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Preface

,
This second volume of The Enigmatic Photon opens with a

demonstration of the existence of the Long Ltudinal vacuum
field S(!) (Vol. 1) from a consideration of the Dirac equation
of one electron, e, in ~ circularly polarized electromagnetic
field, represented by the four -potential Ap • This resul ts in
the key inference that the interaction Hamiltonian formed
between the electron's intrinsic angular momentum and the
field is governed entirely by S(!). The latter is thereby
shown to be a fundamental intrinsic property of vacuum
electromagnetism. The second and succeeding chapters develop
the role of B(3) in field theory. Chapter two deals with the
Higgs phenomenon and spontaneous symmetry breaking of the
vacuum. The existence of the longitudinal S(3) implies that
there is finite photon mass, which is made compatible in
Chap. 2 with gauge invariance of the second kind. In Chaps.
3 and 4, the non-Abelian nature of the relation between the
spin field S(3) and the plane waves S(1) and S(2) is used to
develop a self-consistent view of vacuum electromagnetism
using an 0(3) gauge geometry. This leads to the non-Abelian
vacuum Maxwell equations in Chap. 4, the technical details of
which are relegated to Appendices. The latter provide
detailed checks on the self-consistency of the new theory, in
which Yang-Mills type isospin indices are identified with
circular indices, (1), (2) and (3), of three dimensional
space. In Chap. 5, a development is given of the role of Be!)
in unified (electroweak) theory, in particular its role in
GWS theory. In Chap. 6, the effect of S(3) on quantum
electrodynamics is developed, and it is shown that S(3) is
consistent with the powerful results of QED, for example the
latter's ability to produce the anomalous magnetic moment of
the electron with great precision. Finally, in Chap. 7, a
summary of the major results of both volumes is given, a

summary which shows that the discovery of S(!) is of central
importance in contemporary field theory. For example it
shows conclusively that the photon, if it is a particle, must

ix



in the vacuum. The numerous fundamental consequences of this
algebra are discussed throughout these two volumes, which
view electromagnetism in an entirely original way.

We owe a great debt of gratitude to Dr. Laura J. Evans,
whose highly professional camera-ready preparation was of key
importance to the whole two volume project.

Many interesting discussion before and during production
are acknowledged with several colleagues, including Keith A.
Earle, Gareth J. Evans, the late Stanislaw Kielich, Mikhail
A. Novikov, Mark P. Silverman, Boris Yu Zel'dovich, and
others. Last, but by no means least, Professor Alwyn van
der Merwe is acknowledged with gratitude for the opportunity
of producing these volumes in his prestigious series.

~ave mass, and means that the gauge group of electromagnetism
1.S 0(3), and not 0(2) - U(l) as thought conventionally.
Furthermore, the existence of B(3) in the vacuum can be shown
experimentally by using powerful microwave pulses to magne­
tize an electron plasma set up in an inert gas such as
helium. The precise conditions for such an experiment are
given in Chap. 7. This technique isolates the field 8(3)

through its characteristic square root power density profile

(I~/2), i.e., the magnetization set up by 8(3) in the plasma

is proportional to I~/2. This is not possible if B(3) were
zero. The magnetization from the wave fields Bel) and B(~n is

to order I o . Thus S(3) is an experimental observable, and

exists in the vacuum, proving that the wave fields S(l)

and S(2) and the spin field B(3) are linked through the non­
Abelian defining algebra,

x

Charlotte, North Carolina, U.S.A. and
Craigcefnparc, Wales
Paris, France
July, 1994

Preface

Myron W. Evans

Jean-Pierre Vigier

Chapter 1. 8(3) and the Dirac Equation

In Vol. 1, several methods were used to infer that there

exists in free space a spin field S(3) of electromagnetic
radiation, which is the recently discovered [1-12] magnetiz­
ing field of light. In the opening chapter of this volume,
the Dirac equation of motion is used to prove that B (3)

emerges directly from the consideration of the action of
electromagnetic radiation on one electron. The Dirac
equation is a ~ relativistically correct and physically
meaningful quantum counterpart of the relation between mass
and energy in classical special relativity, and in the non­
relativistic limit reduces to a Schrodinger equation of
quantum mechanics. The Dirac equation for a free electron
indicates that it, the electron, has an intrinsic spin
angular momentum, which is essentially a consequence of the
geometry of space-time expressed in terms of spinors. This
spin angular momentum has eigenvalues ±n/2, has no classical
counterpart, and remains non- zero in the non-relativistic
limit [13] of the Dirac equation. In consequence, the Dirac
equation is able to account for the anomalous Zeeman effect
[14] and the results of the Stern-Gerlach experiment [15].
Its major importance is underlined by the fact that it
predicts the existence of anti-particles through the concept
of the Dirac sea [16], and for these reasons has supplanted
the direct quantum equivalent of the Einstein equation, the
Klein-Gordon equation of motion [17]. An inference based
directly on the Dirac equation is therefore based firmly in
fundamental theory. In what follows, the Dirac equation

reveals the presence of S(3) in the interaction of electromag­

netic radiation with one electron, and so S(3) is an observ­
able and is present in free space, as inferred in several

different ways in Vol. 1. The magnetic field of light, B(3) ,

forms an interaction Hamiltonian with the magnetic dipole
moment formed from the intrinsic electronic spin. The latter
does not exist in classical field theory, and so this effect
of S(3) occurs in addition to its induction of a classically
based orbital electronic angular momentum as described in
Chap. 12 of Vol. 1.

1



2 Chapter 1.. B (3) and the Dirac Equation Origins of the Dirac Equation of Motion 3

1.1 ORIGINS OF THE DIRAC EQUATION OF MOTION where

The Proca equation for a photon with mass, Eq. (9b) of
Vol. 1, is Eq. (4) with + replaced by the gauge field Ap • In
the non-relativistic approximation, the kinetic energy of a
free particle is the familiar expression

The Dirac equation of motion emerged from the attempts
to apply the new quantum theory to special relativity. As
ably described in many texts [13-17], the direct attempt at
quantization of special relativity resulted in negative
probability density and energy eigenstates, which proved to
be physically uninterpretable. In this section, a brief
account is given based on Ryder [16], of the methods used in
the derivation of the Klein-Gordon equation for a particle
within the framework of special relativity.

From the classical theory of special relativity emerges
the following relation,

A
o := (5)

(6)

where p = mov is the particle's linear momentum. Applying the
fundamental axioms (3) to Eq. (6) gives the SchrodLnge r
equation of motion of a free particle,

(1)

between energy and momentum. Here mo is the rest mass of the
particle, c the velocity of light, and p its linear relativ­
istic momentum. In a frame of reference in which the
particle has no linear momentum, this equation reduces to
Einstein's equation for rest energy,

ll2 · a+-V2t = -~l;-.
21l1o at

(7)

showing that mass is energy. The rest mass rno is frame
invariant, and therefore the rest energy remains the same in
all Lorentz frames of reference, a familiar resul t from
special relativity. The Klein-Gordon equation is the result
of applying the fundamental quantum mechanical axioms [17]
directly to Eq. (1);

En = moc
2 ,

In special relativity, however, p must be the time-like part
of a current-density four-vector,

(9)

(8)
p = .*~.

Equation (7) is the non-relativistic approximation to Eq.
(4). The wave function of the two equations is cI», and so the
conjugate product ct»*+ is a probability density in the Born
interpretation of quantum mechanics, suggested in 1926 [18],

(3)

(2)

~
En .... ill at.

A
p-+-i'hV,

and p must be covariant under Lorentz transformation. The
space-like component of jfl is the probability current, j,
defined by

The wavefunction of the equation, denoted ~, is that for a
particle with no spin, a scalar particle with only one
component, a particle that can also be interpreted as a
scalar field [16]. The Klein-Gordon equation of motion is
therefore an equation of relativistic quantum field theory.
Substituting Eq. (3) in Eq. (1) gives :J (10)

(4) which, using Eq. (3), can be written as
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which has the units of linear velocity. Since moi has the
units of linear momentum it must form part of a momentum­
energy four-vector in special relativity, as indicated by Eq.
(9). Since j~ is a four-vector it follows that the equation

which is a continuity equation for j and p. Equation (12)
is a conservation theorem which shows that j~ is conserved,
essentially an outcome of Noether's Theorem [16]. Equation
(8) must therefore be an approximation to the correctly
covariant

cannot therefore be interpreted physically as a single
particle wave equation of quantum mechanics with wave
function 4».

The Dirac equation of motion, on the other hand, is a
relativistically correct generalization of the Schrodinger
equation which surmounts these difficulties through the use
of the appropriate space-time group SL(2,C) [16,17], which is
the group which represents the Lorentz transformation with
four-spinors. Comparison with experimental data of many
different kinds has shown that the Dirac equation is an
accurate description of nature at a fundamental level. It is
essentially a geometrical relation between different four­
spinors, and leads to a positive definite p provided that
there exist particles and anti-particles with an intrinsic
angular momentum with eigenvalues ±~/2. These are fermions
which obey Fermi-Dirac statistics. This type of angular
momentum is essentially a Lorentz transformation property of
four-spinors, and is therefore a direct consequence of
special relativity itself. It does not imply that fermions
spin about an axis fixed in the particle, so that the often
used term "spin angular momentum" is slightly misleading. A
vector field has an integral intrinsic angular momentum [19],
and the spinor field has half integral spin. These intrinsic
angular momenta exist regardless of the spatial description
of a field, such as an electromagnetic field. The intrinsic
integral spin field B(3) of free space electromagnetism
corresponds to the intrinsic half integral spin of the
electron. The Dirac equation shows that one quantity cannot
exist without the other when considering the interaction of e
with a classical A p • The vector field B(3) has an intrinsic,
or built-in, angular momentum (19] of unity, and this, being
phase free, has nothing to do with the spatial distribution
of the transverse fields S(1) and B(3) (Vol. 1). In the same
way, the electron has a built-in half-integral angular
momentum, which has nothing to do with the spatial distribu­
tion of charge. Both types of angular momenta are relativis­
tically invariant and both are transformation properties. In
the non-relativistic limit, they are transformation proper­
ties under rotations in space, using vectors of the O( 3)
group for Be!) and spinors of the SU(2) group for the
electron. Thus S(3) is a fundamental and generally applicable
outcome of the Dirac equation of e in Ap and multiplies a
magnetic dipole moment formed from the electron's intrinsic
spin to form part of the interaction Hamiltonian. Without
this term, the electron's spin could not contribute to the
Hamiltonian. We conclude that given the intrinsic spin of

(13)

(11)

(15)

(14)

(12)

In vector

p= -1'.,

V·j-.£e.=oat I

o

_ _ ill ( *~ _ ~. )
p - 2moc

2 • at; • at; ·

but it is well known [16] that this interpretation collapses
because p from Eq. (14) can become negative, whereas any
probability density must be positive definite to retain
physical meaning. The essential mathematical reason for this
is that the Klein-Gordon equation is a second order differen­
tial equation in which both p and dp/at can be fixed arbi­
trarily at any given instant in time [16]. The equation

A set of equations precisely analogous with Eqs. (9), (10)
and (14) can be constructed (18] for electric charge-current

density, whose four-vector is j~e) = ejp., where e is the
electronic charge, and which appears in the covariant
formulation of Maxwell's equations for the interaction of
electromagnetic radiation and matter.

With these definitions, Eq. (12) can be expressed as

is a continuity equation in Minkowski notation.
notation
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(19)

and this expression is also an equation of continuity [17],
because

(18b)

(18a)Dt = 0,

spin components in space-time. In the limit of zero mass,
the Dirac equation becomes the Weyl equation and the Proca
the d' Alembert equation for free space electromagnetism,
respectively;

These equations describe respectively the massless neutrino
(a fermion) and the massless photon (a boson). The Klein­
Gordon equation of motion, Eq. (4), cannot by definition be
a relation between spin components, because it describes the
scalar (one component and spinless) wave function +.

The way in which spin components are related in space­
time determines whether the particle being described is a
fermion (half-integral spin) or a boson (integral spin).
Since there is one space-time, All and • are two different
geometrical representations of wave-functions arising from
the same four dimensional source. In this chain of reason­
ing, the probability densities from the Dirac and Proca
equations must both be physically acceptable and positive
definite, and this is indeed the case. Following Barut [17]
for example, the Maxwell equations in matter can be written
as

(16)

The free space Proca equation (Vol. 1),

the electron, the Dirac equation describing the interaction
of e with A p implies the existence of the intrinsic spin
field S(3) of free space electromagnetism through an irremov­
able interaction term in the Hamiltonian.

It is important to note that B(3) in this description is
a classical field, and can be deduced from the classical
description of e in All given in Chap. 12 of Vol. 1. The
intrinsic electronic spin has no classical counterpart, and
the classical Hamilton-Jacobi description of e in All given
in Chap. 12 of Vol. 1 involves only orbital electronic
angular momentum and an induced magnetic dipole moment. The
quantum mechanical Dirac equation produces an intrinsic
electronic spin which gives rise to a permanent magnetic
dipole moment. The most rigorous treatment of e in All occurs
in quantum electrodynamics [16] where the field is quantized.

1.1.1 RELATIONS BETWEEN SPIN COMPONENTS

is a physically meaningful wave equation for the photon,
regarded as a particle with mass. This is so despite the
fact that Eqs. (4) and (16) are identical in structure, and
despite the fact that Eq. (4) is not physically meaningful as
a wave equation. Particles (bosons) described by a gauge
field are therefore fundamentally different in nature from
fermions whether or not the bosons have mass. The Dirac
equation for a fermion of mass mo also has the same structure
as Eqs. (4) and (16),

(17) e
oj p = o.
aXil

(20)

Equation (20) is the result of the fact that Fpv is an anti­
symmetric tensor,

One of the major advantages of the Dirac equation is
that it gives a positive definite probability density, and

but now t is a four-spinor, and not a four-vector such as A~,

or a scalar such as~. However, each (scalar) component of
both Eqs. (16) and (17) must obey Eq. (4) by definition,
since both All and 11' are made up of scalar components.
Whether these equations are physically meaningful or not
therefore depends on the nature of the wave-functions ~, A~,

and t. The Dirac and Proca equations can both be derived
[20] by considering the transformation of spinors under the
Lorentz group, and are therefore simply relations between

aAv _ dA"
:= aXil ax.. ·

(21)
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cures this ailment of the Klein-Gordon equation. This
advantage is illustrated [17] by a field-particle interaction
equation such as that describing the electron in the electro­
magnetic field,

incorrect to assert that S(3) is zero, because this assertion
[21] -destroys the validity of the Dirac equation itself.
Similarly, it is incorrect to assert that S is zero for the
electron.

(22)

1.2 GEOMETRICAL BASIS [16] OF THE DIRAC EQUATION

This equation shows that the expectation value of the quantum
mechanical Dirac matrix y~ is the Maxwellian four-current.
The eigenfunctions used in the evaluation of the expectation
value of y~ are the Dirac four-spinor • and its adjoint
spinor, ... These concepts will be explained in the following
sections. Equation (22), illustrating the interaction of an
electron e with the electromagnetic field Ap , shows that the
physically meaningful nature of the Dirac and Maxwell
equations is based on the presence of more than one spin
component in the particle or field being described. We shall

show that the (Maxwellian) spin field B(3) , the newly recog­
nized (Vol. 1) magnetizing field of light, is a direct
outcome of the Dirac equation for the interaction of an
electron, e, with A , i.e., a direct result of a fundamental
particle-field equa~ion such as Eq. (22). The interaction
occurs through a term in the Hamiltonian eigenvalue of the
type

where 0 is a Pauli two-spinor [16] and where S is the spin
angular momentum of the electron, with eigenvalues ±1l/2.
Therefore, the well known fundamental property S of the
electron must interact with an electromagnetic field,
considered classically, through the novel magnetizing field
S(3) , a phase-free magnetic flux density in free space, and
with S(3) only.

The magnetizing field of light, S(3) , emerges from the
Dirac equation of motion of e in the field of light in the
same way precisely as S emerges. Therefore B(3) is a funda­
mental property of the classical electromagnetic field (and
of the photon) in the same way that S is a fundamental
quantum mechanical property of the electron. This conclusion
rigorously reinforces the arguments for S(3) presented in
Vol. 1 of this book, and shows that both Sand B(3) are
direct consequences of space-time geometry itself at the most
fundamental level in contemporary thought. It is therefore

(24)

(25a)

where the complex ~1 and ~2 are related to the real X, Y, and
Z Cartesian components of a three-vector of the rotation
group 0(3) of Vol. 1 by

The Dirac equation of motion is a description of the
Lorentz boost transformation [16], a description based on a
representation of space-time in terms of four-spinors rather
than four-vectors. Essentially, spinors, as the name
implies, introduce intrinsic spin into the space-time
trajectory of a fermion such as an electron or neutrino,
which thereby acquires a helicity [22]. Furthermore, the
fundamentally geometrical nature of spinors allows only two
components of spin, for example <8> = :th/2 as in Sec. 1.1.
Since four-spinors and four-vectors are both methods of
describing space-time, there must have been an experimental
basis for the choice of spinors by Dirac [23]. This basis is
well known to have included the Stern-Gerlach experiment
[24], in which a beam of silver atoms travelling through an
inhomogeneous magnetic field is split into two components,
and two only; and the failure of the Klein-Gordon equation of
motion as described in Sec. 1.1.

Adapting the description by Ryder [16 J, the simplest
geometrical properties of spinors can be constructed from the
SU(2) group of unitary matrices with complex coefficients
[25, 26]. The main purpose of this volume is to derive in
various ways the rigorous basis for the novel S(3) field, and
therefore we restrict our development of the theory of
spinors to the minimum necessary for comprehension.

The SU(2) spinor is denoted by a two component column
vector with complex coefficients,

1.2.1 SPINORS OF THE SU(2) GROUP

(23)-~S·B(!) ,

roo
H(int)
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(25b) The inner (or scalar) product of two spinors,

(2Sc)

(30)

Therefore

(26)

is frame invariant, and the outer product,

+ : = (~1)(~ *~ *) = (~1~ ~ ~1~;) ,
~~ ~ 1 2 r l: * l: l: *

2 '-2'-1 ~2~2

(31)

which shows that the radius vector R is represented by two
spinor components or coordinates, ~1 and ~2' as opposed to
three Cartesian coordinates. It may then be shown [16] that
an SU(2) transformation on ~ is equivalent to an 0(3) trans-

formation on the column vector (~. A rotation of the R

vector in 0(3) can be represented by a unitary transformation
matrix, whose inverse is equal to its transpose [25].
Similarly, the rotation of the spinor in SU( 2) can be
represented by a complex unitary matrix, U, whose determinant
is unity,

In order to introduce the Pauli spinors ax, Oy, and 0z' note,
following Ryder [16] that

(33)

(32)

transforms in the same way as ~ under SU(2). This property
is denoted by

is a Hermitian matrix, i. e., is a square matrix which is
unchanged by taking the transpose of its complex conjugate.
Under a SU(2) transformation, it becomes, from Eqs. (28),

(27)UU+ UU-1 1.u = c:. :.),

Similarly, taking the complex conjugates on both sides

Here the superscript + denotes Hermitian transpose, which is
the transpose accompanied by complex conjugation of each
matrix element. The superscript -1 denotes the Hermitian
inverse, which is the inverse of the matrix accompanied by
complex conjugation of each element. The superscript *
denotes complex conjugate, and the superscript T denotes the
transpose without complex conjugation. The SU(2) group is
the group of these 2 x 2 unitary, complex matrices [16]. A
transformation of the spinor ~ in SU(2) is equivalent to a
transformation of the three-vector R in 0(3), and is given
by

and

t - C~*.

~. - ,~,

(34)

(35)

(36)

(28)
Therefore

where [16]

tr :;;; (8 III -b) U- 1 •

b" a
(29)
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(37) means that both h and h' are Hermitian and traceless.
It is therefore possible to identify the elements of H

and b ,

However, we know that

(38)
(45)

so

H - UHU+ UHU- 1 (39)

leading to Eqs. (25). Note that a factor 1/2 appears on the
right hand sides of Eqs. (25a) and (25b), and this is the
origin of the half integral spin of the fermion, a purely
geometrical consequence of H = h in Eq. (45). This point can
be clarified [16] by using the fact that under 8U(2)

so

(46)

(47)

Using Eqs. (25) in the transformed frame, e.g.,

(40)

(1 0) (z X-iY)
+O-lZ=X+iY -Z'

under SU(2). Using the notation

it is found that h transforms under SU(2) in the same way as
H,

h - UhU'" : == lx'; (41)
(48)

equivalent to a rotation in 0(3) of theand that this is
three-vector

R == xi + Yj +Zk. (42)

and similarly for x' and yl; and eliminating ~1' ~2' ~~, ~~

between the equations, it can be shown that ~~~I is equiva­
lent to

z' = z,
The transformation h - h' under SU( 2) takes place via the
Pauli spinors ox, Oy, 0z in such a way that

X' =: X cos (I + Y sin a , y' = -x sin (I + Ycos a,
(49)

as required for a rotation of R in 0(3). Furthermore, if U
is unitary, i.e., if tt" = U-1 , the transformation h-r Uhtt" == b'

i.e. ,

det h = det Ii',

x 2 + y2 + Z2 = X/ 2 + yl2 + Zl2

(43)

(44)

provided that a =e i tt/ 2 , b = o. In O( 3) , Eq. (49) is a
rotation through an angle a about the z axis [16J. There-
fore the transformation ~ ~ ~I in SU(2) is entirely equivalent
to a rotation in 0(3). This can be so if and only if a
factor 1/2 appears in the exponent defining a, and this
factor 1/2 carries through to describe the intrinsic spin of
a fermion. To understand the origin of fermions it is
therefore necessary to understand the theory of spinors in
SU(2) and, as described in the following section, 8L(2,C).

The unitary matrix U of 8U(2) is therefore
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u=(a b) = (e 1 t1
/

2

~),
-b* a * 0 e-~fI,/2

(50)
elo~/2 ::: 1 +ioz"!' +

2
(55)

and is equivalent to, i.e., isomorphic with, the 0(3)
rotation matrix [16],

(I. • IX= cos 2"+~azs1n2

(51)
to first order in «/2. Generalizing finally, to a finite
rotation through a about an axis .0 [16], we obtain, with
e :::: 6.0,

which is deduced from trigonometry in free space.
isomorphism between U and R is denoted by

The
eitJ ·8/2 eitJ'dJ/2 = cos! +ia·nsin!.

2 2
(56)

i.e., the complex unitary rotation matrix U of SU(2) is
isomorphic with the real unitary rotation matrix R of 0(3).
The two matrices describe a rotation in free space, one in
terms of two component spinors, the other in terms of three
component vectors.

The equivalent of the infinitesimal rotation generators
of 0(3) (see Vol. 1) can also be defined from U as follows:

U" R, (52)
This is the basic structure in space that gives rise to the
Dirac equation in the SL(2,C) group of space-time. For a
rotation about Z, for example, 0 • .D ::: Oz and Eq. (55) is
recovered. This derivation has emphasized that the Dirac
equation is a direct consequence of the geometry of space-
time, and therefore so is B(3) , which as we shall see, emerges
directly from the Dirac equation of e in A p •

The isomorphism between SU(2) and 0(3) in space is
extended to one between SL( 2 , C) and the Lorentz group in
space-time. In space,

oz _ 1dUI _1(1 0)
2" - i da. usO - 2" 0 -1 '

(53)

and

U = elo-8/2 .. R = e 1iT-' , (57)

showing that the Pauli matrix ~z is an infinitesimal

rotation generator of SU(2), isomorphic with J z of 0(3).
Using a formal Maclaurin expansion for the infinitesimal
angles ~u,

..[82X , 82y] .8z 1-= ~2"' et cyc acum ,

(58)

from wh.ich

iO Z t1 + --u« + .•. ,
2

(54)
showing that the Pauli matrices become angular momentum
operators in quantum mechanics. This is the origin of terms
such as spin-half angular momentum. If ex -. «+ 2n then U'" -U;

R -. R, so R in 0(3) can be represented in SU(2) by either U
or -U. This finding is summarized in topology [16] by the
fact that there is a two to one mapping of the elements of
8U(2) on to those of 0(3). There is a global topological
difference [16] between the two groups.
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1.2.2 SPINORS OF THE SL(2,C) GROUP

This algebra can be re-expressed directly, however [16], as
the SU(2) commutators:

[JX I J y] iJz 1 et cyclicum,

[Kx 1 Ky] -iJz 1 " "
(59)

[JX 1 Ky] iKz 1 " "

[JX 1 Kxl 0 for all X, Y, z.

(63b)

(63a)

(62b)

(62a)

T) ... MJ,

a := ~(.8 + i~,

Jj : = ~ (.8 - i~ •

M = el0·8/2eO·t/2,

where

Equations (62) are the basis for the description of the
Maxwell equations with four spinors and Dirac matrices [17].
The Lorentz group is therefore also the SU(2) ~ SU(2) group
of vacuum electromagnetism, as well as the group of boost and
rotation generators. This means that g(3) is a real observ­
able, a generator of SU(2) ~ SU(2) directly proportional to

Jz. In other words B(3) is a space-time field which exists
in vacuo, propagates with the transverse fields (Vol. 1) B(l)

and 8(2), and is observable through its effect on the trajec­
tory of a single electron, an effect which is characterized

1

by a square root (IJ) dependence on the power densi ty of
1

electromagnetic radiation. This characteristic I: dependence
emerges directly from the classical Hamilton-Jacobi equation
of e in A~ (Chap. 12 of Vol. 1) and from the quantum mechani­
cal Dirac equation of e in Ap (this chapter).

The Lorentz transformation is characterized in general
by two different types of two component spinor, which
transform as [16]

infinitesimal operators ~ and J become complex. In Vol. 1
we saw that the magnetic part (8) of free space electromagne­
tism is proportional to 3 of the Lorentz group, and the
electric part (I) to R. This inference shows that A and j
could equally well be described in terms of complex SU(2)
combinations such as,

(60)

[Ax' Ay ] iAz 1 et cyc1icum,

[Ex, By] iBz 1 " "

[A j I Bj ] 0, (i, j X, Y, Z) .

where

There is an isomorphism between the SL(2,C) and Lorentz
groups which is the geometrical basis of the Dirac equation
in space-time, an equation which describes the Lorentz boost
transformation in terms of four component spinors. The
Lorentz group contains three boost generators (Vol. 1) Xx, Ky
and Kz ' which can be expressed as 4 x 4 matrices, as well as

three rotation generators Jx ' Jyand J z ' which are also 4 x 4
matrices. In Vol. 1, the magnetic and electric components of
free space electromagnetism were expressed directly in terms
of these six generators, both in a Cartesian basis, (X, Y, Z)
and a circular basis (1), (2), (3). The 0(3) group on the
other hand contains only rotation generators which are 3 x 3
matrices in space, rather than 4 x 4 matrices in space-time.
The field S(3) in the Lorentz group becomes directly propor­
tional (Vol. 1) to the Jz rotation generator, and therefore
it must also have its counterpart in SL(2,C).

The Lorentz group is characterized by a Lie algebra
between the boost and rotation generators [16]:

- 1(-.~A : = 2 J+ ~A}, B : = 1-(3"- iC).
2

(61)
and

Since A and j both obey SU(2) type commutators, the Lorentz
group is a direct product group SU(2) @ SU(2) in which the
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(63c)
(70)

have unit determinants but are not unitary [16]. Under the
parity operator

(64)

Here 0 denotes the parameter of a Lorentz rotation [16] and +
that of a Lorentz boost

Consideration of 13 is therefore of key importance to the
Dirac equation, and to the consequent prediction and observa­
tion of anti-particles. The helicity as well as the charge
of the anti-particle is opposite to that of the original
particle.

A pure Lorentz boost is described for finite t by 8 = 0 ,

and for ~ : == +R' 11 : = +L [16],

A fJ A

J - J,
Aft A

1C - -.1(. (65)
(71)

Considerations of parity therefore lead to the introduction
of the Dirac four-spinor,

• : ~ (~) ~ (~ ~)(~) = (~). (66)

where .II is a uni t vector in the direction of the Lorentz
boost. This is essentially one of the Dirac equations of
motion for a free particle; the other being generated by
application of P to both sides of (71) .

1.3 THE FREE PARTICLE DIRAC EQUATION
The 2 x 2 matrix representation in this equation is shorthand
for a 4 x 4 matrix, because t is a four component column
vector. Under Lorentz transformation [16],

( ~ ) (ea'(8-i+)/2 0 )(~) (D(A) 0) (~) (67)
11 -+ 0 e o ·(8 +i t ) / 2 " = 0 D(A) 11'

where

Considering a Lorentz boost transformation for a
particle originally with zero linear momentum in a given
frame of reference (p = 0, ~JO» to a state where the particle
moves with momentum ~+~», Eq. (71) becomes

(72)

Applying P,

(cf. Eq. (63c)). The matrices D and D are functions of the
Lorentz transformation matrix, A, de f Lned in Minkowski
notation by

Xl A
~ = ~vXv·

(68)

(69)

The parameter ~ of the Lorentz boost is given by

cosh ca. = (Y + 1 )t
22'

where, in S.I. units, without suppressing c and h,

(73)

(74)

The two Dirac equations (72) and (73), which interconvert by

The Dirac four-spinor ~ is an irreducible representation of

the product group SU(2) ® SU(2) extended by ft, and from Eqs.
(62a) and (62b) can be constructed from complex combinations
of magnetic and electric field generators which behave
under P as

y En
m c 2 •o

(75)
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F, are thus,

En +moc
2 + co·p

------l~JO)'

(2moc
2(En +moc

2 )) ~

(76a)

(
0 -0)

11 := 01 ot,

Eq. (80) is

(81)

(76b)
(82)

where p is the relativistic momentum vector in the direction
of the Lorentz boost, which, as in Vol. 1, we take as Z of
the rest frame K. Note that Eqs. (76a) and (76b) are in S.I.
uni ts , whereas most texts in contemporary field theory,
including that by Ryder [16], use units in which c and hare
suppressed, i.e., are normalized, or set to unity. The
energy in these equations is the total relativistic energy,
given by

Note that the Dirac matrices are written conventionally as
two by two square matrices, but each element is a two by two
matrix, the off diagonals being Pauli matrices.

