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The details of this paper build on the previous work of M. Sachs and
M. Evans that describe an enhanced form of general relativity which
contains an inherently non-abelian field tensor. We focus on a par-
ticular field arising from the non-abelian form of electrodynamics. In
particular, the form of this field will be demonsgtrated in a first-order
perturbation approach within the context of a simple manifold, and also
the leading order contribution to this field due to the presence of mat-
ter. The enhanced form of general relativity, as detailed in [1], is that
of antisymmetrized general relativity which relies on the irreducible
representation of the Einstein translation group. We also discuss the
possibility of an inherent energy induced by curvature.
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1. INTRODUCTION

The arguments set out in this paper are based on fundamental enhance-
ments to the currently accepted theories of general relativity and U(1)
electrodynamics. The modification to general relativity is set in the
consideration of the itreducible representations of the underlying Ein-
stein group. This defines the antisymmetrized general theory (AGR)
as a quaternionic formalism. The quaternionic formulation has many
advantages (with the embedded O(3) group) over its contemporary and
generally accepted U(1) subgroup. The fleld equations of O(3) electro-
dynamics are a special case of quaternion GR, (Sachs theory) and are
Yang Mills in nature [7].

Important and unsolved conditions in the fundamentals of
physics such as the concept of charge quantization can be found to have
a grounding within the AGR theory. It predicts the photon, principally
understood as massless, to have a small non-zero mass. Similarly for
the neutrino, which recent data collected from various groups supports.
The theory is manifestly free of singularities. It has also been shown
that phenomena such as the Sagnac effect [5] have a phase shift, which
is not complementary in the U(1) theory.

However, more significantly, it demonstrates that the unification
of electromagnetism and gravity follows from this formalism in a con-
sistent manner. Furthermore, the nature of the electromagnetic field
tensor depends intimately on the structure of the spacetime manifold.
In that sense, the theory of electromagnetism as formally described by
the four Maxwell-Heaviside equations is manifestly an intricate artifact
of gravity. In this light, electromagnetism exists as a product of the
extra six degrees of freedom present in the sixteen shown to exist from
the irreducible Einstein group. Furthermore, it will be seen that the
non-abelian and gravitational field equations are generated from the
same quaternionic structure.

This then necessarily leads to a manifestly enhanced form as
compared with that which exists within the context of the Hinstein
group with ten degrees of freedom. As [2} demonstrates, the fields that
belong to this new class of electromagnetic non-abelian fields are en-
coded in the group O(3). This has been shown, and we will in addition,
show that this has far reaching consequences.

In the case of the reducible group, this defines curvature that
induces non-inertial properties of physics described on the manifold.
However, this is a deterministic theory which allows the seating of flelds
which are to provide SU &3) x SU(2)r, x U(1)y interaction physics for
particles that are sources for them. In quaternion form, the electromag-
netic field is not based on a structure that is deterministic in nature,
yet is dependent on the constant i. This shows the ability to describe
electromagnetic quantum effects.

In contrast to the setting of superstrings, gravity is quantized
by the closed spin-2 string. However, the geometry of this theory re-
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tains singular properties and has not yet been successfully described
in “off-shell” interactions. In a similar situation that provided the
first divergence between quantum aspects and the deterministic prop-
erties of general relativity, the measurable properties of strings rely on
the explicit enforcement of commutation relations between variables.
While one of the attractive features of extended objects in the form of
strings led to the resolution to certain divergences of point like particles
in contrast, antisymmetric general relativity is absent of singularitiesi
Parallel in importance is that it contains a structured vacuur, one
which is required to describe observed effects outside the resolution of
current theories.

In the context of an O(3) gauge group, the electrodynamic equa-
tions provide an extended set of equations that, in particular, give rise
to a new field, alongside those of the familiar Maxwell equations, called
B®) . This field constitutes the longitudinal component of the photon.
Additional support for the idea of longitudinal EM radiation can be
found in [6]. While it is trivially appreciated that U(1) C O(3), the
original encoding of electromagnetism in the unphysical vector poten-
tial A, is now described in terms of cyclical relations of the enlarged
set, [2].

