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Above 10 em~' (i.e., in the far infrared), €'(#)=¢_ and €"(¥) is small
[although a(») is large]. Using these approximations, both these equations
reduce to

On
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where the square brackets enclose a nondispersive correction. Numerically,
therefore, C,(¢) is independent of any severe internal field correction above
10 cm~'. Therefore, the shift in 7_,, in Fig. 20, and the features of Fig. 1,
may be ascribed to the molecular dynamics. C(7) is a real, even function
of time, so that it can be expanded as a Taylor senes:

2 4
() u(0)> = uH(0)) — 57 CGH(O)) + 7 Ci(0)y— -+ (11.26)

with ¢u%0)) =1 by definition. For a linear molecule

- (0= G0y =257

where / is the moment of inertia, since for rotational kinetic energy ; e’
becomes on average kT. The mean-square acceleration {i%(0)) is the sum
of a radial part (centripetal acceleration, owing to the fact that the vector u
is of a fixed length), independent of interactions and having the value
8k*T?/I% and a tangential part {O(V)*>/I* produced by the mean-
square torque ¢O(V)*)> that the environment produces in the molecule.
Therefore, (I1.26) becomes
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Gordon*® has calculated the first two odd moments, which appear in
quantum mechanical treatments of C (), as well as some quantum correc-
tions to the even moments. Classically, we have

3kTVne

C,(1)=
() 47N

Taking (I1.27) at r=0 produces a relation for the integrand absorption in-

tensity per molecule for all rotational-type zero-THz absorptions:

N 3Inc

which is Gordon’s sum rule, derived classically by Bro

- 2.2
[ ¥ iy dime 2l (11.28)
0
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fm expliot)a(w)dw (11.27)
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B. A Continued-Fraction Expansion of C (/)

Unde_r certain conditions we may write (1.6) with A =[u]. Therefore we
have, with these restrictions,

i(t)= —L’K,,(;——r}u{-r)ér+r{:)

where

Ko(t)=1(1)4(0) > /<u(0)-u(0) ) (11.29)

Here f(r) is a stochastic quantity whose correlation function defines the
memory Ky(7). This relation is referred to often as the second fluc-
tuation—-dissipation theorem derived initially by Kubo.®® Equation (11.29)
may be solved to give

E )=~ j; Ky(t—1)Cy(7)dr (11.30)

which may be expanded in the Mori continued-fraction form

& (5)= GO __ GO
- s+ Ky(s) g K0 (30
. K,(s)

in the space (s5) of Laplace transforms. Now if
f2n
(2n)!

cty=$ 4

nw=()

as is _requ:red by time-reversal symmetry for the classical autocorrelation
function of u, it follows that

Ky(1)= E % 2" /(2n)!
n=0

o0

Ki()= 2 'k,1*"/(2n)!
n=0

Ky(t)= 3 %, /(2n)! (11.32)

nm()

Therefore, solving for %, in terms of a,, gives for N > I:

N
Vo= =iy~ T Y., (11.33)
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so that the coefficients %, are known in terms of ay and their precursors.
The coefficients ay t themselves are given in terms of experimental spectral

moments (1/Ny) f w"a(w)dw, with N, as the molecular number density.

Ideally, therefore, measurement of the experimental spectral moments is
enough to define the memory functions Ky(0),...,Ky(0). In reality, of
course, we are limited by experimental uncertaint}' in the high-frequency
side of the absorption band for n> I, so that to obtain a tractable expres-
sion for C,(1) we must minimize the number of parameters Ky(0),..., Ky(0)
by truncating the continued fraction at a level N where the decay of K,(1)
is so sharp as to be virtually a delta function compared with that of C (1)
itself. The value of N at which this is so is not known a priori, and must
therefore be arrived at by physical intuition similar to that used in deriving
(1.30). We aim therefore at a compromise—avoiding too early an ap-
proximant (some of the models in Table I) and also avoiding adjustable
parameters, which obscure the true quality of the fit between theory and
experiment. If we can, in this way, devise a method for evaluating
Ky(0),...,Ky(0) from the experimental zero-THz bandshape, then effec-
tively this is providing us with information on the mean intermolecular
potential energy in terms of the mean-square torque [related to K,(0) via
(11.26)), the mean of the torque derivative squared [via K,(0)], and so on. In
the next section we discuss the recent attempts at this problem and there-
after the results in the gaslike environment. The relation of extended diffu-
sion modes such as the m and J of Gordon to the continued fraction is ex-

plained.