In Minkowski notation,

(83)

and the Dirac equation of motion becomes

(77) (84)

where T is the relativistic kinetic energy [27]. To convert
from normalized units, such as those of Ryder, to S.I.,

If the particle is in a frame in which there is no
relativistic linear momentum in the Z direction, its helicity
vanishes, and therefore there can be no distinction between
left and right hand spinors,

where P II , the momentum-energy four-vector is, in Minkowski
notation,

( ·En) · (85)PI' = p, ~c := (Pi' ~PO)I

and the four-vector of Dirac matrices is, in the sable
notation,

YJl : = (Y j' i y 0) · (86)
(79)

(78)etc.p .... cp,

The Dirac equations can therefore be written in terms of the
four-spinor '" as

(80)

where moc
2 = Poc, Po = moe. In terms of the dimensionless 4 x 4

Dirac matrices

The minus sign in Eq. (84) is the resul t of our use of
Minkowski notation, which is used for the sake of clarity,
and to aid comprehension for non-specialists who wish to
understand the origins of S(3) in the Dirac equation and who
may be unfamiliar with the contravariant covariant nQtation
of field theory. The physical meaning of the equation is of
course independent of space-time notation and units.

The Dirac equation (84) is more accurately described as
the Dirac equations, and this point is emphasized when the
rest mass of the particle is zero. In this case we recover
the decoupled Weyl equations of motion,

(po- (} .,P)cI»Jp) = 0, (87)
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traditionally used for the neutrino.
neutrino is defined then by

The helicity of the

(88)

The Free Particle Dirac Equation

physically acceptable equivalent of Eq. (1) in quantum
mechanics. Each component of the four-spinor .. must
therefore satisfy Eq. (1). This is possible if and only if
the Dirac matrices satisfy the relation

For our present purposes, note that the Dirac equation
quantizes into

(94)

(89)
where 3 v is the unit matrix for 11 =: v and is zero otherwise.
This alfows the Dirac equation to be written in the same form
as the Proca equation,

using Eqs. (3), the fundamental axioms of quantum mechanics.
The Dirac equation (89) of a free particle is an eigen­
equation of quantum mechanics, with wave-function ",. It
leads to a positive definite probability density as demon­
strated below, and can therefore be interpreted as a free
particle equation in relativistic quantum mechanics. In

demonstrating the existence of S(3) from the Dirac equation;
the particle is the electron, e, interacting with A~.

Applying the operator iY~aa to both sides of Eq. (89),
xfJ

(90)

(95)

which is Eq. (17).

1.3.1 PROBABILITY CURRENT AND DENSITY FROM THE DIRAC EQUATION

The Dirac equation gives a probability density which is
positive defini te, and for this reason is an acceptable
particle equation in quantum mechanics. The probability
four-current jp, analogous to Eq. (9) is constructed by
taking the Hermitian conjugate of Eq. (89), noting that

and using the definition of the d'Alembertian,
+

Yo = Yo'
(96)

and the notation

A
o a a

axv ax.. '
(91) This procedure gives the Dirac equation,

(97)

(92)

in S.l. units. Here t+ is a row vector, and the operator

Eq. (90) becomes

(93)

~

a/ax; operates to the left on this row vector [16].

plying by Yo and using

Multi-

(98)

However, the energy momentum mass relation, Eq. (1), must
apply to this analysis, because the overall aim is to find a

gives the Dirac equation
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(99)
the theory of complex numbers [28]. If the components of the
spinor are denoted t1' .2' .3 and .4' following Ryder [16],
then

where f is the Dirac adjoint spinor,
(106)

(100) which is the sum of squares of moduli, i.e., must be positive
definite and rigorously non-negative.

The probability current four-vector from the Dirac equation
is defined as the unitless expectation value,

1.3. 2 ENERGY EIGENVALUES OF THE DIRAC EQUATION

• (D) -
J~ = "'Y~1Jr.

(101)

Considering a particle in a frame of reference in which
it is at rest, with zero Z axis linear momentum, therefore,
the Dirac equation becomes, setting p =0 ,

The four-vector j:D) is conserved because
(107)

(102)
Multiplying both sides by Yo,

(108)

i.e., is simply the product of the Dirac spinor with its own
Hermitian transpose. This product is positive definite in

Moreover, the probability density, the time-like component of
jll' is given by

which is a quantum mechanical wave equation. However, the
wave function. is a four component spinor, and so we have
four wave equations, and four eigenvalues of po. Since rest
energy is cPo, there are four eigenvalues of the rest energy
operator cPo' By definition of the 4 x 4 matrix Yo, the
eigenvalues of rest energy from Eq. (108) are +moc

2 ,

+11Io C 2 , -moc
2 , and -moc

2 • There are two positive and two
negative eigenvalues of rest energy from the Dirac equation
of motion. The two positive eigenvalues correspond to the
degenerate energy eigenstates of the spin 1/2 particle.
However, there are also two corresponding negative energy
eigenstates.

Dirac circumvented this difficulty through his postulate
of anti-particles and through the postulate of the Dirac sea,
as described in numerous texts. For our present purposes we
note simply that anti-particles have been well verified
experimentally, making the Dirac equation one of the most
powerful and generally applicable of all equations of motion.
Its prediction of S(3) is therefore based firmly in well
accepted fundamental relativistic quantum theory.

(103)

(104)

(105)

moe -TV, and similarly for 1Jr.iy aW.. ax~

but

Finally therefore
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1.3.3 STANDARD REPRESENTATION OF THE DIRAC EQUATION

Contemporary field theory employs the standard repre­
sentation of four component Dirac spinors and Dirac matrices,
a representation which is briefly explained to complete our
survey of the Dirac equation of a free particle. In the next
section, the standard representation will be used to de-
rive B(]) directly from the Dirac equation of a particle, the
electron, in the classical electromagnetic field A~. This
indicates that B(3) is also a new fundamental field in
quantum electrodynamics where the field is quantized with
path integral formalism [16].

In the rest frame, wi th p = 0 and En =moc
2

, the Dirac
equation becomes

(109)

yJSR) =[~ ~ ~1 ~ J.
o 0 0 -1

In condensed form

y~SR) =(1 0)=5Y08-
1 ,o -1

where

S :: -1:..(1 1).
J2 1 -1

(112)

(113)

(114)

which is a first order partial differential equation in t.
The solutions can be written in the forms [16]

(
m c

2
)'" = u (0) exp - i.-%- t ,

(110a)

(110b)

Therefore,

yciSR
) S =Byo'

and the four-spinor is given by

(115)

(116)

The equivalent of the Lorentz boost transformation ma~rix in
standard representation is

which are respectively the positive and negative energy
solutions, wi th «= 1 and 2 in each case.

which are respectively the positive and negative energy
solutions. These are plane wave solutions with positive and
negative energy spinors:

1 0 0

U (1) (0)
0 u (2) (0)

1
V(l) (0)

0

o ' o ' 1 '

0 0 0
(111)

0

V(2) (O)
0

o '
1

in the standard representation where Yo is d i.egoneL

[

c os h1 O'onsinh 1]
M(SR) =SMS-1 =

0' •n sinh 1 cosh1 0

The plane wave spinors are therefore

(117)

(118a)

(118b)



tism is the product eAp that keeps the action invariant under
gauge transformation of the second kind in the presence of
the field. The gauge potential therefore couples to the
four-current J p with strength e, which is the charge of the
scalar field +. The derivative

transforms covariantly under gauge transformation, as does
the scalar field itself.

The Dirac equation of e in A p is therefore

28 Chapter 1. B (3) and the Dirac Equation

Specifically, in S.l. units:

1

o
PzC-,-

(px+ipy)C,
o
1

U(2) (p) =M(SR)U(2) (0) =(_'_)1 (Px-ipy)C
2moc

2 ,

-PzC-,-
(119)

PZC-,-
V(l) (1') =M(SR)V(l) (0) =(__'_)~ (Px+ipy)C

2moc
2 ,

1

o

(Px- ipv)C,
-PZC-,-

o
1

•••c Equation. Proof of B (3) Fro.. First Principles

(
a ieA )D". := ax" +~ •

YI1(Pfl + eAJI)1IJ(p) = -moct(p),

or in vector notation

In the standard representation this splits into

from the second of which

v=( co·(p + eA) )u.
En +moc

2 +~

29

(120)

(121)

(122)

(123a)

(123b)

(124)

(i.e., when there is no net linear Z axis electron momentum),

1.4 THE DIRAC EQUATION OF e IN Ap : PROOF OF B (3) FROM FIRST
PRINCIPLES

The Dirac equation of e in A~ is obtained by replac­

ing PI' in Eq. (84) by the sum PI' + eAI" where A" : "" (A, ii).
This is the well known minimal prescription, whose origins
can be found in gauge invariance of the second kind (e.g.
Refs. [16] and [17] and Vol. 1). In this view, electromagne-

In the rest frame approximation

v - ( co · (p + eA») u .
2moc

2 + e4'

(125)

(126)
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in the limit

which becomes

(133)

(134a)

Hspin = io ·~+eA)x(p+eA),
2mo

therefore occurs in addition to Hclass and is inherently
quantum mechanical in nature. By considering A to be a

A
vector, and fJ to be a vector operator,' ~ ~ -i1\V, of quantum

mechanics, the following commutators are obtained:

The Hamiltonian

(127)

(128)

So Eq. (124) becomes, with W:= En-moc
2 , D :=p+eA,

(129) (134b)

1.4.1 EMERGENCE OF B (3) FROM EQUATION (128)

Equation (128) is a wave equation of quantum mechanics
which gives the Hamiltonian eigenvalue

where the terms AjPi and AjPj have been defined to be zero.
This means that P operates on A but A does not operate on P.
Adding (134a) and (134b) gives [16]

WU = Hu, (130a)
(135)

(130b) where Bk is the magnetic flux density,

with, from spinor algebra [16],

(136)

Since H is a Hamiltonian, it is a constant of the motion of
the electron e in the classical electromagnetic field,
represented by Ap • In Chap. 12 of Vol. 1 the Hamilton-Jacobi
equation was used to show that in a frame of reference in
which the net electronic angular momentum is zero, the
classical electron trajectory in Ap is a circle, generated by
the field B(3). The classical Hamiltonian, furthermore, is

The yarious terms in Hsp 1n can be developed in more detail
with this result.

In general, the vector potential A of an electromagnetic
field is a complex quanti ty (Vol. 1) and in the circular
basis (1), (2), (3) of that volume can be represented by A(1)

and its complex conjugate A(2). These are transverse plane
waves, through which the usual transverse magnetic wave
fields can be defined,

«J .lI)2 = (p + eA)2 + i 0 • (p + eA) x (p + eA) . (131)

B (1) = V x A (1) , B (I) = V x A (2) • (137)

H - _1_ (p + eA)2 - eel> •
class - 2m

o
(132) Conjugate

therefore
products
non-zero,

such as A (1) X A (2)

and contribute to
in Eq.
Hsp 1n •

(133)
These

are
are
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considered in the next section. When A is pure real,
however, it follows [16] that Eq. (133) can be expressed as H

(L~ = at-B (0)
~~n ~ 2 Ima

(142)

where B is a magnetic flux density defined by the operator
sum [16 J ,

In this equation, p is a vector operator of quantum mechan­
ics, not a classical momentum vector. It defines the intrin­
sic (irremovable) transverse linear momentum operator of the
electron, corresponding to the intrinsic spin angular
momentum operator, whose non-zero eigenvalue is the universal
Dirac constant n of quantum mechanics. The Hamiltonian Hsp1n
is therefore to order one half in the power density of the
classical electromagnetic field (watts per square metre). It
is proportional to S(]) at order one, and to the electronic
spin angular momentum, no, at order one. The concept of
intrinsic electronic spin does not exist in classical
physics, because there n..... 0, and therefore the transverse
components of fJ appearing in Eq. (139) also disappear in
classical physics. On the other hand, the vector A is a
classical vector potential, and is non-zero in classical
physics.

Equation (138) shows that the magnetic flux density B
appearing in the spin part of the Hamil tonian, Hsp i n , is
independent of time. The only time-independent (i.e., phase
free) magnetic component of vacuum electrodynamics is B (3)

(Vol. 1) and so

(143)

which link Eqs. (136) and (139).
The importance of the result (140) for magnetic effects

of electromagnetic radiation cannot be overemphasized,
because S(!) is the fundamental magnetizing field. In Eq.
(140) it is viewed as a classical field, because the Dirac
equation describes the trajectory of e in the classical A~.

The spin Hamiltonian H~jn is built up from the dot product
of S(:n with eno/(2mo) which disappears in the classical limit
n..... 0 . Therefore Hsp 1n has no classical counterpart for this
reason, despite the fact that Sf!) is a non-zero, classical
field. Intrinsic electron spin has been well known and used
for over sixty years, but the simple additional inference
respresented by Eq. (140) appears not to have been made,

despite the fact that both the electron spin and S(3) are
derived simultaneously from the same equation of motion of
one electron in the classical electromagnetic field.

because the sign of S(]) changes when the sense of circular
polarization is reversed.

Equation (140) is a fundamental, first principles,

demonstration of the existence of S(3) as an observable of
free space electromagnetism, because Hsp 1n is a direct result
of the Dirac equation of e in Ap • It shows that circularly
polarized electromagnetic radiation generates a magnetic
field in vacuo, a field which is the fundamental entity of
magneto-optics.

In deriving this resul t, use has been made of the
operator-vector definitions [16],

(139)

(138)

(140)ellB (0)
±---­

2mo

B := VxA = i<PXA+AXj;>.

for the interaction of e with Ap • For one sense of circular
polarization (e.g. right (R» 1.4.2 COMPLEX Ap : SECOND ORDER PROCESS

(R) enB (0)

Hsp i n = ± 2m
o

'

and for the other (left (L»

(141) Since Hsp 1n in Eq. (140) is a Hamiltonian, it is time
independent, showing that B(3) is a phase free, time indepen­
dent, and observable component of vacuum electrodynamics.
Equation (4) of Vol. 1, furthermore, relates B (3) to the plane

'Waves 8(1) and S(2) , which are complex conjugates in the basis
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(1), (2), and (3) of Vol. 1. These magnetic plane waves are
defined by Eqs. (70) and (71) of that volume. In these equa­
tions (Vol. 1)

6)2
eB (0) = -lilt -It = -l\-

c 2
(150)

A (1)
B(O)

_c--(i1 + j)ei~,
.;26>

A (3)

in order for Eq. (147) to be valid.
To interpret Eqs. (147) and (149) requires that

and it follows from the minimal prescription,
(151)

for the motion of e in A p , that the transverse momenta of the
electron are in general complex operators, represented in the
same basis by the complex conjugate pairs

PI! .... P JJ + eA Il
(145)

(146)

i.e., the electron momentum operator ~(1) is generated from
the product of the electronic charge e and the field vector
potential Ap • Anticipating a quantized field interpretation,
then the electron momentum is generated from the photon
momentum operator corresponding to the classical A (1) / e . This
is an example of an electron property being created from the
equivalent photon property. In order therefore to interpret
Eq. (150),

are expected, where B;3l is a magnetic field. Using Eq. (12)
of Vol. 1

In so doing, it is understood that measurable quantities
(physical observables) are real, as in electrodynamics in
general. Thus, for example, the conjugate products A (1) x A (2)

and p (1) x 11' (2) are pure imaginary in the representation (144),
but contribute to Hsp i n in Eq. (133) by multiplying the
imaginary iO/(2mo) . Dimensionality shows, furthermore, that
these conjugate products must be phase free, magnetic fields
akin to S(3) , i.e., relations such as (Chaps. 3 and 4)

(153)

(152)(hK)photon ... (fl)electron •

From Eq. (151) in Eq. (147)

which is formally identical with the usual classical equation
of B with V x A.

By consLde r'Lng the possibility of a non-zero A (1) x A (2) in
the Dirac equation, the meaning of Eq. (12) of Vol. 1 can be
clarified in terms of Eqs. (150) and (152), in which momentum
is taken from the classical field and used to create the
electron momentum operator fJ, which is finally quantized
according to the fundamental axiom used in Eq. (151). With
this prescription, Eq. (147) becomes formally identical with
Eq. (139), but physically, the electron momentum ~ in Eq.
(139) is not obtained from photon momentum. The Dirac spin
Hamiltonian from Eq. (147) is therefore

(148)A (1) X A (2)

and so

(149) (154)

Assuming that B1( 3 ) = S(:u, then without loss of generality we
arrive at

which can be written as
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Hsp i n , 1 = - ( 2r: ) ·(hX)Photon
o electron

(155)

Dirac Equation, Proof of B (3) From First Princip1es

.~ OAJ2) _ [A (.1) A (2)]: = -~n----w - 1:-'1 , j ,
aXj

37

(159)

to emphasize the fact that electron spin has been captured
from the electromagnetic field itself, a process which is
s:cond order in A, as Eq. (147) indicates on the right hand
s1de.

The existence of B(3) from Eq. (12) of Vol. 1 therefore
leads co?sist~ntly to the second order Dirac spin Hamiltonian
(155), t n :wh1ch the photon (i. e . , the quantized field)
representat10n has been anticipated.

1.4,3 COMPLEX Ap : FIRST ORDER PROCESS

. The .first order process with real A leads to the spin
Ham1lton1an (140), in which the presence of the classical
~lectromagnetic field is represented solely by B(3) , which is
1~ turn proporti~nal to the square root of field intensity
(1.e., ~ower dens1ty). The process just described in section
1.4.2. 1S, on the other hand, to order one in power density.
The field S(3) is formed to first order from

Equation (158) indicates the observation of B(3) through
the intrinsic electronic spin, and the first order spin
Hamiltonian (140). The latter is to first order in the
magnetic flux density magnitude, B(O) , of the classical
electromagnetic field. It is a non-zero, time invariant
quantity (a Hamiltonian eigenvalue) and therefore independent
of the electromagnetic phase. It must therefore originate in
the interaction of S(3) with the quantized electron spin. The
only way in which intrinsic electron spin can be observed in
this context is through the observable field S(3) , for example
in a Zeeman splitting due to S(3) of a pump -laser. Such an
experiment indicates the presence of B (3) in vacuo, and at
first order the splitting should be proportional to the
square root of the pump laser's power density.

B(3) ~(~(1) XA(2))Z + (A(2) xj(ll)Jem, (156) 1.5 COMPARISON WITH THE CLASSICAL EQUATION OF MOTION OF e

IN Ap

From Eq. (132) the Hamiltonian eigenvalue of e in Ap in
the Dirac equation also contains the term

where V = -Yi + Xj is the same operator as for the spin term.
Unlike the latter, Eq. (160) has a classical equivalent [15].
If ~ is the vector potential of s(J) (Vol. 1), then [15]

which is formally identical with Eq. (139). However in Eq
(156), the momentum vector operator ~ is considered'to be ~
complex quantity in the basis (1), (2), (3), and therefore
the operator

(157)

now has real and imaginary components. The physically
meaningful part of B(3) from Eq. (156) is its real part, and
Eq. (156) reduces to

Hclass = --.!-~ + eA) .~ + eA),
2lllo

(160)

(161)

(158) (r : =xi + Yj + ZlC) ,

using the semi-commutators [16] where V:;: -ta + xj is a possible representation in Cartesian
coordinates. Therefore V·~ = 0 and the term in A in Eq.
(160) becomes [18]
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B(1.) ~A .'p == ~B (3) x r· p =: 2~- B (3) • r x p .
rno 2mo -"-0

(162) ly polarized electromagnetic field is

which is the orbital angular momentum of the electron in the
classical field B (3). Then

In order for this to be non-zero, r x p must be in the same

direction (Z) as B(3). This is possible if and only if both
rand p have components transverse to the direction of S(3) .

This reasoning identifies p as transverse electron linear
momentum, and identifies r x It' as Eq. (399) of Vol. 1,

where .(3) = - (e/2mo>J(3) is the induced magnetic dipole moment
of Eq. (403) of Vol. 1, obtained from the classical Hamilton­
Jacobi equation of the motion of e in A~. This leads us to
expect that there is a Hamilton-Jacobi formulation of the
Dirac equation; and this is indeed the case [29]. In Chap.
12 of Vol. 1 we have seen that J(]) is given relativistically
by Eq. (402) of that volume,

(168)11(3) = NiII (3) ,

consisting of terms to zeroth, first, and second Qrder in
S(!). Equation (168) is the result of the Dirac equation in
its Hamilton-Jacobi form. The classical result is Eq. (165)
without the term in ncr, because classically, l\ .. 0, giving Eq.
(405) of Vol. 1.

Equation (168) is a simple prediction whose experimental
investigation reveals in theory the presence of B(!) through
its square root power density dependence. It shows clearly
that the Dirac constant, 'h, is an angular momentum (the
spinor 0 being unitless). In one sense, the angular momen­
tum n of the photon has been given up, or has been transmut­
ed, to that of the electron. It is therefore possible to
talk of the photon giving up all its angular momentum to the
electron in a process of magnetization by light. This
angular momentum obviously has no dependence on field
amplitude B(O); for the photon it is hk, for the electron it
is bu. The difference is due to the fact that the photon is
a boson, the electron a fermion.

The equation (168) is therefore the rigorous description
from first principles of the inverse Faraday effect for N

electrons in a plasma.

(163)

(164)-Ill (3) • B (3) ,

3(3) = Jzlc = rxp = (Xpy - YPx)k,

(165)

where ~ is the electronic cyclotron frequency set up, i.e.,
induced, by S(]). On the other hand, the Dirac spin Hamilto­
nian, Hspin of Eq. (140), is the result of the intrinsic
electronic angular momentum, which is not an induced angular
momentum. The complete Hamiltonian in S(3) is therefore

(166)

and the complete magnetic dipole moment is

(167)

Finally, the expected magnetization, if N is the number of
electrons in a plasma subjected to irradiation by a circular-
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In Vol. 1 the emergence of S(]) was related to photon
mass, the upper limits on which are listed in contemporary
standard tables on particle mass [28]. Higgs has suggested
[29] that there exists a scalar field, the Higgs field, that
gives rise to photon mass through spontaneous symmetry
breaking. In this chapter we aim to link the Higgs phenome-
non with the field S(3), and to show that the latter is a
vortex line, or soliton, in non-linear field theory. In
superconductors it becomes an Abrikosov line, but also exists
in the vacuum, whose non-trivial topology is well established
in the contemporary literature [30].

The cyclically symmetry link between the complex
conjugate wave fields S(1) and S(2) , and the novel spin field,
S(3) , is given in Eqs. (4) of Vol. 1, and is

(169)
B(I) x S(1) = iB(O)S(2) ",

These equations are consistent with Maxwell's equations in
free space when the mass of the photon (anticipating the
quantized interpretation of light) is identically zero. The
existence of finite photon mass is not therefore a necessary
condition for the existence of S(3). It exists in free space
when the photon mass is identically zero. However, the fact
that the transverse wave fields imply the existence of the
longitudinal spin field through a non-Abelian set of equa­
tions (169) suggests that the object known as the photon has
three degrees of polarization (1), (2), and (3) in free
space. Since photon mass (through the Proca equation, for
example) suggests three degrees of space-like polarization
there appears to be a link between photon mass and the spin
field S(Jl, which is a real, physical field. The Higgs field
[29] also makes the photon massive through spontaneous
symmetry breaking, but in the GWS theory of fields [31], a
theory which unifies successfully the electromagnetic and

41
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weak fields, the photon mass is forced to be zero by model­
ling. Nevertheless, GWS is based on the Higgs phenomenon,
and on the idea put forward by Higgs of spontaneous symmetry
breaking. Contemporary gauge theory asserts that the photon
mass is identically zero, but as discussed in Vol. 1, it is
easily possible to make the equivalent assertion,

( (
. A (0»))

Ap ::::: A, 1.--c I
(170)

is asserted that the components of A are transverse and there
is no longitudinal component A(!) , and no time-like compo­
nent, A (0) or scalar potential. For these reasons, the
Coulomb gauge is inconsistent with the fact that A p is a
four-vector, and inconsistent with the simultaneous existence
of photon mass and gauge invariance. This conclusion is
consistent with the fact that the Proca equation is consis­
tent with the Lorentz gauge condition,

This view excludes the Coulomb gauge because in that gauge it

i.e., is the modulus of A, which in the circular basis (1),
(2), and (3) ,. is

where A p is the four potential. Equation (170) satisfies
gauge invariance, while leaving open the possibility of non­
zero photon mass. Equation (170), however, implies that

(175)

but not with the Coulomb gauge [32].
-It is well known that the Higgs phenomenon leads to the

inference [29] that the photon becomes massive in supercon-
ductors, and to the existence of S(!) as a vortex in topology,
recognizable experimentally as a quantized flux, an Abrikosov
line. The same Higgs Lagrangian also leads to the Proca
equation in superconductors [16]. Mathematically, the Proca
equation for the massive photon in free space is the same
precisely as the Proca equation for the massive photon, and
for the Abrikosov lines, in superconductors. It has been
argued in Chap. 12 of Vol. 1 and in the opening chapter of
Vol. 2 that the motion of e in Ap is governed entirely by a
free space B (3), a B (3) which is 1 inked to the ordinary
transverse S(1) = B(~n. from the standard free space Maxwell
equations by the non-Abelian (169). Therefore, if photon
mass is accepted as a possibility, S(3) is a topological
vortex in free space, and is a consequence of the vacuum
topology and spontaneous symmetry breaking. The experimental
observation of S(3) in the inverse Faraday effect (Chap. 7 of
Vol. 1) would then become evidence for the Higgs field in the
vacuum. If photon mass is asserted by axiom to be identical-
ly zero, then S(3) becomes a topological consequence of the
existence of the Maxwellian S(1) and S(2) through the non­
Abel ian equations (169). As argued in Vol. 1, if photon mass
is asserted to be identically zero, the range of electromag­
netism becomes infinite, and therefore exceeds the known
dimensions of the universe. It is impossible therefore to
test this assertion experimentally. In contrast, the
arguments for finite photon mass or classical equivalent have
been developed from the time of Cavendish [33], and are ably
reviewed in the recent literature [34]. Numerous experiments
have been carried out to derive upper limits on finite photon
mass, and these limits are available in standard tables. It

(171)

(172)

(173)

(174)

A (2) x (iA (3» = -iA (0) A (1).,

IAI := A(O)

IA (0) I clAI '

(iA (3» x A (1) = -A (0) A (2) ".

1IAI := (A (1) • A (1). + A (2) • A (2). + A (3) • A (3) .)2 .

A (1) x A (I) = -A (O)(iA (3')* ,

and excludes the Coulomb gauge [32], because the time-like
part of A p is not zero, being equal to the magnitude of the
space-like vector potential A. This becomes the condition
for the existence of finite photon mass if the latter is not
to be identically zero, and if gauge invariance is to be
retained as a principle of physics. Finally, fundamental
symmetry considerations lead to the conclusion that the
cyclically symmetric relations,

between components of A can be satisfied if and only if the
longitudinal part of A is pure imaginary ..The magnitude of
the scalar potential A (0), (the timelike part of Ap ) , is
therefore
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If the mass mo is identically zero, this relation becomes

photon mass. It is asserted conventionally that if the
photon mass is zero, the axioms (176) still apply. In three
dimensional notation the axioms of quantum mechanics are

and historically, it was de Broglie's inference of matter
waves that led to the development of wave mechanics in
material such as atoms and molecules as well as in radiation.

Using the axioms (177) in the Einstein equation (1)
leads to the following relation between the angular frequen­
cy, ~, and the wave-number E,

(178)

(179)

(177)A
J} = llit = -il\V,

K = ~,
c

is no longer asserted in the literature that the mass of the
neutrino is zero, so that the notion of a massless particle
is being questioned. Nonetheless, the GWS point of view
leads to the existence of massive bosons but simultaneously
asserts by modelling that the photon mass is identically
zero. Essentially, therefore, the Higgs phenomenon leads to
a massive photon which is accepted 'in superconductors, but
conventionally rejected in the vacuum, despite the fact that
the same Higgs Lagrangian (and consequent Proca equation) is
used in both superconductors and in the vacuum. Therefore
the contemporary point of view appears to assert that photon
mass is acceptable in superconductors but not acceptable in
the vacuum, i.e., accepts the Proca equation in superconduc­
tors but rejects it in the vacuum. This is mutually incom­
patible - an equation of natural philosophy must be generally
applicable, if the photon is asserted to be massive in
superconductors it must be massive in the vacuum. If the
Proca equation is valid in superconductors and if the photon
mass is a property of the photon, and not something given to
the photon by its interaction with superconducting material,
then the Proca equation must be valid also in the vacuum.