2 As will be described, the field has been shown to vanish in flat
spacetime in accordance with the vanishing of the Ricci scalar field,
The purpose of this paper will be to provide some qualitative insight
to the effects and consequences that 8 non-zero Ricel field and higher
symmetry group has on spacetime. The possibilities for experimental
verification through the effect of the field surrounding a massive object
will be discussed. In addition, we will show the consequences of a local
non-zero B in the effect of providing a local energy density.

The approach is a first order one, using the well known pertur-
bation method used by Einstein except in the context of quaternion

perturbation. Consequently, discussion is kept up to and including
small massive objects.

1.1. Quaternion Components and O(3) Algebra

The antisymmetrized form of special relativity [1] has a spacetime met-
ric given by the enlarged structure .

= (1/2)(ch0™ + a“o*™), (L.1)
where o axe the Pauli matrices satisfying the Clifford algebra
(0", 0"} = 26",

which are represented as

10 01 0—1 10
0g = (O 1) y T (lo)a op = (’L 07'>, 03 = (O"‘l) . (12)
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The * operation denotes quaternion conjugation, Which 'translates to a
spacial parity transformation. The quaternion basls wh1c'h has the set
form {1,i,j,k} is defined, in addition to the representations of (1.2),
as i* = j* = kK* = —1 with the use of conjugation. From herein,
when describing aspects of spacetime, we shall be referring to that
which exists in the antisymmetrized form of the respective theory of

relativity. It has shown in [2], that the field denoted by B®) | given by
B®* = —igA) x A, (1.3)

The quaternion dependent form of this field will be shown later, this
also shows its dependency on the Ricel scalar field.

Using a perturbation method that has been used in conventional
relativity, we will demonstrate the existence of such a field within the
context of curvature. In enlarging (1.2) to describe an embedding in a
curved spacetime, one can define

ot — g(z). (1.4)
Such a generalization gives rise to a quaternion field of the form
¢ = (¢, 95, @, 9%, (1.5)

where the sub-index refers to a generalized form of the corresponding
bases in the representation (1.2).

The constraints that are imposed on the quaternion form ¢# that
provide the solution for fields that have an O(3) gauge group are the
O(83) cyclic relations (in the Pauli basis)

Y 2%

e — B = 2ig,
GE" —~ GG = 24, (1.6)
gsai" — ata5 = 21q3.
It will be shown how these confine a metric to a somewhat simplified
set of spacial diagonal components in the cutoff of O(e) terms (in the
next section it will become clear as to the purpose of the parameter
€ which will prescribe the curvature of the manifold a distance ¢ from
the arigin of spacetime coordinates). The component ¢g°° is unaffected.
To first simplify the calculation, we proceed with decomposing
the quaternion elements in terms of a product of a two component
spinor field. The spinor decomposition

gt ~ (B(z): @ B(),) (1.7)
provides such a simplification. The flat form (1.1) naturally generalizes

to
9" = (1/2)(¢"¢"" + ¢¥¢*h). (1.8)
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The proceeding chapter will deal with the first order form of the gen-
eralized quaternion components g#. From there, the antisymmetrized
theory field equations will be obtainable directly from the following
arguments. '

1.2. The Manifold Structure and Perturbation

To introduce the concept of spinor induced curvature on a physical
manifold, one can start by constructing a sufficiently smooth manifold
N' which has dimension s 4+ 1. Each composite manifold § ® S has
a dimension s, there will be four copies of N, with this layering of s
dimensional manifolds, corresponding to each direction in spacetime.
So, N thus contains a continuous class of non intersecting manifolds
parameterized by € € R as M., where ¢ is small and positive. N has the
topological structure S ® 5 X R and each point in M, (which contains
05 corresponds to a unique point (¢ = 0) in M, with the perturbed
quaternion field. Such a “one to one” mapping requires a choice of
gauge vector Xs(e) embedded in the space S®S (d denotes a continuous
set which defines the class of possible paths and simply allows one to
distinguish the possible path choices) which generates an integral curve
x5(6), such that xs (¢) takes o* to ¢'*, a distinet quaternion field which
allows a different metric in the target spacetime. The neighborhood of
considerstion in spacetime is bounded by e, ~

In the notation thet follows, ¥ € S and Y’ € S. Through the
development of the perturbed quaternion field, it will be convenient
to reduce spinor components to the tetrad representation Y'Y’ — g,
where y 18 considered to act in a vector-like way.