1. Approximants of the Continued Fraction for C o(5)

Since molecular interaction is the essential element in the characteristic
shift to high frequencies of #_,, (in Fig. 1, for example) and since the inter-
molecular potential is basic in this context, a truncation of (I1I.131) is unre-
alistic unless the final expression for C,() involves at least the equilibrium
averages Ky(0) and K,(0). This minimum requirement is fulfilled by the
assumption that K,(f) decays as a delta function at the origin, /=0. This
implies that

K,(1)=K,(0)exp(—y1) (11.34)

where y is a characteristic decay frequency to be determined. Now E_(s}
has the same form as (1.30):

s*+ys+ K,(0)

(I1.35)
52+ y52+ (K4(0) + K,(0))s + vKy(0)

En(’)"
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and C,(7) is recoverable analytically. This is essentially also the form used
by Kivelson and Madden in relating C(¢) to C vl ), and was first consid-
ered by Barojas, Levesque, and Quentrec*? to explore some molecular dy-
namics simulations of nitrogen using the atom—atom potential of Section
III. Recently, the same approximant has been considered carefully by
Drawid and Halley* in order to calculate a time-dependent spin- spin cor-
relation function for the classical Heisenberg model of ferromagnetism.
Using the relationships devised by these authors, it may be deduced that
(I1.35) may also be derived from

Ko(1)= K(0)exp(— K,(0)12/2) (11.36)

when it seems clear that

= (; K,{{}})UI (11.37)

Equations (I1.36) and (I1.37) ensure that K (¢) have the correct first two
terms in Taylor’s series expansion (I1.32). The “mean-square-torque” term
K,(0) in (I1.35) may be fixed by differentiating the model absorption coef-
ficient [essentially the Fourier—Laplace transform of (I1.35)] with respect to
w, whereupon K,(0) can be obtained from the measured peak frequency
Vmax- Oince Kiy(0) is the mean-square angular velocity, (11.35) may be used
for reproducing experimental data without recourse to least-mean-squares
iteration. Alternatively, it is sometimes convenient to iterate on y and K (0)
so that (I1.37) may be tested out empirically.
It 1s possible also to take the next approximant represented by

K(1)= K;(0) exp| — (m/2K,(0))'"*t] (11.38)

and to estimate both K,(0) and K,(0) without recourse to least-mean-
squares iteration by differentiating both €”(w) and a(w) with respect to w.
Since €"(w) peaks at a much lower frequency than a(w), this leads to two
simultaneous equations for K,(0) and K,(0).

The absorption coefficient may be recovered from E‘“{s] using equations
such as (I1.23) to (I1.25). The autocorrelation function is a sum of three

complex exponentials, which, when the denominator discriminant in (I1. 35)
1s negative, becomes

C.(1)= ( msﬁr %( a,+Tla,

[+T )Siﬂ ﬂf)ﬂl}( —ay 1)+ =T exp( — a,!)

(11.39)
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where
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The parameters s, and s, are defined by

11/3
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where

¥ y({2Y
A-Ku{ﬂ}+K,(ﬂ)—~:~i— H=3(_9_ +2KD{D)—K,{D})
The Taylor series of (11.39) is even to the fourth power of time, but has a
term in ¢°, and all odd terms thereafter are also nonzero. The form of
(11.39) although cumbersome is useful since it is derivable from (1.30) and
also (I1.53). It represents the autocorrelation functions C,(7) and C4(1)
therefore for at least four seemingly unrelated models of the fluid state.

