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A model of pairwise charge—charge interaction superimposed on rotational Brownian motion is
developed for the complex microscopic polarisability of a translationally invariant lattice of molecules.
The model is compared with the experimental results and Monte Carlo simulation of Darmon and
Brot on the disordered solid phase of 1,2,3-trichlorotrimethylbenzene (TCTMB). It is found that
the long range and cooperative nature of electrodynamic interaction precludes the use of over-
simplified analytical techniques and that computer simulation is a much more successful and con-
venient method of investigating the molecular motions in the solid. It is unlikely that analytical
techniques of moderate tractability can compete in the study of liquid state molecular dynamics,
without themselves becoming computer-oriented, as in this paper.

The liquid state may be defined as that where the mutual interaction of molecular
translation and reorientation is at a maximum. In addition, a strongly dipolar
liquid consists of molecules whose kinematic properties are modulated by a strong
additional electrodynamic interaction arising basically from the distribution of the
electrons about the nuclei in each molecule. In mesophases, we have the additional
problem of the director potential. The electrodynamic and kinematic factors may be
balanced against each other by judicious use of spectroscopies designed to illuminate
differently the overall motions and interactions. The purely kinematic (translational
and rotational) aspects of molecular motion may be dealt with in an increasingly
penetrative fashion by the technique of computer simulation,* but the treatment of
molecular electrodynamics in this way is more difficult due to the effect of long-range
interactions on the choice of periodic boundary conditions. The corresponding
analytical problem in liquids is naturally acute and related directly to that of throwing
light upon the dynamic internal field.2 It therefore seems logical to pursue simplifi-
cations which will not at the same time divorce the mathematics from physical reality.
One such simplification is that of removing translation by fixing the molecular centres
of mass on a periodic lattice * and pursuing interrelated analytical,* experimental
and simulation information. The indications obtained by a comparison of analytical
theory with experiment should not contradict those obtained from the simulation.
By a judicious selection of the experimental conditions under which a lattice of strongly
dipolar molecules is to be studied it is possible to try out directly and accurately a
group of model preconditions. In this paper we assume for convenience that the
centre of mass of each molecule on a lattice is fixed and that the molecules are inter-
acting electrodynamically and pairwise via Coulombic charges situated at atomic
sites. The electrodynamic potential is superposed on an underlying rotational
Brownian motion, thermally stimulated and governed by Markov statistics embodied
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in a Smoluchowski diffusion equation. How well does our set of assumptions accord
with experimental data?

To answer this question we take a natural lattice of molecules in the solid state
where electrodynamic factors are important, where rotational disorder is observable
dielectrically over a range of temperatures and which has been simulated by computa-
tion. Our drastic analytical assumption of pairwise interaction may then be evaluated
critically, the experimental conditions having been chosen to accord with the model
constraints on translation. The disordered solid phase of some hexasubstituted
benzenes have been considered in great detail by Brot and Darmon,® using a semi-
stochastic Monte Carlo simulation of the preferred molecular orientations. In
these solids the van der Waals forces impose several almost equivalent potential wells
(nearly sterically symmetrical molecules). The electrodynamic forces are then
relatively much more important in deepening one of the the wells with respect to the
others and thus in determining a preferred structure, This is the case, for example,
in 1,2,3-trichlorotrimethylbenzene (TCTMB), where the electrodynamic energy alone
governs the orientational thermodynamic transition as the temperature is lowered.
The thermal (librational) Brownian motion of the system at high temperatures is
therefore strongly modulated by an external potential and electrodynamic torques
appear as extra terms in the stochastic Langevin or Smoluchowski equation governing
the complex microscopic polarisability.® The resulting Cole~Cole plot is theoretically
that for a lattice of translationally invariant molecules interacting pairwise. The
model is compared with the experimental results for TCTMB at different temperatures
and with the Monte Carlo simulations.

THEORETICAL METHOD

A pair of TCTMB molecules is assumed translationally invariant with respect to
each molecule. We chose for convenience a mutual axis joining the centres of each
benzene ring in the crystal lattice (high temperature unit cell P2,/C, Z = 2, low
temperature : pseudomonoclinic cell Z = 8 ; crystallographic unit cell PT, Z = 2 x 2).