2.1 CYCLICALLY SYMMETRIC EQUATIONS FOR FINITE PHOTON MASS

In this section the Einstein equation (1) is used to
show that the non-Abelian equations (169) remain the same in
structure in the presence of finite photon mass provided that

the scalar ampl i tude B (0) is replaced by B (0) exp (-~Z), where ~

is the rest wave vector given by moc/'h where mo is the
intrinsic and irremovable photon mass. As argued in Vol.
1, ~ is a minute quantity, difficult to detect experimental­
ly, but is, nonetheless, related directly to the well

accepted notion of rest energy, moc
2 , for a particle with

mass. Our derivation in this section is based on the well
accepted fundamental axioms of quantum mechanics, which in
Minkowski notation become

which is the conventional relation between It and ~ for an
electromagnetic wave propagating in the vacuum. Using the
axioms (177), Eq. (178) is the Proca equation,

(180)

if the wavefunction is identified with All. The Proca
equation is therefore intrinsically quantum mechanical in
nature and as discussed in Chap. 1, is the same in structure
as the Dirac equation. When mo = 0, and in the classical
limit, the Proca equation (180) becomes the d'Alembert
equation,

(176) OAJi 0, (181)

which is an expression of the vacuum Maxwell equations.
Defining It : = w! - ix", Eq. (178) is a quadratic in It:where Pp;;;: (p, i (En/ c) is the particulate energy-momentum

four-vector and Jep ;;;: (It, i (6l/c)) the wave four-vector of radia­
tion. Here ~ is the angular frequency and It the space part
of the wave vector of matter waves. The matter wave is an
electromagnetic wave if the mass of the particle is the

(182)
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and so ~ is in general a complex quantity when the mass roo is
non-zero. Specifically,

is compatible with Eq. (178). This allows the identification
of the rest frequency of radiation of finite mass,

(188)

Since these fields are solutions of Proca's equation,
they are also generated by the Higgs phenomenon in the
vacuum, a phenomenon which relates photon mass to spontaneous
symmetry breaking, an essential ingredient of unified field
theory. However, it is important to note that finite mo is
not a necessary condition for the existence of the non-
Abelian relations (169), i.e., S(3) exists when mo=O identi­
cally and is a solution both of the d' Alembert and Proca
equations in the vacuum. It is clear that B(3) from the
d' Alembert equation has no exponential decay, whereas S(!)

from the Proca equation decays exponentially according to Eq.
(187), and so must ultimately vanish completely as Z ap­
proaches infinity.

(183)

(184)

K
"

: = ~,x.' : = ~ I

C

which is de Broglie's Guiding Theorem (Eq. (1) of Vol. 1).
In the particle interpretation, this means that the photon
has a rest frame, a rest mass, and a rest energy. The speed
of light c therefore becomes a postulated universal constant
of special relativity, because a photon of finite mass does
not propagate at c.

From Eq. (183) the phase of an electromagnetic plane
wave becomes

exp (i~) = exp (1(<.> t - Jt'z» exp(-~Z), (185)

2.2 LINK WITH THE HIGGS PHENOMENON

is therefore a solution of the Proca equation, as are the
wave fields

i.e., is the usual phase multiplied by the exponential exp
(-~Z), a real quantity. The complex conjugate of the phase
becomes

and the cyclic relations (169) remain the same, provided that
the scalar flux density magnitude, B(O) , is replaced by
B (0) e-(Z as indicated already. Similarly, the scalar vacuum

magnitude, E(O), of electric field strength is replaced by
E(O) e-(z. The spin field

In the theory of fields and particles, the spontaneous
breaking of gauge symmetry leads to the Proca equation, in
the sense that massive bOBons are predicted, and in unified
field theory of the GWS type [16], are observed experimen­
tally. The Higgs boson has a finite mass, but has not been
observed experimentally. However, the realization that S(3)

exists in the non-trivial topology of the vacuum means that
the photon must have three space polarizations, which is
exactly what is inferred on the grounds that the photon may
have mass, i.e., by the Proca equation. The latter is a
result of the Higgs Lagrangian, as described by Ryder [16].
The experimental observation of S(3) in the inverse Faraday
effect, which is magnetization by light, lends support to the
Higgs theory. Evidence for the Higgs phenomenon, and the
Higgs boson, therefore becomes available through a combina­
tion of data from the inverse Faraday effect, which shows the
existence of S(3) , and the evidence recently reviewed by
Vigier [34] for photon mass, evidence which is assembled from
several different sources. Standard tables no longer list
the photon mass as identically zero, but as an upper limit
inferred from experimental sources. Taken with the emergence
of S(3) , therefore, the upper limit on photon mass is also an

(186)

(187)e (3) = k,

exp«i~)*) = exp(-i(<J>t - x'Z)) exp(-~Z),
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(193)

(192)

(191)

(190)

e~ -2nn,

e 1« = cos ex + i s i.n e ,

This finding is consistent, furthermore, with the fact
that non-linear, classical field theories in general produce
solitons [16]. The non-Abelian relations (169), (172) and
(189) are also non-linear, and significantly, S(3) is a
solution which is a stable configuration with a well defined
energy which is nowhere singular. The field S(!) therefore
has all the characteristics of a soliton solution, being the
expectation value of the photomagneton of quantized magnetic
flux. In recent years [16] non-Abelian gauge theories have
predicted the existence of vortices, magnetic monopoles of
the 't Hooft-Polyakov variety [36], and instantons, which are
soliton solutions to the gauge field equations in two space
dimensions (i.e., a string in three dimensional cylindrical
space). In the same way that the stability of soliton
solutions in non-linear field theories is a consequence of
topology, the stability of S(3) in free space is a direct
consequence of the existence of the complex conjugate wave
fields S(l) and S(2). In other words S(3) is linked topologi­
cally with S(l) and S(2) , all three fields being proportional
to rotation generators of the Poincare group of space-time.
The topology of the U(l) group ensures the stability of

where ~ is the magnetic flux associated with the vortex
line~ so that the string-like magnetic flux is identified
with

where n is an integer. This is precisely the string condi­
tion [16]

should always be viewed as including the case «= o. If u is
identified with the electromagnetic phase, then a = 0 implies

remains valid, showing that the U(l) group of electromagne­
tism, the group of all numbers of the form

Link with the Higgs Phenomenon48

between electric field components. Spontaneous symmetry
breaking of a non-Abelian gauge theory leads to the GWS
unified field theory [16], which is renormalizable. For this
reason, massive bosons are acceptable in GWS and have been
found experimentally. The existence of a massive photon is
therefore not incompatible with renormalizability in quantum
electrodynamics, and finite photon mass has been worked into
GWS and 8U(5), for example in papers by Huang [35]. It is
~herefore clear that S(3) is compatible with renormalizability
1n QED, and this subject is addressed later in this volume.
Even in the absence of photon mass and in the absence of a
Higgs field, the non-Abelian algebra (169), (172) and (189)

Chapter 2. B (3) and the Higgs Phenomenon

upper limit on the mass of a Higgs boson - the massive
photon. The existence of S(3) in electromagnetic theory has
consequences in unified field theory which will be explored
later in this book, and as we have seen, finite photon mass
is not incompatible with gauge invariance provided that
ApA

Il
= 0 . The field B(3) appears therefore to be compatible

in every way with the Higgs phenomenon and non-trivial vacuum
topology. In this section, the Proca equation is derived
from the Higgs Lagrangian which leads to the massive photon,
~n inference which is accepted as experimentally plausible,
1.e., no attempt is made to model out the photon mass as zero
as in the GWS (or SU(2) ® U(l» theory. The same Higgs La-
grangian is used in subsequent sections to show that B(3) is
~ topological string, i.e., a quantized magnetic flux density
1n one (Z) dimension. This string of magnetic flux density
propagates in free space, i . e ., through the non - trivial
topology of the vacuum. The same Higgs Lagrangian gives rise
to the equivalent of S(3) in type II superconductors, i.e.,
to Abrikosov lines. Although the vacuum is not a supercon­
ductor, the topological features of both vacuum and supercon-
ductor allow the existence of S(3). The Maxwellian point of
view is therefore a limit in which the photon mass is
identically zero.

It may be significant that the algebra (169) that
links S(3) to S(l) and S(2) is non-Abelian, i.e., the cross
products of fields are non-commutative. The same is true of
the non-Abelian algebra between components of the vector
potential, Eqs. (172), and the algebra,
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using the Lagrangian,

(198)

(197)

(196)

where Eo is the free space permittivity, F pv the field four­
tensor of electromagnetism, and e the charge on the electron.
Using the quantum prescription (176), the Lagrangian (197)
becomes the classical

in S.I. units. In this classical approach ~ is a parameter
with the units of mass, a parameter that is generated by the
wave equations (194a) and (194b), which originate as de­
scribed in Chap. 1 of this volume, from the Einstein equation
of special relativity. In that classical particle equa­
tion, ~ is the particle mass.

Applying the contemporary principles of gauge invariance
to the Lagrangian (196) results in the introduction of a
four-vector Ap , which has all the properties of the potential
four vector of electromagnetism [37]. In order to preserve
gauge invariance, and the principles of special relativity,
the Lagrangian (196) must be modified to

in which the Dirac constant n has disappeared. Note that
nothing has yet been mentioned of spontaneous symmetry
breaking, which will be interwoven into these considerations
at a later stage. The mass parameter m. appearing in Eq.
(198) originates in the complex Klein-Gordon field, and not
the electromagnetic field, which introduced itself through A~

as a consequence of special relativity expressed through
gauge invariance. Readers are referred to Ryder [16] for
more details of this process. The Lagrangian (196) of the
complex Klein-Gordon field is not compatible with special
relativity because, essentially speaking, it allows action at
a distance. The Lagrangian (198) is made compatible with
special relativity by the introduction of Ap through the

(195)

(194a)

(194b)

(D+~.)~=O,

(0 + ~~) cf> * = 0,

the S(3) vortex in the vacuum, a vortex line that carries
magnetic flux of finite energy.

The structure of the Proca equation of field theory can
be deduced as follows from the Klein-Gordon equations for a
complex, scalar field, denoted by

where ~.: = (mcl»c) In, in S. I. units, where nand c are not
suppressed. In writing the Klein-Gordon equations in this
way, quantization has already been assumed, because of the
presence of the Dirac constant, n. In a classical approach,
as described by Ryder [16], the scalar field cf> is not a
single particle wave function before canonical quantization,
but can be regarded as a generalized coordinate, i. e., ~

replaces a coordinate x and the time t of the function x(t)
is generalized to x p • In this view, the two Klein-Gordon
equations are classical wave equations in which the parameter
m~ is not immediately identifiable as the mass of a point
particle. Canonical quantization of the complex Klein-Gordon
field produces, interestingly, particles and anti-particles
with the same mass but opposite charge, spin being unconsid­
ered because we have a scalar field. If it is possible, as
we have asserted, to produce a Proca equation from the two
Klein-Gordon equations (194a) and (194b), then if these are
classical, so must be the Proca equation itself. Canonical
quantization of this classical Proca equation then proceeds
satisfactorily, because the particle has three space-like
polarizations [16 J • If the particle is a photon, then
introducing the mass parameter m~ means introducing a third
space-like polarization, which is precisely what is indicated
by the non-Abelian equations (169), (172) and (189).

The two Klein-Gordon equations (194a) and (194b) can be
obtained from the Lagrange equation of motion,
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covariant derivative

a ieAJi
DJi := -- +--

oXJi 11
(199)
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equivalent to the classical Proca equation

(
e~A..A...)o - -"'-"'- A = o.l'1lt p
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(204)

This is recognizable as the vacuum Proca equation which
obtains conventionally when the source of the electromagnetic
field is infinitely distant. The mass term in this equation
is obtained from the product

which shows that eAp has the same S. I. units as -ih(%xJl).
Electromagnetism is therefore seen to be a property of space­
time itself. This deduction was repeatedly reinforced in
Vol. 1 through the fact that S(3) is directly proportional to
a rotation generator of the Poincare group of space-time, and
is therefore physically meaningful in the vacuum.

The Lagrange equation ~2 : = e
2

" .----,m. (205)

Note that there is a term in ApA... in the Lagrangian
(197), which is identifiable as a mass term. This makes its
appearance on the left hand side of the Proca equation (201)
and is consistent with gauge invariance. The right hand side
describes the interaction of e with a current J

p
which is

premultiplied by the Dirac constant n. In classical physics,
however, this is zero, so the right hand side of the Proca
equation (201) has no classical equivalent and vanishes in
classical physics. The left hand side remains the same if ~
can be regarded as a classical mass. This result is equiva­
lent to asserting that the complex Klein-Gordon field has no
linear momentum, which is represented entirely by the
electromagnetic field in the entirely classical Lagrangian,

(206)

is obtainable directly from the Einstein equation (1) by
regarding A... as a wave function and using the quantum
prescription (176). Equation (206) is therefore a wave
equation equivalent to a free photon. Identifying the two
mass terms gives

and has been given up to the electromagnetic field by the
complex Klein-Gordon field. In quantum physics, the Dirac
constant n is not zero, and so the current term on the right
hand side of Eq. (201) is restored. This can be regarded as
the source of the electromagnetic field, a source which
resides in a charged, complex scalar field. Therefore the
Proca equation (201) describes an interaction process in
which linear momentum is conserved. In this view, therefore,
quantum physics asserts that the source of electromagnetism
can never be infinitely distant, as in classical physics,
because in quantum physics, n is non-zero. The charge e is
not quantized in this view, and is introduced through the
product eAp • • • ,

It is inferred that if the el ect.romegnet Lc Fi el.d s
source is the complex Klein-Gordon field, then the latter
gives up mass to the former, a mass term described by Eq.
(205) .

In this view, therefore, the classical electromagnetic
field can never be without mass, because it would have no
source. As in Chap. 1, the Proca equation,

(200)

(201)

(202)

0,

with the Lagrangian (197) leads to the Proca equation,

where the current J p is defined as in Chap. 1 by

(203)
~2=(m~Cr (207)
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where mo is the intrinsic, irremovable, mass of the free
photon.

The current term,

(213)

(20B)

Equation (212) is of course consistent with the Proca
equation (206).

2 .. 2 .. 1 SPONTANEOUS SYMMETRY BREAKING
is a London equation in the vacuum, and if a vacuum resis
tance R can be defined, and if Ohm's Law can be assumed to
apply,

Spontaneous symmetry breaking is characterized [39] by
the equation

where M is a parameter. In this view, introduced by Higgs
[40] and others, the vacuum becomes the state of lowest
potential energy, the minimum value of

(209)

showing that there is an electric field Ep generated directly
by Ap through the Proca equation. This is discussed by Moles
and Vigier [38].. The existence of the field B(3) follows
directly from Ampere's equation,

(214)

(215)

(210)
given by Eq. (214). The vacuum is no longer necessarily the
state in which the fi d is absent. Therefore the field has
a vacuum expectation value. given by

which gives

(211)

(216)

vacuum eigenstates being denoted by 10>. From the equation

The solution of this equation is

B (3) B (0) e -fZK , (212)
(217)

which identifies the rest wave-number of Eq. (183) of this
chapter as

mass becomes something that ensures the minimization of
energy an em ment of a variational prLnc i.pl.e . Therefore
spontaneous symmetry breaking (SSB) adds a background energy
to the universe, and is characterized by the addition of the
term A~4 to the Lagran (203).. From Eq. (213), the photon
mass mo can be expressed directly in terms of the mass
parameter M, and in this sense, the photon picks up mass from
the vacuum as it propagates.. Thi.s notion is furthermore
consistent with the recent inference [41] of vacuum friction,
which explains how light intensity can be lost exponentially
as the light beam propagates through the vacuum. Since light
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intensity (watts m-J
) is defined in S.1. units by

(218)

in 3-D space can be developed as follows. In the conventional
view of vacuum electrodynamics [44-46], the electromagnetic
energy density is defined by the transverse, wave fields, and
by these only,

where 110 is the vacuum permeability and Eo the vacuum
permittivity, then a massive photon implies that intensity
decays exponentially along the propagation axis (Z). If so,
then electromagnetic energy density, defined by

u = 1.( -1-_ (B (1) • B (1). + B (2) • B (2) .)

2 110 (220)

(219)
in the circular basis [47] of Vol. 1,

The non-Abelian algebra (169) and (189), however, indicates
that this must contain terms due to S(]) and -i.(3) / c in the
vacuum, i.e., real and imaginary field terms that are phase

The energy (220) can be denoted in Minkowski notation by the
product of the electromagnetic four-tensor F.." with the
complex conjugate tensor F;". In the circular basis these
tensors must be defined by

(223)

(221)

0 CB(3) -CB(2) -iE(l)

-CB(3) 0 CB(l) -iE(2)

F"v : :
CB(2) -CB(l) -iE(3)

,
0

is'» iE(i!) iE(3) 0
(222)

0 eSC). -cB (2). se'»:

F;"
-cB (3). 0 CB(l). iE(2).

: =
cB(2). -cB (1). iE(3). '0

-Ls'» • -iE(2). -iE(3) • 0

in order to obtain a positive U from the tensor product

EoF,vF;v. From the principle of gauge invariance of the seco~d

kind [16], the term U must be subtracted from the complex
Klein-Gordon Lagrangian density to maintain consistency with
special relativity. Therefore the term equivalent to the
energy U in the gauge invariant Lagrangian density is

is lost as light propagates (Tolman's tired light [41J), and
the range of electromagnetic waves becomes finite, even if
they are propagating through a vacuum. These inferences
require a vacuum resistance R, as in Eq. (209), or vacuum
friction.

The symmetry broken Higgs Lagrangian has been shown in
recent years to produce a soliton solution, a vortex line of
quantized magnetic flux which in type two superconductors is
an Abrikosov line [42]. This vortex is stable in two or more
dimensions [16] if and only if there is also present a gauge
field such as an electromagnetic field represented by A ...

The vortex line appears in two dimensional space, or three
dimensional space with cylindrical symmetry (both character-
ized by U(l), the group of numbers e i « ) , and is therefore
identifiable directly with B(!) in the vacuum. Thus, the
field S(!) emerges from the Klein-Gordon equation of an

electron in A.. , as deduced in Chap. 1 for the Dirac equation
of e in Ap • For reasons discussed there, the Klein-Gordon
equation must be replaced by the Dirac equation in order to
produce a physical probability density and in order to
produce a correct description of anti-particles, but each
component of the Dirac equation must also satisfy a Klein­
Gordon equation. As discussed by Ryder [16}, the Dirac
equation with considerations of 8SB leads directly to the GWS
unification of the electromagnetic and weak fields. In this
view therefore the association of S(!) with photon mass
becomes inevi table, so that the well known experimental
observation [43] of B (=u in the inverse Faraday effect becomes
indirect but persuasive evidence for the existence of photon
mass and therefore for a Higgs boson.

The close relation between SSB and the non-Abelian
algebra (169) that defines S(3) in the group 0(3) of rotations
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free and which require for their definition the involvement
of the third polarization space axis (3), defined by the unit
vector

(228)

which is in turn identified precisely in the circular basis
(221) with the cartesian unit vector k in the propagation
axis Z of the light beam. In the particle interpretation
therefore, the photon 118S three space dimensions. This is
precisely the outcome of SSB, which in the presence of
electromagnetism produces a vortex line, B(3) in the vacuum,
which in type II superconductors becomes an Abrikosov line.
Furthermore, the structure of the non-Abelian algebra (169)
is maintained exactly for the electromagnetic field with mass
provided B (0) is replaced by B (0) e-(z.

The existence of B (3) and its dual (Vol. 1) - 1B(3) / c in
the vacuum therefore leads to the replacement of (223) by

e (3) = k, (224)
The field B(3) in the vacuum can therefore be considered in
terms of spontaneous symmetry breaking in this way. Qual ita-
tively, B(3) has a rod-like symmetry which can be spontane­
ously broken to produce B(l) or S(2) in the plane perpendicu­
lar to B(!). The latter is independent of phase, and so the
symmetry breaking can produce any value of the phase without
affecting the magnitude or direction of B(!) , i.e., the
fields Btl) and S(2) can be oriented randomly with respect
to S(3) and still produce the same value of S(:Jl. This
process is directly analogous with the spontaneous bending of
a rod in any direction as described in Ryder (47].

Continuing the analogy between SSB, intrinsic photon
mass, rno' and S(3) , it is seen that -~z plays the role of
M2+2 ; ~2Z2 plays the role of A+(; and I1st plays the role of
v. In the absence of intrinsic photon mass, the usual vacuum
state occurs at ASl;:: 0 (i. e., Z I: 0 ), in which case

Sfno mass = SfmasB •
(229)

= -l.(~ (B (1) • B (1). + B (2) • B (2) • + B (3) • B (3) *)
2 Ilo

(225)
The symmetry broken vacuum state, on the other hand, is given
by a minimum in the difference A~, a minimum defined by

The exponential in Eq. (225) is represented by

~az :::: 0, (230)

(226)
so that ~Z:: 1/2 . At this minimum point

and the difference (mass correction) between the Lagrangian
densities in the presence and absence of electromagnetic mass
becomes

an energy difference with the same structure as the SSB
energy introduced by Higgs, Eq. (215), and with a minimum
defined by

(231)

The SB vacuum state, which no longer indicates the absence of
the electromagnetic field tensor Fpv ' but is a minimum of the
electromagnetic field between vacuum eigenstates, is there­
fore displaced by Eq. (231) from the usual vacuum state. If,
following the Higgs method [16], we define the minimum of the
electromagnetic Lagrangian to occur at Z = 1/ (2~), at which
the numerical value of the Lagrangian is set to zero, then at
Z = 0, the numerical value of the same Lagrangian function
must be -(1/4)EOFp.vF;", which represents a local maximum at
Z = o. This conclusion can be checked through the fact that
the value of
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(232) 2 • 2 • 2 B (3) AS A VORTEX LINE IN THE VACUtJK

at Z = 0 is of course - (1/4) EoFJlvF;v . If the exponential is
not approximated by the first two terms of a Maclaurin
series, as in Eq. (226), its minimum occurs at z .. QO, and the
condition ~Z = 1/2 represents a characteristic correlation
distance of the exponential decay of the Lagrangian function
with photon mass. The Lagrangian decays to zero in this case
only as Z approaches infinity, in which limit gauge invari­
ance (and special relativity) can no longer be maintained.
However, since the radius of the universe is finite, the
condition z ... 00 is unphysical, so that for all physical situa­
tions, gauge invariance is maintained by the presence of
electromagnetism.

If the exponential is approximated as in Eq. (226),
however, the approximation, a Maclaurin series, is valid only
for ~Z:s; 1, beyond which it is mathematically invalidated.
Therefore inferences based on Eq. (226) are valid if and only
if ~Z:S; 1, which fixes the range of validi ty. The minimum in
Eq . (231) occurs by defini tion only wi thin the range of
validity of the Maclaurin series. For all practical purposes
~Z is always much less than one because the numerical value
of ~ is less than of the order (Vol. 1) 10-5 2 m-1 • Therefore
the Maclaurin series is approximated excellently by its first
two terms as in Eq. (226) in all laboratory experiments in
physical optics. In cosmology, however, Z can approach the
known radius of the universe in order of magnitude. In
summary, the appearance of an exponential decay in the
Lagrangian (232) is analogous wi th spontaneous symmetry
breaking, i .e., the existence of fini te intrinsic photon
mass, mo ' implies that the vacuum state of electromagnetism
is a minimum of the electromagnetic field, and not the state
in which the field is absent. In the following section, it
is shown that the conventional symmetry broken Higgs Lagran-
gian leads directly to the inference that B(3) is a vortex
line, or soliton solution, of the non-linear complex Klein­
Gordon equations in the presence of electromagnetism, the
latter being an inevitable consequence of gauge invariance of
the second kind. Thus, B (3) is also an inevi table consequence
of gauge invariance.

In Chap. 1 it was shown that the vacuum S(3) is a
consequence of the standard Dirac equation of e in Ap • Since
Klein-Gordon equations describe the evolution of individual
spinor components and also of scalar components of Ap , it
follows that S(3) must also emerge from the Klein-Gordon
equation of e interacting with the electromagnetic field,
using the same minimal prescription introduced through the
same covariant derivative, Eq. (120). In proving this result
in this section, it is also demonstrated that B(3) is a vortex
line in the vacuum, a soliton solution of the appropriate
non-linear field equations. Since electromagnetism itself is
a consequence [16] of the need to keep the complex Klein­
Gordon Lagrangian invariant under gauge transformation, the
demonstration in this section proves that the vacuum vortex
line S(3) is an inevitable consequence of gauge invariance in
the complex Klein-Gordon equation of field theory. It is
important to note, however, that this conclusion holds
whether or not the photon is regarded as having intrinsic
mass, rno , and is valid in the presence or absence of sponta­
neous symmetry breaking. However, as argued a1 ready, it
seems overwhelmingly probable that S(3) indicates the
existence of non-zero 1110, which as shown in Section 2.2.1, is
mathematically analogous with spontaneous symmetry breaking.
The latter is a key ingredient of unified field theory.
If B (:1) is asserted to be zero, while B (1) and B (2) are main­
tained to be non-zero, then field theory in general is
invalidated. The belated recognition of S(3) therefore rein­
forces field theory as currently understood, and the infer-
ence that B(3) is non-zero in the vacuum is a major step
forward in contemporary understanding. Experimental investi­
gation of its characteristic square root power density
dependence would therefore be of key importance.

The development in this Section is based on the Higgs
Lagrangian (197) with the addition of the symmetry breaking
term -A(,,*)2. This Lagrangian in Eq. (200) produces Eq.
(201), a Proca field equation. If we set cI» ::; 4>* = 0 in Eq.
(201) we recover the vacuum d' Alembert equation DAp = 0 of
which S(3) is a solution (Vol. 1). In the quantized interpre­
tation the d'Alembert equation is equivalent to the equation
of motion of a free particle, the photon free of the Klein­
Gordon field. If this latter is taken to be the field of an
electron interacting with the electromagnetic field repre­
sented by Ap , then the interaction equations are obtained
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from the symmetry broken Lagrangian (197) in the two Lagrange
equations

giving two non-linear equations which must be solved simulta­
neously [48],

CJ<;J. - D ( CJ<;J. )
a~ - ~ a(D..~) ,

~D (D ~*) =:: -1:.m c 2<IJ * - 2A~*(<IJ<Il·)
2~ ~ ~ 2 4» '

(233)

(234)

(235)

(236)

line of quantized magnetic flux, a stable soliton solution of
the coupled non-linear field equations (235) and (236).
Therefore, as anticipated, a stable S(!) emerges from the
Klein-Gordon equation of motion as well as from the Dirac
equation of motion of e in Ap • For further details the
reader is referred to the original paper [48] or- to the
description given by Ryder [16 ] in reduced units . By a
suitable parameterization of Ap in polar coordinates, the
field S(!) is given in this view a radial dependence, i.e.,
a dependence on the radial coordinate I. In the limit I'" 0 ,

S(3) from Eqs. (235) and (236) is finite, and can be identi­
fied with S(!) of the non-Abelian algebra (169). As Z"CO,

S(!) disappears, i.e., it has a finite radius. Note careful­
ly, however, that there is no dependence of S(!) on Z, the
propagation axis perpendicular to r. Therefore S(3) exists
in the free photon as an infinitely narrow flux vortex line.
The presence of the Klein-Gordon field gives S(!) a finite
radius through the use of spontaneous symmetry breaking.

The covariant derivative Dpplays the same role in these
equations as in the Dirac equation (121), which was solved
for e in the presence of Ap , but without a symmetry breaking
term. In Eqs. (235) and (236) there is a complicated
interdependence of the Klein-Gordon and electromagnetic field
due essentially to the principle of gauge invariance of the
second kind, i.e., to the conservation of local as well as
global symmetry. In addition, the vacuum is represented by

and the field ~ is parameterized [16] as

4> = x(r)e i n 9
I

where

x(r) .... 0 as I .... 0,

x(r) - a as r .... 00.

(237)

(238)

(239)

This means that the limi t ~ .... 0 as I - 0 is associated wi th
fini te energy, and wi th a fini te B (3) field which is a vortex
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The geometry of gauge fields plays a central role in
contemporary field theory. Electromagnetism is conventional­
ly asserted to be the U(1) sector ·of unified field theory,
where U(I) is the group of numbers of the form e i . , or the
group (0(2» of rotations in a plane. Unified GWS field
theory, for example, is then built on a product group such as
SU(2) ~ U(l). However, equations such as (169), (172) and
(189) are non-Abelian because of the presence of vector cross
products, while the U(1) group is Abelian. In Vol. 1, it has
been shown that S(!.), S(2) and s(!) form a Lie algebra of the
non-Abelian group of rotation matrices in space, 0(3);
matrices which are isomorphic with the Pauli spinors of
SU(2), another non-Abelian group. In this chapter, a poten-
tial model for Sf!.), S(2) and S(3) is constructed from the
general theory of gauge field geometry [16], and the momen­
tous conclusion reached that electromagnetism is a non­
Abelian gauge field, described by the group 0(3) in three
dimensional space, rather than the group 0(2) :r= U(l) of
rotations in a plane. This means that all field theories
based on the assertion that U(1) is the sector of electromag­
netism must be fundamentally modified. For example GWS
theory must be constructed from a direct product group
SU(2) C8) 0(3) rather than SU(2) 4S) U(I). Essentially speaking,
our current appreciation of unified field theory is incom-
plete because the role of B(!) in the electromagnetic sector
has not been realized. Relations such as (169) become
Abelian if and only if

(240)

an assertion which is contradicted experimentally in data
which have been available for some thirty years, for example
in the inverse and optical Faraday effects, discussed in
detail in Chap. 7 of Vol. 1, and in light shift data in
atomic spectra [49], which have been available since about
1960 [50].