In perturbing, it will be necessary to define a derivation of a
spinor field as having the form Dy = ¥V, for some spinor field ¥ [4],
A natural choice is to turn to a derivation involving the Lie derivative,
however, this tool is not in general definable for spinor fields.

Since the operator “V” (by definition) obeys the Leibnitz rule,

it will simplify this approach in its use of the space S®S. The covariant
derivative acts as

Vy=Vyy 1 ¥ =V vy,
In expanding around a small neighborhood ¢ of M5, one then has
q(e)h = Siucf'on + 65,0V, ()i + O(€), (1.9)
where the tetrad formalism a ~ AA' for the matrix components is used,

and again, ¢ is the quaternion component, The factor c' is simply a
constant coefficient. The notation used here is a little confusing. For

!By “smooth” ig meant that there sre no singularities local to the frame of
reference.
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the parameter €, ;4; the index p is simply to label this copy of the pa-
rameter associated with the ¢ quaternion for the spacetime direction
u. Equation (1.9) is then general form of a possible quaternion expan-
sion, from here on, the index a (which defines the tetrad component of
the spinor composite (1.7)) will be identified with ¢. This then implies
that there is one parameter for each quaternion component. Therefore,
with the index a now redundant, the form of (1.9) is now

gle) = 8iucliot 4 €, Vx,q(0)F + O(e?). (1.10)

The spacetime index is & label on all terms except ¢* and ¢ and is not
internally summed over. However, there is explicit summation over 1.
Tt is then easily seen that as each e,; — 0, (1.10) then reduces
to the required flat metric as given by (1.1).
From here, one has all the necessary machinery to construct

a perturbative set of equations which will allow one to determine all
aspects of AGR.

2. THE METRIC AND THE B® FIELD

With all the necessary perturbative formalism understood, it is now
possible to set up a physical spacetime metric. One can approach
the problem from either having defined a metric, or, having defined a

particular gauge in the class x;(¢) in S ® 9 x R first, will lead to a
physical metric, subject to congtraints.

2.1. Metric Construction

Having first defined a gauge, one then proceeds to find the solution

of (1.9). As a general approach, the decomposition (1.7) has tetrad
components

(2(z) ® & (x))iw = (B1(@))} + (21 (z)P2(2))}
+(@2(2)21(z))f + (|22(2) )] = gli(=). (2.1)

However, requiring that the components ¢! should conform to similar
algebraic constraints to the components o; up to factors, then the ap-
propriate tetrad components are assumed to be zero. For example, in
the above notation, and in the case of ¢q, the a = 1 and a = 4 compo-
nents are zero, while ¢ = 2 and o = 3 values are —i and 7 respectively,
up to factors of e, Similar is done for the other quaternion terms.
This then outlines the generalized construction details for defin-
ing all possible physical manifolds that are within the realm of the first
order approach. The adaptation to first order curvature comes with

the solution L
qu(€) = cio* (i + finle)), (2.2)
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where again, ¢ labels the quaternion components. This, by Eq. (1.9)
implies

FiulO)os = €0iVx, fiu (0}, (2.3)
Prom this, one finds for constants &, ;,
fiu(e) - Eu.iku.i- (24)

Where the indices p and ¢ although repeated, are just labels, since
there are a total of sixteen parameters in antisymmetrized GR, so each
is labelled appropriately. The form of (2.1) is then

v

il

9" =q" [0505 (o + fou(€)) (Bop + fonl€))
- CfC: ((5‘i/1 - fip(e) ) ((Sz'p. -+ fip (6» . (25)

12,3

1

In the limit of special relativity (2.2) must conform to the condition
¢" — o¥, (2.6)

which, it is easily seen that (2.5) obeys with the help of (2.3), this is
required so that g*” — n#. Some of the constants therefore have con-
finements of their own. By the above statements, consistency requires

g =land dicf =1 for p=v~i=j (2.7)

In addition, by defining

Kpm = ¢ /c™cl, (2.8)
the cyclic constraints (1.6) are satisfied provided
Krmi(1 + fan(€)) = (L+ frm(€))(L + fule)), (2.9)

where n,m and ! run from 1 to 3. This is in agreement with the SR
limit (with 2.7). This then imposes the extra condition that f; = 0.
As will be indicated later, these cyclic conditions take away first-order
terms from the space-like diagonal components.

