, and in so doing, the photon acquires
mass simultaneously [16].

In conventional gauge theory, however, bare photon mass



108 Chapter 5. B in Unified Figlg Theory

is disallowed in the absence of SSB (i.e., in the gpgence of
a deg?nerate vacuum) because a mass term mALA, is not gauge
invariant conventionally. 1In Vol. 1 and previous chapters of
this volume we have introduced the condition

AA, =0, m#0, (368a)

which is equivalent to the conventional

A4, %0, m=o0. (368b)

Condition (368a) means that [8] A, becomes a light-like four-
vector, and m,#0 becomes compatible with gauge invariance.
This, in turn, unifies two lines of thought in contemporary
field theory: 1) gauge invariance; 2) electromagnetic theory
with non-zero photon mass. Equation (368a), however, is not
compatible with a transverse, or Coulomb, gauge, in which the
vector potential is

A = a2 _ A‘/(;)(i:l + fHe e, (369)

and in which (Appendices D and E)

i

A’fl) - Ap(z)x = (A“), 0), Ap“) = i(A(B), J:A(D)). (370)

From Eq. (370), it is found tﬁat

— afD) 1
2,4, =ANAM L AP 20 4 22010 4 g, (371)

but that

A;”A;Bh = 0. (372)

Equation (372), as shown in Appendices D and E, is a result
of 0(3) gauge geometry applied to free space electromagne-
tism, provided that Eq. (369) is accepted for A" and 2",
and therefore for B®, B@® g™ and E® . These are, of

course, the conventional plane waves of vacuum electrody-
namics with 0(2) gauge geometry.
As we have seen, these transverse, 0(2) fields indicate
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the existence of B® in the vacuum and therefore the need to
extend 0(2) to 0(3) as in the two previous chapters. The
existence of B™® in turn leads to the inference of non-zero
photon mass, because the photon develops a third degree of
polarization represented by the concomitant physical field
B This (3) state does not exist self-consistently in
flat, 0(2), gauge geometry. Finally, in order to make photon
mass consistent with gauge invariance, we must either:
a) develop an 0(3) potential model fully consistent with Eq.
(368a); or b) provide the photon with mass through a Higgs
mechanism as discussed in Chap. 2. Choice (a) leads to the
abandonment of the Coulomb gauge (369), and step (b) means
the replacement of the d’Alembert equation with the Proca
equation as discussed in Chap. 2.

Since photon mass is experimentally < (107**-107%°) kgm,
the Proca equation gives a B‘® (Chap. 2) which is practically
indistinguishable in laboratory experiments from that from
the d’'Alembert equation, so that it is plausible to proceed
through a perturbation of the d’'Alembert equation with a
Higgs mechanism that leads as in Chap. 2 to a Proca equation
and slowly decaying fields B®, B@ and B® with finite
range. This means effectively a perturbation of the useful
Coulomb gauge instead of its abandonment. The task in GWS
then becomes one of incorporating the Higgs field into the
model in such a way as to give the experimental photon mass
self consistently with those of the bosons 2, and W,,. A
substantial amount of work is available on this problem and
the reader is referred to papers by Huang [35] and references
therein. For our purposes, suffice it to mention that GWS is
based on delicate modelling [16], because if Z,, W, , W,
and X, are to be gauge fields, they must also be gauge
invariant in the presence of their own mass.

5.3.1 SSB AS THE SOURCE OF PHOTON MASS IN ABELIAN THEORY

By considering SSB of the Abelian Lagrangian (197) of
Chap. 2, the result is obtained [16] that the photon becomes
massive, and the Lagrangian acquires a term proportional to
AA,. This is the Higgs phenomenon and is the result of a
particular model of the vacuum itself as discussed in
Chap. 2. The originally two dimensional, massless, photon
becomes a three dimensional massive boson by picking up a
third degree of freedom from a Higgs field. Such a result is
obtained from a Lagrangian, Eq. (197), which is compatible
with gauge invariance, and so the spontaneous symmetry
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breaking of Abelian gauge geometry is applied to obtain a
non-zero photon mass in a manner that is compatible with
gauge invariance of the second kind. The Higgs mechanism is
therefore capable of removing the problem discussed in Sec.
5.3, i.e., if the vacuum symmetry is broken, as discussed in
Chap. 2, a term myA,A, in the Lagrangian becomes compatible
with gauge invariance requirements. Such a term leads to the
replacement of the d’Alembert with a Proca equation as
discussed in Chap. 2. As mentioned by Ryder [16] on his page
301 "...the photon has eaten a scalar field and has acquired
a mass." The existence of three degrees of polarization for
the photon is precisely what is indicated by B'®, which is
therefore an indicator of photon mass. The Higgs mechanism
allows this development to be compatible with A, * 0 as
indicated by Appendix D, while also retaining compatibility
with gauge invariance. Therefore it is no longer consistent
to assert that the photon mass must be zero, and in view of
the unphysical nature of E(2), never has been. It is

important to note that B is non-zero for identically zero
photon mass, but its very existence means that the photon has
three degrees of polarization, thereby indicating that its
mass, for self-consistency, must be physically non-zero. The
fundamental reason for this is in the Wigner paper of 1939
[22] that first indicated the fact that the little group is
unphysical for any particle that has no mass. A flat
particle (with two degrees of polarization) is not a physi -
cally meaningful entity. As soon as it acquires mass,
however, it simultaneously acquires the necessary third axis,
and, if it is a boson, three helicities as argued already.
The extra one, 0, is obtained in the Higgs mechanism by
breaking spontaneously the vacuum symmetry. Clearly there-
fore, B™ in the vacuum means a finite photon mass in the
vacuum. In this respect, we differ from Ryder [16,47], who
insists on a rigorously zero photon mass. As Ryder himself
shows, however, SSB of an initially gauge invariant theory
leads to the inference that photon mass in the vacuum with
broken symmetry is non-zero. Such a result is obtained from
a theory that is originally compatible with gauge invariance
of the second kind. We are driven to conclude that either
the Higgs mechanism is itself incompatible with gauge
invariance, or that the photon mass in the vacuum is non-
zero. We choose the second option because the Higgs mecha-
nism is a key ingredient of GWS, and is the basis of GWS to
predict correctly the observed masses of Z, and Wep. If the
Higgs mechanism is thus compatible with experimental data,
the argument cannot then be sustained that it is incompatible
with a fundamental theoretical principle such as gauge

i 1
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invariance. Indeed, Z, and W,, are themselves gauge f%elds,
and are at the same time renormalizable massive fields.
Proceeding in this way, the theory of finite photon mass has
been incorporated [35] in GWS and SU(5).

5.3.2 SSB AS THE SOURCE OF PHOTON MASS IN NON-ABELIAN THEORY

SSB of 0(3) gauge geometry was originally discussed by
Kibble [61] and shows that two out of the three components of

the vector AJ” become massive. This result is firmly.root?d
in fundamental group theory. If, in the abstract 1sosp1?
space, 1, 2 and 3 are the isospin indices then componfnts
and 2 become massive while 3 remains massless. This has
interesting analogies with the mechanism oqtlined in Sec.
5.3. In this model one massless field remains because the
subgroup, U(l), of 0(3) under which the vacuum remains
invariant has only one generator. In GWSi the SSB of a non-
Abelian gauge geometry leads to two massive bosons and one
massless boson. The isospin indices in this case are clearly
those of the abstract space, and not the indices (1), (2) and
two previous chapters.
) ofssggin, os isotopic ;;in, invaria?ce i§ described by
the same group of rotations in three.dlmens1ons (Ssu(2) oi
0(3)), but isospin space (1, 2, 3) is a purely abstraﬁ
concept, based originally [60] on the §ssertion that the
proton and neutron are two states of a single particle, F e
nucleon, N, with spin 7 =1/2. The two component states with
1,, along axis 3, are given by I = $1/2 and‘are the proton
and neutron respectively. Electric charge is related to I,
through

(373)

Y

Q=1I+

The space (1), (2), (3) on the other hand is thg circular
representation of 3-D configuration space, Fhe'phyS}cal space
of rotations under which angular momentum is invariant. ?he
isospin space 1, 2, 3 is a purely abstract space, whose third
axis is related to charge, Q, through Eq. (373): The two
spaces are, however, governed by the same roFatlon group,
0(3), and the same gauge geometry. The maSS}ve bqsons W
and z, are physically different bosons, with different
masseg, but (1), (2) and (3) must be components in the
circular basis of the same boson, e.g. a photon. Thus,
components (1) and (2) cannot have a ﬁlfferent mass fr9m
component (3); whereas SSB of a non-Abelian gauge geometry in
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space (1,2,3) produces two massive bosons and one massless.
Therefore GWS is based on a modelling procedure which results

in zero photon mass identically. On the other hand, SSB of
Abelian gauge geometry produces a single massive boson as in

Sec. 5.3.1. With the advent of B‘® | the assertion of
1?entically zero photon mass becomes untenable, because B'®
signals the presence of a physical third axis. The well

known Wigner theory [22] asserts on the other hand that there
can be no physical third axis in a massless particle. It is
clear that an additional mechanism of SSB must be incorporat-
ed in GWS to produce a non-zero photon mass, since it is
illogical to assert that B™ is zero or otherwise unphysical

This mechanism can be applied to A, from the final result oé
GWS (which agrees with experimental data) to provide it with
the appropriate photon mass. Alternatively, a mechanism such
as that developed by Huang [35] can be used to attempt to
produce the photon mass self-consistently with those of Wy

and Z} without affecting the ability of GWS to produce the
experimentally observed masses for the latter.

