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ABSTRACT

The developument of a Smoluchowski equation for the evolution of the probability
density of angular molecular motion in the condensed phase is considered in terms
of kinematic and electrodynamic models. These are equivalent in some cases
(i.e. two or more different interpretations may be assigned to the same equations
of motion) so that wide ranges of environment and frequency are needed to
distinguish between the different models. Therefore data over about ten or more
decades of frequency have been used in the glassy and liquid environments of
decalin solutions in order to illuminate the paths along which development of the
basic formalism (due to Budo) should proceed.

The overall features of the experimental loss profile may be reproduced even
in the glassy state but only by imposing severe constraints on the model para-
meters as they stand at present, These are more acceptable in a kinematic

rather than electrodynamic interpretation of the Smoluchowski equation,

INTRODUCTION

The interaction of dipole moments affects the statistical auto-correlations
and zero-THz absorption of molecules undergoing Brownian motion [1]. The
dipole-dipole interactions, being long range, persist in dilute solution [2] and
should be assessed in any theory of molecular motion in liquids and glasses.
The most intractable problem is one of describing the fluctuations of the reaction
field induced in its surroundings by a fluctuating dipole, and in general the
equation of motion may be solved iteratively only as described by Scaife [3].
However, in the particular case where the interaction is considered pairwise,
Coffey has shown recently [4] that the problem may be approached using in fresh
ways the classical techniques developed by Budo, who considered the Brownian
motion of a molecule with two interacting dipolar groups. In this paper we aim
to take the simplest representation of Coffey's theory and compare it with data
collected over a suitably wide range of frequency [5], in the different environ-
ments provided by the liquid state, and the glassy state. One of the consequences
of Coffey's formalism is to underline the fact that an experimental picture of

molecular relaxation processes over only a restricted range of low frequency can




|
|

282

be wmisleading in the sense that short time details of the molecular motion

cannot be assessed [6], Often the far infra-red part of the loss curve is the
only means available of distinguishing between the reality of such behaviour and
wodels such as inertialess rotational diffusion and well-hopping (Ivanov) which
'wash out' the torsional oscillatory mode at THz frequencies f7]. This should
always be considered as an integral part of the overall loss profile, i.e. of the
overall dynamic evolution. Therefore, in a solution of dipoles in a non-dipolar
glass such as decalin the Poley absorption survives as the newly characterised

Y process [5], while its microwave frequency (Debye) adjunct has been shifted
into the radio frequency region, evolving into the p loss process. A further
cooperative A process persists at even lower frequencies in the viscous liquid
above the glass transition point, Taken together, the %3 and \' peaks of the
continuum profile in a glass such as CH,Cl,/decalin are separated by about ten
decades. We aim in this paper to find what modifications are needed to the
Coffey equations in order to achieve a simple representation of both liquid

phase and glass phase molecular dynamics in a self-consistent fashion, This is
a worthwhile exercise since the metamorphosis from liquid to glass has the most
dramatic effect on the angular fluctuations of an individual dipole vector (as

it evolves from the arbitrary t = o) without quite stopping the rotational
diffusion altogether,

In this paper data in the frequency region up to the THz have been collected
for dilute solutions of strongly dipolar molecules in non-dipolar solvents
capable of being supercooled into the glass, The Coffey theory is then evaluated
against this set of data and its statistical characteristics discussed in terms
of auto-correlation functions and probability density functions designed to
emphasize different aspects of the molecular dynamics as governed by a harmonic
type of dipole-dipole potential, Firstly we develop some relevant points of
the general theory.

Brownian motion with dipole-dipole interaction

The basis of Coffey's approach lies in the work of Budo [8] on the dielectric
relaxation of molecules containing two rotating dipolar groups. The coordinate
system, although applicable strictly to dipole-dipole interaction of dipolar
groups within a single molecule, may be used as a frame of reference for dimer
Brownian motion with the following provisos, Axes/Ml and/M2 refer to
projections of the two separate dipole vectors,}‘, and/ﬁk , onto a common plane.
In general, therefore, the perpendicular component/M0 will not be zero when we
speak of the dipole-dipole interaction of two separate molecules, each subjected
to the influence of Brownian motion,

The restriction of/ko = o implies that the dipole moment ‘/ecto):s/“_’_\l and/,ﬂ 2
of the molecules are undergoing libration or rotational diffusion either in the

same plane or in parallel planes. Each dipole may be embedded in an asymmetric
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cop molecular framework. In the case M, f o the magnitude/ﬂ*O s the sum of
rhe components in a plane perpendicular to that defined by/}A1 and/‘*Z of the
interacting dipoles/bl and /M ,.

