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ABSTRACT

Electrodynamics in the vacuum is considered as a U(1) and
O(3) invariant gauge theory. In both cases local gauge transformation
results in a vacuum charge / current density. A Higgs mechanism is used
to derive a locally gauge invariant Proca equation in a U(1) and O(3)
invariant electrodynamics. Therefore the photon acquired mass and rest
energy from the vacuum as it propagates. The advantages of an O(3) over
a U(1) invariant gauge theory applied to vacuum electrodynamics are

discussed.

KEYWORDS: Locally gauge invariant Proca equation; vacuum charge /

current density; photon mass; Higgs mechanism.




1. INTRODUCTION

Gauge theory applied to electrodynamics in the vacuum
requires the presence of an internal gauge space {1-3}. Ina U(1)
invariant gauge theory of any type the internal space is characterized by a
complex field with two components in a plane and in an O(3) invariant
theory by a complex field with three components in three dimensional
space. The use of a complex field indicates that the particle concomitant
with the field is charged. These concepts may be applied to
electromagnetism in the vacuum by considering a topological charge, g,
which appears in the covariant derivative obtained by local gauge
transformation and by considering the components of the field in the
internal space to be components of the vector potential in the vacuum.
From this starting point a globally invariant lagrangian is constructed in
Section 2 both on the U(1) and O(3) invariant levels. From this
lagrangian, the wave equation in the internal space of the gauge theory is
obtained in the vacuum. da seetion-3the locally invariant lagrangian is
obtained from a local gauge transformation and Euler-Lagrange equations
used to derive the locally gauge invariant wave and field equations. The

latter contain a vacuum charge current density both in a U(1) and O(3)




invariant gauge theory. This type of vacuum charge current density was
first inferred by Lehnert {4~ & }. In Section'i a Higgs mechanism is
used to derive a locally gauge invariant Proca equation and a photon mass
defined by spontaneous symmetry breaking of the vacuum in a U(1) and
O(3) invariant gauge theory. Finally the advantages of the O(3) over the

U(1) invariant gauge theories applied to electrodynamics are discussed in

detail.

2. GLOBALLY INVARIANT LAGRANGIANS AND WAVE
EQUATIONS IN THE INTERNAL SPACES OF THE U(1) AND OQ3)
INVARIANT GAUGE THEORIES.

The theory is first developed in U(1) invariant form { { =3}

by considering a complex field made up of two components of the vector

potential: A=t (R 4B — ()
G ( *)
¢ .U (A - R — (3
s (A1)
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The complex field A and its conjugate A are considered to be independent

fields, and signal the existence of a topological charge {71~ \a}:

9 = X - (3
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where ¥ is the wave-number and A a vector potential magnitude. The

topological charge defines the U(1) invariant covariant derivative:
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after local gauge transformation { | =~ 3}, The complex fields( | )and

(o ) define the globally invariant lagrangian:

1 - (},n}(a*n*) — (v)

and the Euler Lagrange equations: (
2
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produce d’Alembert wave equations for each component:

Oa = up*t = o, — (¢)

Local gauge transformation is now applied, defined by:
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to give the locally gauge invariant lagrangian { | ~3)
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fr hich the Euler La, equati ive the
om which the Euler Lagrange equations ( ) ) erd-— give

locally gauge invariant wave equations in the vacuum:
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where A is the four potential and where
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is the electromagnetic field in the vacuum.

The Euler Lagrange equation:

L(éi ) Mo (9)
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gives the Lehnert equation {W~ b} in S.I units:
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where D is the covariant derivative defined by { \ =3 }:
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Therefore if U(1) invariant gauge theory is applied rigorously to
electromagnetism in the vacuum there appears a vacuum charge current
density:
S#(vad) = = (€ac(ATorA-AD"AT)
— (0
and the wave equations become ( 4 )and ( \© ). A covariant
derivative appears containing the topological charge ( 3 ).
The basis of this development is that in a U(1) invariant gauge
there must be an internal space of this symmetry. The only field present
is the electromagnetic field, so the intema;l space must define the complex
scalar fields ( { )and( Q ).
In the usual Maxwell Heaviside theory, the Lehnert charge
current density ( | & ) is missing, and there is no topological charge
present in the theory, so covariant derivatives are replaced by ordinary
derivatives and the vacuum d’ Alembert equations ( A )and ( 10)

become:
OA~ = o - ()
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There is no internal gauge space present in the Maxwell Heaviside theory
and therefore the theory cannot be described self-consistently as U(1)
invariant in the vacuum. The structure of the wave equations ( 4 ) and (
10 ) do not correspond to that of a Proca equation.