Chapter 6. B® in Quantum Electrodynamics

The emergence of B® in classical electrodynamics means
that it has its counterpart in quantum field theory, referred
to in Vol. 1 as the photomagneton, B®', a field operator [1-
10}. This concept was developed in Chap. 3 of that volume in
terms of simple Schrédinger equations, and it was demonstrat-
ed that B® is a well defined expectation value in quantum

mechanics. The development of B in quantum electrodynamics
(QED) is an interesting procedure because it is necessary to
demonstrate that it does not affect the ability of QED to
produce results such as the anomalous magnetic moment of the
electron to several decimal places. More fundamentally, B
in classical, Abelian and non-Abelian electrodynamics must be
shown to be compatible with renormalization in QED. In this
chapter, it is shown that the classical B leaves the
structure of QED unaffected, a result which is of course
consistent with Chap. 1 of this volume, where it was demon-
strated that B®™ is a direct result of the Dirac equation
describing intrinsic electron spin in a classical electromag-
netic field. This "semi-classical" result (quantized spin,
classical field) is consistent with the classical result of
Chap. 12 of Vol. 1, where B emerged from the relativistic
Hamilton-Jacobi equation of an electron as classical charged
particle in the classical field. It is therefore expected
that QED produce B® from a consideration of the quantized
electron in the quantized field.

6.1 CANONICAL QUANTIZATION AND B

As discussed in Chap. 10 of Vol. 1, canonical quanti-
zation of the massless electromagnetic field is beset with
difficulty, and relies on the usual assumption that there are
only two (transverse) degrees of physical polarization. The
gauge geometry in this view is the flat 0(2), in which the
conjugate product A® x A'® is asserted to be zero. This
assumption is contradicted experimentally as discussed

113
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throughout these volumes, and is untenable. The cross
product A® x A® produces a physical field B'™ in the axis
orthogonal to the plane of definition of 0(2) symmetry, and
this means inevitably that the field after canonical quanti-
zation must produce a particle, the photon, with three
helicities, 1, 0, and -1. From fundamental special relativi-
ty, this conclusion implies in turn that such a three
dimensional particle must have mass, which is picked up from
a Higgs particle as discussed in the previous chapter. The
d’Alembert equation of classical electrodynamics is changed
to a Proca equation, which as discussed in Chap. 2 of that
volume is the result of spontaneous symmetry breaking of the
vacuum in Abelian field theory which is originally compatible
with gauge invariance. In other words, as discussed in the
previous chapter, the Higgs mechanism produces a massive
photon within the framework of an originally 0(2) theory, but
imbues it simultaneously with an additional degree of
polarization.

With these considerations, canonical quantization should
be based on the Euler-Lagrange equation of the massive
electromagnetic field, with Lagrangian

1 .
@ = -2F R\ - SEa4,, (374)
where & = myc/%, m, being the photon mass. The canonical

momentum, w®,, (Vol. 1), is well defined in this view because
there are three, well-defined, axes of space polarization,
and is given by [16]

94, a4, 90,A,) (375)
Ox
Using
F,, = 3,4, - 3,4, (376)
it is found that
T, = 3,4, ~ 3,4, = 3,4, ~ 4,, (377a)

so that
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®, = o, Ty = a_le_Aj (377b)

where i denotes space axes. Therefore the time-like compo-
nent of =, vanishes. From Appendix D, we have the results

Aﬂu) =@aw, g) = A,f”', Ap(z) = (AW, iato), (378)

from a theory which considers three space polarizations (L),
(2) and (3)), so the term 9,3, in Eq. (377) vanishes, giving
the result

x; = ~Ag (379)

or, in vector notation, the familiar result of classical
electrodynamics

x=-92_ g (380)

The momentum classically conjugate to A is therefore the
electric field E. Since iA™ in Eq. (378) is rigorously
imaginary, divergentless and irrotational, (Appendix D), its
real conjugate momentum is zero. This is consistent with the
fact that A™ x A® produces a magnetic field B, an axial
vector, whereas the real (i.e., physical) electric field is
a polar vector. The field -iE®/c is formally dual to the
real and physical B, as argued throughout these volumes,
but has no real part, and no physical effect at first order.

Canonical quantization proceeds in this view through the
usual Heisenberg commutators of the field, as ably described
by Ryder [16]. Our purpose here is to introduce the subject
of B® in QED by illustrating the fact that the massive
classical field, not surprisingly, produces a well-defined
massive photon with three degrees of polarization. The
existence of these three polarizations is best illustrated
through the existence of the by now familiar cyclic relations

B x Bi® = jgt®p®*, et cyclicum, (381)
between three physical, magnetic fields in the vacuum, fields

which are mutually orthogonal in the circular basis. The
covariant Heisenberg commutator {[16] is
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[Agx, 6y, agx’, )] = ig;;8%x - x4, (382)

and vanishes if A, is time independent. Thus, the longitudi-

nal iA®™ is unphysical at first order, and plays no part in
canonical quantization of the type (382). This does not mean
that B® cannot be quantized, its quantum counterpart is well
defined [1-10] as being proportional directly to the longitu-
dinal angular momentum of the photon, i.e., its angular
momentum about the Z axis of beam propagation. The expecta-

tion value of this angular momentum is the Dirac constant %,
and the photomagneton operator is

B® _ B(miz_ (383)
h

The Hamiltonian obtained on canonical quantization of the
massive electromagnetic field is proportional to a quadratic
product of annihilation and creation operators in all three

3
polarization states, i.e., to Y a™Mra | Here, the longitu-
i~

dinal iA® acts at second order, i.e., the product iA‘® -(ia®)*
is real and positive, and therefore physical. The third axis
therefore contributes to the Hamiltonian, but does not
contribute to the commutator (382). Note carefully that
these inferences are based on a particular model, discussed
in Appendix D, and summarized in Egs. (378). This model was
developed from a classical, non-Abelian, description of the
field, in the massless limit m, » 0; and used as an illustra-
tion of canonical quantization features when there are three
degrees of polarization taken into consideration. More
consistently, the Proca equation should be solved as dis-
cussed in Chap. 2, and canonical quantization developed of
the exponentially decaying classical fields of Egs. (187) and

(188), leading to their description in terms of creation and
annihilation operators.

6.2 THE EFFECT OF B‘® ON RENORMALIZABILITY IN QED

In this and in following sections we indicate without
unnecessary detail that B does not affect some powerful
results of QED, such as its ability to describe very accu-
rately the anomalous magnetic moment of the electron. It is
first necessary to prove that the classical B does not
destroy renormalizability in QED. This is straightforward,
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because, following Ryder [16], the general formula for ESe
degree of divergence of a Feynman graph is unaffected by B .
This formula is, in Abelian QED [16],

D =dL-2P,-E,, (384)

where d is the dimension of space-time, L is the number of
loops, P; is the number of internal photon lines, and E; the
number of internal electron lines. If n is the number of
vertices, P, the number of external photon lines, and E, the
number of external electron lines, it can be shown [16] that

p=d+og-2)- (422, - (L3 2)e,. (385)

2 2

When the dimension of space-time, d, is four, the dependence
of D on n, the number of vertices, disappears. Clearly, the
theory of B in classical electrodynamics is worked out in
four-dimensional space-time, as for the usual tr?nsverse
fields, and maintains the renormalizability of Ab?llan QED.
In particular, the photon self-energy diagram, which has no
classical counterpart, is unaffected by the belated recogni-
tion of the vacuum B in the classical theory, provided that
the overall gauge geometry is maintained at 0(2). A more
self-consistent analysis requires, as we have argued in
Chaps. 3 and 4, that the gauge geometry be extended to'0(3),
which theory is again renormalizable to all orders in QED
{16]. This was discussed briefly in Chap: 4,

In Abelian QED [16], the calculation of Fhe Fhree
primitive divergences is carried out us?ng _dlmenﬁlonal
regularization, which has the effect of multiplying e in the

photon/electron Lagrangian by the factor uziWZ, where p is
an arbitrary mass and d is the mass di@en51?n [16] of the
Lagrangian. This extension to d dimegsxons in QED is made
only for internal loops, and leads via the two param?t?r
Feynman formula to a convergent terq'denoteq Af’ in explicit
expressions for the three primitively dljgrgent Feynman
diagrams. It is this convergent term that gives the anoma-
lous value of the magnetic moment of the electron to several
decimal places. The field B has no specific influence on

the calculation of A;” in QED, and therefore has no influence
on the precisely measured value of the magne?ic moment .
These points are developed in the following section.
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6.3 B'® AND THE ELECTRON'S MAGNETIC MOMENT

The anomalous magnetic moment of the electron is
obtained from QED essentially through the fact that the Dirac
matrix y, of "semi-classical" theory (Chap. 1) is replaced by
¥, +4A,, where the convergent part of A, is AP The
correction to the value of two for the Landé factor in
Chap. 1 is made through a development of the term
U(p')(yp+Af,2’)u(p), where u@p’) is an adjoint Dirac spinor
(Chap. 1) and up) is a spinor in the standard representation.
The field B® emerges from the term idpo,,a up),
where q := p/’-p and where 0,, is defined by {16]

Tpv = S{VpYy = Vu¥y)- (386)

The correction from renormalization, A;”, must be included
in this term to calculate the field B® in QED, i.e., in a
fully quantized theory of the interaction of one electron and
one photon. Specifically, therefore, the photomagneton

operator B® emerges in QED through the interaction term
1PN (¥, Yy = Yo ¥,) D), (387)

where p’/ and p are momenta, the u's denote spinors, and

the y's denote Dirac matrices. The term A/? reduces [16] to
the dimensionless (S.I. units)

AP = - 5 e p)), 388
¥ 16n2€0hczm(p“ o) (388)

where €, is the permittivity of free space and m is the

electron mass. Therefore A“,Z) is a small correction to Yy
obtained from renormalization and the removal of infinities.
It involves the fine structure constant of spectroscopy,

=& - L 389
* Anehe 137.0360° ( )

to first order, and the mass of the electron. The Landé

factor of g =2 from the original Dirac equation (Chap. 1) is
corrected to
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- @ (390)
g-= 2(1 + 27‘),

to first order in a, the fine structure constant. From Egs.