2. Molecular Orientations in the Compressed Gas

With only the mean-square torque properly defined [through K,(0)] it is
interesting to evaluate the usefulness of (I1.35) in a compressed gas of di-
polar molecules before proceeding to the liquid state as embodied in, for
example, pure benzonitrile at ambient temperature. In so doing we may
observe, by compressing the gas into the liquid, how changes of bandshape
and intensity result from the additional constraints which may be imposed
on rototranslational freedom on going from one phase to the next.

We have chosen for experimental convenience the symmetric top CH,(Cl
and the asymmetric top CH,CF,. In the limit of free rotation, the infinite
continued fraction reduces to the classical Kummer function for Cy(7), but
the approximant embodied in (I1.35) does not, as shown in Fig. 28 with
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Fig. 28. (a) r*=(kT/14)"/%. (1) True free-rotor orientational au i i
CH;Cl at 296°K;; (2) best fit of three variable theory to the fmmm:ﬂ;:r? E ?Emm;u ?;} T{{!’;
Ca(1) for CH,Cl(g) at 5.8 bars, 296°K; (2) J-diffusion model with 7*=(kT/1,)"/* =40 23
the reduced time betw:uen collisions; (3) Cy(r) for CH,Cl+ ethane( g) at 33.5 bars, 296"!\{.. (c)
{F] C(¢) for FH,EI (liquid), at 296°K; (2) C (1) for CH5Cl + ethane(/) at 296°K; (3) J-diffu-
sion model with 7* =0.2; (4) J-diffusion model with v* =0.5. [Reproduced by pm'm* ission f
J. Chem. Soc. Faraday Trans. 2, T2, 1907 (1976).] o
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{O(V)*»=0 and K,(0)=4kT/I,, where I is the moment of inertia about
the dipole axis in CH;Cl. In the limit of vanishing torque, therefore, (I1.35)
reduces to the Kummer function for classical free rotation at short times
only, when the free-rotor Taylor series is approximated adequately by its
first few terms.

A typical fit® of a(w) from (IL.35) to the CH,Cl compressed gas® is
shown in Fig. 28 together with that for a gaseous mixture of CH,Cl in eth-
ylene (to remove dipole-dipole coupling). The torque term K (0) in the
latter is almost twice that needed to fit the free-rotor contour, as can be
seen in Table IV.

The fit for pure liquid CH,ClI (Fig. 28¢) is good, with K,(0) considerably
increased —reflecting the increase in the apparent root-mean-square
torque. In a mixture with ethane in the liquid state, K,(0) needs to be
surprisingly small for best fit since the observed band is surprisingly
narrow, with the half-width reflected in the low value of y needed (Table
IV). Within the limitations of the early approximant used for C,(7) we may
take this as a rough indication of the less severe angular constraints in the
ethane environment. This is reflected in the form of C (1) (Fig. 28¢), which
becomes exponential at long times only, in contrast to that of the pure
liquid, which exhibits logarithmic decay very quickly, suggestive of small-
step rotational diffusion. Below r*=(kT/1,)"/ %=1, C(¢) for liquid CH,Cl
exhibits oscillatory behavior. This shows up in the far infrared as the Poley
absorption (i.e., the high-frequency extension of the microwave absorp-
tion). This short-time behavior of C u(?) reflects the torsional oscillatory, or
librational, motion of u about an axis which is diffusing through the fluid

TABLE IV
Parameters y and K,(0) Least Mean Squares
Fitted to Compressed Gaseous Data for CH;Cl and CH,CF,*

2kT 2kT\'/?

System Pressure (bars) (I—E)f 10) (‘}‘;) Y 10%(g-cm?)
CH,Cl 5.8 3.61 3.74 63.12
CH,;Cl/ethane 39.3 421 3.74 63.12
CH,;Cl/ethane(/) — 4.00 1.90 63.12
CH,CI(/) == 14.39 4.29 63.12
CF,CH, 35.2 3.67 3.86 80.45
CF,CH,(/) = 6.15 391 80.45
CH,C! — 2.51 2.54 63.12

(J—J + 1 contour)

“Reproduced by permission from J. Chem. Soc. Faraday Trans. 2, 72, 1907 (1976).
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(i.e., performing itinerant oscillation—libration). As Fig. 28¢ shows, the J-
diffusion model for the symmetric top is incapable of reproducing this
oscillating form for C (¢) since essentially the concept of libration is as ill-
defined in this theory as'is the mean-square torque. It is too early an ap-
proximant of the continued fraction.