To write the Smoluchowski equation for the variation in configuration space of
the probability distribution function (6, ¢,, ¢,, t) associated with the orientation of
the molecule under the influence of a time varying field we shall suppose that each
molecule experiences a frictional drag { arising from the thermal energy of the
surroundings. Denote by p; and p, the resultant dipole vector in each molecule.
These remain in planes perpendicular to the intercentre axis (axis 1). If we denote
by V the intermolecular electrodynamic potential (due to charge-charge Coulomb
interactions), then the system is governed by the following differential equation,
(first devised by Budd 7 in another context), for the variation in configuration space
of fat time 7 after the sudden removal at ¢ = 0 of a unidirectional field of magnitude
E:
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In eqn (1) 8 and y are the polar angles which specify the direction of axis 1 relative
to that of E, while ¢, and ¢, are the azimuthal angles of p; and p, measured from
the plane containing E and axis 1. J takes therefore the argument (¢, - ¢,). Intro-
ducing, following Budé 7 and Coffey,S the variables y = (¢, +¢,)/2; n = (¢, —,)/2
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simplifies the solution of eqn (1), which in general may be expressed as:
@11 = 4 5[4, XT0, Ot 0+ Ban¥ 50, 06, D] )
where
X0, x) = Py(cos ) cos my
Y (0, x) = Pj(cos ) sin my

are spherical harmonics and where the functions F,,.(11), Gum(11), Awm and B,, are to
be determined from the initial condition associated with eqn (1) :

S(¢s $2,0,0) = 4 exp {—pBlp, sin 0 cos ¢, +p, sin 0 cos $2lE+ V(¢ —2)}

where B = 1/kT and A is a constant to be determined. One finds ¢ the following
differential equation for F,,(1, ) and an exactly similar equation for G,,(n, t) :

V'(2n) OF kT 3*F,,
= 8 e 3
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where V' = oV (2n)/o(2n).

Define
Fonln, ©) = I Fon(n, 1) €™ dt, )
0
then eqn (3) reduces to:
2F dF,
© = 200) (20 D= +iwb]Fn = ~BFuar,0) )

where
&) = V'2n)[kT, b = 2(,/kT.

Now expand the left hand side of eqn (5) in a series of eigenfunctions Z;(17) of
the Sturm-Liouville equation :

d*Z(n) dz,(n) _
“‘d?r-zd’(ﬂ) dn +AZ,(n) =0 (6)

so that
an(ﬂ’ 0) = ; Ci.Zl(r’)

Gnm(n’ O) = § C:IZ).(”)

. 7
Fonlt, @) = T DZy() * 0

Gnm(ﬂ} 60) = ; D;.Z).(n)
Using orthogonality properties of the system (5)-(7) we have :

) Cbz,m)
an(r’, 60) = ; [,1+n(n + 1)(a - 1)-—m2(a —2)][1 +iw‘r,1] (8)

with a similar equation for Ge(n, @). The relaxation times t , are given by :

Tium = O[nm +2n(n+1) —m?). ®
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In the case of dielectric spectroscopy, n = m = 1. The polarisation is not a
simple exponential decay as in the case ¥ = 0 but is instead a superposition of a very
large number of exponentials. The complex polarisability

ap(w) = a,(w)—ic(w)

arising when the rotating group is subjected to an electric field which varies harmonic-
ally with time at an angular frequency @ may now be calculated by means of the linear

response theory relation 8 which connects the after-effect and alternating field
solutions together :

ap(w) = ——on —(l {m . e)>gy exp (—iwt) dt

o, (0)—iw j " {m.eyoe i dt 10
0

where { ), denotes ensemble averaging in the absence of E. Ineqn (10) {m .e) is
the mean dipole moment :

{m.e
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= - - T T 2n (11)
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(where dQ = sin 6 d6 dy d¢, d¢,).
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and the weighting function g(z) is defined by :

a) = exp [ =2 oo an]. (13)
From eqn (12) and (10)
af(w) = l% }; Lj(1+iwty) (14)

I, is the sum in eqn (12).
A first order inertial correction to eqn (14) along the lines devised by Sack °

would read :
E 27,1
a(w) = PE ZI;/(l +ico1:,'—-w Ta ) (15)
27 {4
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where [/ is the molecular inertia component about an axis perpendicular to that of
Uy OF Uj.

The problem of estimating the complex polarisability is analytically reduced,
therefore, to that of computing the eigenvalues and eigenfunctions of the Sturm-
Liouville eqn (6), given a suitable form for V(27).