(388) to (390), A,(,z’ contains no reference to the electric and
magnetic fields of electromagnetism, fields which are

. (2)
concomitant with the photon in QED, and therefore A, has no
effect on B® and vice versa.

6.3.1 CALCULATION OF THE ANOMALOUS MAGNETIC MOMENT OF THE
ELECTRON IN QED

The effect of the convergent vertex contribution A,(,Z)
is calculated in QED from the Dirac equation (Chap. 1),

Y,0,Up) = ~mcup), (391)

where b, is the electron momentum operator. Equation (3?1)
is written in S.I. units and in Minkowski notation, leading
to a minus sign on the right hand side. It is an eigen-
equation of quantum mechanics, the spinor u(p) is a? eigen-
function, and y,5, an eigenoperator. Multiplying the
equation on both sides by y, produces

YooY B up) = ~y,mcup), (392)

which, with the definitions [16]

Yva + YVYp = 2gpv 1= {Yn' Yv}'

(393)
Ye¥v = Yo¥y = “240y, =¥y V)
gives Eq. (391) in the form
1 .
VWUE) =~ (By - 10,,0,)uD). (394)

It is the term in -io, B, that gives rise to the intrinmsic
electron spin (Chap. 1), essentially because -iuo,u is an
antisymmetric (spin) tensor, and it is this term that is

corrected by the factor (1 + —2‘%) in QED through consideration

of the convergent vertex A;z) . The correction takes place
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through
Ju = Yy, u@) ~ oy, + 7 )up), (395)

i.e., a conserved Dirac current (Chap. 1) describing an
electron with Landé factor two is changed with precision to
one with Landé factor of about 2.002. The calculation of
this 1% change in the Landé factor takes place as follows in
the Dirac equation (391) without the introduction of the
electron-photon interaction energy, which contributes a term
in the Lagrangian of the type

Liny: = ~ L ATYE. (396)

Since B' is contained within A,, there is no effect, inter
alia, of this correction on B®™ and of B! on the magnitude
of the correction, which is known from spectroscopic data
with great precision.

Equation (394) is considered along with

Ty, = - T’M(pv + io,,pl), (397)

in which p is defined through the Feynman parameter, Z [16],

p’' = p-kz. (398)

These considerations lead to

Jy = -

(@eNp, + p)up) + itlp)e,(p) - p,)uE), (399)

ZHIC

for the Dirac current before renormalization with A‘2> The
latter produces the renormalized current

F? = TNy + A7 Yup)
(400)

= e pw + B+ 31+ Eoy(pl - py)|uto),

2myc

and results in Eq. (390) for the Landé factor g. This
calculation is carried out in the absence of interaction
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between electron and photon, and cannot therefore affect the
field B . The latter makes its appearance as the expecta-

tion value of the photomagneton B®' through the Dirac
equation (Chap. 1),

Yu(Py + €A, )Up) = ~mcup). (401)

for the interaction of an electron with an electromagnetic
field represented by A,. Equation (401) leads before
renormalization to the spin Hamiltonian

Hypin = 2( 4m) (ﬁ (3)) (402)
where
B = (8, (403)
and where
p, = S (404)
€ 4am

is the intrinsic magnetic dipole moment of one electron. The

effect of introducing the convergent vertex Af) into
Eq. (401) is to change Eq. (402) to

h
HE, = 2(1 + _2;)( :’m) c-BW, (405)
which leaves B unchanged as expected. As discussed in

Vol. 1, B is a constant of motion and commutes with the
Hamiltonian; it is therefore also unaffected by 1light
squeezing in quantum optics [5].

6.3.2 ORIGIN OF THE CONVERGENT VERTEX A" IN QED

The only particles in QED are photons and electrons,

and Af) emerges from one of the three primitive divergences
[16] through use of dimensional normalization of the Lagran-
gian,



122 Chapter 6. B in Quantum Electrodynamics

2 = iPY,0,¥ -~ mc* Ty - 2, Ty, ¢
(406)

- S8, -84 - L@y

4(uv vu) E(HAH)'

in which the Dirac spinor is represented by ¥ and its adjoint

by §. Renormalization proceeds through the replacement,

e - p2-d/2g, (407)

i.e., by changing only e, the electron charge. The Af)
factor then emerges from a vertex graph [16] of the type
-ied,(p, q, p*+q). The removal of infinities of this graph
results in a change of the physical properties of the

electron, e.g. its mass and charge. The convergent Af’ is

that part of the overall vertex with no k in the numerator
of the integrand, and results in

(R) e’

- /
YT e e e et P (499

. . ( . . .
i.e., in vy, -y after renormalization in QED. These

considerations rigorously reinforce the conclusion in Chap. 1
that B® is a direct result of the Dirac equation describing
the interaction of a quantized electron with the electro-
magnetic field, represented by A,. The rigorous and accurate
methods of QED show that B‘® is the quantized field property
responsible for the formation of Hepin ©of Chap. 1 from the

quantized electron spin whenever an electron interacts with
a photon,

Chapter 7. Summary of Arguments and Suggestions
for Experimental Verification

In these two volumes and eight hundred equations or so

we have developed the theory of B and non-Abelian electro-
dynamics in the vacuum, using arguments drawn from several
areas of contemporary field theory. Since B is a physical
magnetic flux density in an axis (3) orthogonal to the plane
of conventional vacuum electrodynamics, it indicates that the
quantized field (the photon) carries mass. This is a conse-
quence of special relativity, which asserts that a massless
photon has only two degrees of physical polarization, and two
helicities, 1 and -1. Conventional electrodynamics therefore
does not self-consistently allow the existence of B
although the latter emerges from the former through the
conjugate product.

The conventional view that B is zero is contradicted
by experience, namely in the phenomena of magnetization by
circularly polarized electromagnetic radiation. This was
illustrated in Chap. 1 of Vol. 1 using the inverse Faraday
effect, with a theory based on the conjugate product
BW x B yhich is iB9B®*, This phenomenon and others
like it indicate experimentally, therefore, that B is real
and non-zero, an inference which was reinforced in Chap. 12
of Vol. 1 and Chap. 1 of this volume using classical and
quantum relativistic equations of motion of a single electron
in the electromagnetic field, i.e., of e in A,. These
rigorous calculations from first principles show that the
spin and orbital angular momenta of the electron is governed
entirely by B®™  acting at first and second order in B .
Furthermore, these calculations have defined with precision
the experimental conditions under which the characteristic

square root power density dependence (denoted I¢/?) of B

dominates. Essentially, 1Y? is observed in magnetization of
an electron plasma by circularly polarized microwaves under

the condition o < (e/mB'® where e/m is the charge to mass
ratio of the electron, « the angular frequency of the

1273
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electromagnetic beam, and B jts magnetic flux density
amplitude. This condition has already been approached quite
closely by Deschamps et al. [43b] in their demonstration of
the inverse Faraday effect, and by increasing the power
density of the beam by a factor of about ten to a hundred,

the 1}/ dependence dominates theoretically in this experi-
ment. In the first part of this summary chapter we discuss

the precise conditions under which the 1}/? dependence emerges
in this important experiment. There is a clear need for such

an experiment in order to prove the existence of B
unequivocally wunder precise conditions, possible with
contemporary technology. The simple (but exact) one electron
theories of these volumes can be refined if necessary to
allow for statistical effects of many electrons in a plasma,
but they are already adequate to describe the ma jor results
of such an experiment. The theoretically expected demonstra-

tion of the 1272 dependence of B would be a major experi-
mental advance in field theory, and the physics of fields and
particles in general. Such a demonstration would render
vacuum electrodynamics a mnon-Abelian, three dimensional ,
theory in the vacuum, and possibly to unification of electro-
dynamics with general relativity. Furthermore, it would
indicate that the quantized electromagnetic field carries
mass, and this would lead to further experimental support for
spontaneous symmetry breaking of the vacuum.

The key experiment consists of magnetization of an
electron plasma with a pulse of microwave radiation of peak
power of about ten to one hundred megawatts. Furthermore,
this experiment is possible in practice through a relatively
simple ad justment of the conditions described by Deschamps et
al. [43b], using thirty year old technology. These authors
demonstrated magnetization of an electron plasma formed from
an inert gas by a megawatt peak power pulse of 30 GHz
radiation. A 100 turn induction coil detected the current
due to magnetization stemming from the field B®™ as discussed
in Chap. 12 of Vol. 1. The microsecond pulses were detected
using a synchronized oscilloscope. The plasma was created in
a pyrex tube of helium gas 0.065 m in diameter and 0.2 m
long, linked into a circular wave guide carrying circularly
polarized microwave radiation. The area of the sample was
therefore about 0.003 square meters. For peak microwave
power of a megawatt therefore, the peak power density was
about 3 x 10° W m™, producing a peak B of about 0.002 tesla
(see Chap. 12 of Vol. 1). Using e/m for the electron of
roughly 2 x 10" C kgm® we obtain eB®/m to be about
4 x 10° rad s™. The microwave frequency of 30 GHz corre-
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sponds to an angular frequency of roughly 2 x 10f Fad s™.
Therefore, under these typical reported [43b] conditions we

obtain

w ~50 g, (409)
m

In consequence we expect the magnetization M® fro.m the
Hamilton-Jacobi equation (Chap. 12 of Vol. 1) to be domlnat?d
by an I, dependence, and this is reported experimentally in

Fig. (2) of Ref. [43Db].
This observation is in itself enough to prove the

existence of B, through the equation

M ~ NpiBlOIB, (410)

where P’ is a one electron hyperpolarizability, and where
there are N non-interacting electrons in the plasma.