In order to obtain the simplest representation of the theory we assume
inertialess dipoles aud that/ﬁ*u = 0. The Smoluchowski equation governing the

evolution of the probab{li%y density function g (8, ¢1, ¢z, t) is then:
I3(8 0,4 0 = ’%\'3__5 rafan 898 4 (s v ¢/, X
35X oe? 5 )8 -

o~ . )\J .\9 JV
(4 2 2 T 8 et 2
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In eqn.(l) ?; is a friction coefficient acting on the interacting pair con-

1)

sidered as a unit - i.e. the friction acting on the molecule as & whole in the
Budo theory. ?; ; is that on an individual dipole. The probability density

function { associated with the orientation of the molecule under the influence
of a time varying electric field is governed by eqn.(l) after its sudden removal
at t = o, In eqn.(l) the number of pairs of molecules with moments/éfl anq/éfz

having orientations between _£2 and L+ afl is given by:

8 and “+ are the polar angles which specify the direction of the axis of/ﬁko
relative to that of E, the measuring field vector, while ﬁ, and %2 are the

(2)

azimuthal angles of‘éfl and/Af , megsured from the plane containing E and the axis
of//*o. v = V(¢l - ¢2) is the mutual potential energy of the dipoles,éﬁl and
In writing eqn.(l) we assume that the only

portion of the interaction taken into account is that between the pairléfl and

/éfz, i.e, pair interaction symmetry is assumed.

The mean dipole moment of the engsemble of interacting pairs is calculated from

%/ _
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In eqn.(2), A = (?, - ¢z)/2, P = 1/kT, and CA and C, are constants defined
through the orthogonality relations of the eigenfunctions ‘g ('\) of the equation:
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Eqn.(4) is a Sturm-Liouville type of differential equation with eigenvalues )\,
Eqn.(3) is the after-effect solution of eqn.(l) and shows that the polarisation
is not a simple exponential decay with time but a superposition of a very large

number of exponentials, The polarisability 09“(03) may now be calculated by
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means of the relation:

(6)

where <: :> o denotes ensemble averaging in the absence of E the measuring field,

From eqns.(3) and (6):
MK E_ETIX/(HMT’D
’~ - T ™

in the simplest case where inertia is neglected. Here I)\ is a weighted

integral over the eigenfunctions appearing in eqn.(3). There will therefore

always be a distribution of relaxation times in the presence of dipole-dipole

interaction.

"Inertial considerations are developed in this paper by making a simplification
such that the vector E is always coplanar with the plance of rotation of the
dipole components A, and/}k 2. The equations of motion of the system then reduce
to ones formally identical with those governing the model {9] of planar itinerant
libration of the asymmetric-top dipole, (developed recently by Coffey et al,[9,10]:
provided the interaction potential takes on the harmonic form:

v = (;S, - ;52')2v° (8)

The dielectric loss is now described by the following stochastic differential
T e b ) £V (B b s Est D = 9 (0
T, 4;1 (5 t \Sa ‘}a OO -\ (¢I - +"‘> "7‘2\: sin 9l’a (9= o}:(*a .