65
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where S.I. units have been used as throughout these volumes,
so ~ has not been suppressed. From Eq. (241) we obtain

showing that S(3) is defined in the non-Abelian 0(3) electro­
magnetic sector by a commutator, which is the quantized
version of the conjugate product,

The general theory of gauge field geometry (16] is used
in this chapter to infer that the electromagnetic four-tensor
is described for electromagnetism as the 0(3) sector, rather
than the U(l) sector, by the non-linear

radiation, as described in Chap. 12 of Vol. 1.
Although B(3) has been indirectly recognized (16] as a

soliton solution, its link with S(1) and S(I), the cyclically
symmetric vacuum equations (169), was recognized only in 1992
[1-12], and it is this link that shows conclusively that
electromagnetism in the vacuum is described by 0(3) and its
rotation generators, as developed in detail in Vol. 1. In
previous chapters of Vols. 1 and 2 it has been demonstrated
rigorously that B(3) emerges from all the standard equations
of one electron in the electromagnetic field: the classical
relativistic Hamilton-Jacobi equation (Chap. 12 of Vol. 1);
the Dirac equation (Chap. 1 of this volume); the complex
Klein-Gordon equation (Chap. 2 of this volume). For the free
field B (3) is a solution of the d' Alembert and Proca
equations. There is no further reasonable doubt therefore of
the existence of the non-Abelian relations (169), (172) and
(189) in the vacuum, relations which signal the emergence of
electromagnetism in the vacuum as a non-Abelian gauge theory.
The indices (1), (2) and (3) of the basis (221) now emerge as
isospin indices. The familiar definition of the electromag­
netic four-tensor in U(l) (or 0(2»

(242)

(243)

(241)

B (3) - -L erA (1) A (2)]
Z - h"XIYI

2
B (!) = - i _It_A (1) x A (2) I

B(O)

is generalized within the rigorous [16] mathematical theory
of gauge geometry to

in which the superscripts (1), (2) and (3) are Lsospf.n
indices and where the space-time subscripts are defined·in
the usual Minkowski notation

The charge e in Eqs. (245) is a quantized field quantity, as
discussed in detail later using the Cnrtesian X, Y and Z for
the ~pace indices. The presence of the Dirac constant ~ in
the non-Abelian equations (245) is due to the usual quantum

(246)

(245)

(244)

XII : = (X, Y, Z, ict).aall :=-a I
~p

a (1 ) . =a 1l (1). _ a A (1). - i'!!'[A (2) A (])]
pY p~ v 1& n II I Y I

G (2). =a 1l (2). _ aA (2). _ i e[A (3) 11 (1)]
JAY p~ v 1& l\ II I ~ I

G, (3 ) . = ~ 11 (3). _ aA (3)* _ i'!!'[A (1) A (2)]
pv (}p.&~ v P l\ 1& ~ v ,

This type of conjugate product has been discussed in detail
in Chap. 1 of this volume, in the context of the Dirac
equation. The indices (1), (2) and (3) appearing in Eq.
(242) play the role of isospin indices in the well known
Yang-Mills formalism [16] of non-Abelian field theory.

The extension of the group symmetry of electromagnetism
from 0(2) (or U(l» to 0(3) is a direct consequence of the
experimental existence [51] of the conjugate product S(1) x B(2)

and therefore of B (3). The experimental presence of B (3) in
the vacuum means the presence of a physical third axis, an
axis which as we have seen in Chap. 2 is already recognized
in some contexts as a soliton solution, a quantized flux
line, which in type II superconductors is an Abrikosov line.
The group 0(2) is Abelian, the group 0(3) is non-Abelian, and
the new non-Abelian dimension of electromagnetism in the
vacuum is strongly indicative of the existence both of photon
mass and of magnetic monopoles of the type first proposed by
't Hoaft [52] and Polyakov [53]. Further experimental and
theoretical work on S(3) therefore becomes centrally impor­
tant, because it is the physical key to the philosophical
transition from 0(2) to 0(3) in the electromagnetic sector of
contemporary unified field theory. It is particularly
important in this context to experiment on the magnetization
of electron plasma by circularly polarized electromagnetic
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(250)

(249)

p = lllt.En = 116),

Equation (249), derived later in this Section, is a ~hird

fundamental axiom of quantum mechanics, and shows that f1eld­
charge in NAE is subject to particle-wave dualism. I~ the
same way that energy occurs in units of frequency, and l1near

momentum in units of wave-number, e occurs in units of x/A(O)
or tt2 / B (O) . The non-Abelian electromagnetic field is automat­
ically quantized, and charge, e, becomes a property of the

field itself, through K2 / B (O) . This type of charge qua.nti­
zation does not occur in O( 2) electrodynamics, but 1S a
direct consequence of the rigorous geometrical theory ?f D?n­
Abelian gauge geometry applied to 0(3) .. Charge q~ant1~at1on

occurs in a three dimensional, but not 1n a two d1mens1onal,
theory of electromagnetism, illustrating the central impor-

tance of the field B(3) as observed in the inverse Faraday
effect (Chap. 7 of Vol. 1) and other magnetic effects of
light.

Note that Eq. (249) properly balances e symmetry

(Chap. 2 of Vol. 1) and therefore conserves ~ . In Eqs.
(250), En and p are usually thought of as particulate
(properties of matter), and ~ and E as undulatory (proper­
ties of waves). In AE, the electromagnetic wave is ~sually

thought of as uncharged, in NAE, the field can act.as 1ts own
source and carries the quantized field charge def1ned by Eq.

(249).' In the static limit, It ~ 0; B(O) ~ 0 and e remains
finite, becoming static, particulate, charge, the charge on
the static electron. In this limit, there is no radiation
(because there is no current, or moving charge) and so 'It

and B (0) are both zero. . Equation (249) indicates that under e
the sign of B(O) is reversed as well as that of .e. In this
view there is no distinction between part1culate and
unduiatory charge, an inference which is consistent with the

which supplements the usual quantum mechanical axioms,

General Geometrical Theory of Gauge Fields

is 1·d tified as unquantized electric charge. Therefore in
en h · tAbelian (U(l» electrodynamics (AE) electric c arge 18 no a

quantized quantity. In non-Abelian electrodynamics (NAE) ,
which is indicated experimentally by S(3) , it can be shown as
follows that charge is quantized through the equation

(247)

(248)
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The essential difference between an O( 2) and an O( 3)
theory of gauge fields is summarized through the fact that in
0(2), rotation through an angle A3 takes place in a plane,
while in 0(3) it takes place about an axis perpendicular to
the plane. Rotations in a plane through an angle A

3
can be

described by

mechanical axiom (176) linking the momentum-energy four­
vector P p to the wave four-vector K~.

Therefore the non-Abelian definition of 'Py, Eqs. (245),
automatically quantizes the electromagnetic field, producing
the photon. In other words, the extension of electromagne­
tism from 0(2) to 0(3) produces quantization from fundamental
geometry, an outcome which is an entirely natural consequence
of the fact that space is three dimensional, and which is
consistent with our contemporary appreciation of the vacuum
itself as a geometrical concept with a non-trivial, non
simply-connected, topology, based, not surprisingly, on 0(3).
It is this vacuum topology that allows the existence of the
Aharonov-Bohm effect [16). The equations (245) being a
consequence of a rigorously geometrical theory of gauge
fields [16] are consistent with gauge invariance of the first
and second kind, and are the fundamental equations of the
well known Yang-Mills theory of fields and particles.

where ~1 and ~2 are field components [16]. However, the same
rotation about an axis, 3, perpendicular to the plane
requires the addition of

The field therefore becomes a vector field + with components
(~1' <1>2' <P3 ) in three dimensional space. In the U(l) (or 0(2»
theory of electromagnetism, Eq. (248) is missing, so that the
action is invariant under Eq. (247) only, i.e., invariant to
a rotation in the (1,2) plane through an angle A

3
- Rotations

in two dimensions form the group 0(2), which is also the
group U(l). Thus gauge transformations of the first kind
generate 0(2) in this two dimensional world. Under a (1,2)
plane rotation, a quantity Q is conserved, a quantity which
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in which the non-Abelian cross product on the left hand side
acts as a source for S(3) = S(3). as the light travels in the
vacuum. Therefore, even in the absence of matter, the NAE
field couples to itself, generating S(3) in the vacuum.
Analogously, in general relativity [16] the real divergence
of the Einstein·tensor Gpv is non-zero, and the gravitational
field self generates. Similarly, in considering the other
components of Eq. (251), for example

(254)

(256)

(255)

A A A
A A

AAAAAAAA
A A

A A

In the general theory of gauge fields [16] an n compo­
nent field t is subjected to the gauge transformation,

i . e., the potential A of vacuum NAE itself emits gauge
particles, transverse and longitudinal photons. In Eq.
(254), A is now a vector with respect to an isospin space as
well as a four-vector in space-time. Since B(1) , S(2) and
S(3) are known (Vol. 1) to be non-Abelian rotation generators
in the group 0(3), the isospin indices of NAE are (1), (2)
and (3), and the conserved quantity of NAE becomes isospin,
not the unquantized scalar charge of AE. Equations (251),
(252) and (253) are therefore relations between vacuum
magnetic field components in the isospin space defined by
(1), (2) and (3). This space is also defined by the circular
basis (221). The arbitrary isovector field [16] is defined
in this basis by

(251)

(252)

view (Chap. 1) that action at a distance between charged
particles (two electrons) takes place through the electromag­
netic field or quantized photon. The latter is therefore the
agent of interaction at a distance between the two electrons.
Thus charge on the electron can be transmuted into the form
of a field, an inference which is described in quantum
mechanics by Eq. (249).

In analogy, gravitation in the theory of general
relativity [16] is the agent of interaction at a distance
between particulate point masses. The gravitational field
itself carries energy, which is equivalent to mass and is
itself a source of gravitation. In NAE, the electromagnetic
field carries the quantized field charge defined by Eq. (249)
and is its own source. An example of this is the by now
familiar

where
the cross product B(2) x S(3) is the source of S(I). in the
vacuum, in the absence of matter. Finally, in the equation (257)

the cross product B (3) X B (1) becomes the source of B (2) * in the
vacuum. Light propagation through the vacuum therefore
becomes understandable in terms of non-Abelian gauge geome­
try. There are direct analogies to this [16] in the curved
space-time of general relativity. The cyclic relations
(251), (252) and (253) are manifestations of the non-Abelian
vertex diagram [16],

B (3) X B (1) = 1B (0) B (2). , (253)
In these general gauge transformations, the isospin index a
is still summed from one to three, but M a are now n x n
matrices representing group generators. For the 0(3)
group Ma are 3 X 3 matrices, the 0(3) rotation generators
(Vol. 1), obeying the Jacobi identity

(258)

There emerges a deeply interesting parallel between non­
Abelian electrodynamics and general relativity when we come
to consider the transformation property [16]
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(259) a · e ADII : = aXil + ~1\ II'
(263)

which is the (Cartesian) covariant derivative of AE. In NAE

(265)

(266)

(264)(
0 -i 0)

M3 = i 0 0,

000
(

0 0 ')M2 = 0 0 ~ ,

-i 0 0

in the 0(3) group, and can be identified with the Cartesian
components of the 0(3) rotation generators used in Vol. 1,

The elements of these matrices can be defined by

This is not a covariant transformation because "" is a
function of isospin space as well as of the n dimensional
space occupied by its n components. Therefore the infini­
tesimal d'" involves the variation of '" with respect to both
spaces, and is covariant if and only if the isospace axes are
fixed, so that their infinitesimal variation is zero. The
vector that results from this procedure, known as parallel
transport in isospace [16] is denoted by t + ~'" . The latter
is measured with respect to the local iso-coordinate system
at x p + dxp. and is parallel to t measured in the local iso­
coordinate system at xp. Therefore 3. is not zero because
the local iso-coordinate systems are different at x

p
and

x p + dxll • If the isocoordinate system is different, so is the
vector itself, and "':I: 1Jr + ~'" . The general theory of gauge
transformation geometry then proceeds [16] by assuming that

(260)

where g is a number, which in AE is the charge, e. The term

A: describes to what extent the axes in isospace differ from
point to point. The true derivative of W is now defined as

It may be shown [16] that a vector rotated in isospin
space produces the commutator [Dp ' Dv] ' through which may be
defined the non-Abelian field four·tensor Gpv '

(267)

(261) whose component form in the group 0(3) is,

in Minkowski notation; the covariant derivative of the n
dimensional field t transforming under a group whose

generators are represented by the matrices Ma appropriate to
the representation of t. Thus in S.l. units and Minkowski
notation, a (2). a (2).

~v ~~ _' g[A (3) A (1)]
--- - --- ~- II ' v ,

QXp Bx; t.

(268a)

(268b)

(262)

is a correctly covariant derivative.
In Abelian (O( 2)) electrodynamics, M = -1 and g = e , so

that the isospin space is a scalar. In this case

(268c)

These are equations (245) with the identity e = g; and become
the familiar 0(2) definition of Fpv as the four-curl of Ap in
the Abelian 0(2) group. The difference between Abelian and
non-Abelian electrodynamics is embodied therefore in the non-

[
(1) (2)] [(3) (1)] d [(2) a (3)] Inzero commutators All ' Av , All ' Ay ,an At-' ' ~ •
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because lnc (and therefore eA (0) is the linear momentum
magnitude of the free photon. In AE it is not customary to
express the free photon momentum as eA(O) because this term
is usually associated with the presence of charged matter
(e.g. an electron as in Eq. (157) of Chap. 1). The free
photon is on the other hand the quantized unit of light
energy in free space. Equation (273) of NAE demonstrates
that the linear momentum of the free photon itself is eA(O),

where e is the field charge, an undulatory equivalent of
particulate charge. This concept does not occur in AE.

Chapter 3. S(3) and Non-Abelian Gauge Geometry

0(2) electrodynamics, these commutators are asserted to be
zero, w~~reas t~e cyclic relations (169), (172) and (189)
show th1s assert10n to be incorrect. In 0(3) electrodynam­
ics, the commutators are correctly taken to be non-zero.

3.1.1 THE QUANTIZATION OF CHARGE

'The components of Gpv must be electric and magnetic
fields. The Z component of B(3) is now well defined through
Eq. (268a), which reduces to
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B(3) = G(3) = -G(3) : _-I.!!!.[A(l) A(2)]z 'xr YX .L II x , y

(269)

= -i.!!..(A(1)A(2) -A(1)A(2»)= -i~(A(l) A(2»n x Y Y x II x z :

However, we know from Vol. 1 that

which is a direct consequence of using the plane waves

Comparing Eqs. (269) and (270) gives the result

3.1.2 ELECTRIC AND MAGNETIC FIELDS IN Q pw

Let us recall that the field S(3) is implied by the cross
product S(1) x S(2) of fields S(1) and S(2) which also occur in

AE. Therefore S(1) and B(2) must take the same analytical
form in AE as in NAE, and the four-tensor Gpv must produce
this resul t self consistently. In other words, Gpv must
contain the plane waves B (1) and B (2) together wi th B (3), so
that all three components are produced self-consistently from
the same potential. The insights of this chapter have made
it clear that this is not possible self-consistently within
the structure of an 0(2) theory, because the fundamental
gauge geometry of 0(2) does not allow non-zero commutatbrs of
the type appearing in Gpv of Eq. (268).

In this section, Eq. (268) is developed to demonstrate
its structure in detail (See Appendix D). The overall
conclusions of this chapter thereby emerge as follows:

which is the equat ion of charge quant izat ion referred to
earlier in section (3.1). Recall that this equation has been
derived from the 0(3) electrodynamics group with isospin
indices (1), (2) and (3).

The alternative form of Eq. (272),

1C2
e == ll-­

B(O} ,

1.p1 = eA (0) = ltK,

(272)

(273)

(1) In NAE, if the Abelian form of A(t) and A(2) is
assumed, the field tensor Gpv produces the Abelian S(I) ,

B(2), .&'(1) and .(2) and self-consistently the intrinsi­
cally non-Abelian B(3) and -i.(3) Ie.

(2) In AE, the presence of S(3) is indica.ted byB(l)

and S(3) (as argued in Vol.l and previous chapters of
this volume), but the Abelian field tensor Fp¥ does not
produce S(3) and -iB(3) I c self-consistently from the
Abelian A(1) and A(2). This is clear from the result

In order to account for S(!) we have had to construct

clarifies the nature of the quantized field charge,

e = ll(_K)A (0) ,
(274)

1:1(3)
.£"12

C' (3)
-.£"21

(275)
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Q(3) _ ,,(3) = B (3) ,

Furthermore,

and therefore Eq. (278) reduces to

(280)

(279)

ilf(2)ala) _ ,(2) = ,
c

• _(1)
(1 (1) _,. (1) = _~_II!JI_

C '

potential models, exemplified by that of Section 10.3 of
Vol. 1.

(3) In NAE, the concept of wave-particle duality
emerges for charge itself and the latter is quantized
through Eq. (274). In essence, this meahs that in 0(3)
electrodynamics the photon is the agent of action at a
distance between two electrons. The charge on the
electron appears in the free photon momentum, which is

defined as eA(O) ='hK. 1nO(2) electrodynamics, nK is not

conventionally identified with eA (0) for the free photon.
Thus in NAE, the charge on the electron propagates as a
wave-vector through free space.

In vector form, the Eqs. (268) can be written as

(276a)
a result which has been derived with the charge quanti­
zation conditions

(Q ( ] ) . ) = (F(])·) - i !:(A (1) x A (2»
JiV liV n J.'V·

(276b)

(276c)

(281)

Since 0(3) electrodynamics is a theory of special
relativity, the duality transformation can be applied to
Eqs. (280), giving

These relations are true for each combination of ~ and v
that defines an electric and magnetic field in Fp~. For
example, J1V = 12, 21, etc. define magnetic field compo­
nents; I1v = 14, 41, etc. define electric field compo­
nents. Diagonal components vanish (~v = 00, ... , 44).
Using the results (Eqs. (24) of Vol. 1),

n(l) __ (1) - B (1)
U'D &D - ,

n(2) .. (2) - B (a)
""'D - &D - ,

(282)

and dropping the ~V subscripts in Eq. (276) for clarity
of notation,

B(O)A (1) x A (2) = iA (0) A (3). = i . B (3).
1(2 I

Equations (280) to (282) show that in 0(3) electrodynam­
ics, the field B (3) and its dual - iJr(3) / c emerge from the
field four-tensor Gpv in addition to S(1), S(2) , .(1), and
.(2) which reta.in their Abel ia.n form - transverse plane, .
waves. The isospin indices of 0(3) electrodynam1cs are
(1), (2) and (3) of the circular basis.

These conclusions represent a major development of our
contemporary appreciation of electrodynamics. For example,
the Maxwell equations themselves are generalized, as de­
scribed in Chap. 4.

(277)

(278)

A (3) X A (1) = iA (0) A (2) • ,A (2) X A (3) = iA (O)A (1).,

Q(3) = p(3) + ( eB (O))s (3) •

nwc2



Chapter 4. The 0(3) Maxwell Equations in

the Vacuum

In this chapter the development of non-Abelian electro­
dynamics continues wi th an account of the O(3) Maxwell
equations in the vacuum. It is shown that the charge
quantization condition

(283)

reduces the 0(3) to the familiar 0(2) vacuum Maxwell equa­
tions for the transverse fields B (1), B (2), .(1) and .(2). In
the 0(3) structure, however, there occur self-consistently
Maxwell equations describing the vacuum spin fields B(3) and
-iJr(3) / c. Electrodynamics is therefore the 0(3), and not the
O( 2) , sector of unified field theory. The tradi tional
methods of developing the Maxwell equations are followed,
i . e., they are divided into the vacuum inhomogeneous and
vacuum homogeneous equations. It is important to note that
throughout this chapter we shall be dealing with the Maxwell
equations for free electromagnetism, i.e., do not discuss the
interaction of free electromagnetism with matter. As seen in
Chap. 3, 0(3) electrodynamics implies that in the quantum
interpretation, the linear momentum of the free photon can be
described in terms of eA(O) , where e is defined by Eq. (283).
Unlike 0(2) electrodynamics, the presence of this charge does
not mean that there is an electron present, because in 0(3)
electrodynamics the field is its own source. This is
precisely analogous with the well known Yang-Mills formula­
tion as described for example by Ryder [16].

4.1 THE O( 3) INHOMOGENEOUS MAXWELL EQUATIONS IN THE VACUUM

The 0(2) inhomogeneous Maxwell equations (IME) are
described in numerous textbooks. In Minkowski notation and
S.l. units they are

79
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0, (284) (286)

where FJlv is the electromagnetic four-tensor, an antisymmetric
tensor (Chap. 1) whose components are magnetic and electric
fields. In three dimensional notation, Eqs. (284) are

equations which show that there is no matter present, so that
the source of free electromagnetism is infinitely distant, as
in the traditional 0(2) interpretation [54]. The IME are
conventionally asserted to apply only to the transverse plane
waves S(l) , S(2) , B(l) and 8(2). Some texts mention that they
also apply to phase free magnetic or electric fields, but
these are discarded as irrelevant to plane waves. The
development in Vol. 1 and Chaps. 1 to 3 has made this view
obsolete, because the presence of vacuum plane waves implies
the presence of the spin fields B (3) and - iB(3) / c. The former
is physical and produces a number of physical effects when
free electromagnetism meets matter. Chapter 3 of this volume
has shown that in 0(3) electrodynamics, the free electromag­
netic field can be thought of as carrying its own source,
charge becomes quantized through Eq. (283). In the tradi­
tional 0(2) development, the source of free electromagnetism
must always be infinitely distant, so that the electromagne­
tism has taken an infinite time to reach the observer from
the source at the speed of light. This makes 0(2) electrody­
namics inherently unsatisfactory in nature, because the
radius of the known universe is thought to be finite, and no
source can be infinitely distant from the earthbound observ­
er · In the O( 3) development, on the other hand, this
difficulty is surmounted through Eq. (283), and furthermore,
the philosophical basis for free electromagnetism becomes
similar to that of free gravitation, as described briefly in
Chap. 3. Thus, O( 3) electrodynamics provides a natural
bridge between electromagnetism and gravitation, a bridge
that might close the gap between unified field theory and
general relativity.

The 0(3) counterpart of Eqs. (284) can be constructed by
replacing the 0(2) operator a/axp by the 0(3) operator D

p
, as

defined in the circular basis in Appendix B:

(288)

(290)

(289)

(287)

e-,;;Ati ,

D G ( 2 ) = 0
v JlY ,0,D a(l)

v flY

a condition (Appendix E) which reduces Eq. (287) to

From the outset, therefore, the 0(3) theory is a theory in
three physical (isospin) dimensions, and takes account of the
existence of the spin fields B(3) and -iB(3) / c in the vacuum.

The charge quantization condition (Eq. (283) and
Chap. 3) implies that in the vacuum

which are equations for a vector in isospin space. The
individual components (Appendix E) of this equation in the
circular basis for the isospin (i.e., configuration) space
are (Eq. B11),

The F. tensor of O( 2) electrodynamics must be replaced bypv •
t h e G tensor as described in Chap. 3. The Gpv tensor 1S

flV • h· h d 1also a three component vector in isosp1n space, W 1C 1S a so
the configuration space expressed in the circular basis (1),
(2) and (3). As described in Chap. 3, this prov~des a self­
consistent potential model for 0(3) electrodynam1cs, a model

h · d t A (1) X A (2) •which recognizes that t e conjugate pro uc s ,
S(l) x B(2); and .(1) x .(2) are non-zero. As described in
Chap. 3, 0(2) electrodynamics self-indicates that it is
incomplete and internally inconsistent, because these
products can be expressed in terms of B(~) and -i.(3) / c ,
fields which exist in the vacuum, and Wh1Ch add a third
physical dimension to a planar (0(2) or U(l» theory, ~aking

the latter obviously inconsistent with itself. Therefore,
the 0(3) IKE equations are (see Appendix E)

(285)
1 agVxB =--

c 2 at'
V·E = 0,

As described in Eqs. (280) of Chap. 3, the vacuum field
tensor Gpv can be expressed (Appendix D) as follows:
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". (D) = 1':1 (D) .... 1':1 (D)
'-="11" &pv &p" I

(291) (294)

In the 0(3) theory, the vacuum homogeneous Maxwell equations
are

which in vector notation and S.1. units becomewhere F:~ is the dual tensor of F pv in special relativity.
Equation (291) implies that the ~v'th element of Gpv is the
corresponding element of F pv plus the identical element of

F pv • Since F pv and its dual ,~:) each obey the IME in the
vacuum, we obtain from Eq. (287) and the charge quantization
condition (283) the results

v-e-», oB
VXB=-at- (295)

(292) (296)

4.2 THE 0(3) HOMOGENEOUS MAXWELL EQUATIONS IN THE VACUUM

In the conventional, two dimensional, approach to vacuum
electrodynamics the homogeneous Maxwell equations in the
vacuum are (ap : = a/axp etc.)

where J~eff) is an effective vacuum current, which is the
self-source or auto-source of the propagating electromagnetic
field. Since n appears in the charge quantization condition,
the 0(3) theory of electromagnetism is quantized from the
outset. This follows from the fact that charge is quantized
in 0(3) electrodynamics.

(299)

(298)

(297)

i=1,2,3.

aBC')iVx 1:(3) =--- = 0
at '

v· S(3) = 0,

a ~(j) + a ~(i) +a F.(j) = 0
P I&V 11 vp v Pil '

a G(l) + a G(l) + a G(l) = 0
p pv p vp v PII I

and shows that there is no Faraday induction due to -oS(3)/at
in the vacuum, because the real and physical S(3) is always
linked through the homogeneous Maxwell Eq. (298) to the
imaginary and unphysical -iB(3)/C, its dual in vacuo. Thus,
chopping a circularly polarized laser beam in the vacuum will
not produce a measurable, i.e., physical, electric field.
However, such an induction is observed in the inverse Faraday
effect, where B(3) produces a real, physical magnetization in
a material sample [55]. This magnetization relies on a

The third of these equations can be expressed in vector
notation as

whose components in the circular representation are

These equations allow self-consistently for the existence of
the spin fields S(!) and -i.(!) / c , while the corresponding
O( 2) equations apply conventionally to plane waves only.
Using the charge quantization condition (289) and the
condition (291) for Gpv produces

(293)e{ A (0) G )_ v v~ • =: J.(eff)
h · ~ ,

which contain the ordinary 0(2) IME for the transverse, plane
wave fields B (1), B (2), B(1) and B(2). In addi tion, Eqs. (292)

contain the required IME equations for the spin fields S(3)

and -ilf(3)/c.

In the 0(2) theory of electrodynamics, charge, e, is
conserved, while in the 0(3) theory, the conserved quantity
is h, which is an angular momentum, or isospin. Thus in 0(3)
theory, the conserved quantity is isospin. Charge, e, is
expressed in units of n through the condition (283), in the
same way that the energy and linear and angular momenta of
the free photon are expressed through units of n. In 0(3)
theory it is possible, formally, to express the IME as
(Appendix E),
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4.3 THE DUALITY TRANSFORMATION AND THE 0(3) MAXWELL EQUATIONS

and therefore allow formally for the existence of a magnetic
monopole. This conclusion is well known [16] in the context
of 't Hooft Polyakov monopoles, which are derived by fixing
one isospin axis in configuration space and modelling the
potential A p •

pro~erty tensor, in the simplest case the susceptibility of
a s1ngle ~l~ct~on, as. described in Chap. 12 of Vol. 1 through
the re1at1v1st1c Ham11ton-Jacobi equation. If there is no
electron present, that equation shows that there is no
magnetization, no inverse Faraday effect, and therefore no
electric field due to Faraday induction, and no current in
the measuring induction coil [55]. Seen in another way, the
field -111(3) / c is pure imaginary in the vacuum, has no real
part, and is therefore unphysical. It is an electric field
whose real part is zero, and its curl is always zero.
Therefore the vacuum -as(:J)/at is also zero from Eq. (299),
and the vacuum B(]) is a constant. Analogously, the angular
momentum of the free photon, 11, is a constant. Special
relativity asserts that a longitudinal, non-zero electric
field iB(3) in the vacuum is invariant under Lorentz trans­
formation (Vol. 1), so that its curl in the vacuum is zero.
Special relativity also implies that a longitudinal axial
vector such as S(3) is relativistically invariant, and cannot
change with time. This is another way of saying that there
cannot be Faraday induction due to oB(3)/at in the vacuum.