Equation (410) is the w » £B® limit of the following result
m

from the relativistic Hamilton-Jacobi equation of e in A,

y» - Nec? A B, (411)
2me? (mzwz,,,ezB(o)z)%

The characteristic Iﬂn dependence is obtained, however, in
the limit

(412)

@ < EB(O)’
m

which gives

MO - /B, (413)

where ¥/ is a one electron susceptibility. It is possible Fo
achieve condition (412) experimentally using the same basic
apparatus as Deschamps et al., but with an increased power
density for the same frequency. The increased power density
(or intensity) can be achieved by increasing the p?ag pulse
power and by narrowing the sample area while maintaining the

frequency at 30 GHz. According to Eq. (411) the observed

X 1/2
magnetization will become a mixture of terms in I,’® and I, as
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condition (412) is approached, and will eventually become
dominated by the 145/ dependence. This will leave no doubt

as to the existence of the vacuum B, because an 1l/? depen-
dence cannot be obtained from plane waves such as B and
B™ , which time average to zero at first order in B(® .

Therefore not only is this a critically important
?xperiment (as is the optical Aharonov-Bohm experiment) but
it is also relatively straightforward with contemporary
technology.

. Apart from the experiment of Deschamps et al. using
microwaves, the presently available experimental indications
of the existence of B are based on phenomena at visible
frequencies. The simple but rigorous calculations developed
in Chap. 12 of Vol. 1 and recounted above of the spin
trajectory of e in A, show that at visible frequencies, the
magnetization is produced always under the condition » (e/m)B®
and is therefore always dominated by the term in BB (Eq.
(410)). This means that M‘® in the visible range is propor-
tional always to I, for all but the most intense laser
pulses. This explains why the I, dependence dominates in the
experimental data of van der Ziel et al. [43a] obtained some

thirty years ago in liquids and solids. These series of
experiments first demonstrated the inverse Faraday effect
using focused, giant ruby laser pulses. These data, as is

now realized, provide evidence for BB in the vacuum.
Similar phenomena such as light shifts [50], and the optical
Faraday and Zeeman effects [4,5,7] are dominated at visible
frequencies by an 71, dependence provided that a correctly
relativistic treatment is developed of these phenomena. The
conventional description of a phenomenon such as the inverse
Faraday effect depends on a semi-classical approach [12]
using the conjugate product B™ x B™® ywell known in non-
linear optics [5]. The key discovery [1-10],

BW x B = jpg@-, (414)

means that the conjugate product is equated with iB© B+,
The existence of B is obscured, however, in the conven-

tional semi-classical theory, which, furthermore, is given
usually [12] in terms of

EW x EW - c2p0)  p@, (415)
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a cross product which seems at first sight to be remote from
any magnetic field. This was first shown to be proportional
to B in 1992 {1,4]. A typical semi-classical description
of the inverse Faraday effect is that of Wozniak et al. [12].

This is non-relativistic, and the term in I3/ is missing
completely. It is clearly necessary to reappraise carefully
the techniques of magneto-optics in order to make the theory
rigorously relativistic. Only then will B emerge through

its I}/* dependence in a self-consistent way.

Some experimental features at visible frequencies were
sketched out in Chap. 7 of Vol. 1 and discussed there in
terms of B™ in a non-relativistic framework. The proper
relativistic approach is typified in the equations of motion
of e in A,, the Hamilton-Jacobi and Dirac equations.

Atomic and molecular matter is thought to be composed of
nuclei and electrons arranged according to the Pauli exclu-
sion principle in orbitals, and a rigorous approach to the

1}/? dependence in these systems requires a solution of the
Dirac equation with the appropriate N electron Hamiltonian.
The inverse Faraday effect has been evaluated in atomic
systems by Kielich et al. [51] using a non-relativistic
numerical method, but there is at present no work available
on the rigorous solution of the Dirac equation (e.g. in its
Hamilton-Jacobi form) for magnetization by microwave pulses
of atomic matter. This is the next step up from plasma (free
electrons) but will probably require the methods of computa-
tional physics applied to the Dirac equation rather than the
Schrédinger equation, methods which have been extensively
developed by, for example, Clementi et al. [62]. Similarly,
there are few data available on magnetization by light, and
none in the required condition (412) as discussed already,
although Deschamps et al., thirty three years ago, came

remarkably close.

It is overwhelmingly probable that the 13/* dependence

from Eq. (413) will be observed experimentally because if
not, the Hamilton-Jacobi equation itself will have failed.
This outcome is vanishingly improbable because of the vast
amount of data from other sources in favor of this classical
equation of motion, first devised non-relativistically in the
eighteen thirties. This line of thought traces the existence
of B® to the principle of least action, upon which the
relativistic version of the equation is based. This illus-
trates how deeply imbedded is B in classical physics,
provided it is approached in a suitably relativistic way. In
relativistic quantum physics, it is likewise a direct result
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of the Dirac equation (Chap. 1) and is in consequence as
fundamental as the intrinsic electron spin itself. This

inference was rigorously reinforced in QED in the previous
chapter.

Similarly, the existence of B in the vacuum leads to
the expectation (Chap. 8 of Vol. 1) of an optical Aharonov-
Bohm effect. This would detect the vector potential, A,, due
to B after gauge transformation in to areas where B
itself is excluded. Again, however, a precise treatment of
this effect is relativistic, as in the original paper by
Aharonov and Bohm, reviewed in Chap. 8 of Vol. 1. This
precise treatment is required in order to optimize the
chances of successfully detecting B in such an experiment.
Overall, however, the OAB parallels the ordinary AB effect,
now well-verified experimentally after forty-four years of
exploration. To design a successful OAB experiment requires
careful estimates and maximization of the sensitivity of the
detection system. One method ([63] that might succeed
involves the modification of a SQUID device. The most
obvious method, discussed in Vol. 1, involves passing a
circularly polarized beam of radiation in the shadow of
interfering electron beams. From our considerations above,
this may well have to be at microwave frequencies, but at the
time of writing the relativistic theory is not fully devel-
oped.

The magnetic properties of electromagnetic radiation are
therefore summarized in the fact that its phase independent
magnetic field, B!, does not average to zero at first order
in B, the scalar magnitude of the magnetic flux density of
the beam. Unlike B™ and B®, the ordinary plane waves,
B does not time average to zero, even at the highest

frequencies. This leads to its characteristic I/? dependence
when the beam interacts with matter, typified in the simplest

case by one electron. The relativistic nature of this

interaction means that the I¢/? dependence can be seen clearly
only under the condition (412). Therefore the same inference
carries through to atomic and molecular matter, where e is
bound in orbitals and not free. The fact that B does not
time average to zero is responsible for optical NMR, dis-
cussed briefly in Chap. 7 of Vol. 1. Optical NMR is begin-
ning to be understood, and has been observed experimentally
[64], but with visible frequency lasers. If we consider the
electron to be replaced by a nuclear particle such as a
proton, 1800 times heavier with equal and opposite charge,
and consider the interaction of e* in A, with the relativis-
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tic Hamilton-Jacobi equation of motion, the condition (412)
will occur 1800 times lower in frequency for the same B,

This thought experiment shows that no 12 dependepce will
emerge from ONMR when a visible frequency laser is used.
Under the conditions used for the first, exploratory: ONMR
experiments [64] it is clear that any bulk shift will be
dominated by an I, dependence, as in the inverse Faraday
effect. Although such bulk shifts were reported [64], they
are obscured by site specific effects, which are useful

analytically, but which interfere with a demonstration of B
using this technique. , :
By comparison with the methods of Deschamps et al. [43Db]

it becomes clear that the I)/? dependence in a proton plasma

or polarized proton beam will become dominant at rfdio
frequencies for a peak pulse power density of about 10° or
10° W m™2, It may be possible to explore these effects
experimentally with contemporary technology, but the use of
an electron plasma is technically much more straightforward,
because microwave pulses can be used.

In previous work [4,5] one of us has initiated the study
of B® in magneto-optics using the standard semi-class?cal
approach {5,12]. This type of theory led to the the?retl?al
prediction [4,5] of several novel effects, occurring with

an 132 dependence. Examples include the optical Faraday,
Zeeman, Cotton-Mouton and Majorana effects, optical NMR and
ESR, and the optical Aharonov-Bohm effect. In view of.the
relativistic effects just discussed, these semi-classical

theories must be viewed as approximations, but ones which

nevertheless lead to the correct I}? dependence. The

pioneering theory of Pershan [65], on the other hand, does

not contain an I3/? dependence, and will not under any

circumstances reduce to the result (411) of the correctly

relativistic approach. Again, in the conventional semi-
classical approach typified in Ref. [12], no 1¥? dependence
emerges.

The correctly relativistic description of the magnet%z—
ing properties of electromagnetic radiation, esPec1a11y using
microwave frequencies, must be based on the Dirac equation,
and will probably be computationally intensive as discussed
already. With contemporary computers this is not a problem.
In the conventional semi-classical theories it is now clear

. s 3,
that the conjugate product signals the existence of iB®B®)*,

and therefore of B® , whose I@“ dependence, generated in its

interaction with matter, must be calculated, however,
relativistically. In this sense, iB®p®™* is observed
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whenever the conjugate product is observed, and since this is
the antisymmetric part of light intensity itself [5],
iB'B™* has been observed, with hindsight, on countless
occasions, whenever circularly polarized radiation has been
used. :

This inference marks the end of the Abelian era in
electrodynamics and electromagnetic field theory, a claim
that can be tested experimentally as discussed already in
this chapter through the existence of the 1l’> dependence of
B® . (Clearly, if B®™ is observed in this experiment, its
presence in all magneto-optic effects [5] will have been
signalled unequivocally and conclusively. There is hardly
any need to emphasize further the importance and extensive
consequences of such an outcome.