Here 1, and I, are the moments oi inertia of/éél and/éfz respeciively about a

central axis _L to their own plane. g,(t) and g,(t) are random torques acting
1, k)
on/éfl and/&tz caused by the Brownian motion, 'g 3 and 1; , are the hydrodynamie
o,
friction coefficients acting on each dipole. We may now define Vo = 1 T,60,2

where €@y is a harmonic frequency which we assume may be identified with the peak
librational frequency of the far infra-red. In the liquid state it is reasonable
to suppose that \S 1 = \s , = g o, which may be identified with the microwave
loss peak frequency. Therefore there are no adjustable parameters within this
framework of assumption, and the experimental loss is reproduced fairly accurately
in the liquid solution at room temperature,

In a glassy environment however, we find that we are forced to set g1>> \_S 2
in eqns.(9) in order to follow the split into two loss peaks of the continuum
profile. In this case ?;1 is identified with the radio frequency peak and
j; 2 serves as an adjustable parameter which broadens the. THz loss peak (fig.(1l)).
This means that:

(a) Either the dynamical evolution of the molecular interactions in a glass or
viscous liquid is not describable in terms of a simple model such as this, or

(b) Alternatively it might be possible to think of a process whereby the hydro-
dynamic friction coefficient \S 1 acting on one dipole moment is very different
from that on the other because the local environment is different at different
instants t. A very small proportion of the molecules will be at the crest of a
potential well at any one time (i.,e, they are in the act of rotating through
unusually large angles). The vast majority will be librating quasi-harmonically
at the bottom against hugely different frictions represented by ?;2 (say).

The difficulty is that one would expect, after an ensemble average, that 1;1 and

ﬁ;z should still be roughly similar, and in the glass, both very large. This
implies immediately that the THz peak will be ‘washed out' theoretically and
replaced by a slowly decaying plateau in the absorption coefficient ¢ (&) simply
because a large ﬁs 2 broadens the THz resonance enormously). This would be true
for any kind of dipole-dipole potential V, It seems therefore that the simple
model is unrealistic in the glass. At the same time it is remarkable that if
the same eqns (9) were to be interpreted in terms of the planar itinerant librator,
the conc e ptual difficulty caused by \Sl>> % , vanishes, since the former
becomes the friction.coefficient between an entire diffusing cage and its
surroundings, and TS , that between the inner molecule and the cage. This
interpretation may however be objected to on the grounds that it is unlikely

that a cage of nearest neighbours behaves as a rotationally diffusing entity,

It is clear therefore that developments are needed in eqn.(l) or eqns.(9) before
the glassy state spectrum can be interpreted in a manner consistent with that of

the liquid state spectrum,
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50 100 150

Figure 1 ~(a) Far infra-red absorption of tetrahydrofuran/decalin glass (10% v,/
(1) Exptl. curve at 110 K; (2) Exptl. curve at 128 K; (3) Theoretical curve
(normalised to a(max(\J)), with either of the following group of parameters:

10%° 1, 10°° 1, %, /THz S,/ T/K €, €
/gm cm? /gm cm?
8 8 6040 20 110 3.5 2.4
2400 8 20,1 20 110 3.5 2.4

This means that the electrodynamic interpretation is valid provided the moment of
inertia associated with one dipole is much larger than that associated with the ot

50 100 160

(b) TFar infra-red absorption of fluorobenzene/decalin glass (10% v./v.)

(1) Exptl. curve at 128 K; (2) Exptl. curve at 110 K; (3), (4) VNormalised
theoretical curves showing the broadening effect of an increasing P

(3) 3, = 20 THz; 4 % , = 15 THz, The theoretical curves are normalised
to the o(max () of curve (2).

Ordinate: (L(~)/neper em™}; Abscissa: N /em”!
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Statistical Considerations - Probability Density Functions

The molecular dynamics governed by eqns.(l) or (9) may be described statisti~
cally in terms of various autocorrelation functions associated with ‘the mean
dipole moment (Ln.£> " These are derived by suitable integrations over their
associated probability density functions [(101.

These functions may be calculated from eqns.(l) or (9) and by Fourier trans-
forming the orientational time auto-correlation function: in particular the loss
is obtained as a function of frequency. By relating the angular velocity auto-
correlation function to its memory function, evaluating thereby the conditional
probability density function for angular velocity, and comparing the result with
that from eqns.(9), an estimate may be made of the efficacy of the Kubo fluctuation-
dissipation theorem [11}. This is an important link in generalising eqns. such
as (1) to include inertial effects and non-Markov statistics, The probability
density functions inherently contain more information than their autocorrelation
functions and provide a more direct insight to the molecular dymamics. Using a
variety of both types of functions the governing characteristics of a model may
be elucidated,