The 0(3) homogeneous Maxwell equations in the vacuum can
be expressed formally (Appendix E) as

e.a «e.» +oa =-~(A(O)Q +A(O)a +A(O)Q)
P I1V lJ.p v PP II P 119 P vp v pp , (300)

S(!) , which is observable in many different ways. In classical
electrodynamics, B (3) and .1:(3) from the O(3) Maxwell equations
are purely irrotational and divergentless, and since .(3) is
pure imaginary (and henceforth denoted -i.(3) to emphasize
this property) there can be no Faraday induction in free
space due to Vx S(3) , whose real part is always zero. (As
described already, however, S(3) sets up a real, physical, and
measurable magnetization in material matter, at its simplest
one electron, and this real magnetization can be detected by
an induction coil, as in the original series of experiments
by van der Ziel et ale [55] which demonstrated the inverse
Faraday effect.)

This section discusses the duality transformation of
special relativity as applied to 0(3) electrodynamics,
beginning with the duality transformation applied to Eqs.
(301). It is deduced that -iB(3) / c is dual to S(3) within
0(3), non-Abelian, electrodynamics, meaning that if B(3) is
real and physical, -iJr(3) / c is imaginary and unphysical.
This·result reinforces the general symmetry arguments of Vol.
1, elementary arguments which show that a polar vector, such
as a real electric field, cannot be obtained from the vector
cross product of two other polar vectors or two other axial
vectors. Thus, the conjugate product .&'(1) x B(2) = c 2B ( 1 ) X B(2)

cannot produce a real electric field in vacuo, it always
produces a real axial vector, a real and physical magnetic
field, S(3). This property means that the group of electro­
dynamics is the non-Abelian 0(3), not the Abelian and planar
0(2), since within 0(2), there is no allowance made for a
physical field in an axis orthogonal to the plane of 0(2).
This deduction means that quantum electrodynamics (Chap. 6)

must also be adjusted to account for S(!) , and similarly for
unified field theory (Chap. 5).

We have seen that the 0(3) Maxwell equations supplement
the 0(2) equivalents with the vacuum equations, 4 . 3 •1 THE DUAL OF B (3) IN 0 ( 3) ELECTRODYNAMICS

In Vol. 1 and in previous chapters of this volume it has been
asserted that .(3) is pure imaginary if S(3) is pure real.
Thus, there can be no physical effect of B(3) , in contrast to

V (3) _ 1 oB (3) _
xB -----0

c 2 at '
V· B(3) = 0,

dlD { :n
Vx B(3) = --,g- = 0at '

V· 8(3) = o.
(301)

The dual of B (3) is not zero, despite the fact that
symmetry forbids a real electric field in the (3) state. It
is shown in this section that it is a pure imaginary, vacuum
electric field -i.(3)/c which is unphysical according to the
rule that real fields are physical and vice versa. The only
physical effect of fields in state (3) occurs through S(3) ,

as shown already through the fundamental classical and
quantum equations governing the interaction of the electro­
magnetic field with one electron, the simplest representation



of matter. There appears to be no experimental evidence for
a real .(3), but there is plentiful evidence, discussed
already in these volumes, for the existence of S(3).

The duality transformation of special relativity when
applied to B(3) asserts that the Maxwell equations (301) of
0(3) gauge theory are invariant under the transformations

i. e., the same equations are obtained if B(3) is replaced
by -iBc:u/ c and if 8(3) is replaced by icB(3) (in S.l. units).
The duality transformation (302) is a fundamental property of
tensors in Minkowski space-time, and means that if S(:I) : = B(O)k,

i.e., is defined as real, then B (0) ... - iE (0) / c gives the imagi­
nary B(3) = iE(O)lc; and if B(]) := iE(O)1c, then E(O) ... icB(O) gives
the real B(]) = B(O)k. This kind of transformation is dis­
cussed in Appendix C of Vol. 1. The 0(3) Maxwell equations
(301) are therefore invariant under the duality transforma-
tion if and only if S(3) is dual to -iB(3) / c and B(3) is dual
to icB (3) • In O( 3) vacuum electrodynamics, however, the
cyclic relations (251) between three physical fields ensure
that B (3) is pure real, so is dual to the pure imaginary
-iB(]) / c.

This result is reinforced when we consider the tensorial
form of the inhomogeneous part of Eq. (301)

Chapter 4. The 0(3) Maxwell Equations

aF.(3)

...." = 0,
aXfl
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(307)

(306)

(305b)

(305d)

(30Se)

0,

L ( 2 ) - F.(2)F.(2) 0
- II" II" = ,

L (3) _ ~(3) ~(3)

- P" Ii"

L (1) - F.(1) F.(1) = 0,
- I'" II"

therefore vanishes in the vacuum, but if and only if S(3) is
accompanied by -i.(3)/C. Similarly, the invariants from the
accompanying plane waves represented by states (1) and (2)
also vanish in the vacuum. Specifically,

Equation (30Se) allows the electric field to be either pure

real, i. e., -aEp l jat = 0 or imaginary, i. e., -aiEp l jat = ~ ,
and the latter choice is taken because the 0(3) cycl Lc
relations (251) demand a real magnetic field as discussed
already. This is the basis of our statement that S(3) is dual
to -ilf(3) Ic in 0(3) vacuum electrodynamics. The Lorentz
invariant [56],

Duality Transformation and 0(3) Haxwe11 Eqs.

aF2 1 dBi 3)
0,aX1

-c---ax

OF34
OE(3)

• z = 0,oX4
-~ iciJt

aF4 3 .oEi3
)

= o.oX3
~--az-

(302)

(303)

8(3) - icB (3) ,
B (3) ... - iB(3)

c

86

where
where

0 cBi3
) 0 0

p,(3)
-cBj3) 0 0 0

flv
0 -iEi3

)0 0

0 0 iEi 3
) 0

0 0 -cBil) -iBi l )

(304) 0 0 cBil) -iEi1
) (308)~(1)

p" CB;l) -cBil) 0 0

iEi1
) iEi1

) 0 0

with Bi3
) =B(O), Ei 3 ) =E{O).

Written out in full, Eqs. (303) are and similarly for F~;). The Cartesian components in Eq. (308)
are given by

aB(3)c __z _
ay 0, (305a) (309)
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and similarly for B (2) and B(2) where,

Bi l
)

iB (0) i+ Bi1
)

B(O) ••--e I --e~

VI VI I

(310)

Bi l )
E(O) .~ Ei1 )

iE(O) '~
--e~ ---e~

f2 ' {2

B (0) .. E(O) and E(O) ... cB (0) •

C '

On the other hand

B (3).. i.(S) and 11(3) .. icB (3) ,--c-,

(315)

(316)

For the circular state (2), these Cartesian components are
given by the complex conjugates of those in Eq. (110), i.e.,
by

is equivalent to

( 0 ) iE(O)
B ... -

c
and E(O) .. icB(O). (317)

B~2) . B (0) _ '. Bi2
)

B (0) -let-
;;;:: -~--e ~ --eVI ' VI '

(311)
Ei2 )

E(O) -1<1» Ei2 ) • E(O) -1<1»--e ~--e..f2 I 12

These features mean that S(1) and .(1) are complex (1. e., have
both real and imaginary parts) and so are B (2) and .(2),

whereas S(3) is pure real and -i.(3) pure imaginary. The
Cartesian components in the circular state (3) are

Thus, equations (309) represent complex Cartesian components
of circular states (1) and (2) respectively. These compo­
nents occur in vacuum D( 2) electrodynamics, and are un­
changed, as we have seen, in 0(3) electrodynamics. However,
Eq. (301) is self consistent if and only if the gauge group

of electrodynamics is 0(3). Clearly, the components in FJ;)
and F:;) are complex and oscillatory in general (i. e., contain
real and imaginary parts and depend on the phase ~), whereas

those in F~;) are either pure real or pure imaginary, and are
phase free, i.e., independent of ~.

The duality transformation applied to FJ;) or FJ;' also

works in a slightly different way. For FJ;',

is equivalent to

(319)

(318)

EJ3) = E(O) •

with

In 0(2) electrodynamics, the components (318) are unconsid­
ered, in 0(3) electrodynamics, they occur self-consistently
with the Cartesian components of the circular states (1) and
(2). The development of classical 0(3) electrodynamics has
repercussions in QED and unified field theory which are
described later in this volume; the occurrence of the
physical B(3) field is self-indicated in 0(2) through the
conjugate product S(1) x B(~n ::: iB(O)S(3)., and shows up in the
classical, relativistic, Hamilton-Jacobi equation of one
electron in the electromagnetic field (Vol. 1, Chap. 12).

(312)
·.8(1)
-~-- I and .I' (1) -. i cB (1) I

C

B (1)

E(O)

C
and E (0) .... -cB (0) • (313)

4.4 RENORHALIZATION OF O( 3) QED

For F,(2)pv ,

B (2) ....
_ iB(2) d (2) • (~)an E ... J..cB .. ,

c

is equivalent to

(314)

The occurrence of S(3) in classical electrodynamics in
the vacuum means that the gauge group of electromagnetism is
0(3) throughout field theory, specifically in QED and unified
field theory. It is well known [16] that 0(3) gauge
theories are renormal izable in QED. Therefore, without
giving details, it is inferred that the vacuum 0(3) Maxwell
equations of this chapter are renormalizable in QED, essen-
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introducing 8SB (Chap. 2). The theory can be developed with

an 0(3) symmetry group with a gauge field F~, where a is an
isovector index of the type used in this chapter, i.e.,

from which magnetic monopole~ are obtained by introduction of
a Higgs field and by modelling the vector potential. It is
therefore natural to picture B(3) as being produced by two
magnetic monopoles of the HP variety in 0(3) electrodynamics.
However, there is a well known difficulty [16] with the UP
monopole in that it cannot be obtained from the WS model of
unified field theory, essentially because the conventional
U(1) (or 0(2» sector is irregularly imbedded and non­
compact. Therefore UP monopoles do not exist in the WS
model, a situation which however, might be remedied if the
electromagnetic sector is enlarged to 0(3). The latter is a
description of three dimensional space, as is SU(2)
(Chap. 1), while 0(2) is a description of a flat space.
Magnetic monopoles might well be reinstated in a unified
theory based on an O( 3) electromagnetic sector. These
considerations are left to Chap. 5.

It is also known that the gauge group 8U(2) plays a role
in unifying the concepts behind the Dirac and HP monopoles,
and also in the derivation of instantons [16], solitons
(Chap. 2) which are localized in space and time. (We note
that the quantized version of B(3) , the photomagneton [1-10]
is also localized in space and time.) The SU(2) gauge group
allows instantons to exist, furthermore, in the absence of
SSB, and the form of Fpv in instanton theory is exactly the
same as in Eq. (320) of this chapter, so B(3) is well defined
in instanton theory, being based in 0(3) electrodynamics on
the same equation for Fpv , provided that the isospin indices
are the configuration space indices (1), (2) and (3) of the
circular basis. The instanton solution to non-Abelian field
equations represents a transition from one class of Yang
Mills vacua to another. The Yang Mills vacuum is infinitely
degenerate, consisting of an infinite number of homotopically
non-equivalent vacua. Finally, it is known that non-Abelian
gauge theories that occur in electroweak theory, QCD, SU(S)
and possibly, general relativity are richly structured with
many physical insights. The existence of S(3) in classical
electrodynamics is the key to unification of electrodynamics
with other concepts based on these non-Abelian geometries.
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tially because the power counting argument allows this to be
so. The number of primitively divergent graphs is finite in
?(3) gauge theories when spontaneous symmetry breaking (SSB)
18 absent, and the gauge, ghost and source fields can be
rescaled, meaning that the generating function r is finite
as E ~ 0 and that gauge invariance is preserved at each order.
The generating function in 0(3) QED can always be made finite
by the addi tion of counter-terms to obtain renormalized
gener~ting functionals. For example, the zero and one loop
funct10nals can be made finite by the addition of counter­
terms that obey the Slavnov-Taylor identities. In 0(3) QED
t~e on~y type of interaction between matter and the gaug~
f1eld 1S a vector interaction of the form 9". J W. where w. is
the gauge field and J p the vector current of Vthefl Fermi ma~ter
field.

. "~he vector current is conserved, leading to a Ward
ident1ty for th~ vertex. function. In non-Abelian gauge
theory, the Ward 1dentity 1S generalized, and is essential to
the proof of the renormalizability of the gauge theory In
unified field theory, however, renormalizability is as~ured
by the .fact that the total contribution of the triangle
grap~s . 1S zero, so triangle anomalies cancel. This is a
con~1t~on ?n the fermion content of the theory, which is
sat1sf1ed 1f there exist quarks as well as leptons, and if
the quarks carry an additional SU(3) color label. It is also
well.known that SSB does not affect the renormalizability of
Abe11an a~d ~on-Abelian gauge theories using the 't Hooft
gauge, Wh1Ch 1ntroduces an effective potential. In incorpo-
rating B(3) into unified field theory, therefore, care must
be taken to ensure that renormalizability is maintained but

• S(3) ,
s1nce. occ~rs in classical electrodynamics, it must be
descr1bed cons1stently in QED (Chap. 6) and unified field
theory (Chap. 5). Therefore massive vector particles, such
as. vector bosons, do not destroy renormalizability. The
eX1stence of the intermediate vector boson of the Weinberg
Salam (WS) model actually depends on the SSB of a non-Abelian
gauge theory, and it is therefore natural to enquire, as in
C~ap. 5, how 0(3) electrodynamics affects this model. At
f1rst glance, WS is presumably extended from SU(2) @ U(l) to
SU(2) @ SU( 2 ) (the Lorentz group), or some other variant
which would incorporate B(]) and preserve the ability of WS
to reproduce th: correct vector boson masses. The very name
vector boson ar1ses out of non-Abelian gauge theory.

Wo~k of t~i~ kind is already available [16 J in the
theoret1cal an~1c:pation of 't Hooft Polyakov (HP) magnetic
monopoles. Th1s 1S based on enlarging the gauge symmetry of
electromagnetism [16] from 0(2) to 0(3), while simultaneously
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data on magnetization by light and electromagnetic radiation.
Finally, non-Abelian theories allow charge quanti za­

t.Lon , because all isovector fields couple with the same
strength to the gauge field through a coupling constant g.
If this is identified with electric charge, as in this
chapter, Eq. (283) identifies this as the field charge, a,
and identifies photon momentum in O( 3) as eA (0) = 11K. The
existence of this equation ~s another direct consequence of
the use of 0(3) gauge geometry for electrodynamics, which in
turn is a direct consequence of the existence of Sf!) through
the conjugate product. The emergence of S(3) from the
relativistic equations of one electron in the classical
electromagnetic field is conclusive evidence that 0(2)
electrodynamics is internally inconsistent. It is of the
utmost contemporary importance to devise accurate experimen­
tal detection of the characteristic square root power density
dependence of B(3) in the radio frequency magnetization of an
electron plasma as described in simple one electron terms in
Chap. 12 of Vol. 1. Since B(1)xS(:n of 0(2) theory is
observable in the same experiment, there is no reasonable
doubt as to the existence of S(3) itself as an experimental
observable. In other words there is no way in which S(!) can
be zero, because the non- zero observable B (1) X B (2) = iB (0) B (3) ".

It follows immediately that 0(2) electrodynamics is internal­
ly self-contradictory. This chapter has shown that 0(3)
electrodynamics incorporates the vacuum S(3) self consistent­
ly. In the next chapter we explore the consequences of an
0(3) electromagnetic sector for WS unified field theory.

Chapter 4. The 0(3) Maxwell Equations

4.5 ISOSPIN AND GAUGE SYMMETRY

In the rotation group O( 3) , isospin is a conserved
quantity, a vector quantity, angular momentum. The charge
quantization equation (283) relates the angular momentum
magnitude ~ to charge, the conserved quantity of 0(2)
electrodynamics. This is achieved by identifying isospin
space with configuration space (1), (2) and (3) in the
circular basis. The third circular state (3) is the spin
state associated with the experimentally observable field
B(3). The latter therefore shows that isospin symmetry is a
local (or gauge) symmetry. In 0(3) electrodynamics, type one
gauge transformations are rotations in the configuration
space (1), (2), (3); whereas in 0(2) electrodynamics the
space is flat, i.e., the only circular indices considered in
O( 2) are (1) and (2). The conjugate product B (1) X B (2) of
0(2) theory indicates, however, that this flat space is not
self -consistent, because the conjugate product produces a
physical field, S(3) , which exists in an axis orthogonal to
the flat 0(2) plane, and cannot therefore be in the plane.
It follows that self -consistency in classical electrodynamics
can be achieved only with a gauge theory that is not 0(2),
and the simplest generalization is O( 3) . In this view
therefore electromagnetism, color, weak isospin, and hyper­
charge, are all non-Abelian concepts. Isospin is generally
understood to mean a conserved vector quantity and isospin
spa~e to mean an internal symmetry space such as the configu­
r at t on space (1), (2) and (3) used in this chapter. The
vector quantity F pv of 0(3) electrodynamics carries isospin
(I = 1) and by definition acts as a source for itself in the
vacuum. The field F~v becomes a consequence of the existence
of a particle with isospin, which in 0(3) is identifiable as
the photon. This is a direct consequence [16] of the fact
that the symmetry group 0(3) is non-Abelian. In 0(3)
electrodynamics therefore, the electromagnetic field itself
may emit gauge particles and be self-propagating, in direct
analogy (Appendix C) with the gravitational field. This
analogy may ul timately allow the unification of electro­
magnetism with gravitation. Feynman rules for non-Abelian
gauge fields are well defined in QED, and Faddeev-Popov
ghost~ [16.]. can be integrated out using the axial gauge.
Ward 1dent1t1es can be satisfactorily generalized to the non­
Abelian case in QED, so there is no fundamental objection to
the development of B (3) in QED, a development which will
probably lead to a much richer electrodynamical structure
than 0(2), provided each stage of theoretical development is
checked against the available data, particularly much needed
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Chapter 5. 8(3) in Unified Field Theory

In previous chapters we have argued that the U(l) sector
of unified field theory must be replaced by an 0(3) symmetry,
and that this affects unified field theory. These assertions
are based on the experimental observation of the electromag-
netic field S(3) in magnetization by light. The enlargement
of electromagnetic symmetry to 0(3) must, moreover, be
carried out in such a way that preserves the ability of
unified field theory to reproduce experimental data in
particle physics, as in the well known CERN experiment in
1983 [57] which verified the theory of Weinberg and Salam
[16], henceforth referred to as GWS unified field theory.
The product group of GWS is SU(2) ~ U(l), the SU(2) sector
being non-Abelian. Masses of novel intermediate vector
bosons are predicted by the theory with the use of spontane­
ous symmetry breaking (SSB), sketched out in Chap. 2. The
gauge bosons, w·, which mediate the weak interaction [16] in
GWS are vector bosons, which arise from non-Abelian symmetry.
They are introduced as three gauge potentials, Wp

i
, which

carry a Cartesian isospin index i and which appear in the
covariant derivative of an isospinor L. The latter is defined
as the isospinor

L:=(::), (321)

where v e is a left handed electron neutrino and e L a left
handed electron. These particles have the same space-time
properties and can therefore be used in an isospinor with the
same parity. The doublet defined by the isospinor (321) has
the non-Abelian charge I" == 1/2 where I" is weak isospin.
Under SU(2) gauge transformation, the isospinor transforms as

L'" e-(j/2)~··L := SL, (322)

where S is a 2 x 2 matrix and ~/2 are the Pauli matrices of

95
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and is therefore a transformation on the right handed
electron eRe Clearly, the above is the briefest of sketches
of GWS theory, but is enough to show that its overall
structure is based on gauging in SU(2) and U(l). It is
clear, however, that GWS theory gives the results

Chap. 1. Since there is no right handed neutrino (from
parity violation [58] experiments on beta decay), the right
handed electron does not form an isospinor with a neutrino,
and is represented in GWS by an isosing1et,

(323)

This is represented in the non-Abelian charge state I w = o.
This should not be confused with the non-Abelian coupling
constant g, which is identified in magnetic monopole theory
with the electronic charge e. In this representation, the
neutrino is labelled I~ = 1/2, and the left handed electron

by I~ = -1/2. The relation between electric charge, Q, and
these non-Abelian conserved quantities is given by [16]

glW; + gX
II-~--~1 : =- w: sin 8" + Xli cos 8" ·

(g2 + g/2)"i

The U(l) transformation which gives rise to Xp is

A (1) = "3(1) sin elf + % (1) COS 6" ,

(327)

(328)

(329)

so that the neutrino has zero electric charge in this non­
Abelian representation. Under gauge transformation, the
pertinent Cartesian covariant derivatives are

L · - Q - I 3
_ 1

.- - PI 2' R : = Q = I~ -1,

D L = a L + i g'x L
JI JI 2 f1 I

(324)

(325)

where Ow is the Weinberg angle defined by

8., = cos -1 g 1 •

(g2 + gI2)"i
(330)

Therefore the experimentally observable field S(]) is given
by

as first suggested by Weinberg [59]. The gauge field corre­
sponding to this U(l) symmetry is therefore not the photon
field, but Xp (and W,) become parts of the electromagnetic
four-potential

where g and g' are coupling constants [16]. These arise in
conventional GWS because e R can be subjected to a U(l)
transformation, while the isospin doublet (321) undergoes an
SU(2) transformation. The Xp potentials in Eqs. (325) are
therefore consequences of a U(l) gauge transformation within
the structure of GWS theory. If this were to be generalized
to an SU(2) (or 0(3» transformation, the overall symmetry of
GWS would become that of the Lorentz group SU(2) @ SU(2).
This U(l) gauge symmetry in conventional GWS leads to a
conserved weak hypercharge,

which involves cross products such as ,,:1) x ,,:3), %(1) x %(2) ,

and cross terms. In conventional GWS, however, W: is fixed
in isospin axis 3 and Ap and Xp are isospin scalars. Isospin
space is not identified with configuration space in conven­
tional GWS and the Higgs field which is used in the theory
[16] is fixed in isospin axis three.

With the introduction of isospin indices (1), (2) and

(3) as in Chaps. 3 and 4 for ~1), however, the potential

functions w: and X of conventional GWS must also take on the
same isospin indi6es, which become indices of the circular
basis of physical, three dimensional space. Although the
Weinberg angle is fixed experimentally [16] as 0tl == sin-1y'O. 225 ,

3 YwQ ::: I w + -,
2

(326)

2 2
B(3) = _i_K_A(l) XA(2) = -i_K_

B to) B (0)

x ("3(1) sin 0"+ %(1) cos 0,,) x ("3(2) sin 0"+ %(2) cos 0,,) ,

(331)



98 Chapter 5. S(3) in Unified F~e1d Theory

the following results are obtained as theoretical limits,

S~ry of Non-Abelian Features of ""(:) and %:1)

expressed as

99

where x and yare simple scalars, and considerations for ~1)

in isospin space would also be considerations for ~(1) and
(1) 3p

XI' ·

These limits show that "3 and 1C have the units and polar­
ization properties of A, the electromagnetic vector poten-

tial. So if All is generalized to .a:1) , both w: and XII must

be generalized in the same way, meaning that ,,:1) is no longer

fixed in isospin axis 3, and that X: 1) is no longer an isospin
scalar. These modifications to GWS theory must also be
carried out in such a way as to maintain agreement wi th

experimental data. If this is achieved, then ,,~1) and .r~1)

would become components of ~1) as follows,

(338)

(337)

(336)

With the charge quantization condition

Therefore the scalar components of Qp. can be built up from
the four-curl of Av using the 0(2) covariant derivative
instead of the ordinary derivative op, i.e.,

the field tensor Gpv reduces (Appendix D) to the 0(2) scalar
Fpv ' the ordinary antisymmetric field tensor of non-Abelian
theory. Therefore by replacing op of the vacuum 0(2) theory

of the electromagnetic sector by all + ~All we obtain one scalar

component of Gpv in 0(3) theory.
The transition from 0(2) to 0(3) theory is completed by

adding the isospin indices of 0(3), using the circular basis
as described in Appendices A and B,

(332)

(333)

2
-i_K _ X ( 1 ) X Z(2)

B(O)gl- 0

2-.. _i_K _ ,..,:;( 1 ) X ~(2)
g-o B (0) 3 3'

A (1) = XJt.(1) + y:;X(1)
P Jp II'

B(3)

5.1 SUMMARY OF THE NON-ABELIAN FEATURES OF ~(1) AND %(1)
3p P

G(3). = [a(O) A (]).] - i erA (1) A (2)] et cyclicum.
pv II' ~ l; p. , v , (339)

Finally, the charge quantization condition (338) is applied
to each component,

In this section we summarize the non-Abelian theory
of A (1). t.he d •

II an e t sospi.n space (1), (2) and (3). The properties

herei~ summarized for A (1) also apply to "3(;) and to Z~1).

The f1eld tensor Gpv is defined in the circular basis from
Appendix B by the commutator of covariant derivatives

~(.1) = e A ( .1)
(,/p 1; P , (i) = (1), (2), (3), (340)

(334)
thus identifying A~1) as momentum operators in the isospin
space (1), (2) and (3). The field tensor Gpv is thus
identified as the sum of four-curls,

which reduces to
(341)

(335)

(cf. Ryder's [16] Eq. (3.165). This is a relation between
scalar components of the isospin vector Qpv' and can be

and becomes similar in structure to the ordinary four-curl
definition of Fpv in 0(2).

For example, the field S(3), and its dual -iJr(3) / care
obtained from XY components and Z4 components of the tensor
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Firstly, the magnetic field B(3) is summarized in Appendix D.
In general, therefore, the charge quantization condition

of Chap. 4 is the scalar part of the vector relations,

(347)(i) = (1), (2), (3) I
(342)

B (3) ::: B.( 3 ) II! - G (3) * - [a (0) A (3) *] _1.0 [a (1) A (2)]
Z Z -XY-XIY XIY

G~;) * as follows.
obtained from

(because A(3). has no Y component by definition of (3) as the
Z axis of configuration space). Using Eqs . (340), this
definition of S(3) becomes identifiable as a curl of a vector
potential, i.e.,

B (3) • = V(l) X A (2) , V(l) : = - ia(1) , (343)

which identify photon linear momentum as eA:1
) in free space.

The only non-zero, time-averaged linear momentum component is
that in the Z axis, as discussed in Chap. 11 of Vol. 1.
These relations give physical meaning to the vector potential
in free space as a linear momentum four-vector, which becomes
a differential operator using the axiom of quantum mechanics,

(348)

and the components have been identified as a momentum
operator V(1) in the circular state (1), which is also a
differential operator of the same circular state. This is a
transverse momentum or differential operator. Similarly,
reversing the X and Y subscripts reverses the sign of the S(3)

component in this definition,

The charge e therefore makes A:1
) directly proportional 'to Pp

in free space, meaning that electromagnetism in free space is
the agent of interaction between two electrons.

Therefore the field tensor of 0(3) can be expressed as

B (3) = B (3) * - _G (3) * - _ i(a(l)A. (2) _ a(!)A (2»)
Z z - YX - ..L Y X X Y • (344)

G (3) *= [a(O) A (3) *] - i !:[A (1) A (2)]
p.v Jl' Y " ~ , • I

(349)

Using the same procedure for the Z and time component 4 of
the four-vectors produces a hypothetical real electric field,
defined by its Z component,

where the scalar differential operator is the magnitude of
the vector ap defined in isospin space by

(350)

G () * - ? _iE(»*-[a<O)
Z4 -. ..L Z - Z , (345)

Therefore there also exist cyclic relations such as

By definition of A (1) and A (2) as transverse plane waves they
have no Z or 4 components, however, so the second commutator
vanishes, leaving

However, the (3) component of A:3
) is independent of time and

purely irrotational, so the first commutator also vanishes,
indicating that there is no real Z axis electric field. This
is consistent wi th the fact that if B (:1) is real, then
-iB(3) / c is pure imaginary. Other relations of this type are

G (3). - - • E (3). - [a(O) A (3) *]
Z4 - L z - Z , 4 • (346)

(351)

between the various differential, or momentum operators.
The essential outcome of these considerations therefore

is that ~1} couples to the field momentum p~1) through the

charge e. Therefore ~1} becomes physically meaningful as a
field momentum four-vector, which in the quantum theory is a

• (1) d r(1)photon momentum. Therefore, t.n GWS theory, "311 an -p

become components of this photon momentum. These consider-
ations flow naturally from the fact that if A (1) and A (2) are
defined as 0(2) plane waves, the vector cross product
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A(1) X A(ll) is non-zero, and proportional to B(3) , a physical
magnetic field orthogonal to the plane of definition in 0(2)
theory. Taking isospin components as (1), (2) and (3) of the
circular basis of configuration space, we define the covar-
iant derivative Dp in terms of A (1) x A (2) and also the field
tensor Gpv in terms of

These procedures define the field tensor Gpv as the four-curl
from the covariant derivative of Av in 0(2), or as the
commutator [Dp , Dv] of 0(3). Since ~1) =X"3(;) + y.r~1) it is

clear that "'~} and x:1
) must follow the analysis for ~1),

the proportions x and y being fixed by experiment. From the
algebraic relations

(355)

2 SPECIFIC EFFECTS OF B (3) IN GVS THEORY5.

f (3)·In this section it is shown that the existence 0 B 1n

acuum electromagnetism provides the additional inference
:hat there exist three circular polarization states «1), (2)
and (3» for the vector bosons .3 and %. The major features
of GWS theory are maintained intact in the presence of S(3) ,

and the latter does not affect the ability of GWS to produce
the experimentally observed boson masses and characteristic.P
violating effects which have been detected (60]. It 18

straightforward to work S(3) into GWS theory provided that a
careful distinction be maintained between the abstract
isospin space (1,2,3) and the physical frame «1), (2), (3~?

used in Chaps. 3 and 4 for the electromagnetic potential Ap

in 0(3) theory. These two frames and spaces are not.the
same. This is readily inferred from the fact that W3 , 18 a
four-vector and proportional (Sec. 5.1) to A, of the U(1)
sector. Thus, in an 0(3) theory of electromagnetism, we

(1) (2) d .,(3) i theobtain components such as "3 , "3 , an "3 , • ~ • , •

isospin index 3 becomes associated with three space 1nd1c~s

(1), (2) and (3). In this sense, the U(l) sector of.GWS 18

enlarged to O( 3) • Since W3 f& and Xp are parts of Ap an GWS,
they are plane waves if A p contains circular components (1)
and (2) which are also plane waves,

(352)

(353)

(354)

(2) _ B (2) _ B (2)
A - -- - c--

Ie (A)

(1) _ B (1) _ B (1)
A - -- - c--

1C (A)

it becomes clear that ~(1) and %(1) are magnetic fields which3p p

are also subjected to the link between 0(2) and 0(3) theory.
This link is forged by replacing op of 0(2) theory by the
0(2) covariant derivative op + (e/n)A

fl
, which acts in 0(3)

through Eq. (B12) of Appendix B. These procedures take place
in free space electromagnetism. Finally in this section, we
can write

and

with cyclic permutations. Equation (356) is directly analo­
gous with

h t if "3(1) and ~3(2) are polarwith cyclic permutations, so t a "'~

vectors, iW:3
) is an axial vector. Similarly,

and for space indices, 0;°) x Ay(3}. becomes identifiable as the

ordinary curl Vx A (3). of O( 2). Thus a;l) x A.,(2) ill this context
is also a type of curl operation in 0(3). It is not consid­
ered, of course, in O( 2), because A (1) x A (2) is not considered
conventionally. However, it is non-zero in 0(2) as well as
in 0(3), and as we have seen, self-indicates the existence of
B('). The latter mediates physical effects of magnetization
by light, and so we conclude that 0(2) theory self-indicates
the need for 0(3) theory.