The existence, then, of B® in the vacuum indicates that
0(2) electrodynamics is internally inconsistent. In this
way, 0(2) gauge geometry, a flat geometry, self indicates
that it is incomplete, and that the photon is a particle with
three physical degrees of polarization in the vacuum. These
are associated with the three physical magnetic fields
B B and B™ | the first two of which are plane waves,
and the third of which is a spin field. This inference in
turn self indicates that the photon must have mass, however
tiny in magnitude, because a massless boson has only two
degrees of polarization, in flat contradiction to our three
dimensional world. As first shown by Wigner [22] a massless
particle means an E(2) little group, an entirely unphysical

result. The unequivocal experimental detection of the 1
dependence using microwave pulses, or some other means, can
therefore be taken to mean that the photon is massive, thus
settling a debate that stretches over many scientific
generations. This in turn might lead to renewed efforts in
astronomy and relativistic cosmology to see the effect of
photon mass, effects such as Tolman’s tired light.  Such
efforts have been reviewed recently by Vigier [34]. The
existence of B is in contradiction with the structure of
Wigner's E(2) little group unless the boson (photon) being
described by such a symmetry acquires mass.

Because of the powerful results of field theory [16]
achieved in recent years, results based on gauge invariance,
it is asserted by many field theorists that the photon mass
(my) must be identically zero, and that light must have an
infinite range. The reason is that the term mA,A, is not
gauge invariant unless m, is identically zero. We differ
from these colleagues in our inference of finite photon mass,

because as argued, the emergence of an I13/? dependence from
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the first principles governing the trajectory of e in A,
leads to the presence of B! in the vacuum. These dynamical
principles are imbedded deeply in classical and quantum
mechanics, and can be traced to the principle of least
action, as shown in these volumes. These are powerful
arguments in favor of a third dimension for electromagnetlsm
in the vacuum, and therefore for fields concomitant with t?e
photon. The inherently three dimensional Proca equation is
the only one that can deal consistently with the emergence of
B™ and link it directly to photon mass through the Yukawa
type exponential decay described in Chap. 2 of th%s volume.
The d’Alembert equation on the other hand is one in a flat,
two dimensional world, in which waves are purely transverse.
The Proca equation emerges in Lagrangian theory from a vacuum
whose symmetry is spontaneously broken in a way first
described by Higgs and others. The breaking of the vacuum
symmetry occurs in a Lagrangian which is originally compati-
ble with gauge invariance. There is no reason therefore, to
assert that photon mass must be zero in a symmetry br?ken
vacuum. The origin of mass resides as usual in a Higgs
mechanism in this breaking of vacuum symmetry, to which all
fields are subject.

We have shown that B® = B!® exp(-EZ)k is a solution of
the Proca equation, where § = myc/h, thus relating B and m,,
the photon mass. We have taken at face value the main result
of the Higgs mechanism as applied to Abelian electrom?gne-
tism, that the photon acquires mass simultaneously with a
third degree of polarization. The free photon is therefore
a massive boson in the symmetry broken vacuum, for which
there is firm evidence from particle physics as discussed in
Chap. 5 of this volume. The vacuum itself is therefore.a
topologically non-trivial entity. Even if SSB is not us?d in
electromagnetic theory, we have suggested that the condlt%on
AA, =0, alimiting form of the Dirac condit%on.for vanishing
photon radius, can be used to make finite photon mass
compatible with gauge invariance.

Since SSB is so successful in GWS theory, however, it
can be taken as having been proven experimentally in the CERN
experiment [57] which detected W,, and Z, at their predicted
masses. It is therefore logical to accept that SSB of a
gauge theory leads to a finite photon mass in the vacuum, and
that this indicates three degrees of polarization, of

which B*® is an experimentally provable sign. Reversing the

argument, B leads back to finite photon mass and a symm?try
broken vacuum, and is, then, a manifestation of a third,
physical dimension which has been long neglected. Clearly,
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we disagFee with that part of GWS which models out the photon
mass as identically zero, and encourage efforts such as those
of Huang [35] to incorporate m, consistently in GWS and
Su(5).

As argued in these volumes, the existence of the
vacuum B® introduces, ultimately, some profound philosophi -
cal modifications in our contemporary understanding of
electrodynamics. Most obviously, B has no existence in
0(2) gauge geometry, which therefore asserts that although
B x B, the conjugate product, is non-zero, iB®B®* jg
zero. This is a reduction to absurdity because B x B® ig
equal, algebraically, to iB®B®* Absurdities of this
?ature result in 0(2) electrodynamics because by definition
its gauge geometry is planar. In other words, a physical
vacuum field is not allowed perpendicular to this plane.

Analytical algebra leads logically, however, to the central
result of these volumes,

(1) (3) - 7 L .
B'Y x B® = ipl9B®™*  and cyclic permutations, (416)

énd these relations are inherently non-Abelian, indicating
1mmedi§tely the need for an 0(3) gauge geometry for electro-
magnetism in the vacuum (Chap. 3 and 4 of this volume). The
?eed for m, = 0 disappears in 0(3) gauge geometry, and indeed

is a logical contradiction. Conservative proponents of 0(23
gauge geometry cannot accept equation (416), nor are they

allowed by their adherence to 0(2) to accept that B'® emerges

from .first principles, i.e., from the equations (both
classical and quantum mechanical) that describe the orbital
and intrinsic spinning motion of e in A,. They are forced

into an illogical corner, and must abandon the 0(2) gauge

geometry so long in favor as soon as the characteristic r3/2
dependence of B jig observed.

SeFondly, the non-Abelian structure of Egs. (416) has
the'maJor potential advantage of bringing vacuum electrody-
namics into the same philosophical ball park as vacuum
gr?v1Fation, described by general relativity (Appendix C).
This is an interesting prospect which has been thought up to
now to be on the distant horizon because of the inherently
non-linear nature of general relativity.

Thirdly, there exists in 0(3) gauge geometry the
quantization condition eA(® =%k in the vacuum. The 0(2)
photon momentum ¥k becomes identified in 0(3) with eA® | The
%atter obviously has the units of linear momentum, but
introduces the charge e, multiplying the vector potential
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amplitude A, The conventional view asserts that the
electromagnetic gauge field is uncharged, and is the agent of
interaction between two electrons. In QED the same process
is described as an exchange of virtual photons, which are
also uncharged. The 0(3) relation eA‘® =tx on the other
hand divides the quantum mechanical %x into the product of
two & negative quantities. This means that as in all non-
Abelian field theories, the field is its own source, which in
this case is the current caused by the field charge e moving

through the vacuum. More generally, e is g, the & negative
coupling constant of 0(3) gauge geometry [16] and g/% in Eq.
(260) of this volume is identified with A /x. In this
sense, the 0(3) scaling constant simply becomes the classical
quantity A /x, and the charge quantization condition becomes
g = hx/A1%), Thus, g occurs in units of %, the Dirac
constant. Analogously, energy and linear momentum in 0(2)
theory also occur in units of %, this being the Planck law of
1900. In 0(3), the momentum eA!°’ propagates through the
vacuum with the photon. In this sense, Jackson [44] has
shown, in his classical textbook, that an electromic charge
moving infinitesimally close to the speed of light produces
transverse plane waves which are entirely indistinguishable
from those concomitant with the photon. Even within the 0(2)
framework used by Jackson, the field is its own source, an
electron moving essentially at the speed of light. If we
apply the minimal prescription that electromagnetic four-
momentum, p,, becomes p, + €4, in the presence of an electron,
and consider the electron itself to be moving infinitesimally
close to the speed of light, the result is p, = e3,, i.e., the
four-momentum of electron and field become indistinguishable,
because the field concomitant with the photon and the field
generated by an electron travelling near ¢ are indistinguish-
able. Applying quantization finally to p we obtain W = eA(®,
which is precisely the result from 0(3) gauge geometry. The
essential difference between the 0(3) theory and Jackson's is
of course that B is present self-consistently in 0(3) gauge
geometry, whereas it is unconsidered by Jackson. In the non-
Abelian view of vacuum electromagnetism, the field carries
its own source, just as gravitation self-propagates in
general relativity [16]}. This view is based on the fact
that AW x A is classically non-zero, and is directly

proportional to the vacuum B . Two electrons repel through
the vacuum in the conventional view, even though they may be
separated by very large distances. Classically, one electron
becomes the source of a Coulomb force on the other and vice
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versa, action and reaction being equal and opposite. The
force is transmitted by a force field, the electromagnetic
field, and the latter can be detected only by the mutual
repulsion felt by the two electrons. If the two electrons
were, for the sake of argument, uncharged, there would be no
repulsion and no field. Therefore the Coulomb force field
depends on the existence of charge on the electron, which in
the conventional quantum field theory propels a photon at the
speed of light through a vacuum. The opposite process also
occurs and there is an exchange of virtual photons. The
photon 1is conventionally massless, with momentum %k and
intrinsic angular momentum %. Equation (416) and the
arguments proposed in these volumes now demand that the
photon momentum %x be identified with eA!®  and this relation
quantizes charge. It is a direct outcome of using 0(3) gauge
geometry for vacuum electrodynamics. The source of vacuum
electromagnetism, infinitely distant in 0(2) gauge geometry,
becomes identified with photon momentum itself in 0(3) gauge
geometry, and travels with the photon. The momentum of the
photon becomes indistinguishable from eA!® , and in a manner
of speaking, from its own source. A similar situation occurs
in the self-propagating gravitational field in general
relativity, as described by the Einstein field equations.
We hope that these ideas will be accepted in the spirit
of free enquiry and that they will, accordingly, be tested
experimentally. In particular, there is an urgent need to

search for the characteristic 13/ dependence generated when

B from microwave pulses interacts with an electron plasma.
Nature shows!