Probability Density Functions of Angular Velocity

To evaluate this from eqns.(9) we use their mitrix representation:
x(X) = Ao %D v 8w
= - - r
Az X‘-‘ - A °
)() 9&

X, $ o

X‘*J F | (10)

Here W is a matrix of Wienmer processes, and

al = (T/T)wl

: ' AT hr s+ %a) L D1
FCOIIOSR T, 6

where:

Fl=s+ 8 (%, 7% rlolraiy %8s
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<
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Therefrom:

(11)

(12)
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is the characteristic equation of the system (9). The angular velocity probabilit,

density function associated with eqn.(1l) is that of X;(t) in eqn.(10), and since

the random variables Wi(t) have a Gaussian probability distribution it follows that

the probability density function is given by (in two dimensions):

5 (10, 1[5, 1,5, 0,5, X (9, )
" 3 730

JZ:LP

N BTG
A (DY 2 (73H%

where Y;(t) ="X3(t) - <:‘X3(ti> . This may be evaluated in terms of the roots

of eqns.(12), and the resulting cumbersome expression is presented in appendix A.

i
[

(13)

Integration of eqn.(13) over X;, X, and X, gives the probability density function:

1 000,5 %0, 92 J (AW, AD. 2

(14)
A further integration of eqn.(1l4) produces eqn,(1ll).
The results, eqn.(l4), may be obtained with the use of appendix A, giving:
l{: -~ 3 % (ﬂ?
)C) ) 2, - 1
(’r) l2o®
9 (15)

where:

Ur) %T \~<76 ﬂi& >>
T o,

This is identical with that obtained from the memory function representation of

}51 (t), i.e. r

i+ [lod a1

(16)

Here, K(t) is the autocorrelation function of the non-Markovian, Gaussian
angular acceleration r1(t) {(Kubo's fluctuation-dissipation theorem), The Kubo
theorem holds therefore for the angular velocity governed by eqn.(l). Given
this equivalence it follows that the diffusion equation corresponding to eqns,(9)

may be written in the form:
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and possibly also the inertial corrected eqn.{(l) which is as yet unknown. Here

A(t) is a column vector of linearly independent dynamical variables chosen such
- T
that the angular velocity autocorrelation function is properly defined. AT (L) is

the corresponding row vector, In addition:

-1
CA’

v(e) = (g(o)éT(o> - cé(t)<g(o)§(o> KRG
0 () = <§(t)§T(o)> <é(0)éT(0)> 1,

Mg = C

1<

el

Assuming that %1 (t) and ¢2 (t) are linearly independent, then eqn.(l7) reduces
to the Smoluchow§ki eqn. of the system (9) provided:

A= [AW] 5 4@ [0 g SB

L e O

. . Ta®
A (Q a, (1

Here S (t) is a Diraq delta function.

Results and Discussion

The parameters for best fit to some liquid and glassy solutions are shown in
Table 1, and a typical frequency domain fitting in fig.l, where the loss has been
converted into the conventional infra-red representation of power absorption
coefficient ol (W). A fit to glassy data is shown in fig.2, where the nature
of the complete loss peak over fourteen decades is clearly delineated. It is
clear from the extra peak at THz frequencies that no model of the molecular
dyanmics in all environments can describe the complete loss profile without taking
into consideration the inertial effects governing torsional oscillation at short
times. These effects dominate the behaviour of various autocorrelation functions

of ¢1(t) such as those (fig.3) of angular velocity, torque and rotational velocity
( <j%€ (cos S(t))[gz (cos 6(t))]0>> ), the latter being the direct Fourier

transform of the power absorption coefficient (K (&), These are obtained from
the model by adjusting 1;1 and W, to reproduce the loss and o (&) peaks of the

liquid data. All three types of autocorrelation function oscillate about the




6 T 10 12

|

Figure 2 (a) 'Complete' loss curve of 10% THF/decalin: (1) 77 K; (2) 110 K;
(3) Theoretical curve, $, = 15 THz; (4) Theoretical curve, $, = 20 THz.