PAIR INTERACTION via DISCRETE CHARGES

The translationally invariant lattice has been considered by Zwanzig 3 using
point dipoles. The dipole field effects represented by external torque terms in his
diffusion equation result in the appearance of a second, faster relaxation in addition
to Debye relaxation by rotational diffusion with modified relaxation times. Cole *
later extended Zwanzig’s work to the dipole relaxation of a sphere and of a spherical
region in surrounding dielectric, using Zwanzig’s assumed distribution function
equation for Brownian motion and a modified one based on Kirkwood’s transport
theory. The appearance of a second relaxation in Zwanzig’s lattice i1s of course
consistent to first order with the infinite number appearing from eqn (6), whatever
the form of V(2n). Our relaxation times correspond inversely to the eigenvalues of
the Sturm-Liouville equation. Zwanzig’s initial equation is a modified Smoluchowski
equation for the Brownian rotations of dipoles in a rigid cubic lattice of a spherical
sample in vacuo. However, as pointed out by Cole, if the time evolution of the
necessary one- and two-particle configurational distribution functions are described
by generalised Smoluchowski equations in which appear the dipole forces averaged
over all other dipole orientations then the long range dipole forces introduce no new
shorter relaxation times at all. The experimental results of Brot and Darmon °
for TCTMB show however a symmetric broadening at low temperatures in the Cole—
Cole arc (fig. 2) and for pentachlorotoluene the presence of many shorter relaxation
times 1s indicated by a Cole-Davidson type of distribution. Their semi-stochastic
Monte Carlo calculations, using charge-charge interactions between atomic sites,
bear these out very closely. The point dipole model is found, however, to be
altogether too crude, the simulated degenerate configurations of TCTMB within the
point dipole approximation are not those which are observed experimentally at low
temperature. The point dipole approximation is inadequate to predict the stable
configuration at low temperatures since the dipolar character in TCTMB is distributed
among several atoms which are localized far from the molecular centre.

We have to choose a form for V(2n) between a multipole expansion and a direct
evaluation of the Coulomb energy between discrete charges localised correctly on the

molecules. For each pair of TCTMB molecules there will be 144 site-site inter-
actions.

MULTIPOLE EXPANSION

In a molecule of C,, symmetry such as TCTMB the use of a multipole representa-
tion of the electrodynamic potential is limited by the fact that the number of indepen-
dent terms increases impractically as the series evolves. For example, there are three

quadrupole components, two of which are independent, seven octopole terms and
21 hexadecapole terms : 0

®xx = Oyy = ®zz = —®xx+ eyy (16)
Qxxz = szx = szx; nyz = szy = Qyzy; szz = _(Qxxz+nyz) (17)

etc. These terms quickly make the numerical solution of eqn (6) too costly.
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SITE-SITE INTERACTION
This is formally governed by the equation : °

1(#)’ 44,
V = — L) 18
n% Hy 12_1: rij ( )

where i and j refer to atoms in the reference molecule and one stacked parallel to it
in the TCTMB lattice (see Darmon and Brot, fig. 7). The potential ¥ is superimposed
upon and governs what we shall assume to be rotational Brownian motion about the
sixfold pseudo-hexad axis defining the axis 1. In eqn (18) u, is the dipole moment of
TCTMB measured in benzene solution by Darmon and Brot and p a rigid moment
defined as follows. When placed at the centre of the molecule of solute which has a
refractive index n,, this dipolar rigid moment u will produce in the solvent of refractive
index n; the same field as the external moment u, which has been placed directly in
the solvent. The correction term (u/u,)*(1/n3) is then designed to consider the
crystal as a polarisable continuum in which permanent charges are immersed. This
has the advantage of enabling the direct use of electrostatic formulae for a material
medium provided the electric charges are correctly chosen. Polarisation phenomena
are then automatically accounted for. As pointed out by Darmon and Brot, the
absolute electrostatic energy is meaningless in the continuum approach, but here, as
in the Monte Carlo simulation, we are intercsted only in the difference caused to an
underlying stochastic process by the imposition of an electrodynamic torque [the
angle derivative of ¥(2n)].