Appendix A. The O(3) Electromagnetic Field Tensor,
G _, in the Circular Basis (1), (2), (3)

uv’

From fundamental gauge field theory (Chap. 3?, the
covariant derivative of the n component field ¢ is given by

gxﬂ'; = 3,9 - i-23AM, (A1)

as in Eq. (262) of the text. Imn the 0(3) group

(O, = =1€4ms (A2)

which gives the (mn)'’th element of the a’th rotation genera-
tor of the 0(3) group. In 0(3) the n component field ¢ is
a three component field denoted by the vector ¢, the m'th
component of which is [16], from Egs. (Al) and (A2)

Dp‘bm = au¢m - %eamnA:d’n' (A3)

This is the m’th component of a vector equation in the
(isospin) space of ¢,

Dé = (a“ + 2a,x )«p. (a4)

In order to derive (A4) from Eq. (A3), the following has been
used

A x ) = €A, (A5)

On the left hand side, the m’'th component of the vector
product A ,x ¢ is equated to the tensor product on th? r?ght
hand side, where, as usual, summation over repeated indices
(a and n) is used. Equation (A5) is therefore an equation ?n
vector components in a three dimensional isospin space in
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which A, and ¢ obey the ordinary vector algebra of three
dimensional space. The symbol A, therefore denotes a vector
in this isospin space, carrying a dummy index p which plays
no direct or specific part in the vector algebra of the
isospin space. The quantity A;' in tensor notation is analo-
gous with a connection coefficient in general relativity
[16]. The Levi-Civita symbol €., is as usual zero when any
two subscripts are identical.

In this Appendix the isospin vector ¢ is identified
with A, itself, and the isospin vector algebra developed in
the circular basis (1), (2), (3), rather than the Cartesian
basis X, Y, Z appropriate to Eq. (A4). Finally, the isospin
space in the basis (1), (2), (3) is identified with the
configuration space in the same basis. This procedure is
justified by the fact that the J° matrices in the general
equation (Al) become rotation generators of the group 0(3) in
a three dimensional configuration space of the laboratory

Erame of reference. In a Cartesian basis, the 0(3) field
tensor is

G = 9,A, -0,A, + ZA, x A, (A6)

which is an equation in the vectors G, A,, and A, of the
isospin space. The vector cross product appearing on the

right hand side can be expressed in tensor notation by
B x A, = €, 2727, (A7)

where the a’th component of the cross product on the left
hand side is generated on the right hand side by a tensor
product in the isospin space, with summation over the
repeated indices b and ¢. The indices # and v on both sides
of Eq. (A7) refer to a different four dimensional space-time,
are unaffected by vector or tensor manipulations in the
isospin space. Thus, in Eq. (A6), @,, is a three component
vector in the three dimensional isospin space. The indi-
ces pv indicate that it is also a four-component teunsor in
four dimensional space-time.

In the circular basis (1), (2) and (3) the vector CYoss
product is the conjugate product described at length in
Vol. 1 and preceding chapters,
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A L A = 740290 = a0 4(Ns, (A8)

where the characteristic factor i has appgared on th? right
hand side. This is due to the fact that unit vectors in (1),
(2) and (3) obey the cyclic relations

eV x e = joi¥, e®*= _je) x @3, et cyclicum, (A9)
where * denotes "complex conjugate”. As described in Yol. 1,
this basis 1is mnatural for the description .of circular
polarization in electromagnetic radiation. Unit vectors in
the Cartesian representation, on the other hand, obey

ixJ =X%x, et cyclicum, (Al10)

in which there is no factor i on the right hand side. The
circular and Cartesian bases are linked by

a“’=e""=%(i—ij), e®* = - g (All)

and by
i'i+j-j+k~k=e“’-e‘”‘+a‘”-e“)' (A]_Z)
+ 9(3) .e(3).’
and are therefore equivalent. However, the transition,

eWelt . g@gid, (A13)

(where ¢ is the electromagnetic phase) switches the sense ?f
circular polarization, and therefore the circular unit

vectors @1, e® and e‘® are natural representations of the
spatial distributions of the field. In the circular repre-
sentation of isospin space, therefore,

1 (3) « Al4
AL x A, = ;0 a P22 = A ©AL", (a14)

and Eq. (A6) becomes

(s _ g _ . (0 @ (Al5)
G, P, 1Ay ¥ A,

(1 = v
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which is Eq. (276c). As in the text, Eq. (A15) reduces
finally to

B - g3 - _i__:A(l) XA(”, (A16)

which, except for an arbitrary sign change, is also Eq. (147)
from the Dirac equation of Chap. 1.

We arrive at the important conclusion that the structure
of Eq. (Al16) links the 0(2) and 0(3) theories of electrody-
namics, in that A™ and A® exist in the 0(2) (Abelian)
theory, and therefore so does the conjugate product
A x A However, this same 0(2) conjugate product gives
B®™ , the spin field, adding a third physical dimension in
isospin space, identified with configuration space. This
third dimension can be accommodated self-consistently only
within the structure of 0(3) (non-Abelian) gauge theory. The
existence of B®™ is indicated, however, by the existence
of B and B®, through the cyclic relations of Vol. 1,

BW xB® = jpB®+ ot cyclicum, (A17)

so that 0(2) theory "self-indicates" that it is incomplete.
The experimental basis for the physical nature of B x @
is the inverse Faraday effect, whose rigorous derivation from
first principles was demonstrated classically in Chap. 12 of
Vol. 1, and quantum mechanically in Chap. 1 of this volume.
It is therefore of the utmost importance to note that
the inverse Faraday effect, and other magnetic effects of
light indicate experimentally that electrodynamics is non-
Abelian in nature. The expected experimental observation of
the characteristic square root power density fingerprint
of B* also signals the transition from 0(2) to 0(3) electro-
dynamics, with many consequences throughout field theory.

Appendix B. The O(3) Covariant Derivative (D") in the
Basis (1), (2), (3)

In NAE the 0(2) derivative operator 9, becomes L%, the
0(3) covariant derivative operator, and iF is ba§lca1}y
important to define D, self-consistently in any isospin
basis, including the circular basis (1), (2?, (3). From
fundamental gauge theory [16], D, is defineg in general.by
Eq. (262) of the text, which in 0(3) reduces in the Cartesian
basis to

Du¥p = 3, ¥n = 15 (5 )na s (B1)

for the m'th component of the field ¢. The latter can ?e
identified with the three component vector A, in isospin
space, a vector whose m'th scalar component is A,,. In Eq.
(Bl), (7%,, denotes the mn’th element of.the a'th Cartesian
rotation generator of 0(3). These infinitesimal generators
are defined for a = 1, 2, and 3 by (Vol. 1),

00 0 0 0 i
Jt=|o0 -il, J*=]0 o0 o0,
0i o -ioco (82)
0o -1i0
J* =i o o].
0 00

With these definitions, Eq. (Bl) reduces in the Cartesian
basis to

DAy, = auAvm -1 "%(‘j a)mApaAvn . (B3)

In the circular basis, however, the conjugate product is
defined by
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@am x Ay o iF3ala® (B4)

In this equation, the left hand side denotes the (3)'th
scalar component of the vector conjugate product. On the

right hand side, J% is defined by Eq. (B2), A" is the n'th

Cartesian component of A®, A is the m'th Cartesian compo-
nent of A,  Thus

@AW xa?) = ANAR - a0 @ (B5)
and
idy, = €3pm- (B6)
Therefore
DA, = A _l_JmAp(a)A(b)
(B7)

= [y (@
= d,A,, - —%—(A,,' x Av(b))(c) .

In the circular basis, a vector cross product generates
an imaginary quantity through

-ie® x e = @™M*, ot cyclicum, (B8)
and therefore the vector form of Eq. (B7) is
D“A,m' _ 3pﬂv(3)“ i—: IO
D,,Avm' - a“A'm:_ :A“m x AW, (B9)
D,.A-m‘ - apA,,“"— l._gAI:z) %2l
The vector cross product can be expressed by

A':‘) xA,(b) = iA”A'(c)-’ (BlO)

so that Eq. (B7) becomes
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DALY = BA + S2A", (B11)

for ¢ = 1, 2 and 3. Therefore, in the circular basis,

- e
D, :=3,+ <4, (B12)

where A, is a scalar in the isospin space, but a four-vector

in space time. Note that the equivalent result in the
Cartesian basis [16] is

(DI‘)Cattesian = al’ -ig A" (B13)

h

In the circular basis, the field tensor and D operator
components are linked, furthermore, by

G, = —E[D“, D] = 9,4, -9A,+ %[A“, A, (Bl14)

By
so that

(a) _ {a) (a) . €7 A (b} (c)
Gy = 3,A," - 9,8,% - 1?[1;,, , AvC], (B15)

a result which is obtained from the unit vector component
relations

et = (e}”e‘ Y _ ex('z)e;n)z' (B16)

and cyclic permutations of (1), (2) and (3). Equation (B15)
in vector notation for the isospin space becomes

D" = 3,a" - 9 a" - i%A,.m x ALY,
G"('z)a ~ a“A'(ﬂ)o_ avAuu)‘— i_gnif!) XA'(”, (B17)

(3N _ (3) L (3)+ i (1) (2)
Guy = aﬂ val "h x A,

which are Eqs. (276) of the text. Equations (Bl7) do not
reduce to the conventional 0(2) definitions of the electro-
magnetic field tensor, because the conjugate products are
always non-zero.



Appendix C. The Structural Analogy between NAE and

General Relativity

C.1 THE COVARIANT DERIVATIVES

The covariant derivatives used in Appendices A and B and
Chap. 3 and following are modelled [16] on general relativi-
ty. For curved space-time, the axes themselves vary from
point to point, and for a contravariant vector V¥, its
covariant derivative is in general relativity

D,V* = a,v* + T}, v, (cn)

where I%, are analogous to A, of NAE [16]. If 0(3) is

extended to the Lorentz group in NAE, the structure of A;]
becomes the same as that of the connection coefficients of
general relativity. The NAE isospin space becomes four
dimensional space-time, and not the three dimensional
configurational space (1), (2) and (3) of the text. The
covariant derivative of NAE then becomes the same in struc-
ture as its counterpart in general relativity. In both NAE
and general relativity, connection coefficients would then
connect the components of a vector at one point with its
components at a nearby point, the vector being transported
between points by parallel tramsport [16]. Such properties
could be useful in the search for a unified and self consis-
tent understanding of gravitation and electromagnetism.
Electrodynamical laws could then be developed as laws of
general relativity and vice-versa.