4 6 8 10 12

] I

(b) 'Complete' loss curve of 10% fluorobenzene/decalin: (1) 77 X; (2) 110 X;
(3) 127 K; (4) Theoretical curve, 5, = 20 THz; (5) “§, = 10 THz,

12 .
Ordinate: log £ (w2); Abscissa: log (& /Hz)
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Figure 3 (a) Autocorrelation functions associated with ¢1 of eqns.(9), for
CH,Cl,/decalin at room temperature.,

w Lo A @ Ao (A,
(3)< 3 e ﬁ(&)‘: dohb] > .) w <D 4 (DS

These illustrate average associated with (1) orientation; (2) angular velocity;
(3) 'rotational' velocity (the Fourier transform of & (N)); (4) torque.

(b) The same functions for the glass at 110 K, 1In this case the dotted curve (2)
is that for 'rotational' velocity. Notice that all angular functions are now
highly oseillatory except for function (1), the orientational a.c.f. (the Fourier
transform of € (w)/w),

Ordi . . . kT, ¥

rdinate: £(t); Abscissa: (f;) t.
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Figure 4 Probability density functions for fluorobenzene/decalin glass at 110 K.

Left hand curves: decay of peak height with time (bottom and left hand scales).
- — = (1) £(X;(6),t l X1 (0),X,(0),X%3(0),X,4(0),0)
(2) £Xs(8),t | X3(0),0)

1
Right hand curves: .d.f.'s for t(kT/I,) % = 0.5, angular velocity dependence
[ig P 1

(top and right hand scales).
(1) £(X;(t),t | X3 (0),X;(0),X;5(0) ,X4(0) ,0)
- — = (2) £(X3(0),t \ ¥3(0),0)

Ordinate Scales: l.h.s.f(t); r.h.s. £(4;).

%

Abscissae: top ¢, (Il/kT)y;; bottom t(kT/I,)
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Figures 5 and 6 As for figure 4, CH,Cl,/decalin, room temperature (300 K);

THF/decalin at 110 K.
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time axis reflecting the short time torsional oscillation. In some glassy
solutions (figs.4 to 6) the oscillations are more pronounced than in the corres-
ponding liquid solutions and are discernible in the related probability density
functions '&(Xg(t),t X, (0), X,(0), X35(0), X.,(0), o) and f (X3(t), £ %X3(0),0),
There is therefore periodically an increased probability of finding a molecule
with a given angular velocity at times after the arhitrary, initial, t = o,

In other cases both types of probability density function rapidly fall to a
constant value with time, indicating that correlation of angular velocity is
rapidly lost. Another interesting feature is that the peak heights of the two
functions decay to the same constant value at long enough times, but shortly after
the initial t = o, it is, of course, more probable that X,(t) would be found given
X; (o), X,(0), X;3(c) and %X,(0) than if given just X;(o) alone, so that i from
eqn.(14) always decays the more rapidly.

Conclusions

(1) A very simple and straightforward model of molecular Brownian motion
influenced by dipole-dipole interaction may be used to reproduce the main
features of the loss profile up to THz frequencies in dilute liquid solutioms,
and with some unsatisfactory constraints, also in the glass,

(2) Consideration of dipole-dipole interaction leads to a broad distribution

of relaxation times whatever the form of potential chosen,

(3) The aim of a simple molecular representation of the fluid state should be to
reproduce, approximately, observable features in a wide range of environments

and over a wide range of frequencies, In doing this it is of secondary importance
only that some of the initial ideas are found to be at odds with the evidence
(i.e, in the glass) since a formalism such as that of Coffey is flexible enough

for considerable improvements to be made.

APPENDIX A
Denoting the roots of eqn.(12) by -& + 1 [3 and & :

< >/§ kk>> = w:*ca = 5 ’394\- (°(a"°<l>n (\-E’—Qd‘r)
(- =8 | J(ad+ ) a%

+ O I v Ak
PR <°(\+°(=>a+l3: Q(OL?+ (f)
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+1€—(d|+4:3t (,(?_ od o ’3‘:)5'\ t _\_Qd,wpf
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+ Q-Qd.t _<d;"°(\> (o(\si»\D(:d‘,{— {BCAS D.Pi')
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&y~ )
Sin ¥ ocos Pt \—(._—:-———-——"'
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The constant c¢? is defined:

LT
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