Therefore, the SU(2) @ U(l) product group symmetry of
GWS must also be expanded to take account of the expansion of
its electromagnetic sector from U(l) to 0(3).

..(1) ..(2) _ ..j r.a7(O) ..(3). _ _ b7(O)(i~(3»).
"3 X "'3 - ...... "3"3 -"3 3 ,

A (1) X A (2)

(356)

(357)

X ( O)
%(1) ;: --(i1 + j)e i t ,

,ji

x(O)
Z(2) = --(-i:L + j)e-1. ,

12
(358)



with cyclic permutations. Thus, bo t h "3(1) and g(1) are de­
scribed by 0(3) gauge geometry, as for A(i). As in Chaps. 3

and 4, the conjugate product A(l) X A~) is an intrinsic part
of 0(3) gauge geometry in an isospin space which is also the
configuration space in the circular basis (1), (2) and (3).
Before proceeding to a more detailed discussion of the effect
on GWS of the novel vector boson components ,,:3) and X(3), a

brief review is given of the key aspects of unified field
theory [16,47,60]. In GWS, weak isospin (Iw) is locally
conserved through a scalar interaction between the isospinor
L, and a boson W in weak isospin space, a scalar interaction
of the type [47]

lOS

(363)

(362)

The combined interaction in GWS is therefore, in simplified
terms [47],

Specific Effects of B (3) in GVS Theory

we would again obtain the result that the neutrino and elec­
tron would interact with the unified electroweak field, this
time through the same combination of bosons (components of Wp

and the putative %p) and this is not physically meaningful.
The isoscalar nature of Xp cannot therefore be changed to
that of a vector in the same abstract isospin space (1, 2,
3).

Since L+L is an isoscalar, GWS has the additional field
particle interaction [47],

(359)

(360)
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where

A more detailed description of the theory is given by Ryder
[16], but for our present purposes we note from Eq. (363)
that electromagnetism can be identified in this simplified
description [47] as

(361) (364)

in analogy with the Gell-Mann-Nishijima relation of strong
force theory [47], where Y:, the analogue of Y", is given
for the strong force by B + S, where B is baryon number and
S is strangeness. The physical bosans in GWS are therefore

and more properly [16] as the normalized Eq. (327), using the
Weinberg angle Ow. The conserved quantity associated with Np

is weak hypercharge, Y" , to which the gauge field w.. is
coupled. Similarly, electric charge, 0, couples to the
electromagnetic gauge Ap , and weak isospin, IN, to the vector
boson " .. = (N.p ' N

3P
' W'_p). The conserved quantities are related

by

Equation (360) shows that in this view, the interaction
between ve and ve (i.e., the neutrino interaction) is
mediated by the same boson W3 as that between the electrons.
Therefore, in GWS, ~~ cannot be identified directly with A ,

because the neutrino does not interact with the electroma~­
netic field. The neutral weak boson is introduced therefore
to ensure that the interaction of the electron neutrino (v )
with the unified (electroweak) field is different from th;t
of the electron. In order for this to be so, X must be a
scalar in the isospin space (1, 2, 3) and must i;teract with
an isoscalar L+L, where L+:= (vel eL] is the hermitian
conjugate of L defined in Eq. (321). The structure of GWS
depends specifically on the fact that W is a vector and X

is a scalar in the isospin space (1, 2, 3). The introductio~
of S(3) into GWS must be done in such a way as to conserve
this key feature. If w~ were made an isovector, for example,

PI y"
Q = I 3 + -,

2
(365)
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which contains the addi tional "3(3). "3(3) * - W
3
( O) 2, analogous wi th

the additional A(3)·A(3)*-A(0)2 in electromagnetism. From
Appendix D, however, it is clear that

because IA (3) I = A (0) • Therefore S (3) makes no difference to
W3 JLW3 11 or to XpXIJ , and from Eqs., (327) and (367), it makes no
difference to the cross term W3I1Xp • It would therefore appear

that B(3) makes no difference to the observed masses of Z and
W:t:p., unless the premul tiplier of transverse terms such as

"3(1) • "3(1)* + "3(2) • "3(2)* were for some reason different from that

of the longitudinal terms such as "3(3). "3(!) * - w
3
( O) 2 • This does

not appear, however, to be very likely, because mass is a

In Vol. 1, and in previous chapters of this volume, we
have argued that longitudinal photon polarization, indicated
by the existence of the physical S(!) field of light, means
that the photon cannot be massless, because a massless boson
has two degrees of polarization in the vacuum. This result
is derived from special relativity [22], as first demonstrat­
ed by Wigner. In a boson, these states correspond to angular
momentum eigenvalues ±n, i.e., to states with quantum number
J = ±1. The state 0 is disallowed because the particle
travels at the speed of light, and this leads to the result
that the little group [16,22] is E(2), the group of rotations
and translations in a plane. The E(2) group is, however,
unphysical, and this means that the existence of a massless
particle travelling always at the speed of light in all
frames of reference is also unphysical. As soon as the
particle (our boson) acquires mass, however tiny, then
J = 0 I :tl, and there are three states of physical polarization
in the vacuum. The anomaly of the E(2) group is removed, and
the particle becomes physical and relativistic, the range of
electromagnetic radiation becomes finite, meaning that its
intensity diminishes with distance. Therefore a photon with
mass has three states of helicity, +1, 0, -1. In the Higgs
mechanism discussed in Chap. 2, the extra helicity state 0 is
obtained from a theoretically massless scalar particle, i.e.,
from the Higgs field, and in so doing, the photon acquires
mass simultaneously [16].

In conventional gauge theory, however, bare photon mass

5 • 3 SSB AND PHOTON MASS IN GWS

scalar Lorentz invariant. Four-vector properties such as

A (1) A (1) W(1) W(1) and so on are also Lorentz invariants and
II P , 311 311 '

can appear as terms in a Lagrangian provided they are
premultiplied by a scalar, a term that indicates [16] the
presence of mass. Thus, the premu1tiplier of ZpZp in the GWS
Lagrangian indicates that ZII has mass, a mass that is
relativistically invariant and thus cannot have different
transverse or longitudinal components.

It is clear in summary that S(!) does not affect the
ability of GWS to predict the correct masses of Zp and W~P'

but leads to the novel polarization state (3) for massive
hosons , Z~3), tl3<: ) , X~3) and x~(:). The states %(3) and "3(!)

contribute to S(3), and are therefore observed in phenomena
of magnetization by electromagnetic radiation, for example at
microwave frequencies.

(367)

(366a)

(366b)

A (3) • A (3). - A (0) 2 = 0,

a four-vector orthogonal to Ap • The physical hosons AJ1 and ZJ1
are both weighted mixtures of Wand X

3JL P •
The GWS model is completed [16,47,60] by a model

mechanism of ~on-Abelian SSB, whereby the boson Zp acquires
mass, but Ap 1S left massless. The neutrino couples to the
Z~ field only, and not to the electromagnetic field, but the
left handed part of the electron couples to both A and the
weak Zp field, introducing parity violating eff:cts into
atomic and molecular spectroscopy [60]. The hypothesis of I 'PI

and yW conservation therefore necessitates the introduction
o~ four gauge fields, Ap, Zp, W+ 11 and w-

l1
; the field Zp gives

r1se to neutral current processes which have been observed
experimentally. The ~l and Z bosons have also been observed

• r ~

at the pred1cted masses, provided that Higgs SSB is incorpo-
rated in a well-defined but delicately modelled way.

With the advent of S(3) in the electromagnetic field, we
have seen that the W3 10L and Z hosons acquire three states of

· 1 ~C1rcu ~r pol~rization, (1), (2) and (3). The mass of Z~ is
de t e rmi.ned r.n GWS by the premul tiplier in the relevant

Lagrangian of the term (11. 2
/ 4) (gw3f1 - gIXIJ)" [ 16 ] . Expanding

the ~flW3P term, for example,
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the existence of S(3) in the vacuum and therefore the need to
extend 0(2) to 0(3) as in the two previous chapters. The
existence of S(3) in turn leads to the inference of non-zero
photon mass, because the photon develops a third degree of
polarization represented by the concomitant physical field
S(3) • This (3) state does not exist self-consistently in
flat, 0(2), gauge geometry. Finally, in order to make photon
mass consistent with gauge invariance, we must either:
a) develop an 0(3) potential model fully consistent with Eq.
(368a); or b) provide the photon with mass through a Higgs
mechanism as discussed in Chap. 2. Choice (a) leads to the
abandonment of the Coulomb gauge (369), and step (b) means
the replacement of the d'Alembert equation with the Proca
equation as discussed in Chap. 2.

Since photon mass is experimentally :s (10-45_10-6 5 ) kgm,
the Proca equation gives a S(3) (Chap. 2) which is practically
indistinguishable in laboratory experiments from that from
the d'Alembert equation, so that it is plausible to proceed
through a perturbation of the d'Alemhert equation with a
Higgs mechanism that leads as in Chap. 2 to a Proca equation
and slowly decaying fields S(1) , S(2) and B(3) with finite
range. This means effectively a perturbation of the useful
Coulomb gauge instead of its abandonment. The task in GWS
then becomes one of incorporating the Higgs field into the
model in such a way as to give the experimental photon mass
self consistently with those of the bosons Zp and P/~IJ. A
substantial amount of work is available on this problem and
the reader is referred to papers by Huang [35] and references
therein. For our purposes, suffice it to mention that GWS is
based on delicate modelling (16], because if Zp, W:tll' W31J ,

and X.. are to be gauge fields, they must also be gauge
invariant in the presence of their own mass.

(369)

(370)

(368a)

(368b)

(371)

i(A (:1) I iA (0» •

roo = o.

A (3)
J1

0),

A A = A (1) A (1)" + A (2) A (2) .. + A (3)A (3). 1: 0
~p ~ ~ II JI Jl J1 '

A (1) = A (2) .. = (A (1)
~ II I
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is disallowed in the absence of SSB (i.e., in the absence of
~ deg~nerate vacu~) because a mass term moApA~ is not gauge
1nvar1ant convent10nally. In Vol. 1 and previous chapters of
this volume we have introduced the condition

which is equivalent to the conventional

Condition (368a) means that [8] Ap becomes a light-like four~

vector, and mo '¢ 0 becomes compatible with gauge Lnvar i anca .
T~is, in turn, unifies two lines of thought in contemporary
f~eld theory: 1) gauge invariance; 2) electromagnetic theory
w1th non~zero photon mass. Equation (368a), however, is not
compatible with a transverse, or Coulomb, gauge, in which the
vector potential is

and in which (Appendices D and E)

From Eq. (370), it is found that

but that 5.3.1 8SB AS THE SOURCE OF PHOTON MASS IN ABELIAN THEORY

Equation (372), as shown in Appendices D and E, is ~ result
of 0(3) gauge geometry applied to free space electromagne-
tism, provided t.bet: Eq. (369) is accepted for A(1) and A(2).

p ..'and therefore for B (1), B (2), B(l) , and 1:(2). These are, of
course, the conventional plane waves of vacuum electrody­
namics with 0(2) gauge geometry.

As we have seen, these transverse, 0(2) fields indicate

A (3)A (3). 0
p p • (3"72) By considering 8SB of the Abelian Lagrangian (197) of

Chap. 2, the result is obtained [16] that the photon becomes
massive, and the Lagrangian acquires a term proportional to
ApAp• This is the Higgs phenomenon and is the result of a
particular model of the vacuum itself as discussed in
Chap. 2. The originally two dimensional, massless, photon
becomes a three dimensional massive boson by picking up a
third degree of freedom from a Higgs field. Such a result is
obtained from a Lagrangian, Eq. (197), which is compatible
wi th gauge invariance, and so the spontaneous symmetry



breaking of Abelian gauge geometry is applied to obtain a
non-zero photon mass in a manner that is compatible with
gauge invariance of the second kind. The Higgs mechanism is
therefore capable of removing the problem discussed in Sec.
5.3, i.e., if the vacuum symmetry is broken, as discussed in
Chap. 2, a term moApAp in the Lagrangian becomes compatible
with gauge invariance requirements. Such a term leads to the
replacement of the d'Alembert with a Proca equation as
discussed in Chap. 2. As mentioned by Ryder [16) on his page
301 " ... the photon has eaten a scalar field and has acquired
a mass. tt The existence of t.hree degrees of polarization for
the photon is precisely what is indicated by B(3), which is
therefore an indicator of photon mass. The Higgs mechanism
allows this development to be compatible with A A ':f. 0 as
• II 11
1ndicated by Appendix D, while also retaining compatibility
with gauge invariance. Therefore it is no longer consistent
to assert that the photon mass must be zero, and in view of
the unphysical nature of E(2), never has been. It is
important to note that S(3) is non-zero for identically zero
photon mass, but its very existence means that the photon has
three degrees of polarization, thereby indicating that its
mass, for self-consistency, must be physically non-zero. The
fundamental reason for this is in the Wigner paper of 1939
[22) that first indicated the fact that the little group is
unphysical for any particle that has no mass. A flat
particle (with two degrees of polarization) is not a physi­
cally meaningful enti ty . As soon as it acquires mass,
however, it simultaneously acquires the necessary third axis,
and, if it is a boson, three helicities as argued already.
The extra one, 0, is obtained in the Higgs mechanism by
breaking spontaneously the vacuum symmetry. Clearly there-
fore, BU) in the vacuum means a finite photon mass in the
vacuum. In this respect, we differ from Ryder [16,47], who
insists on a rigorously zero photon mass. As Ryder himself
shows, however, SSB of an initially gauge invariant theory
leads to the inference that photon mass in the vacuum with
broken symmetry is non-zero. Such a result is obtained from
a theory that is originally compatible with gauge invariance
of the second kind. We are driven to conclude that either
the Higgs mechanism is itself incompatible with gauge
invariance, or that the photon mass in the vacuum is non­
zero. We choose the second option because the Higgs mecha­
nism is a key ingredient of GWS, and is the basis of GWS to
predict correctly the observed masses of Zp and w.

p
' If the

Higgs mechanism is thus compatible with experimental data,
the argument cannot then be sustained that it is incompatible
with a fundamental theoretical principle such as gauge
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(373)1Q = I] + -- .
2

The space (1), (2), (3) on the other hand is th~ circular
representation of 3-D configuration space, ~he.phys~cal space
of rotations under which angular momentum 1S 1nvar1ant. ~he

isospin space 1, 2, 3 is a purely abstract space, whose th1rd
axis is related to charge, Q, through Eq. (373). The two
spaces are, however, governed by the same rotation group,
0(3) and the same gauge geometry. The massive bosons W*p
and; are physically different bosons, with different
masse~ , but (1), (2) and (3) must be components in the
circular basis of the same boson, e.g. a photon. Thus,
components (1) and (2) cannot have a different mass fr~m

component (3); whereas 8SB of a non-Abelian gauge geometry 1n

5.3.2 SSB AS THE SOURCE OF PHOTON HASS IN NON-ABELIAN THEORY

5SB of 0(3) gauge geometry was originally discussed by
Kibble [61] and shows that two out of the three components of

the vector ~1) become massive. This result is firm1y.root~d

in fundamental group theory. If, in the abstract 1sosp1n
space, 1, 2 and 3 are the isospin indices then compon~nts 1
and 2 become massive while 3 remains massless. Thds has
interesting analogies with the mechanism outlined in Sec.
5.3. In this model one massless field remains because the
subgroup, U(l), of 0(3) under which the vacuum remains
invariant has only one generator. In GWS, the SSB of a non­
Abelian gauge geometry leads to two massive bosons and one
massless boson. The isospin indices in this case are clearly
those of the abstract space, and not the indices (1), (2) and
(3) of the two previous chapters. . . .

Isospin, or isotopic spin, invar1ance 1~ descr1bed by
the same group of rotations in three dimens10ns (SU(2) or
O( 3) ), but isospin space (1 , 2, 3) is a purely abstract
concept based originally [60] on the assertion that the
proton ~nd neutron are two states of a single particle, the
nucleon, N, with spin I = 1/2. The two component states with
I 3 , along axis 3, are given by I = ±1/2 and. are the proton
and neutron respectively. Electric charge 18 related to I 3

through

88B and Photon Mass in GWS

invariance. Indeed, Z, and Ware themselves gauge fields,
nd are at the same time r*:normalizable massive fields.

;roceeding in this way, the theory of finite photon mass has
been incorporated [35] in GWS and SU(5).

Chapter 5. B (3) in Unified Field Theory
110
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space (1,2,3) produces two massive bosons and 1Th f · one mass esse
. ere ore GWS 1S based on a modelling procedure which results
1n z~ro photon mass identically. On the other hand, SSB of
Abe11an gauge geometry produces a single massive boson as in
Sec · 5 . 3 . 1. With the advent of B (3), the assertion of
i?entically zero photon mass becomes untenable, because B(3)

s Lgnal s the presence of a physical third axis. The well
known Wigner theory [22J asserts on the other hand that there
can be no physical third axis in a massless particle. It is
clear that an additional mechanism of SSB must be incorporat­
ed in GWS to produce a non-zero photon mass, since i~ is
il:ogical t~ assert that S(]) is zero or otherwise unphysical.
Th1s mechan1sm can be applied to A from the final result of
GWS (which agrees with experimentai data) to provide it with
the appropriate photon mass. Al ternatively, a mechanism such
as that developed by Huang [35] can be used to attempt to
produce the photon mass self-consistently with those of W
and z~ without affecting the ability of GWS to produce th:
exper1mentally observed masses for the latter.

Chapter 6. 8(3) in Quantum Electrodynamics

The emergence of S(3) in classical electrodynamics means
that it has its counterpart in quantum field theory, referred
to in Vol. 1 as the photomagneton, B(3), a field operator [1­
10]. This concept was developed in Chap. 3 of that volume in
terms of simple Schrodinger equations, and it was demonstrat-
ed that Be!) is a well defined expectation value in quantum
mechanics. The development of Jj (3) in quantum electrodynamics
(QED) is an interesting procedure because it is necessary to
demonstrate that it does not affect the ability of QED to
produce results such as the anomalous magnetic moment of the
electron to several decimal places. More fundamentally, B(3)

in classical, Abelian and non-Abelian electrodynamics must be
shown to be compatible with renormalization in QED. In this
chapter, it is shown that the classical B(3) leaves the
structure of QED unaffected, a resul t which is of course
consistent with Chap. 1 of this volume, where it was demon-
strated that B(~ is a direct result of the Dirac equation
describing intrinsic electron spin in a classical electromag­
netic field. This "semi-classical" result (quantized spin,
classical field) is consistent with the classical result of
Chap. 12 of Vol. 1, where S(3) emerged from the relativistic
Hamilton-Jacobi equation of an electron as classical charged
particle in the classical field. It is therefore expected
that QED produce B(3) from a consideration of the quantized
electron in the quantized field.

6.1 CANONICAL QUANTIZATION AND B (3)

As discussed in Chap. 10 of Vol. 1, canonical quanti­
zation of the massless electromagnetic field is beset with
difffculty, and relies on the usual assumption that there are
only two (transverse) degrees of physical polarization. The
gauge geometry in this view is the flat 0(2), in which the
conjugate product A (1) X A (I) is asserted to be zero. This
assumption is contradicted experimentally as discussed

113



throughout these volumes, and is untenable.. The cross
product A(1)xA(2) produces a physical field B(3) in the axis
orthogonal to the plane of definition of 0(2) symmetry, and
this means inevitably that the field after canonical quanti­
zation must produce a particle, the photon, with three
helicities, 1, 0, and -1. From fundamental special relativi­
ty, this conclusion implies in turn that such a three
dimensional particle must have mass, which is picked up from
a Higgs particle as discussed in the previous chapter. The
d'Alembert equation of classical electrodynamics is changed
to a Proca equation, which as discussed in Chap. 2 of that
volume is the result of spontaneous symmetry breaking of the
vacuum in Abelian field theory which is originally compatible
with gauge invariance. In other words, as discussed in the
previous chapter, the Higgs mechanism produces a massive
photon within the framework of an originally 0(2) theory, but
imbues it simultaneously with an additional degree of
polarization.

With these considerations, canonical quantization should
be based on the Euler-Lagrange equation of the massive
electromagnetic field, with Lagrangian
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(380)

(319)

(318)

(317b)

c3A- at = If.

'Ito = 0,

or, in vector notation, the familiar resul t of classical
electrodynamics

Canonica1 Quantization and B (3)

11:1 = alAo - Aj

where i denotes space axes. Therefore the time-like compo­
nent of x~ vanishes. From Appendix D, we have the results

from a theory which considers three space polarizations «1),
(2) and (3», so the term ojAO in Eq. (377) vanishes, giving
the result
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where ~;;;;: moc/'ll, rno being the photon mass. The canonical
momentum, ~~, (Vol. 1), is well defined in this view because
there are three, well-defined, axes of space polarization,
and is given by [16]

Using

it is found that

1t =
~

(374)

(375)

(376)

The momentum classically conjugate to A is therefore the

electric field.. Since iA(3) in Eq. (378) is rigorously
imaginary, divergentless and irrotational,(Appendix D), its
real conjugate momentum is zero. This is consistent with the
fact that A (1) X A (3) produces a magnetic field S(3) , an axial
vector, whereas the real (i.e., physical) electric field is
a polar vector. The field -1.(3) / a is formally dual to the
real and physical B(3) , as argued throughout these volumes,
but has no real part, and no physical effect at first order.

Canonical quantization proceeds in this view through the
usual Heisenberg commutators of the field, as ably described
by Ryder [16]. Our purpose here is to introduce the subject
of S(3) in QED by illustrating the fact that the massive
classical field, not surprisingly, produces a well-defined
massive photon with three degrees of polarization. The
existence of these three polarizations is best illustrated
through the existence of the by now familiar cyclic relations

so that

(377a)
(381)

between three physical, magnetic fields in the vacuum, fields
which are mutually orthogonal in the circular basis. The
covariant Heisenberg commutator [16] is



and vanishes if Ai is time independent. Thus, the longitudi­
nal iA(3) is unphysical at first order, and plays no part in
canonical quantization of the type (382). This does not mean
that S(]) cannot be quantized, its quantum counterpart is well
defined [1-10] as being proportional directly to the longitu­
dinal angular momentum of the photon, i . e ., its angular
momentum about the Z axis of beam propagation. The expecta­
tion value of this angular momentum is the Dirac constant n,
and the photomagneton operator is
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(382)
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because, following Ryder [16], the general formula for the
degree of divergence of a Feynman graph is unaffected by B(3) •

This formula is, in Abelian QED [16],

(384)

where d is the dimension of space-time, L is the number of
loops, Pi is the number of internal photon ~ines, and E i the
number of internal electron lines. If n 1S the number of
vertices, P

e
the number of external photon lines, and Ee the

number of external electron lines, it can be shown [16] that

13 (3) == B (0) ~. (383) nl d ) (d- 1) (d-2)D = d+",2 -2 - -2- E e - -2-- Pee
(385)

The Hamil tonian obtained on canonical quantization of the
massive electromagnetic field is proportional to a quadratic
product of annihilation and creation operators in all three

3

polarization states, i. e., to L a (1) +a (1). Here, the longi tu-
A = 1

dinal iA (3) acts at second order, i. e. , the product iA (3) • (iA (3»)*
is real and positive, and therefore physical. The third axis
therefore contributes to the Hamiltonian, but does not
contribute to the commutator (382). Note carefully that
these inferences are based on a particular model, discussed
in Appendix D, and summarized in Eqs. (378). This model was
developed from a classical, non-Abelian, description of the
field, in the massless limit roo ~ 0; and used as an illustra­
tion of canonical quantization features when there are three
degrees of polarization taken into consideration. More
consistently, the Proca equation should be solved as dis­
cussed in Chap. 2, and canonical quantization developed of
the exponentially decaying classical fields of Eqs. (187) and
(188), leading to their description in terms of creation and
annihilation operators.

6 • 2 THE EFFECT OF B (3) ON RENORMALlZABILITY IN QED

In this and in following sections we indicate without
unnecessary detail that B(3) does not affect some powerful
results of QED, such as its ability to describe very accu­
rately the anomalous magnetic moment of the electron. It is
first necessary to prove that the classical S() does not
destroy renormalizability in QED. This is straightforward,

When the dimension of space-time, d, is four, the dependence
of D on n, the number of vertices, disappears. Clearly, the
theory of S(3) in classical electrodynamics is worked out in
four-dimensional space-time, as for the usual transverse
fields and maintains the renormalizability of Abelian QED.
In par~icular, the photon self-energy diagram, which has ~o
classical counterpart, is unaffected by the belated recogn1-
tion of the vacuum S(3) in the classical theory, provided that
the overall gauge geometry is maintained at 0(2). A more
self -consistent analysis requires, as we have argued in
Chaps. 3 and 4, that the gauge geometry be extended to.0(3),
which theory is again renormalizable to all orders 1n QED
[16]. This was discussed briefly in Chap. 4.

In Abelian QED [16], the calculation of the three
primitive divergences is carried out using dimensional
regularization, which has the effect of multiplying e in the
photon/electron Lagrangian by the fact~r ~2~~2, where ~ is
an arbitrary mass and d is the mass d1~ens1~n [16] .of the
Lagrangian. This extension to d dimens10ns 1n QED 1S made
only for internal loops, and leads via the two parameter

(2)· 1·· t
Feynman formula to a convergent term denoted A~ 1n exp 1C1
expressions fo~ the three primitively div:rgent Feynman
diagrams. It is this convergent term that g1ves the anoma­
lous value of the magnetic moment of the electron to several
decimal places. The field S(3) has no specific influence on

the calculation of A~2) in QED, and therefore has no influence
on the precisely measured value of th~ magne~ic moment.
These points are developed in the fol1ow1ng sect10n.
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6.3 S(3) AND TIlE ELECTRON'S MAGNETIC MOMENT (390)

The anomalous magnetic moment of the electron is
obtained from QED essentially through the fact that the Dirac
matrix 1

11
of "semi-classical" theory (Chap. 1) is replaced by

Yfl + Afl' where the convergent part of AJJ is A~2). The
correction to the value of two for the Lande factor in
Chap. 1 is made through a development of the term

~~(YJJ + A~2»)u(p) , where ~~ is an adjoint Dirac spinor
(Chap. 1) and U(P) is a spinor in the standard representation.
The field S(3) emerges from the term i~~opvqvu(p),

where q ::::: p' - p and where 0JJv is defined by [16]

to first order in «, the fine structure constant. From Eqs.

(388) to (390), A~2) contains no reference to the electric and
magnetic fields of electromagnetism, fields which are

concomitant with the photon in QED, and therefore A~2) has no

effect on B(3) and vice versa.