ViVe/107*2 es.u, cm™!

i

n/rad
Fi6. 1.—Diagram of V(2n) for0 < 9y < 7,

The charges ¢; and g; have been estimated ® for each atom of TCTMB by de-
composing the total moment into bond moments and taking account of mesomeric
and induction effects. These correspond to the definition of an isolated molecule
(of moment pu,) but for the continuum approach they are all multiplied by u/u, as
above. Considering a common rotation axis through the centres of each benzene
ring, then to a good approximation :

ry = [R&+ri+ri—2rr;cos 2n)]? (19)
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where R, is the intercentre distance and r; that from the ring centre to each atom on
molecule i. Eqn (6) reduces then to the normal form :

2
grﬁ“(* o )+d¢(n)) e

with z = Zexp[— j(ﬁ(ﬂ) dn). Here we have:
¢(n) = dV(2n)/d(2m)

rir;q:q; sin (2n)

Z(F/FV) % [R3+ri+ri—2rr;cos (2n)]¥
The bowl-shaped potential V(2) is illustrated in fig. 1 as the sum over the 144 site—site
interactions of the molecule pair. The average electrostatic energy difference is
positive, unlike ordered lattices, due to constraints imposed by molecular van der
Waals profiles and relative positions. We take R, as the b lattice constant which
decreases as the temperature is lowered and as the lattice undergoes a disorder—order
thermodynamic phase change. We now proceed to evaluate the Cole-Cole plot of
o"(w)/a(0) plotted against o'(w)/a(0) as a function of R, by solving the Sturm-
Liouville eqn (20) numerically using a robust and powerful algorithm newly developed
by Pryce.!!

(20)

NUMERICAL METHODS

The algorithm finds the eigenvalues 1 and eigenfunctions Z;(n) by a shooting
method based on the scaled Priifer form of eqn (20) as described by Hargrave and

Pryce 12 with certain modifications. The Priifer equations are integrated using a
~ 05 S
Ng = ~
~ N
7 N
Y7
| V;
0 0.5 . 1
e’ (w)

F1G. 2.—Argand diagram for «*(w)/x(0), the complex microscopic polarisability. (- - -) Semicircle.
(1) Pair interaction model (#/py)/n3 = 1. (2) Pair interaction model (u/uy)/p = Brot/Darmon value.
(3) Experimental, TCTMB solid, 186 K. (4) Monte Carlo simulation,® 170 K.
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Runge-Kutta formula devised by Merson, with automatic control of local error. The
computed values of 1 have a mixed absolute/relative error, those in table 1 being set
accurate to 1 part in ~ 108 or 10°. The eigenvalue part of the algorithm will soon
become available as Numerical Algorithm Group (mark 7) DO2KDF.

The eigenfunctions are evaluated by a method which relies on the construction
of a miss—-distance function which for given trial values of the parameters measures
how far the conditions of the problem are being met. The problem is then reduced
to one of finding the values of the parameters for which the miss-distance function is
zero, i.e., to a root-finding process. Numerical solution is actually effected by shoot-
ing forward from the left hand boundary condition and backward from the right
to a matching point. In common with the Mathieu and Hill equations, eqn (20)
is such that the periodicity of V(2n) is that of z(2n). The boundary conditions are
therefore 2'(0) = z'(n) = 0.

TABLE 1.—A AND I; FOR VARIOUS VALUES OF x = (u/u,)(1/n3%)

(it pr)’+
x n An =~ 0.001
1 0 0.000 000+40.000 000 6 0.071
1 0.023 70 +0.000 000 6 0.887
2 8.9230 40.0000056 0.180
3 14.3502 4+0.000010 0.000
4 20.304 6 4-0.000013 0.021
5 29.1081 +0.00018 0.0039
6 40.085 6 +0.000 025 0.005
7 53.0430 +0.000033 0.006
8 68.013 8 +0.000 043 0.001
* 0 0.000 0004-0.000 000 6 0.090
1 0.052 71 4+0.000 000 8 0.857
2 7.370 14 +0.000 004 6 0.029
3 12.499 53 +0.000 007 8 0.000
4 18.855 65 +0.000011 8 0.021
5 27.751 79 +0.000017 3 0.003
6 38.726 75 +0.000 024 2 0.004
7 51.700 79 +0.000032 3 0.006
8 66.683 64 +0.000052 4 0.001

* Value used by Brot and Darmon for x.

Each eigenfunction Z,(n) is stored on file at a series of unequally spaced integration
mesh points. The values of I, for each A (table 1) are then evaluated using N.A.G.
DOI1GAA for the quadratures, keeping error bounds of one part in 105 or better.
In checking the accuracy of the overall computation note that :

BE
TP L @b
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The I, series is rapidly convergent and by summing up the first half dozen or so terms
eqn (21) is satisfied to within +0.5 9. This could easily be improved at the cost of
more computer time. The deviation from semicircularity in fig. 2 is not, therefore,
due to local numerical uncertainties. In fact it is due to an infinite distribution of
relaxation times quite closely spaced, determined by an approximately quadratic
progression in the eigenvalues A of table 1. The smaller the separation R, the slightly
greater is the deviation from the semi-circular in fig. 2.