C.2 THE CURVATURE TENSOR

The analogue of the non-Abelian G,, is the Riemann-
Christoffel curvature tensor defined by
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lepv = avr“ltp h apr':v + Per;v - Prvrl:p v (€2)

which is to be compared with
Gy = 8,4, - 3,4 + e€,, APAS. (C3)

The curvature tensor indicates that space-time becomes curved
in the presence of gravitation. Analogously, we would in a
unified understanding be able to say that space-time becomes
curved in the presence of electromagnetism.

C.3 THE BIANCHI IDENTITY

The Bianchi identity in general relativity is the
analogue of the 0(3) homogeneous Maxwell equations of
Chap. 4, and they are, respectively

DyRYyy + DyREyp + D,REpy = 0, (C4)

and

D,G,, + D,G,, + D,G,, = 0, (G5)

which in 0(2) electrodynamics becomes [16]

8,Fyy + 8,F,, + ,F,, = 0, (C6)

the vacuum homogeneous Maxwell equations of the conventional
0(2) theory.

C.4 THE EINSTEIN FIELD EQUATIONS

The curvature of space-time in general relativity is

determined by the canonical energy-momentum tensor T*¥, which
appears in the Einstein field equations,

8nG

1
va = —Z_g“vR_ —*TTpvl (C7)

where R,, is the Riceci tensor, Gy 18 the metric tensor, and
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¢ the gravitation constant. In 0(3) electrodynamics A,
becomes proportional in the vacuum to the energy-momentum
vector p, through the charge quantization condition of
Chaps. 3 and 4, and there is a link between p, and T, both
being energy momentum tensors. In 0(2) electrodynamics, eA,
is a momentum vector p, only in the presence of matter, in
the simplest case an electron with charge e. The 0(3)
equations are naturally non-linear, through the cyclic
relations

BW x 3@ = jpl0tig™M* et cyclicum, (C8)

and similar as developed throughout these two volumes. They
are naturally analogous with the non-linear general theory of
relativity. Roughly speaking, gravitation and light are
driven through the vacuum in the same way in these non-linear
theories, both fields being self-generating.



Appendix D. Structure of the Field Tensor G‘f?,
of Non-Abelian Electrodynamics

In this Appendix, it is shown that the Gﬁ? tensor of

non-Abelian electrodynamics reduces to the fﬁf’ tensor of
Abelian electrodynamics using the charge quantization
condition

eAD = 1, (b1)

Vacuum solutions of Maxwell’s equations are plane waves,
which in the F,, tensor of conventional Abelian electrody-
namics are asserted to be purely transverse to the direction
of propagation, and described by the U(l) symmetry group.
Vacuum solutions of the mnon-Abelian Maxwell equations
(Chap. 4) include these plane waves, and, self-consistently,
the vacuum field B® and its unphysical dual -iE® /c. The
overall result of this Appendix is that in the vacuum

G =25, (i) = (1), (2), (D2)

for transverse circular states of the electromagnetic radia-

tion. In Abelian electrodynamics, the Fﬁ?’ tensor is conven-
tionally a null tensor, but its non-Abelian generalization,

qﬁ’, contains B™ and -iE® /c as elements.
These results are obtained self-consistently from the
0(3) vector potential through the equation

P = 3 x AP 1'8;” x A, (D3)

which splits into three equations for scalar components as
follows
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Gp(&)t- - [a‘(io)' Av(l) t]_ i[a,‘.z’, Av(B)]'
[3;0), Av(z):]_ 1'[3,&3), Av(l)]l (b4)

G“(v3)" - [a‘(‘f)) , AV(S)*] _ l'[a‘il) , Av(Z)]l

(2)
Gyy'”

i}

(using the notation developed in Chap. 5). These equations

show that G,,‘,,’)' is a sum of two four-curls. In this notation,
the conventional F,, tensor of U(l) electrodynamics is

= (1) [

I‘v_v * = [6‘(, ), Av“)‘], 1“(3)* = [3:‘0), Av(z)'],
3

va * = [8;0), A.v(s)’] = O,

for each state of circular polarization. The general form

of F,, can be displayed conventionally as the four by four
matrix

, By
0 B, -B, —1—05
-B, 0 B, -il¥
Fy, = <. (D6)
EZ
B, -B, 0 -i %
Y X P
E, ,E
= X 1EZ 0
C C C

D.1 CIRCULAR STATE (3): MAGNETIC FIELDS

D.1.1 XY AND YX COMPONENTS

These components of G'* contain the field B* through

(3)» _ (3} _ [5(0) * , *
B, =By = [0, ¢ - osM, af?]= 68" = -6, (D7)

which reduces to

B;a) = Gxgl:;)- = - 1@ x Am)z 1= (V) A(z))Z, (D8)

because A'® only has a Z component by definition. Without
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the second commutator of 0(3) theory therefore, B® is zero.
Moreover, the second commutator reduces to the cyclic
relations between three physical magnetic fields through

which the presence of B was first discovered [1-9],

B =g —i%A“’ x A = _§ A'fo)‘u) x A@®

(D9)
- —jdM xa@® - -_I1 _pwypgm,
B
D.1.2 XZ AND ZX COMPONENTS
These are defined through
G,}é" - _Gz(;): = [a}((m' Az‘”‘] _ 1’[6,‘(“, Azm] =0, (D10)

and vanish because A is divergentless and irrotational, and

because A'® has only X and Y components through its defini-
tion as a transverse plane wave

A<=»=Am'=—A;;’<—11+J>e-i¢, $:=ot-x-z.  (DI1)

D.1.3 YZ AND ZY COMPONENTS

Similarly, these components vanish, so that the only
non-zero magnetic component is B .

D.2 CIRCULAR STATE (3): ELECTRIC FIELDS

D.2.1 Z4 AND 4Z COMPONENTS

In Abelian electrodynamics, these would formally contain

a real electric field Ef® multiplied by i, whose presence is
due to the Minkowski algebra of special relativity. The
elements are given in non-Abelian (0(3)) electrodynamics by
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(b12)

The first (conventional Abelian) commutator in these equa-

tions vanishes because 2® ig divergentless and irrotational,
leaving

Gt = oM a - VA =g, (DP13)

This defines a putative real electric field, which as argued
in the text, is zero on the grounds of elementary symmetry.
Because 4® and 99 have no Z components, the real electric
field from the 24 element vanishes self-consistently.
Similarly, the real electric field from the 4Z element

vanishes because A and 8" have no Z components. There-
fore the real part of the electric field in the (3) state is

zero. An imaginary and unphysical electric field -iBE® /c is
obtained formally, however, through the fact that it is dual
to the real B‘® as described in detail in Chap. 4.

D.2.2 X4 AND 4X ELEMENTS

The X component of E® is clearly zero because B® is
in the Z direction, and similarly for E;¥ . The general

definition of G‘f\?", (Eq. (D4)) must produce this result self-
consistently. We have

{3)=
. E,
-7 X

C

3y« _
Gxq =

= -ifayt, a/*]
(D14)

= _i‘S(A);l)A4‘2) -A4(1’A,§2)) -0.

However, by definition of A™ and A as plane waves, we
have

() (0)
Al =i A elb, a8 = - A e-ib, (D15)
V2 VZ

and this indicates that
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AlY =2 =0, (D16)

i.e., that the time-like components of the four-vectors
defined by

A,f” ‘= (‘(1)' iAf”), A,,(z) = (A(", iAP’), (p17)

are zero. This result is consistent with the arguments
developed for dual four-vectors in Chap. 11 of Vol. 1.

D.2.3 Y4 AND 4Y COMPONENTS

Similarly, the general definition (D4) gives

P D18
G = -1 By _ _l.[a;l), A}”], ( )

and since E{¥" must be zero if E™®* is directed in the Z
axis, we obtain

D19)
A}l’Ad‘z’—Afl’Aéz’ =0. (

Comparing equations (D14) and (D19) shows that they are self-

consistent if and only if Eq. (D16) holds, i.e., if the time-

like components of A" and A® are rigorously zero. The

same result follows for the well-known transverse gauge [16]

3 3
in conventional 0(2) electrodynamics, where A, is not

considered. .
The overall result for the (3) state therefore is

o B o 0
~-BY* 0 o 0
) D20
G(VS)t = 0 o 3 Ez(3 * , ( )
» 0 S
{(3)*
Ey
[ 4]
4] 0] 1 =

where it is very important to note that the electric fields
appearing in the matrix are unphysical, i.e., are pure
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imaginary and appear because they are formally dual to the

real and physical B®*. The physical electric fields from
the definition (D4) vanish as argued already. The only non-
zero magnetic component from Eq. (D4) is B@®*,

Therefore these results, obtained from the rigorous
theory of 0(3) gauge geometry, are precisely consistent with
our arguments in Vol. 1, and in the first few chapters of
this volume. The results show that the choice of (1), (2)
and (3) as isospin indices is physically meaningful and self-
consistent. The analysis shows that the time-like components

of the four-vectors A" and A are zero.
D.3 POLARIZATION STATE (1): MAGNETIC FIELDS

D.3.1 XY AND YX GOMPONENTS

These are given by the elements

Gt = e = [0, AV -0, af=o. (p21)

The second commutator vanishes because A has no X or Y
components, and the first commutator vanishes because the

transverse plane wave A has no specific X and Y dependence.
Therefore the XY and YX components of polarization state (1)

vanish. Note that the elements of the Gﬁ? tensor reduce to
those of the Fﬁf) tensor.