6.3.1 CALCULATION OF THE ANOMALOUS MAGNETIC MOMENT OF mE

ELECTRON IN QED

(386)
Lb · A(2)The effect of the convergent vertex contr1 ut10n ~

is calculated in QED from the Dirac equation (Chap. 1),

where ~p is the electron mome~tum.operat?r. Equation (391)
is written in S.I. units and 1n M1nkowsk1 notation, leading
to a minus sign on the right hand side. It is an eigen­
equation of quantum mechanics, the spinor u(p) is an eigen­
function, and Y~p an eigenoperator. Multiplying the
equation on both sides by Yv produces

The correction from renormalization, A~2), must be included
in this term to calculate the field S(3) in QED, i.e., in a
fully quantized theory of the interaction of one electron and
one photon. Specifically, therefore, the photomagneton

operator 8(3) emerges in QED through the interaction term

(387)

1 pfJ~u(p) = -mcu(p),
(391)

where »' and p are momenta, the u' s denote spinors, and

the y's denote Dirac matrices. The term A~2) reduces [16] to
the dimensionless (S.I. units)

A(2) =
J.&

(388)

which, with the definitions [16]

YpY. + Y.Yv. = 2gpv : = {Y p' Yv}'

lpYv - l"ltl ;: -~i0tl" : -= [Vp' Vv]'

(392)

(393)

where Eo is the permittivity of free space and m is the

electron mass. Therefore A~2) is a small correction to 1 p

obtained from renormalization and the removal of infinities.
It involves the fine structure constant of spectroscopy,

gives Eq. (391) in the form

(394)

to first order, and the mass of the electron. The Lande
factor of g = 2 from the original Dirac equation (Chap. 1) is
corrected to

1
137 .0360 '

(389) It is the term in -i0tlvPp that gives rise to the intrinsic
electron spin (Chap. 1), essentially because -iu0tlvu is an
antisymmetric (spin) tensor, and it is this term that is

corrected by the factor (1 + 2C1:
n

) in QED through consideration

of the convergent vertex A~2). The correction takes place
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through

(395)

between electron and photon, and cannot therefore affect the
field B(3). The latter makes its appearance as the expecta­
tion value of the photomagneton § (3) through the Dirac
equation (Chap. 1),

i . e ., a conserved Dirac current (Chap. 1) describing an
electron with Lande factor two is changed with precision to
one with Lande factor of about 2.002. The calculation of
this 1% change in the Lande factor takes place as follows in
the Dirac equation (391) without the introduction of the
electron-photon interaction energy, which contributes a term
in the Lagrangian of the type

(401)

for the interaction of an electron with an electromagnetic
field represented by A,l. Equation (401) leads before
renormalization to the spin Hamiltonian

(396) H . = 2( eli)o ·(8 (3»
B~n 4m '

(402)

Since S(3) is contained within A p , there is no effect, inter
alia, of this correction on S(3) and of Btu on the magnitude
of the correction, which is known from spectroscopic data
with great precision.

Equation (394) is considered along with

where

and where

(403)

;J__ A - ~1( I· ')
(AUo--' JY v - --- p; + -I0JlVPJoL '

ITloc
(397) (404)

in which p is defined through the Feynman parameter, Z [16],

»' = P - kz: (398)

is the intrinsic magnetic dipole moment of one electron. The

effect of introducing the convergent vertex A~2) into
Eq. (401) is to change Eq. (402) to

These considerations lead to

H(R~ ::: 2(1 + ~)( ell)o. S(3),
S1>~n 21t 4m

(405)

for the Dirac current before renormalization with A~2). The
latter produces the renormalized current

which leaves B (3) unchanged as expected. As discussed in

Vol. 1, ~(3) is a constant of motion and commutes with the
Hamiltonian; it is therefore also unaffected by light
squeezing in quantum optics [5].

and results in Eq. (390) for the Lande factor g. This
calculation is carried out in the absence of interaction

j~R) = u(P~(Yp. +A~2))U(p)

== - 2;ocu(P1(PIl + P~ + i(l + ;1t)OIlV(P~ -PIl))U(p),
(400)

6 .. 3 .. 2 ORIGIN OF THE CONVERGENT VERTEX ~2) IN QED

The only particles in QED are photons and electrons,

and A~2) emerges from one of the three primitive divergences
[16] through use of dimensional normalization of the lagran­
gian,
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Sf = iWr"a,,1Jr - mc2W1Jr - ~A"Wrfl.
- Eo (0 A - a"A )2. - l.:(0 A )2

4 f.lV Vf.l 2 f.lf.l'

(406)

in which the Dirac spinor is represented by • and its adjoint

by~. Renormalization proceeds through the replacement,
Chapter 7. Summary of Arguments and Suggestions

for Experimental Verification
e -. J12 -d/2 e , (407)

i. e., by changing only e, the electron charge. The AJ2l
factor then emerges from a vertex graph [16] of the type
-ieA..(p, q, p+c1). The removal of infinities of this graph
results in a change of the physical properties of the

electron, e.g. its mass and charge. The convergent AJ21 is
that part of the overall vertex with no k in the numerator
of the integrand, and results in

(408)

i. e., in y ....... y~R) after renormalization in QED. These
considerations rigorously reinforce the conclusion in Chap. 1
that B(3) is a direct result of the Dirac equation describing
the interaction of a quantized electron with the electro­
magnetic field, represented by A... The rigorous and accurate
methods of QED show that g(3) is the quantized field property
responsible for the formation of H . of Chap 1 from the

sp~n .
quantized electron spin whenever an electron interacts with
a photon.

In these two volumes and eight hundred equations or so
we have developed the theory of S(3) and non-Abelian electro­
dynamics in the vacuum, using arguments drawn from several
areas of contemporary field theory. Since S(3) is a physical
magnetic flux density in an axis (3) orthogonal to the plane
of conventional vacuum electrodynamics, it indicates that the
quantized field (the photon) carries mass. This is a conse­
quence of special relativity, which asserts that a massless
photon has only two degrees of physical polarization, and two
helicities, 1 and -1. Conventional electrodynamics therefore
does not self -consistently allow the existence of S(3) ,

a1 though the latter emerges from the former through the
conjugate product.

The conventional view that S(3) is zero is contradicted
by experience, namely in the phenomena of magnetization by
circularly polarized electromagnetic radiation. This was
illustrated in Chap. 1 of Vol. 1 using the inverse Faraday
effect, with a theory based on the conjugate product
S(1) x B(2), whicn is iB(0)S(3).. This phenomenon and others
like it indicate experimentally, therefore, that B(3) is real
and non-zero, an inference which was reinforced in Chap. 12
of Vol. 1 and Chap. 1 of this volume using classical and
quantum relativistic equations of motion of a single electron
in the electromagnetic field, i . e ., of e in A... These
rigorous calculations from first principles show that the
spin and orbital angular momenta of the electron is governed
entirely by S(3), acting at first and second order in B (0) •

Furthermore, these calculations have defined with precision
the experimental conditions under which the characteristic

· (d d 1/2 ) f B (3)square root power dens1ty dependence enote I o 0

dominates. Essentially, I;/2 is observed in magnetization of
an electron plasma by circularly polarized microwaves under
the condition 6) ~ (e/m)B(O) where elm is the charge to mass
ratio of the electron, <J) the angular frequency of the
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(413)

(412)

(411)

(410)

(409)

jf'(3) -NX's (3) ,

which gives

The characteristic I~/2 dependence is obtained, however, in
the limit

where pn is a one electron hyperpolarizability, and where
there are N non-interacting electrons in the plasma.

Equation (410) is the (a) > eB(O) limit of the following result
m

from the relativistic Hamilton-Jacobi equation of e in Ap

In consequence we expect the magnetization .11(3) from the
Hamilton-Jacobi equation (Chap. 12 of Vol. 1) to be dominated
by an I o dependence, and this is reported experimentally in
Fig. (2) of Ref. [ 43b] .

This observation is in itself enough to prove the
existence of S(!) , through the equation

where X' is a one electron susceptibility. It is possible to
achieve condition (412) experimentally using the same basic
apparatus as Deschamps et a1., but with an increased power
density for the same frequency. The increased power density
(or intensity) can be achieved by increasing the peak pulse
power and by narrowing the sample area while maintaining the
frequency at 30 GHz. According to Eq. (411) the observed

magnetization will become a mixture of terms in r;/2 and I o as

sponds to an angular frequency of roughly 2 x 101 0 rad S-l.

Therefore, under these typical reported [43b] conditions we
obtain
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electromagnetic beam, and B (0) its magnetic £1 d · t
I · d · ux ens 1 y

amp 1tu e. Th1s condition has already been approached quite
close:y by Deschamps et a1. [43b] in their demonstration of
the 1nverse Faraday effect, and by increasing the power
density of the beam by a factor of about ten to a hundred

1/2 '
the I o dependence dominates theoretically in this experi-
ment. In the first part of this summary chapter we discuss

~he p:ec~se conditions under which the I;/2 dependence emerges
1n th1s 1mportant experiment. There is a clear need for such

an experiment in order to prove the existence of S(3)

unequivocally under precise conditions, possible with
contemporary technology. The simple (but exact) one electron
theories of these volumes can be refined if necessary to
allow for statistical effects of many electrons in a plasma,
but they are already adequate to describe the major results
of such an experiment. The theoretically expected demonstra-
t· f h 1/210n 0 t e I o dependence of B (3) would be a major experi-
mental advance in field theory, and the physics of fields and
particles in general. Such a demonstration would render
vacuum .electrodynamics a non-Abelian, three dimensional,
theory 1n the vacuum, and possibly to unification of electro­
dynamics with general relativity. Furthermore it would
indicate that the quantized electromagnetic fi~ld carries
mass, and this would lead to further experimental support for
spontaneous symmetry breaking of the vacuum.

The key experiment consists of magnetization of an
electron plasma with a pulse of microwave radiation of peak
power of about ten to one hundred megawatts. Furthermore
t?is expe:iment is possible in practice through a relativel~
s1mple adJustment of the conditions described by Deschamps et
a1. [43b], using thirty year old technology. These authors
dem~nstrated magnetization of an electron plasma formed from
an t.ne r t; gas by a megawatt peak power pulse of 30 GHz
radiation. A 100 turn induction coil detected the current

due to magnetization stemming from the field B(3) as discussed
in Chap. 12 of Vol. 1. The microsecond pulses were detected
using a synchronized oscilloscope. The plasma was created in
a pyrex tube of helium gas 0.065 m in diameter and 0.2 m
long, .linke~ into a circular wave guide carrying circularly
polar1zed m1crowave radiation. The area of the sample was
therefore about O. 003 square meters. For peak microwave
power of a megawatt therefore, the peak power density was

about 3 x 10 8 W m-2
, producing a peak B (0) of about 0.002 tesla

(see Chap. 12 of Vol. 1). Using elm for the electron of
roughly 2 x 1011 C kgm? we obtain eB(O) 1m to be about
4 x 10

8
rad s ?'. The microwave frequency of 30 GHz corre-



means that the conjugate product is equated with iB(O)S(3) ••

The existence of B (3) is obscured, however, in the conven­
tional semi-classical theory, which, furthermore, is given
usually [12] in terms of
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a cross product which seems at first sight to be remote from
any magnetic field. This was first shown to be proportional
to Be!) in 1992 [1,4]. A typical semi-classical description
of the inverse Faraday effect is that of Wozniak et a1. [12].
This is non-relativistic, and the term in I;/2 is missing
completely. It is clearly necessary to reappraise carefully
the techniques of magneto-optics in order to make the theory
rigorously relativistic. Only then will S(3) emerge through

its It/2 dependence in a self-consistent way.
Some experimental features at visible frequencies were

sketched out in Chap. 7 of Vol. 1 and discussed there in
terms of S(3) in a non-relativistic framework. The proper
relativistic approach is typified in the equations of motion
of e in Ap , the Hamilton-Jacobi and Dirac equations.

Atomic and molecular matter is thought to be composed of
nuclei and electrons arranged according to the Pauli exclu­
sion principle in orbitals, .and a rigorous approach to the
I~/2 dependence in these systems requires a solution of the
Dirac equation with the appropriate N electron Hamiltonian.
The inverse Faraday effect has been evaluated in atomic
systems by Kielich et a1. [51] using a non-relativistic
numerical method, but there is at present no work available
on the rigorous solution of the Dirac equation (e.g. in its
Hamilton-Jacobi form) for magnetization by microwave pulses
of atomic matter. This is the next step up from plasma (free
electrons) but will probably require the methods of computa­
tional physics applied to the Dirac equation rather than the
Schrodinger equation, methods which have been extensively
developed by, for example, Clementi et 81. [62]. Similarly,
there are few data available on magnetization by light, and
none in the required condition (412) as discussed already,
a1 though Deschamps et a1., thirty three years ago, came
remarkably close.

It is overwhelmingly probable that the I~/2 dependence
from Eq. (413) will be observed experimentally because if
not, the Hamilton-Jacobi equation itself will have failed.
This outcome is vanishingly improbable because of the vast
amount of data from other sources in favor of this classical
equation of motion, first devised non-relativistically in the
eighteen thirties. This line of thought traces the existence
of B(3) to the principle of least action, upon which the
relativistic version of the equation is based. This illus-
trates how deeply imbedded is B(3) in classical physics,
provided it is approached in a suitably relativistic way. In
relativistic quantum physics, it is likewise a direct result

(414)

(415)

iB(0)B(3).,B (1) X B (2)

E(l) x E(2)
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condition (412) is approached, and will eventually become

dominated by the I~/2 dependence. This will leave no doubt

as to the existence of the vacuum B(3) , because an I;/2 depen­
dence cannot be obtained from plane waves such as S(1) and
S(2) , which time average to zero at first order in B(O) .

Therefore not only is this a critically important
experiment (as is the optical Aharonov-Bohm experiment) but
it is also relatively straightforward with contemporary
technology.

Apart from the experiment of Deschamps et a1. using
microwaves, the presently available experimental indications
of the existence of B(3) are based on phenomena at visible
frequencies. The simple but rigorous calculations developed
in Chap. 12 of Vol. 1 and recounted above of the spin
trajectory of e in A~ show that at visible frequencies, the
magnetization is produced always under the condition co >- (e/m)B (0)

and is therefore always dominated by the term in B(O)S(]) (Eq.

(410». This means that .(3) in the visible range is propor­
tional always to I o for all but the most intense laser
pulses. This explains why the I o dependence dominates in the
experimental data of van der Ziel et a1. [43a] obtained some
thirty years ago in liquids and solids. These series of
experiments first demonstrated the inverse Faraday effect
using focused, giant ruby laser pulses. These data, as is
now realized, provide evidence for B(0)S(3) in the vacuum.
Similar phenomena such as light shifts [50], and the optical
Faraday and Zeeman effects [4,5,7] are dominated at visible
frequencies by an I o dependence provided that a correctly
relativistic treatment is developed of these phenomena. The
conventional description of a phenomenon such as the inverse
Faraday effect depends on a semi -classical approach [12]
using the conjugate product B(l) x B(2) well known in non­
linear optics [5]. The key discovery [1-10J,
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of the Dirac equation (Chap 1) and is inf d . consequence as
un amental as the intrinsic electron spin itself. This

inference was rigorously reinforced in QED in the previous
chapter.

Similarly, the existence of S(3) in the vacuum leads to
the expectation (Chap. 8 of Vol. 1) of an optical Aharonov­
Bohm effect. This would detect the vector potential, ~, due
to B(3) after gauge transformation in to areas where S(])

it~elf is excluded. Again, however, a precise treatment of
t.h i s effect is relativistic, as in the original paper by
Aharonov and Bohm, reviewed in Chap. 8 of Vol. 1. This
precise treatment is required in order to optimize the
chances of successfully detecting S(3) in such an experiment.
Overall, how:v:r, the OAB parallels the ordinary AB effect,
now well:ver1f1ed e~perimentally after forty-four years of
explorat1on: To des1gn a successful OAB experiment requires
careful est1mates and maximization of the sensitivity of the
~etection system. One method [63] that might succeed
Lnvol ves the modification of a SQUID device. The most
o?vious method, .discussed in Vol. 1 , involves passing a
c i r cu.LarLy pol.ar'Lzed beam of radiation in the shadow of
interfering electron beams. From our considerations above
t~is may w~l~ have to be at microwave frequencies, but at th~
t1me of wr1t1ng the relativistic theory is not fully devel­
oped.

The magnetic properties of electromagnetic radiation are
therefore summarized in the fact that its phase independent
magnetic field, S(3) , does not average to zero at first order
• (0) h1n B ,t e scalar magnitude of the magnetic flux density of
the beam. Unlike B(l) and S(2), the ordinary plane waves

(3) ,

B does not time average to zero, even at the highest

frequencies. This leads to its characteristic I 1 / 2 dependence
when the beam interacts with matter, typified i~ the simplest
case by one electron. The relativistic nature of this
· t.e r ac r t 1/2r n e rac t i on means that the I o dependence can be seen clearly
only under the condition (412). Therefore the same inference
carries through to atomic and molecular matter, where e is
b?und in orbitals and not free. The fact that S(3) does not
t1me average to zero is responsible for optical NMR dis­
c~ssed briefly in Chap. 7 of Vol. 1. Optical NMR is begin­
n1ng to be understood, and has been observed experimentally
[64], but with visible frequency lasers. If we consider the
electron to be replaced by a nuclear particle such as a
proton, :800 times heavier with equal and opposite charge,
and cons1der the interaction of e+ in Ap with the relativis-
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tic Hamilton-Jacobi equation of motion, the condition (412)
will occur 1800 times lower in frequency for the same B(O).

This thought experiment shows that no I;/2 dependence will
emerge from ONMR when a visible frequency laser is used.
Under the conditions used for the first, exploratory, ONMR
experiments [ 64 ] it is clear that any bulk shift will be
dominated by an I o dependence, as in the inverse Faraday
effect. Although such bulk shifts were reported [64], they
are obscured by site specific effects, which are useful
analytically, but which interfere with a demonstration of S(3)

using this technique.
By comparison with the methods of Deschamps et a1. [43b]

it becomes clear that the I~/2 dependence in a proton plasma
or polarized proton beam will become dominant at radio
frequencies for a peak pulse power density of about 10' or
109 W m-2

• It may be possible to explore these effects
experimentally with contemporary technology, but the use of
an electron plasma is technically much more straightforward,
because microwave· pulses can be used.

In previou~ work [4,5] one of us has initiated the study
of S(3) in magneto-optics using the standard semi-classical
approach [5,12]. This type of theory led to the theoretical
prediction [4,5] of several novel effects, occurring with

an I~/2 dependence. Examples include the optical Faraday,
Zeeman, Cotton-Mouton and Majorana effects, optical NMR and
ESR, and the optical Aharonov-Bohm effect. In view of the
reiativistic effects just discussed, these semi-classical
theories must be viewed as approximations, but ones which

nevertheless lead to the correct I;/2 dependence. The
pioneering theory of Pershan [65], on the other hand, does

not contain an I:/2 dependence, and will not under any
circumstances reduce to the result (411) of the correctly
relativistic approach. Again, in the conventional semi-

classical approach typified in Ref. [12], no I;/2 dependence
emerges.

The correctly relativistic description of the magnetiz­
ing properties of electromagnetic radiation, especially using
microwave frequencies, must be based on the Dirac equation,
and will probably be computationally intensive as discussed
already. With contemporary computers this is not a problem.
In the conventional semi-classical theories it is now clear
that the conjugate product signals the existence of iB(O)S(3).,

and therefore of S(3) , whose I;/2 dependence, generated in its
interaction with matter, must be calculated, however,
relativistically. In this sense, iB(O)S(3). is observed
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whenever the conjugate product is observed, and since this is
the antisymmetric part of light intensity itself [5],
iB (0) B (3). has been observed, wi th hindsight, on countless
occasions, whenever circularly polarized radiation has been
used.

This inference marks the end of the Abelian era in
electrodynamics and electromagnetic field theory, a claim
that can be tested experimentally as discussed already in
this chapter through the existence of the I~/2 dependence of
S(3). Cle:ar1y, if S(3) is observed in this experiment, its
presence r.n all magneto-optic effects [5] will have been
signalled unequivocally and conclusively. There is hardly
any need to emphasize further the importance and extensive
consequences of such an outcome.

The existence, then, of B(3) in the vacuum indicates that
O( 2) electrodynamics is internally inconsistent. In this
way, 0(2) gauge geometry, a flat geometry, self indicates
that it is incomplete, and that the photon is a particle with
three physical degrees of polarization in the vacuum. These
are associated with the three physical magnetic fields
B (1) B (2) and B (3) th f · f h · h' . ,e 1rst two 0 W 1C are plane waves,
and the th1rd of which is a spin field. This inference in
turn self indicates that the photon must have mass however. . ,
t i.ny r.n magnitude, because a massless boson has only two
degrees of polarization, in flat contradiction to our three
dimensional world. As first shown by Wigner [22] a massless
particle means an E(2) little group, an entirely unphysical

result. The unequivocal experimental detection of the L 1 / 2

dependence using microwave pulses, or some other means, :an
therefore be taken to mean that the photon is massive thus
settling a debate that stretches over many scie~tific
generations. This in turn might lead to renewed efforts in
astronomy and relativistic cosmology to see the effect of
photon mass, effects such as Tolman's tired light. Such
efforts have been reviewed recently by Vigier [34]. The
existence of B(3) is in contradiction with the structure of
Wigne:'s E(2) little group unless the boson (photon) being
descr1bed by such a symmetry acquires mass.

. Beca~se of the powerful resul ts of field theory [16]
~ch:eved 1n recent years, results based on gauge invariance,
1t 1S asserted by many field theorists that the photon mass
(roo) must be identically zero, and that light must have an
infinite range. The reason is that the term m A A is not

· · 1 0 II IIgauge 1nvar1ant un ess mo is identically zero. We differ
from these colleagues in our inference of finite photon mass,
because as argued, the emergence of an I~/2 dependence from
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the first; principles governing the trajectory of e in Ap

leads to the presence of B(3) in the vacuum. These dynamical
principles are imbedded deeply in classical and quantum
mechanics, and can be traced to the principle of least
action, as shown in these volumes. These are powerful
arguments in favor of a third dimension for electromagnetism
in the vacuum, and therefore for fields concomitant with the
photon. The inherently three dimensional Proca equation is
the only one that can deal consistently with the emergence of
S(3) and link it directly to photon mass through the Yukawa
type exponential decay described in Chap. 2 of this volume.
The d'Alembert equation on the other hand is one in a flat,
two dimensional world, in which waves are purely transverse.
The Proca equation emerges in Lagrangian theory from a vacuum
whos~ symmetry is spontaneously broken in a way first
described by Higgs and others. The breaking of the vacuum
symmetry occurs in a Lagrangian which is originally compati­
ble with gauge invariance. There is no reason therefore, to
assert that photon mass must be zero in a symmetry broken
vacuum. The origin of mass resides as usual in a Higgs
mechanism in this breaking of vacuum symmetry, to which all
fields are subject.

We have shown that B(3) = B (0) exp(-~Z)k is a solution of
the Proca equation, where ~ = moc/'b, thus relating SC!) and .ll7o ,
the photon mass. We have taken at face value the main result
of the Higgs mechanism as applied to Abelian electromagne­
tism, that the photon acquires mass simultaneously with a
third degree of polarization. The free photon is therefore
a massive boson in the symmetry broken vacuum~ for which
there is firm evidence from particle physics as discussed in
Chap. 5 of this volume. The vacuum itself is therefore a
topologically non-trivial entity. Even if SSB is not used in
electromagnetic theory, we have suggested that the condition
ApA p = 0, a limiting form of the Dirac condition for vanishing
photon ra.dius, can be used to make f1ni te photon mass
compatible with gauge invariance.

Since SSB is so successful in GWS theory, however, it
can be taken as having been proven experimentally in the CERN
experiment [57] which detected W*, and Zo at their predicted
masses. It is therefore logical to accept that SSB of a
gauge theory leads to a finite photon mass in the vacuum, and
that this indicates three degrees of .polarization, of
which SCI) is an experimentally provable sign. Reversing the
argument, B (3) leads back to fini te photon mass and a symmetry
broken vacuum, and is, then, a manifestation of a third,
physical dimension which has been long neglected. Clearly,
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amplitude A (0) • The conventional view asserts that the
electromagnetic gauge field is uncharged, and is the agent of
interaction between two electrons. In QED the same process
is described as an exchange of virtual photons, which are
also uncharged. The 0(3) relation eA (0) = 'hlC on the other
hand divides the quantum mechanical nlC into the product of
two ~ negative quantities. This means that as in all non­
Abelian field theories, the field is its own source, which in
this case is the current caused by the field charge e moving
through the vacuum. More generally, e is g, the t negative
coupling constant of 0(3) gauge geometry [16} and g/~ in Eq.
(260) of this volume is identified with A (0) /K. In this
sense, the 0(3) scaling constant simply becomes the classical
quanti ty A (0) /K, and the charge quantization condition becomes
g = 'tl{K/A (0» • Thus, g occurs in uni ts of h , the Dirac
constant. Analogously, energy and linear momentum in 0(2)
theory also occur in units of ~, this being the Planck law of
1900. In 0(3), the momentum eA(O) propagates through the
vacuum with the photon. In this sense, Jackson [44] has
shown, in his classical textbook, that an electronic charge
moving infinitesimally close to the speed of light produces
transverse plane waves which are entirely indistinguishable
from those concomitant with the photon. Even within the 0(2)
framework used by Jackson, the field is its own source, an
electron moving essentially at the speed of light. If we
apply the minimal prescription that electromagnetic four­
momentum, Pp' becomes Pp + eAp in the presence of an electron,
and consider the electron itself to be moving infinitesimally
close to the speed of light, the result is Pp = eA" i.e., the
four-momentum of electron and field become indistinguishable,
because the field concomitant with the photon and the field
generated by an electron travelling near c are indistinguish-
able. Applying quantization finally to P we obtain ~K = eA (0) ,

which is precisely the result from 0(3) gauge geometry. The
essential difference between the 0(3) theory and Jackson's is
of course that S(3) is present self-consistently in 0(3) gauge
geometry, whereas it is unconsidered by Jackson. In the non­
Abelian view of vacuum electromagnetism, the field carries
its own source, just as gravitation self-propagates in
general relativity [ l6} . This view is based on the fact
that Jl (1) X A (2) is classically non-zero, and is directly
proportional to the vacuum B(3). Two electrons repel through
the vacuum in the conventional view, even though they may be
separated by very large distances. Classically, one electron
becomes the source of a Coulomb force on the other and vice

(416)and cyclic permutations,
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we disag~ee w~th that part of GWS which models out the photon
mass as 1dent1cally zero, and encourage efforts such as those
of Huang [35] to incorporate mo consistently in GWS and
SU( 5) .

As argued in these volumes, the existence of the
v S(3) •acuum .. 1nt~oduces, ultimately, some profound philosophi-
cal mod1f1c~t10ns in our contemporary understanding of
electrodynam1cs. Most obviously, B(3) has no existence in
0(2) gauge geometry, which therefore asserts that although
B(l) x S(2) , the conjugate product, is non-zero, 1B(0)S(3). is

zero. This is a reduction to absurdity because B(l) x S(2) is
equal, algebraically, to iB(O)B(3).. Absurdities of this
~ature result in 0(2) electrodynamics because by definition
1ts gaug~ geo~etry is planar. In other words, a physical
vacuum. f Lel d 1S not allowed perpendicular to this plane"
Analyt1cal algebra leads logically, however, to the central
result of these volumes,
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and these relations are inherently non-AbeI1"an 1" d" t·. d" 1 ' n 1ca 1ng
1mme 1~te ~ the need for an 0(3) gauge geometry for electro-
magnet1sm 1n the vacuum (Chap~ 3 and 4 of this volume)" The
~eed for. mo = 0 disappears in O( 3) gauge geometry, and indeed,
15 a log1cal contradiction. Conservative proponents of 0(2)
gauge geometry cannot accept equation (416), nor are they

allowed.by thei~ ad"herence to 0(2) to accept that S(3) emerges
from .f1rst pr1nc1ples, i.e., from the equations (both
clas~1ca: a~d quantum mechanical) that describe the orbital
and 1ntr1nS1C spinning motion of e in A They f d" " Jl • are orce
1nto an 1llogical corner, and must abandon the 0(2) gauge

geometry so long in favor as soon as the characteristic I 1
/

2

dependence of B U ) is observed. 0

Se~ondly, the non-Abelian structure of Eqs. (416) has
the.maJo: potential advantage of bringing vacuum electrody­
nam1:s ~nto the same philosophical ball park as vacuum
gr~v1~at10n: described by general relativity (Appendix C).
Th1s 1S an 1nteresting prospect which has been thought up to
now t? be on the distant horizon because of the inherently
non-l1n~ar nature of general relativity.

~h1r~ly, there exists in 0(3) gauge geometry the
quarrtLzat.Lon condition eA(O) = llK in the vacuum. The 0(2)

photon mome~tum 11K becomes identified in 0(3) with eA (0). The
~atter obv.iousLy has the units of linear momentum, but
1ntroduces the charge e, mul tiplying the vector potential
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From fundamental gauge field theory (Chap. 3), the
covariant derivative of the n component field • is given by

Appendix A. The 0(3) Electromagnetic Field Tensor,

G , in the Circular Basis (1), (2), (3)
pv

which gives the (mn)'th element of the a'th rotation genera­
tor of the 0(3) group. In 0(3) the n component field. is
a three component field denoted by the vector t, the m'th
component of which is [16], from Eqs. (AI) and (A2)

(A3)

(A2)

(Al)

( ,.,. B) •J mn = -~Eamnl

as in Eq. (262) of the text. In the 0(3) group

versa, action and reaction being equal and opposite. The
force is transmitted by a force field, the electromagnetic
field, and the latter can be detected only by the mutual
repulsion felt by the two electrons. If the two electrons
were, for the sake of argument, uncharged, there would be no
repulsion and no field. Therefore the Coulomb force field
depends on the existence of charge on the electron, which in
the conventional quantum field theory propels a photon at the
speed of light through a vacuum. The opposite process also
occurs and there is an exchange of virtual photons. The
photon is conventionally massless, wi th momentum 1tK and
intrinsic angular momentum h. Equation (416) and the
arguments proposed in these volumes now demand that the
photon momentum 11K be identified with eA (0) , and this relation
quantizes charge. It is a direct outcome of using 0(3) gauge
geometry for vacuum electrodynamics. The source of vacuum
electromagnetism, infinitely distant in 0(2) gauge geometry,
becomes identified with photon momentum itself in 0(3) gauge
geometry, and travels with the photon. The momentum of the
photon becomes indistinguishable from eA(O) , and in a manner
of speaking, from its own source. A similar situation occurs
in the self-propagating gravitational field in general
relativity, as described by the Einstein field equations.