In an O(3) invariant vacuum electrodynamics {7~ ‘& } the

globally invariant lagrangian is:
1.8 -0
=
»*

where A and A are vectors in the O(3) symmetry internal gauge space of
the theory. These are independent complex vectors and the concomitant

charge is again the topological charge defined ineqn. ( 3 ). The Euler

Lagrange equations:
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give the globally invariant d’Alembert wave equations:
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A local gauge transformation on the O(3) level is defined by { T—13}:
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where j; are rotation generators of the O(3) group and where ,\.‘ are
angles. The gauge transformation ( &3 ) gives the locally gauge

invariant lagrangian:
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The Euler Lagrange equation:
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gives the O(3) invariant inhomogeneous field equation in the vacuum:
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where the right hand side defines the O(3) invariant Lehnert charge

current density.

The lagrangian ( @ Y4 ) can be developed as:
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and using this form in the Euler Lagrange equations ( a.\ ) apd——)~
\____/

gives the O(3) invariant wave equations:
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These are different in structure from their U(1) counterparts, eqns. ( @ )
and ( 10 ). In condensed notation { 1~3 },eqns. ( ?€)and( 39 )

can be written as:
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-~ »
(p+i3 B -y AV A
and developed as:
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eqns. ( 3 )and( 33 ) simplify to:
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which have the form of Proca equations. Using eqn. ( 3 ) the O(3)

invariant Proca equations are:
(a+wdp’ -2~ 09
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Finally, the de Broglie Guidance Theorem:

’/Y:@. = n\‘,c.D —Cm)

gives the O(3) Proca equations in the form:
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where ™, is the rest mass of the photon.
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3. ACQUISITION OF PHOTON MASS FROM THE VACUUM.

It is shown in this section that the introduction of a Higgs
mechanism (spontaneous symmetry breaking of the vacuum) produces
vacuum charge current densities in addition to the Lehnert type, which as
we have seen in section (2), is produced by a local gauge transformation.
In a U(1) invariant theory the Higgs mechanism is introduced through the

globally invariant lagrangian:

o = (.M)(0*AY) - w2 AtA = A(R*A)’
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from which is obtained
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The scalar fields H and A therefore become
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which can be developed as:
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The Higgs mechanism has therefore acted in such a way as to produce a
globally invariant field component A\ with mass.
A local gauge transformation of the lagrangian ( W1 ) produces
the locally invariant lagrangian: ‘
T 0 rig By (e e (=53 A AY)
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which when used in eqn. ( \d ) produces the field equation:
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The term =4 ™= 2 implies that the electromagnetic four potential

has acquired mass in a U(1) invariant gauge theory. All four vacuum

charge current densities produce vacuum energy through the equation:
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The locally invariant lagrangian can be written out as

9
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and at its minimum value simplifies to:
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If the mass of the photon is defined by:

~ (s
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then the lagrangian ( $3 ) is a U(1) and locally invariant lagrangian for

the Proca equation:
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Therefore the photon in this U(1) invariant theory has picked up mass

from the vacuum using a Higgs mechanism.
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In an O(3) invariant theory the starting point is the globally

invariant lagrangian:

1- 30yt -wtaent - (aat’ (s

from which we obtain:
M . _ecat-axa’(a-at) (5D
Y
W oL _.2h - b (aat) (59
A

from th L i i
om the Euler Lagrange equations ( & | ) asd{——. At the Higgs

minimum (the symmetry broken vacuum):
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and the wave equations ( 51 )and ( S8 ) reduce to:
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The locally invariant lagranglan obtained from eqn. ( S6 )is:
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where it is understood that:
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The Euler Lagrange equation ( 3 S ) gives the field equation:
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with the Lehnert charge current density on the right hand side. At the
Higgs minimum this charge current density is obtained from the

symmetry broken vacuum and takes the form:

. ¢ )
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which is an O(3) invariant Proca equation corresponding to the
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lagrangian:

The mass of the photon in the O(3) invariant theory is derived from the
Higgs vacuum, which is the minimum of the potential energy used in the
lagrangian (S 6 ). The field equation ( é ) and lagrangian ( ¢S ) are

O(3) invariant and so the existence of photon mass becomes compatible

17
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with the existence of the Evans Vigier field B {1— |} and the O(3)

invariant B Cyclic Theorem. The Higgs mechanism is the basis of much
of contemporary elementary particle theory, and this derivation is based

on a rigorously O(3) and locally invariant gauge theory.

DISCUSSION

It has been shown in this paper that an O(3) invariant Proca
equation can be obtained from a local O(3) invariant gauge
transformation (eqns. (0 ) to ( Y |)) In this mechanism the photon
mass appears from the O(3) invariant local gauge transformation itself.
This does not occur in a U(1) invariant gauge theory applied to
electrodynamics. It has also ben shown that a Higgs mechanism applied
in both a U(1) and O(3) invariant theory produces a gauge invariant Proca
equation. In this mechanism the photon mass is picked up from the
symmetry broken vacuum defined by the Higgs minimum.

The received view of the Proca equation { 1 ~ 3 } is that it is
not invariant under local gauge transformation, but in this paper it has

been shown that the received view is incorrect. Photon mass is

8.




compatible with rigorous U(1) and O(3) invariant gauge theory applied to
electrodynamics in the vacuum. The same procedures produce self-
consistently the Lehnert chérge current densities in the vacuum, and its
concomitant inherent energy, defined by eqn. ( ©\ ). Therefore there is
energy inherent in the vacuum both in a U(1) and O(3) invariant gauge
theory.

The rigorous application of gauge theory to any problem requires
an internal gauge space, and this is also true of gauge theory applied to
electrodynamics in the vacuum. The internal gauge space has been
defined in this paper through complex scalar (U(1)) and vector (O(3))
fields with a concomitant topological charge {1 —1a} defined by eqn. (

3 ) in both cases. If the existence of this internal space is neglected, the
Lehnert vacuum charge current density disappears.

It is now known that the advantages of using an O(3) invariant
gauge theory applied to vacuum electrodynamics (“O(3)
electrodynamics™) are overwhelming { 1= 1R }. For example
interferometric effects are described with precision, one prominent
example being the Sagnac effect { |3 }, another example being

Michelson interferometry { 1\ }. A U(1) invariant gauge theory applied

19




to vacuum electrodynamics (“U(1) electrodynamics™) fails to describe
either effect {13, \\4}, and fails to describe physical optics in general.
O(3) electrodynamics is homomorphic with Barrett’s SU(2)
electrodynamics { 1S }, and both have been tested extensively against
empirical data {7~ S }. The phase factor in both O(3) and SU(2)
electrodynamics is a Wu Yang phase factor, which is related to the Evans
Vigier field 13_(” {1- '3} using a non-Abelian Stokes Theorem. It has
been shown {13- 4} that all interferometric effects are topological in
nature, and defined through the topological charge ( 3 }. In contrast
U(1) electrodynamics fails to describe the Sagnac effect because its phase
is invariant under motion reversal symmetry, which generates the
anticlockwise from the clockwise loop in the Sagnac effect with platform
atrest { 1% }. U(1) electrodynamics fails to describe Michelson
interferometry because its phase factor is invariant under parity inversion
symmetry, which is equivalent to normal reflection { & }. O(3)
electrodynamics explains Michelson interferometry and reflection through
a Wu Yang phase factor { 1 }, and is also successful in explaining
topological effects such as the rotation of the plane of linearly polarized

light propagating through a helix { 1 & }. U(1) electrodynamics has no




explanation for this effect. The Aharonov Bohm effect can be explained
by O(3) electrodynamics {!3 , \ T}, whereas U(1) electrodynamics fails
to give a satisfactory effect. The above mentioned is a selection of many

effects { 1 = \"\ } which O(3) explains but U(1) does not.

al
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