D.3.2 XZ AND ZX ELEMENTS

In this case the general definition (D4) produces

G - —G},}"=[8,‘,°’, AZ(”']~1'[8§2’, Azm]' (D22)

which can be expressed as

(1) « (1) = : €12 12) 5 (3) (2) » (3)y _ (1) =
GXZ = "'By 'l—g(Ax AZ _Az AX )'—"By

(D23)
e

—l?)

AP a8 = it - i%A,}Z’AZ‘” .
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Using the relations

af® = a@ = B, (D24)
X
L (D25)
) Aw@
Eq. (D23) reduces to
G = - - ip?. (D26)

Using the definition of the magnetic fields B and B®@® as
plane waves,

B =g Bj;) (_ii + j)ei¢, (D27)

we obtain the results

3
B =18 _gie

r

V2
(D28)
(0) @
By(vl) B i$ B}Z) B e~16,
which show that
, ) D29
B =i =B, &R =FE+REC. (029)
. . (1)
i.e., the G'* element reduces to a sum of identical Fyx; *
(e

elements. Each commutator of Eq. (D22) gives the same Fy;

element.
Similarly, we obtain for the ZX element,

- L D30
G = B+ P (P30)
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D.3.3 YZ AND ZY ELEMENTS
In a similar way, it can be shown that
G = - - BV - ixaf? = BV - igf?®
(D31)

= {(2) 2
= By? + B = piP " 4 p 2

’

(1)

and the Gy;'* and G/}’ elements reduce to a sum of identical
@)

Fyy'* and FY* elements respectively.

D.4 POLARIZATION STATE (1): ELECTRIC FIELDS

D.4.1 X4 AND 4X ELEMENTS

In this case

(1) *»
(1) > _ {0) . B
GX4 = [ax ’ A4(1) .] b 1[8;{(2) 2 .A4(3)] = ~1 X

¢ (D32)
_ i_e_A)§2)A4(3) ,
h
which reduces to
(1)« E}({l)t
Gui'"t = I e B = BP0, (D33)
if and only if
Al = jater, (D34)

i.e., if and only if the time-like component of the longitu-
: . 3, _ . : . .

dinal four-vector A,” :=(a™, 14’} is pure imaginary. These

results are of course obtained with the definitions of E®

;?d‘E“) as conjugate plane waves (see texts of Vols. 1 and
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EW - g@e - %(i_ij)eﬁi. (D35)

The condition (D34) emerges self-consistently, furthermore,
from an analysis of the Y4 and 4Y elements as follows. We

find that in each and every case, the elements of the Gy

tensor reduce to sums over identical Eﬁ}“ tensor elements as
for the magnetic fields in circular state (1). This is the
overall result summarized in Eq. (291) of Chap. 4. We obtain
the additional information that the time-like components of

AY and A® are zero, and that the time-like component of
a2
tion state (1) are to reduce self-consistently to Fﬁ?'
elements in the way described.

is pure imaginary if all elements of qﬁ" in polariza-

D.4.2 4Y AND Y4 ELEMENTS

From the general formula (D4) these elements are given
by

iV = g = [33” , 4(1):]_1-3;2) , A‘m]' (D36)

which reduces to

1)+ s € 4 (2) 5 (3) B (2)
G =-1 - 1Ay, = -i—~— +B
e c T c Y (D37)
=F]§41)‘+ Fé}).,

if the time-like component of the four-vector AJ” is pure

imaginary, as in Eq. (D34). This result is obtained with the
plane wave elemental relations

{2) (1) *
E E
PR D SR O (D38)
c c

Therefore we again obtain

GJ3)~= ZF“(&)-, =Y, v =4, (D39)
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with a similar result for the 4V element .
D.4.3 Z4 AND AZ ELEMENTS
In this case
e - 65, A4<1):] - ifa¢, A, (D40)

and the first commutator vanishes because the 4 components of

both A™* and its Z component are both zero. This is the
result obtained in conventional 0(2) electrodynamics, because

by definition, the transverse plane wave E™* of polarization

state (1) has no Z component. The second commutator vanishes
because

2
7 = fai =0, 8P Lal -0, (D41)

and yet again we obtain the result

G =F T+ i =0 (D42)

so that the G tensor element reduces to a sum of two identi-

cal F tensor elements. In this case, these elements are
zero.

. Therefore, for all elements of G!'", the general result
is obtained that

G,,‘&"=2Fp(3" for all p and v (D43)
provided that
aM=@am, 0, a®-@a®,o),

(D44)
a2 =(ia®, i(iat®y),
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D.5 POLARIZATION STATE (2)

Similarly, it can be shown that

62" = 22" (D45)

for all elements of state (2).

These results show that if it is assumed that A and
A™® are plane waves of the type (D11) then the G,(f) tensor of
0(3) gauge geometry reduces, for polarization states (1) and
(2), to twice the F,,(j’ tensor of 0(2) gauge geometry. Thus,
as discussed in Chap. 4, the B®W k6 B®  EW znd E@ fields
are recovered unchanged, i.e., are the same in 0(3) and 0(2)
theory.

For polarization state (3), however, which is rigorously
inconsistent with 0(2) or planar gauge geometry, F\5' is
conventionally zero or undefined, depending on the viewpoint.
Equation (D9), however, shows that B® 1is recovered self
consistently from our general equation (D4), which is derived
from the rigorous theory of gauge geometry. Thus, our
general equation (D4) produces B® and its unphysical
dual -iE™ /c self consistently with the transverse fields
in the vacuum. This result is accompanied by the further
insight

At =a® =0, AP = jam, (D46)

which show that A" and A,/» are polar four-vectors, while

Al,m is an axial four-vector, or pseudo four-vector, of the

type considered in detail in Chap. 11 of Vol. 1. This result
is also rigorously consistent with the cyclic relations for
vector potentials obtained in Chap. 1 of Vol. 1

AV x a@ = - 03B et cyclicum. (D47)

Thus, the vector cross product of two polar vectors, A‘Y and
A® jgust produce an axial vector, which is the pure

imaginary, (iA®™)*. The four-vector equivalent to this space-
like component_ is therefore the axial four-vector with
imaginary components

Ap(3) = (A, {(ia0)) = (A3, ja!0), (D48)
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Therefore the magnitudes |iA®| and |iA(®| are equal. This
is precisely analogous with the well known Gupta-Bleuler

condition as discussed in Vol. 1. The axial four-vector AJ”
is therefore light-like. Since it has no real 4 component,
the real scalar potential can be viewed as zero, and this is
the conventional assumption of 0(2) electrodynamics in either
the transverse (Coulomb) gauge, or in the Lorentz gauge.

However, in conventional 0(2) theory, the imaginary ia(® is
also asserted to be zero, or left unconsidered.

Appendix E. Some Details of the Non-Abelian Maxwell
Equations in the Vacuum

In this Appendix some structural details are given of
the 0(3) Maxwell equations in the vacuum, and a self-consis-
tency check developed for the inhomogeneous equations of
Chap. 4

DG =0, (i) =(1), (2), (3). (E1)

We have seen in Chap. 4 and Appendix D that this can be
written as

DAD* =0, (E2)

and since B is formed from the 0(2) fields B® and B®,
Eq. (E2) must reduce in the transverse polarizations (1) and
(2) to

FP =0, (1) = (V). (2). (E3)
Since
D, = 8, + ZA,, (E4)

and eA, * 0, the transition from Eq. (E2) to (E3) is possible
if ahd only if

= & E5
3, = 34, (E5)

which is the scalar form of the charge quantization condition
used in Chaps. 3 and following, and in Appendix D.
More precisely, Eq. (E5) must be written as

159
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v = 2aM, () = (1), (@), (3, (E6)

as in Appendix D. From Eqs., (E2) and (E6) we obtain

a\fi)*FJ{f)' - —%AV(I)‘F“({,“' = 0. (E7)

Equation (E7) allows a check for self-consistency to be

developed through the expectation that each p component must
vanish independently of

A\.“"Fp“f" =0. (E8)

When this check is complete in detail (as follows) the 0(3)

inhomogeneous Maxwell equations (E1) can be expressed simply
as

avm'F,fvi“ =0. (E9)

For (i) = (1) and (2) these are identical with the 0(2)
equations. For (i) = (3) they give the inhomogeneous part of

the Maxwell equations for B and -iE®/c as discussed in
Chap. 4,

E.1 DETAILED CHECKS ON EQUATION (E8)
E.1.1 POLARIZATION STATE (3)

Eq. (E8) becomes

{3) ., (3) (3} (3) 3) L {(3) 3 3 3) 3)
AR = A RP + AP ED + AR« aP R (E10)

For p = X Eq. (E10) becomes (see Appendix D)

Az(a)Fx(y?) +A4(3’F,§3’ =0, (E11)

and similarly for pn=1v, 2, and 4.
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E.1.2 POLARIZATION STATE (1)

For p = X and p = ¥ all elements vanish independently of

(1) (1) E12
Ava,,(v“ = A;l)F”(;) +A}”F,,‘}’ +Asz,,(},’ +aVFY, ( )
for reasons given in detail in Appendix D. For pu =2
(1) g (1)
AVFR AP = A0 B - ArY By
(E13)
1)
) (B}”B}“ - B}V B} ) o
- x
For p =4,
i (1) (1Y _ El4
APFP AP R = L (5P BMEM) =0 (EL6)
because
(0)
BV iB(O) i6 B B‘/5 eit,
(E15)
{0)
E’gl) E© i, E;l) J.E elit

Similarly, it can be shown that Eq. (E8) is true for
polarization state (2). This completes the check for self-
consistency in the reduction of Eq. (El) to .(E9). These
results are utilized in Chap. 4 and following parts of
Vol. 2.
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