The identity
{42, 4™} = 20067, (2.10)
leads to
i (B b i) (6 + FF@) {oF, 07y = 2%, (2.11)

In taking only the first-order terms, (2,10) while & non-perturbative
identity, holds only for a condition on the functions fy(€). The label
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referring to the spacetime component on f has to be taken seriously
with respect to that which it refers to (i.e., contravariant or covariant)

it Fale) = —£1(6). (2.12)

However, we remind the reader of the nature of this index as a label
only, the function fyi(e) behaves as a scalar under spacetime transfor-
mations.

29. The General B® PField from a Curved Manifold

As has been demonstrated rigorously by Sachs [1], the Ricel scalar
defined for a spacetime manifold contained in AGR, has the form

ook = (L/(End* ¢t — B+ P Ko — KM (2.13)
The spin curvature tensor K which arises from the commutator of

derivatives of the spinor components in (1.7) (as described in [1]), is
et out in terms of the spin connection

= (1/4) (8,¢"* +T%,4") q, (2.14)

as
Ky =2 (a[r\QpJ + QI)\QPJ) ) (2.15)

where the spacetime connection is a metric one.
The electromagnetic force tensor has a general form

(Q/4) [( ,u)\q Qu + QVqA*Kp.X + QAI<T}\qu + QUKL)‘QA*>

+(1/2)(q.9% — 0 ¢) R), (2.16)

as shown in [1], with R the Ricci field of g** (1 here denotes Hermitian
adjoint). This tensor field then contains the B field as the component

B® = (Q/8)R(¢*¢™ — q*¢"). (2.17)
This, therefore, allows a physical B® field as

BY = ~(Q/9R {Z[lc%wwfk())fo() % +fk<>)f5<f)]"k
+Zc (8% + F2 () (8% + 2 (€)oo

+ > (e} + FHeNSE + fz(e))agm} (2.18)

1,740
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The analysis so far thus sets the tools needed to define first order
manifolds and the manifest properties of non-abelian fields defined on
them. It is now prudent to illustrate physically relevant models to
demonstrate how the B® field manifests itself in a measurable manner.

3. B® FROM A SIMPLE CURVED MANIFOLD

From (2.18) it follows that the B®) field is zero in a metric with vanish-
ing Ricci scalar field. What follows is the simple calculation of a metric
that only has diagonal components and gives rise to a non-zero Riccl

scalar field, and so a measurable B® field. The metric components are

g = (L+ £ = > (e,
i=1,2,3

=1+~ Y (D) (3
{i=1,2,3} /5

This shows a solution which is confined to the O(3) cyclic conditions

(1.6), which describes circularly polarized radiation, superimposed with

a Schwarzschild like curvature. The conditions that constrain some of
the cg‘ terms (2.7) have been used, in this case, we choose ¢ = +1.

The conventional form of the gamma matrices ig

S = (1/2)9" {guvry + Grop = Guawhy (3.2)
ith
" 5 B, B -
bzt But Deug (3.

for summation over ¢ only. For a calculation of the B® field, we use a
simplified form of (3.1) that has all ¢} = 0 except ¢} = 4. The metric
components now become

g% = (14 f3(e))?,
9" = =1+ fa(e)* + 84 fi(e)”. (3.4)

In the limit of taking only the terms up to and including order ¢, this
metric has the form

(142726 0 0 0
0 ~10 0
0 0-10

\ 0 00—1)
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Here it is seen how the O(3) cyclic conditions remove the first order
terms in the diagonal space like components of the metric. The non
zero Christoffel symbols are

Tt = %Cgo(l + foo(€))*Boede(1 + foo(€))?,

£, = o1+ fuole)B:cB1 + fnl)),

z%:%@@@@+hﬁw- (3.6)

These connections imply that the spin tensor K,y and the spin connec-
tion vector €2, have non zero components. Those of the spin curvature
are

1 ] %k 1
Koy = 'écooaijOI‘BOQOQi goo’ + 53[01‘?]&0(15, (3.7)

1 1 * 1 ¥
Ky = ZCoo(ﬁ[kfooF?]oqo(qg)zao + gPS[kP%o(quOV + 56[%;?3]0(10‘10)-
It is then a matter of cumbersome calculation to see that the above
results and (2.13) yield a nonzero, real valued scalar field for this metric.
The function R(e) from the above results, yields a non-zero simple

form where B® oc QR(e)os and so only varies with a change in scalar
curvature and is a static phase solution.