DISCUSSION

The final step of relating o*(w) to the complex permittivity £*(w) is the one about
which least is known theoretically, there being too many theories. The step involves,
of course, an internal field estimation which is dependent on our first solving the
electrodynamic/kinematic problem set out briefly in the introduction. Our predica-
ment is therefore circular. The problem is present even in relating the results of
Monte Carlo simulation to &*(w), which is that of relating £*(®) to a microscopic
correlation function, involving cross-correlation. In this paper we assume that the
Argand diagrams of ¢*(w) and a*(w) are similar, Darmon and Brot having checked
already that the many and complicated internal field corrections do not yield very
different results. In comparing a*(w) from the Sturm-Liouville equation with that
from the Monte Carlo simulation, the internal field is not a problem, since both
approaches are already microscopic.

The essential difference between the simulation and pair-interaction approach is
that the former takes account of all charge—charge interactions in a block of 240
molecules with edges 6a, 105 and 2c, where a, b and c are the parameters of the mono-
clinic unit cell in the high temperature phase (300 K). The equivalent of the friction
constant [, is introduced in the Monte Carlo simulation by setting up a potential
barrier to hinder orientational jumps between one molecular site and the next,
barriers of essentially repulsive origin. For a given molecular site in a given
surrounding, the electrostatic interaction produces a slight variation of the six barrier
heights. In this picture, at high temperatures, due to the amount of orientational
disorder in the neighbouring molecules, the differences in depth of the potential wells
tend to cancel out and to be smaller than &7, producing a constant probability of
jump and thus a near semicircular Cole-Cole plot. At low temperatures the few
disoriented molecular dipoles produce around themselves potential differences of
opposite signs for different neighbours, hence a greater variability of the potential
wells. This makes for a wide distribution of jump probabilities and a flattened
Cole—Cole arc.

In the model developed in this paper the friction coefficient at 300 K is many
orders of magnitude less than that at low temperature but the variation in electro-
dynamic potential energy is small. This is of course well-known from the calculations
of Kitaigorodskii et al.'® on the variation of the electrodynamic energy in compact
dipolar and guadrupolar lattices, which varies slowly with the structural parameters
(in our case R,, to a close approximation the lattice constant b at 300 K).

At the 300 K the experimental data, simulation and model produce results in
close accord (a slightly flattened Cole-Cole arc, fig. 2). However, as the temperature
is lowered (as R, becomes progressively a little smaller and {, increases enormously)
the TCTMB lattice undergoes a more or less continuous transition and potential
barriers of repulsive origin separate wells whose levels evolve cooperatively, as a
result of electrostatic interaction, so that near the low temperature end of the transition
region the superstructure exists in the form of domains. The flattening of the Cole-
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Cole arc is obviously not followed (fig. 2) by the pair interaction model, even when
the lattice spacing is reduced to R, = 2.50 A (unrealistically small in practice).
Electrostatic interaction as represented in a pair approximation is therefore not a
good representation of the overall molecular dynamical process of TCTMB which
relies on cooperative phenomena, especially at low temperatures. In fact the Monte
Carlo simulations were performed with a constant R,, so that in both high and low
temperature configurations the Brownian model plus pair interactions would yield
the same type of slightly flattened Cole-Cole arc. The order-disorder transition
cannot, therefore, be followed by pairwise electrodynamics alone.

The self-consistent approach to the problem of rotational diffusion recently
suggested by Berne !4 has many interesting consequences, especially were his equations
modified to take into account inertial effects and memory effects, so that the far
infrared region could also be described satisfactorily. Berne’s results have recently
been extended to spheroids by Warchol and Vaughan 15 and the Budé theory general-
ised in this context by these authors and by G. T. Evans,!® using a truncated Mori
approximant to the initial stochastic Liouville equation governing the system.

However, Berne’s results are essentially based on the Cole method of treating the
Zwanzig lattice and none of these treatments is capable of producing the symmetric
broadening of the Cole~Cole arc observed experimentally in disordered solids such as
TCTMB and successfully simulated by the semi-stochastic Monte Carlo methods of
Darmon and Brot. They all tend to produce a series of shorter relaxation times and a
Cole-Davidson type of skewed Argand diagram. Symmetric broadening is often,
of course, observed also in liquids. It seems, therefore, that this is an area where
computer simulation is more informative than the analytical approach, provided
the problem of long-range interactions on boundary conditions can be overcome.
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