We hope that these ideas will be accepted in the spirit
of free enquiry and that they will, accordingly, be tested
experimentally. In particular, there is an urgent need to
search for the characteristic rt/2 dependence generated when
B(3) from microwave pulses interacts with an electron plasma.
Nature shows!

This is the m' th component of a vector equation in the
(isospin) space of t,

(A4)

In order to derive (A4) from Eq. (A3), the following has been
used

(A5)

On the left hand side, the m'th component of the vector
product Ap x. is equated to the tensor product on the right
hand side, where, as usual, summation over repeated indices
(a and n) is used. Equation (AS) is therefore an equation in
vector components in a three dimensional isospin space in
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(A8)

(All)• (3). ::; • (3) =k,

e(3). = -ie(l) x ,,(2), et cyclicum, (A9)

A (1) X A (2) = iA (0) 2 e (3). = iA (0) A (3) • ,

• (1) X • (2) = i e (3) • ,

1 x j = Ie, et cyclicwn, (A10)

and by

in which there is no factor i on the right hand side. The
circular and Cartesian bases are linked by

where * denotes "complex conjugate". As described in Vol. 1,this basis is natural for the description of circularpolarization in electromagnetic radiation. Unit vectors in
the Cartesian representation, on the other hand, obey

where the characteristic factor i has appeared on the righthand side. This is due to the fact that unit vectors in (1),
(2) and (3) obey the cyclic relations

The 0(3) B1ectromagnetic Field Tensor Gp v

(A6)

Appendix A.

which A p and t obey the ordinary vector algebra of three
~imen~io~al s~ace. The symbol Ap therefore denotes a vector
1TI t~1s 1sosp1n space, carrying a dummy index ~ which plays
no d Lrec t or specific part in the vector algebra of the
isospin space. The quantity A: in tensor notation is analo­
gous with a connection coefficient in general relativity
t16]. The Levi-Civita symbol Ea~ is as usual zero when any
two subscripts are identical.

In this Appendix the isospin vector fit is identified
with A~ itself, and the isospin vector algebra developed in
the circular basis (1), (2), (3), rather than the Cartesian
basis X, Y, Z appropriate to Eq. (A4). Finally, the isospin
space in the basis (1), (2), (3) is identified with the
configuration space in the same basis. This procedure is
justi~ied by the fact that the Ja matrices in the general
equat10n (~l) b:come rotation generators of the group 0(3) in
a three d1mens1onal configuration space of the laboratory
frame o~ reference. In a Cartesian basis, the O( 3) field
tensor 1S
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~hich. is an equation in the vectors Qpw' Av, and Ap of the1sosp1n space. The vector cross product appearing on the
right hand side can be expressed in tensor notation by

(A12)

(A7) and are therefore equivalent. However, the transition,

and Eq. (A6) becomes

(where • is the electromagnetic phase) switches the sense ofcircular polarization, and therefore the circular unit
vectors .(1), e(2) and .(3) are natural representations of the
spatial distributions of the field. In the circular repre­
sentation of isospin space, therefore,

where the a'th component of the cross product on the left
hand side is generated on the right hand side by a tensor
product in the isospin space, with summation over the
repeated indices band c. The indices ~ and v on both sides
of Eq. (A7) refer to a different four dimensional space-time,
are unaffected by vector or tensor manipulations in the
isospin .space. Thus, in Eq. (A6), Qpw is a three component
vector 1n the three dimensional isospin space. The indi­
ces ~v indicate that it is also a four-component tensor in
four dimensional space-time.

In the circular basis (1), (2) and (3) the vector cross
product is the conjugate product described at length in
Vol. 1 and preceding chapters,

(Ai3)

(A14)

(A15)
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which is Eq. (276c).
finally to

Appendix A.

As in the text, Eq. (A15) reduces

(A16)

which, except for an arbitrary sign change, is also Eq. (147)
from the Dirac equation of Chap. 1.

We arrive at the important conclusion that the structure
of Eq. (A16) links the 0(2) and 0(3) theories of electrody-
namics, in that A(1) and A(2) exist in the 0(2) (Abelian)
theory, and therefore so does the conjugate product
A(l) x A(2). However, this same 0(2) conjugate product gives
B(3) , the spin field, adding a third physical dimension in
isospin space, identified with configuration space. This
third dimension can be accommodated self-consistently only
within the structure of 0(3) (non-Abelian) gauge theory. The
existence of B(3) is indicated, however, by the existence
of S(1) and S(2}, through the cyclic relations of Vol. 1,

Appendix B. The 0(3) Covariant Derivative (Dp ) in the

Basis (1), (2), (3)

In NAE the 0(2) derivative operator op becomes Dp , the
0(3) covariant derivative operator, and i~ is ba~ica1~y
important to define Vp self -consistently a.n any t.aospa.n
basis, including the circular basis (1), (2), (3). From
fundamental gauge theory [16], Dp is define~ in general.by
Eq. (262) of the text, which in 0(3) reduces 1n the Cartes1an

basis to

(Bl)

so that 0(2) theory "self-indicates" that it is incomplete.
The experimental basis for the physical nature of Sfl) x S(2)

is the inverse Faraday effect, whose rigorous derivation from
first principles was demonstrated classically in Chap. 12 of
Vol. 1, and quantum mechanically in Chap. 1 of this volume.

It is therefore of the utmost importance to note that
the inverse Faraday effect, and other magnetic effects of
light indicate experimentally that electrodynamics is non­
Abelian in nature. The expected experimental observation of
the characteristic square root power density fingerprint
of S(:n also signals the transition from 0(2) to 0(3) electro­
dynamics, with many consequences throughout field theory.

for the m'th component of the field t. The lat~er .can ~e
identified with the three component vector Ap 10 t sospm
space, a vector whose m'th scalar component is A~m' In Eq.
(B1) (3~ denotes the mn'th element of the a'th Cartesian
rota~ion ~enerator of 0(3). These infinitesimal generators
are defined for a = 1, 2, and 3 by (Vol. 1),

S(1) x S(2) =: iB(O)S(3)., et cyclicum, (All)

3 1
= r~ ~ ~i]'lo i 0

[
0 -1 0]

J3 = i 0 0.

000

(B2)

With these definitions, Eq. (Bl) reduces in the Cartesian

basis to

(B3)

In the circular basis, however, the conjugate product is
defined by
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(B4)

The 0(3) Covariant Derivative (Dp)

D a ((1). = a a (e). + e A ~C).
JL-v JL~ n JL '

141

(B11)

In this equation, the left hand side denotes the (3)'th
scalar component of the vector conjugate product. On the
right hand side, J3 is defined by Eq. (B2), A~l) is the n'th

Cartesian component of A(l) , A~2) is the m'th Cartesian compo­
nent of A (2). Thus

for c 1, 2 and 3. Therefore, in the circular basis,

(B12)

(B5)

where Ap is a scalar in the isospin space, but a four-vector
in space-time. Note that the equivalent result in the
Cartesian basis [16] is

and
(D ) =a -ieA.

11 Cartesian P n P
(B13)

(B6)

Therefore

In the circular basis, the field tensor and D operator
components are linked, furthermore, by

(Bl)
= aA - e(.a (a) X Jl (b»)

J& vm 11:---.a lay (c) •

so that

G ( a ) =aA<a>-aA(a)-ie[A(b) A(C)]
IlV J& v v tl l\ J.' ' v ,

(814)

(815)

In the circular basis, a vector cross product generates
an imaginary quantity through a result which is obtained from the unit vector component

relations

-ie(1) x 8<:n = .(])., et cyclicum,

and therefore the vector form of Eq. (B7) is

(BB) (3)* _.( (1)e(2) _ e(2)e(1»)e z i. ex Y x Y Z'
(B16)

(B9)

and cyclic permutations of (1), (2) and (3). Equation (B1S)
in vector notation for the isospin space becomes

The vector cross product can be expressed by

(B17)

so that Eq. (B7) becomes

(BIO) which are Eqs. (276) of the text. Equations (B17) do not
reduce to the conventional 0(2) definitions of the electro­
magnetic field tensor, because the conjugate products are
always non-zero.



Appendix C. The Structural Analogy betvveen NAE and

General Relativity

C.l THE COVARIANT DERIVATIVES

The covariant derivatives used in Appendices A and Band
Chap. 3 and following are modelled [16] on general relativi­
ty. For curved space-time, the axes themselves vary from
point to point, and for a contravariant vector Vii, its
covariant derivative is in general relativity

DVII = a VIl+rll Viv v Iv'
(Cl)

where nv are analogous to A,ll!l. of NAE [16 ] . If O( 3) is
extended to the Lorentz group in NAE, the structure of A:
becomes the same as that of the connection coefficients of
general relativity . The NAE isospin space becomes four
dimensional space-time, and not the three dimensional
configurational space (1), (2) and (3) of the text. The
covariant derivative of NAE then becomes the same in struc­
ture as its counterpart in general relativity. In both NAE
and general relativity, connection coefficients would then
connect the components of a vector at one point with its
components at a nearby point, the vector being transported
between points by parallel transport [16]. Such properties
could be useful in the search for a unified and self consis­
tent understanding of gravitation and electromagnetism.
Electrodynamical laws could then be developed as laws of
general relatiVity and vice-versa.

C.2 THE CURVATURE TENSOR

The analogue of the non-Abelian G;' is the Riemann­
Christoffel curvature tensor defined by
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The curvature tensor indicates that space-time becomes curved
in. t.~e presence of gravi tation. AnaLogousl y , we would in a
un1f1ed understanding be able to say that space-time becomes
curved in the presence of electromagnetism.

G the gravitation constant. In 0(3) electrodynamics A~

becomes proportional in the vacuum to the energy-momentum
vector P p through the charge quantization condition of
Chaps. 3 and 4, and there is a link between Pp and T pv, both
being energy momentum tensors. In 0(2) electrodynamics, eAp
is a momentum vector Pp only in the presence of matter, in
the simplest case an electron wi th charge e . The O( 3)
equations are naturally non-linear, through the cyclic
relations
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which is to be compared with

aa - a A a a It b c
IJV - IJ v - vA.... + eEabcA.. Av •

Appendix C.

(C2)

(C3)

RAE and Genera1 Re1ativity

S(l) x S(:n = iB (O)S(3)* I et cyclicum,

145

(C8)

C. 3 THE BIANCI-II IDENTITY

The Bianchi identity in general relativity is the
analogue of the 0(3) homogeneous Maxwell equations of
Chap. 4, and they are, respectively

and similar as developed throughout these two volumes. They
are naturally analogous with the non-linear general theory of
relativity. Roughly speaking, gravitation and light are
driven through the vacuum in the same way in these non-linear
theories, both fields being self-generat~ng.

(C4)

and

(C5)

which in 0(2) electrodynamics becomes [16]

(C6)

the vacuum homogeneous Maxwell equations of the conventional
0(2) theory.

C.4 THE EINSTEIN FIELD EQUATIONS

The curvature of space-time in general relativity is
determined by the canonical energy-momentum tensor T~v, which
appears in the Einstein field equations,

(C7)

where Rp v is the Ricci tensor, gpv is the metric tensor, and



Appendix D. Structure of the Field Tensor G~~

of Non-Abelian Electrodynamics

In this Appendix, it is shown that the a::) tensor of
non-Abelian electrodynamics reduces to the F~;) tensor of
Abelian electrodynamics using the charge quantization
condition

eA (1) = "a('1) • (Dl)

Vacuum solutions of Maxwell's equations are plane waves,
which in the F pv tensor of conventional Abelian electrody­
namics are asserted to be purely transverse to the direction
of propagation, and described by the U(l) symmetry group.
Vacuum solutions of the non-Abelian Maxwell equations
(Chap. 4) include these plane waves, and, self-consistently,
the vacuum field B(3) and its unphysical dual -i.(3) / c. The
overall result of this Appendix is that in the vacuum

G(i) = 2F.(1)
IIV ....v , (i) = (1), (2), (D2)

for transverse circular states of the electromagnetic radia­
tion. In Abelian electrodynamics, the F~;) tensor is conven­
tionally a null tensor, but its non-Abelian generalization,
9::), contains B (3) and - i.(3) / c as elements.

These results are obtained self-consistently from the
0(3) vector potential through the equation

(D3)

which splits into three equations for scalar components as
follows
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GI~Vl). = [0(0) A (1).] - i[a(2) A (3)]
,.. II' v f1' v,

GJ;1 * = [a~OI , Ay(21*] - i[a~3), A
y
(ll],

GJ;1 * = [a~OI , A y(3)*] - i[a~l) , A
y
(2l],

(D4)

the second commutator of 0(3) theory therefore, S(3) is zero.
Moreover, the second commutator reduces to the cyclic
relations between three physical magnetic fields through
which the presence of B(3) was first discovered [1-9],

(using the notation developed in Chap. 5). These equations

show that G:;)* is a sum of two four-curls. In this notation,
the conventional F p v tensor of U(l) electrodynamics is

(05)

for each state of circular polarization. The general form
of F~v can be displayed conventionally as the four by four
matrix

B (3) =B (3). = - L e A (1) X A (2) ::::: - i _K_A (1) x A (2)
II A (0)

D. 1. 2 XZ AND ZX COMPONENTS

These are defined through

G (3) * - G (3) * - [~(O) A (3) *] _ ';[~(1) A (2)] = 0xz - - zx -: Ux , z .... Ux I Z ,

(D9)

(DIO)

and vanish because A (3) is divergentless and irrotational, and
because A(2) has only X and Y components through its defini­
tion as a transverse plane wave

0 Bz -By • Ex
-~-

c

-Bz 0 Bx
• E y

-1--

F~v
C (D6)

• EzBy -Bx 0 -1---
C

. Ex • E y • Ez 01-- .:1- .I-
e c e

A ( O )
A(2) =A(l).= --(-i1+j)e-J..,

{2

D. 1. 3 yz AND ZY COMPONENTS

cI> : = 6>t -x· r. (DIl)

D.l CIRCULAR STATE (3): MAGNETIC FIELDS

D. 1. 1 XY AND YX COMPONENTS

These components of G..(;' * contain the field B (3). through

Similarly, these components vanish, so that the only
non-zero magnetic component is S(3).

D. 2 CIRCULAR STATE (3): ELECTRIC FIELDS

B (
3

' *= B (3
' = [a(0

) A (3
) *] - -i[a(1 ' A (2 ) ] - G (3 ' *= - G (3) *7, Z X I Y .... x , y - XY YX I

which reduces to

(07)

(D8)

D.2.1 Z4 AND 4Z COMPONENTS

In Abelian electrodynamics, these would formally contain

a real electric field .~3} multiplied by i, whose presence is
due to the Minkowski algebra of special relativity. The
elements are given in non-Abelian (0(3») electrodynamics by

because A(~ only has a Z component by definition. Without
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The first (conventional Abelian) commutator in these equa­

tions vanishes because A (3) is divergentless and irrotational,
leaving

the time-like components of the four-vectors

(D17)

(D16)

i.e., that
defined by

(D12)
G~:) * = [a~O) , A13)*] - i[a~l) , A.(2)],

G4(i )· = [a~O) , Ai3)*] - i[a~l) , Ai2 ) ] .

(DI3) are zero. This result is consistent with the arguments
developed for dual four·vectors in Chap. 11 of Vol. 1.

D.2.3 Y4 AND 4Y COMPONENTS

and since Ei3 ) * must be zero if .(3). is directed in the Z

axis, we obtain

This defines a putative real electric field, which as argued
in the text, is zero on the grounds of elementary symmetry.
Because A (2) and aCl ) have no Z components, the real electric
field from the Z4 element vanishes self-consistently.
Similarly, the real electric field from the 4Z element
vanishes because A (2) and a(l) have no Z components. There­
fore the real part of the electric field in the (3) state is

zero. An imaginary and unphysical electric field -iB(3) / c is
obtained formally, however, through the fact that it is dual
to the real Sf3} as described in detail in Chap. 4.

Similarly, the general definition (D4) gives

(3) *
G cn • _ · E y - _ i[a(l) A (2»)

Y4 - - L -c- - y,", I

(D18)

D. 2 . 2 X4 AND 4X ELEMENTS
(D19)

The X component of 8(3) is clearly zero because B(3) is

in the Z direction, and similarly for Ei3
) . The general

definition of G~;)*, (Eq. (D4)) must produce this result self­
consistently. We have

G(3) * _ . Ex(]>* () ()
)(4 - -~-c- = -i[dx

1
, A4

2
]

(D14)

Comparing equations (D14) and (D19) shows that they are s~1f­
consistent if and only if Eq. (D16) holds, i.e., if the t1me-

like components of ~1) and A~2) are rigorously zero. Th~
same result follows for the well-known transverse gauge [16]

(3)· t
in conventional O( 2) electrodynamics, where A,l 1S no

considered.
The overall result for the (3) state therefore is

However, by defini tion of A (1) and A (2) as plane waves, we
have

(1) , A (0) id.
Ax : ~ (2 e "', (DIS)

0 Bi3 ) . 0 0

-Bi3
) * 0 0 0

G(3).
E(3)* (D20)

= . z ,
II" 0 0 0 -~--

C

E(3).

0
• z 00 ~--c

and this indicates that
where it is very important to note that the electric fields
appearing in the matrix are unphysical, i.e ., are pure
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e K
l; A (0) ,

Using the relations

Eq. (D23) reduces to

(D26)

(025)

(D24)B(O)
--,

1C

imaginary and appear because they are formally dual to the
real and physical S(3).. The physical electric fields from
the definition (D4) vanish as argued already. The only non-
zero magnetic component from Eq. (D4) is B (3) ••

Therefore these resul ts, obtained from the rigorous
theory of 0(3) gauge geometry, are precisely consistent with
our arguments in Vol. 1, and in the first few chapters of
this volume. The results show that the choice of (1), (2)
and (3) as isospin indices is physically meaningful and self­
consistent. The analysis shows that the time-like components
of the four-vectors A (1) and A (2) are zero.

fA JI

D.3 POLARIZATION STATE (1): MAGNETIC FIELDS
Using the definition of the magnetic fields B(l) and S(2) as
plane waves,

D.3.1 XY AND YX COMPONENTS (D27)

These are given by the elements

The second commutator vanishes because A (3) has no X or Y
components, and the first commutator vanishes because the
transverse plane wave A (1) has no specific X and Y dependence.
Therefore the XY and YX components of polarization state (1)

vanish. Note that the elements of the Q::) tensor reduce to

those of the ~(i) t ensor .pv

G (1). - -G (.l). - [a<O)
XY - YX-XI

(D21)
we obtain the results

(1) _ • B(O) 1.
Bx - l.--e ,

Vi

which show that

B (1). - -iB (2) - B (2)
y -..L X - y,

(2) .. B (0) -1.
Bx = -1.--e ,

Vi

B y
( 2 ) _ B (0) -1+

- --e I

1'1

G (l ) . - F(l). + F(l).
xz-xz XZ'

(028)

(029)

D.3 . 2 XZ AND ZX ELEMENTS

In this case the general definition (D4) produces
( ) 1 F(l).i. e., the Gx; · element reduces to a sum of identica KZ

F
( l ) .

elements. Each commutator of Eq. (D22) gives the same KZ

element.
Similarly, we obtain for the ZX element,

which can be expressed as G ( l ) . - F(l). + F(l).zx_zx zx·
(D30)

G (1)" - -B (1). _ i e(A (2)A (3) _ A (2)A (3») - -B (1).
xz - y ..L 1; X Z Z x - y

(D23)
_ 1." e A (2)A (3) - F(l) * - 1." e A (2)A (3)

l;X z-xz };X z·
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D .. 3 • 3 yz AND ZY ELEMENTS

In a similar way, it can be shown that

Appendix D. Field Tensor Q::) of Non-Abe1ian Electrodynamics 155

(D35)

D.4.1 X4 AND 4X ELEMENTS

D.4 POLARIZATION STATE (1): ELECTRIC FIELDS

d th G (1) • d (1) •an e yz an GZ y elements reduce to a sum of identical
1?(1)* d (1)*

n an Fz y elements respectively.

GJ1) * = - G (1). = B (1). _ -i-" (2) - B (1) * -B (2)
.z:Z Zy X .L I\..N Y - x - L y

=B(2) +B(2) =F(l)*+F(l)*x x YZ YZ

In this case

(1) •
G (1). = [aCO) A (1).] _ "[a ( 2 ) A (3)] _ - Ex

X4 x' 4 L X I 4 - - 1.--
C

- i!!.A (2) A (3)
II x 4 I

which reduces to

(D31)

(D32)

The condition (D34) emerges self-consistently, furthermore,
from an analysis of the Y4 and 4Y elements as follows. We
find that in each and every case, the elements of the G~;)·

tensor reduce to sums over identical Fp~)· tensor elements as
for the magnetic fields in circular state (1). This is the
overall resul t summarized in Eq , (291) of Chap. 4. We obt.aLn
the additional information that the time-like components of
A~l) and A:2

) are zero, and that the time-like component of

A~3) is pure imaginary if all elements of G~;)· in polariza­

tion state (1) are to reduce self-consistently to F~;)·
elements in the way described.

D.4.2 4Y AND Y4 ELEMENTS

From the general formula (D4) these elements are given
by

(D36)

which reduces to

E(l).

-i_X_ + B(2) = F(l). + F(l)*
c x X4 X4

if and only if

(D33)
(D37)

(D34)
if the time-like component of the four-vector A~3) is pure
imaginary, as in Eq. (034). This result is obtained with the
plane wave elemental relations

i.e., if and only if the time-like component of the longitu-
dinal four-vector A p( 3 ) : = (A (3) I iA4(3») is pure imagitlary. These

results are of course obtained with the definitions of B(l)

;~~ .(2) as conjugate plane waves (see texts of Vols. 1 and

E(2) E(l)*
- y - - Y - B (2)

-~--c - -~-c- - y ·

Therefore we again obtain

(D38)

G ( l ) . = 2F.(1)*
pv pv' Y, v = 4, (D39)
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with a similar result for the 4Y element.

Appendix D. Field Tensor Q~;) of Non-Abelian Electrodynamics

D.5 POLARIZATION STATE (2)
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D •4 . 3 Z4 AND 4Z ELEMENTS Similarly, it can be shown that

In this case (D45)

so that the G tensor element reduces to a sum of two identi­
cal F tensor elements. III this case, these elements are
zero.

and the first commutator vanishes because the 4 components of
both A (1). and its Z component are both zero. Thisis the
result obtained in conventional 0(2) electrodynamics, because
by definition, the transverse plane wave 1:(1). of polarlzation
state (1) has no Z component. The second commutator vanishes
because

G(l>* = F(l)* + p(l). - 0
Z4 Z4 Z4-

G (1). = [a(O) A (1) *] _ -[a(2) A (3)]
Z4 Z, 4 ~ Z , 4 , for all elements of state (2).

These results show that if it is assumed that A(l) and

A(2) are plane waves of the type (D1l) then the Qp~) tensor of
0(3) gauge geometry reduces, for polarization states (1) and

(2), to twice the FJ~) tensor of O( 2) gauge geometry.. Thus,
as discussed in Chap. 4, the S(l), S(2), .(1) and .(2) fields
are recovered unchanged, i.e., are the same in 0(3) and 0(2)
theory.

For polarization state (3), however, which is rigorously
inconsistent wi th O( 2) or planar gauge geometry, F~;) is
conventionally zero or undefined, depending on the viewpoint.
Equation (D9), however, shows that S(3) is recovered self
consistently from our general equation (D4), which is derived
from the rigorous theory of gauge geometry. Thus, our
general equation (D4) produces S(3) and its unphysical
dual -Ls!» / c self consistently with the transverse fields
in the vacuum. This result is accompanied by the further
insight

(041)

(D40)

(D42)

a( 2 ) - e A ( 2 ) - 0
4 -};" 4 - ,

~(2) - e A (2) - 0
Uz - l; Z - ,

and yet again we obtain the result

Therefore, for all e Lemerrts of G..~l)., the general resul t
is obtained that

(D46)

provided that

which show that AJ1) and AJ2) are polar four-vectors, while

A~3) is an axial four-vector, or pseudo four-vector, of the
type considered in detail in Chap. 11 of Vol. 1. This result
is also rigorously consistent with the cyclic relations for
vector potentials obtained in Chap. 1 of Vol. 1AJ 2

) = (A (2) , 0),

A:3
) :: (iA (3) , i(iA (0»)) •

(D43)

(D44)
A (1) x A (2) = - A (O)(iA (3»*, et eycl icum. (D47)

Thus, the vector cross product of two polar vectors, A(1) and
A (2), must produce an axial vector, which is the pure
imaginary, (iA (3»)*. The four-vector equivalent to this space­
like component~ is therefore the axial four-vector with
imaginary components

A~3) = (iA (3) , i(iA (0») = i(A (3), iA (0) • (D48)
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Therefore the magnitudes liA(3) I and liA (0) I are equal. This
is precisely analogous with the well known Gupta-Bleuler
condition as discussed in Vol. 1. The axial four-vector A(3)

p
is therefore light-like. Since it has no real 4 component,
the real scalar potential can be viewed as zero, and this is
the conventional assumption of 0(2) electrodynamics in either
the transverse (Coulomb) gauge, or in the Lorentz gauge.
However, in conventional 0(2) theory, the imaginary iA(O) is
also asserted to be zero, or left unconsidered.

Appendix E. Some Details of the Non-Abelian Maxwell

Equations in the Vacuum

In this Appendix some structural details are given of
the 0(3) Maxwell equations in the vacuum, and a self-consis­
tency check developed for the inhomogeneous equations of
Chap. 4

D. G ( j ) * = 0
v II" , (i) (1), (2) I (3). (El)

We have seen in Chap. 4 and Appendix D that this can be
written as

D ~(.1). = 0,
" p"

(E2)

and since S(3) is formed from the 0(2) fields S(1) and S(2),

Eq. (E2) must reduce in the transverse polarizations (1) and
(2) to

Since

a F. ( 1 ) . = 0
" fl." ,

(i) (1), (2). (E3)

- a en - +_ll,
V " " ~.av

(E4)

and eAv ~ 0, the transition from Eq. (E2) to (E3) is possible
if and only if

(E5)

which is the scalar form of the charge quantization condition
used in Chaps. 3 and following, and in Appendix D.

More precisely, Eq. (ES) must be written as
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a(i) - e A (i) ,\' - 'h ... (i) = (1), (2), (3),

Appendix E.

(E6)

SOllie Detai.1s of Non-Abe1i.an Maxwe11 Equations

&.1.2 POLARIZATION STATE (1)
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as in Appendix D. From Eqs., (E2) and (E6) we obtain For ~ = X and ~ = Y all elements vanish independently of

(E7)
A (1) F. (1) (1) F. (1) A (1) F. (1) + A (1) F. (1) + A (1) F. (1)

v p" = Ax px + Y pY Z liZ 4 114'
(E12)

Equation (E7) allows a check for self-consistency to be
developed through the expectation that each ~ component must
vanish independently of

for reasons given in detail in Appendix D. For ~ = Z

(1) (1) A(l)F(l) -A(l)B(l) -A(l)B(l)Ax Fzx + Y ar - x y Y x

(K8) (B (1) B (1) - B (1) B (1»)
x y r x =0.

It

(E13)

When this check is complete in detail (as follows) the 0(3)
inhomogeneous Maxwell equations (El) can be expressed simply
as

For ~ = 4,

a( i ) *F, (i). 0
v fJv • (E9)

A (l)F(l) + A(l) F(l)
x 4X Y 4Y

(£14)

For (i) = (1) and (2) these are identical wi th the O( 2)
equations. For (i) = (3) they give the inhomogeneous part of
the Maxwell equations for S(:n and -iB(3) / c as discussed in
Chap. 4.

E.1 DETAILED CHEL"KS ON EQUATION (E8)

because

Bit) • B(O) i. Bit) B(O) i.=~--e , --e ,
J2 J2

Ei1 )
E(O) 1. E:1 )

• E(O) 1+
--6 , -~--e

~ ~

(E15)

E.I.1 POLARIZATION STATE (3)

Eq. (E8) becomes

A (3) ~(3) =: A (3) ~(3) + A (3) ~(3) + A (3) F,(3) + A (3) ~(3)
v J1v x ..x Y . J1 Y Z .. ?: 4 J.l4.

For ~ = X Eq. (EIO) becomes (see Appendix D)

and similarly for ~ Y, Z, and 4.

(&10)

(Ell)

Similarly, it can be shown that Eq. (E8) is true for
polarization state (2). This completes the check for self­
consistency in the reduction of Eq. (El) to .(E9). These
results are utilized in Chap. 4 and f o'l Lowi.ng parts of
Vol. 2.
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