3.1. Discussion

Using the first order approach in the context of AGR, first devised
by Einstein for use in the reducible representation, it has been shown
that a measurable quantity in the form of (2.18) is obtainable from
the components of a realistic manifold with curvature. The simple
example set out in Sec. 3 shows how a spacetime with scaled temporal
component gives rise to a form similar to that obtained for the flat case,
but with a Ricci scalar curvature that is dependent on such a scaling.

The next appropriate step is to demonstrate the existence of the field
in a manifold with matter content.

4, B® FROM A MANIFOLD WITH GRAVITATING
SMALL MASS

The study of & non-abelian form of electrodynamics coupling to matter
in a simple universe with one electron far from other interaction with
other fields will yield interesting results that can be applied practically.
T'he phenomena that such an investigation should shed light on are the
Inverse Faraday Effect IFE and Radiative Fermion Resonance RFR.
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The examination of RFR will provide a consistent underpinning as to

the existence of the B® field. The details of IFE and RFR. are discussed
extensively in [2], with further elaboration in the last section.

In the 10 component form of general relativity [3], the well-
known tensor field equations are [3]

1
R/,w — §Rguu - kTpu- (41)

As set out in [1], the 16 component quaternion equivalent to this given
by

) . \ 1 .
(Kun@"q — hgud™ Ky + ¢ K] qb — hg, KL q™) + (a8 + havgp) R

k . .
=4 (k') (Togs + ha,T}), (4.2)

whereby h takes the values &1. For h = —1, and k' as the proportion-
ality constant, there is & direct one to one correspondence with the 10
component symmetric field equation (4.1). The choice h = +1, and
constant k, the above is exactly that of the 6 components of the field
tensor (2.16).

he electro-gravitic equation ig given by

Rq, = 8KT, — 2(Kpng* + K1), (4.3)

where T, contains energy momentum information of both the gravi-

tational and electromagnetic components. The B® field defined for
non-zero energy momentum components is then

BO) — Q[k(quh . qul*) . %(Kiq)\q%«
K2 M) + qAquz* _ q/\K,’{qul*L (4.4)
which loosely translates into |
B®) = Tyarser + Topin- (4.5)

In the case of the irreducible group representation, the conventional
tensor is the sixteen-component object

THIE,TE T TE) (4.6)

or

TH = Thoy(8F + f4(e)). (4.7)
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One then finds that Thmatier NOW 15

Tatter = Qk {Z(T; C?) - Tjgc(l))fjl(e)fg.(daj

J

- Y (A - TS+ SN+ ] (48)

‘iE{112:3}j

The leading order term here is the one dependent on the diagonal
contributions from 67 and &3, it has the form

Bffz)atter ~ i(hk/e)ag(Tllci - lecé ) (4.9)

where @ = A/e and e is the charge of an electron. The first term in
(4.8) is of second order and so is neglected. In the case of choosing the
simple metric form (3.5), then (4.9) is the result. This is the approx-
imation of a weak Schwarzschild solution for a charged particle with
the first order terms in the space-like diagonal components absent by
virtue of the O(3) cyclic relations. In this case, the spin curvature
tensor components already computed (3.7), result in (4.5) having an
additional background compounent, which for brevity, will not be stated
here.

Equation (4.9) gives the magnetizotion observed in the inverse
Faraday effect ES] and resonance between the states of o3 gives radia-
tively induced fermion resonance.

5. ENERGY INHERENT IN CURVATURE

From (2.18) we can calculate the classical electromagnetic energy den-
sity due to B®) in the Schwarzschild metric devoid of matter fields:

E (B<3))2 QQ R2

- = , 5.1
vV 4o Ha ( )

where (o is the vacuum permeability in ST units. @ is a fundamental
constant, a primordial magnetic flux in the universe. After quantiza-
tion it is /e for one photon. Therefore B exists in curved spacetime
free of radiating electrons, a spacetime with no matter fields present,
a spacetime which is described by the Schwarzschild metric used to
derive (2.18), The concept of a B®) field generated by choice of metric
in free space, devoid of source (accelerated electron), does not exist
in the Maxwell-Heaviside theory, and (6.1) can be understood as elec-
tromagnetic energy density produced by curved spacetime, “the struc-
tured vacuum.” (5.1) is therefore the simplest equation that describes
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electromagnetic energy density from the vacuum in AGR. It describes
how electromagnetic energy _density can be generated simply by the
expansion of the universe, wa’ghput radiating (or source) electrons be-
ing present. In Maxwell-Heaviside theory there must always be source
electrons present for an electromagnetic field to be present. It is clear
from (1.8) and (2.16) that the symmetric and antisymmetric fields em-
bedded in spacetime are generated by the ¢# components. In the flat

case of g¥ — o™u, one has a manifold in which all B® components are
zero, as provided by

BM « BM® — {BOBEH

B® x B®) — Z'B(O)Bm*,

B® x B = ;gOIg@x
In addition, the relations

EO x £@ = ;2 gOgE)*

B® x EW = jcBORE*

B® « B@ _iCB(O)E(l)*,

)

demonstrate that is is only possible to define electromagnetic fluctua-
tiong by introducing & non-zero Ricci scalar field. This therefore implies
a more far reaching notion of a point charge placed on a background
which provides a source of electromagnetic fluctuations.

The scalar or Ricci curvature R does not exist in Maxwell-
Heaviside theory, or in its quantized equivalent following canonical
quantization, or in quantum electrodynamics, This is because in
Maxwell-Heaviside theory the electromagnetic field is an entity su-
perimposed on flat (Euclidean) spacetime. In AGR and in (5.1) the

electromagnetic field and energy density from the B® field are man-
ifestations of the structured vacuurn (curved, or Riemannian, space-
time itself). The concept of primordial magnetic flux, embedded in
the Sachs constant @, is not present in the Maxwell-Heaviside theory.
In AGR, every photon carries the elementary magnetic fluxon fi/e and
this is present in the background radiation of the universe, and when-
ever there are photons present. Therefore the electromagnetic energy
densitéy from the B® field for an expanding universe is proportional to
(QR)*. In AGR both @ and R must always be non-zero if the electro-
magnetic fleld from AGR is to be non-zero. So electromagnetism is a,
manifestation of the curvature of spacetime, of the structured vacuum
itself on the classical level. In AGR. there is no longer a requirement of
radiating (accelerated) electrons to generste the electromagnetic field.
This is clear from (2.18) because that equation is derived for free space
(a manifold devoid of matter fields and thus containing no radiating
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electrons). Moreover the charge current density of th_e electromagnetic
field in AGR can be similarly generated by the expansion of the universe
in a manifold free of radiating electrons, and the charge current density
is also a manifestation of the structured vacuum itself. The charge cur-
rent density of electromagnetism in AGR. depends on the gravitational
constant k, a clear sign that AGR is a unified field theory of gravi-
tation and electromagnetism on the classical level. Therefore there is
always a source present (nonzero charge current density depending on
k) when the electromagnetic field propagates through curved spacetime
in AGR, a spacetime free of matter fields. Self consistently this source
charge current density also depends on curvature and on & non-zero R,
and vanishes in Fuclidean spacetime (unstructured vacuum).

So on the simplest level, electromagnetic energy density from the
structured vacuum is always available if the product QR is non-zero.

As additional discussion, in AGR, the electron is a classical mat-
ter field without singularities, and so AGR solves the paradox of infi-
nite electron self energy, which plagues Maxwell-Heaviside field theory
and quantum electrodynamics. It is generally true of the AGR frame-
work that it is absent of singularities. It provides an elegant way of
providing & structure that can encompass fundamental interactions.
Alongside the well understood interactions between matter and gauge
fields, the B®) field interacts with one electron to produce the inverse
Faraday effect (magnetization due to circularly polarized electromag-
netic radiation). While this effect has been measured [8] already, new

measurements arc now called for in the light of this new explanatory
framework.
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