In the asymmetric rotor CH,CF, (Fig. 28), the essential difference be-
tween the compressed gas and liquid is seen more clearly in terms of C, (7).
This is damped in the liquid and never becomes negative, as in the com-
pressed gas.

If, then, we are prepared to regard vy and X 1(0) for convenience as vari-
able and to accept the limitations inherent in (11.35), the truncation proce-
dure outlined in Section I1.B.1 may be used to elucidate the compressed
gas molecular dynamics, and comparison with the liquid may be made
quantitatively. The stricter approach is to evaluate y and K,(0) with no
least-mean-squares fitting. This would soon bring out the deficiencies of
(I1.35), as is seen in the case of CH,Cl, in Fig. 28. In fact, Table IV shows
clearly that (I1.137) is generally not obeyed, so that least-mean-squares fit-
ting tends to mask the theoretical difficiencies in favor of empiricism.

3. Gaslike Behavior in the Liquid State: Water Free of Hydrogen
Bonding *®

This is discernible in systems such as hydrogen halide /SF, mixtures,
and ammonia dissolved in the same liquid solvent: for here the broadened
remnants of the J—J + 1 rotational contour clearly appear. These systems
will be considered presently, but the motions of free, unbound water mole-
cules in organic solvents are equally extraordinary, since C(¢) is very
markedly nonexponential, with correlation times typically ca. 0.1 psec. The
loss curves €”(w) are asymmetric and peak at frequencies almost in the mid
infrared, in great contrast to the “ordinary” behavior exhibited in the mi-
crowave region by the pure liquid. In producing these curves the empirical
approach with (I1.35) has proven useful since it is found possible, by vary-
ing y and K,(0), to reproduce closely the far-infrared absorption data of
Pardoe and Gebbie®® for very dilute solutions of water in cyclohexane,
carbon tetrachloride, and benzene. The results are illustrated in Fig. 29
along with C,(r), calculated therefrom. Table V shows the refined y and
K ,(0) values.

The motion of the water molecules is gaslike in the sense that C (1) is
gaslike, displaying a negative region in cyclohexane, for example, at ~0.11
psec. Therefore, there is a probability that a majority of molecules will
have swung through greater than 7 /2 of the solid angle at times greater
than 0.11 psec. The overall correlation time is 0.10 ps, much shorter than
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Fig. 29. (a) Absorption of a 0.011% w/w solution of water in uychm at IIL'IG'IC, cor-
rected for solvent; (—), Mori theory best fit. (5) C,() for the absorption of Fig. 29a. (¢)
Absorption of a 0.01% w/w solution of water in CCl, at 300°K, corrected for :nhmt;_ (—h
Mori theory best fit. (d) Cy (1) for H;O+CCl,. (e) Absorption of a 0.06% w/w solution of
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H,0 + benzene. [Reproduced by permission from J. Chem. Soc. Faraday Trans. 2, 72, 2143
(197641
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TABLE V
Parameters y and K,(0) for Solutions of Water®
; 3 4 2Ty V3
Solution T QKT/L) K @kT/Iy K@) (K ) y
B

H;0+cyclohexane 296 .11 3.00 2.58

(0.011% w/w)
H,0+CCl, 300 1.18 3.39 2.37

(0.01% w/w)
H,0 + benzene 300 1.16 6.19 2.82

(0.06% w /w)

“Reproduced by permission from J. Chem. Soc. Faraday Trans. 2, 72 (1976).

the Debye relaxation time in pure liquid water [the inverse of w,_, (€")], the
epitome of hydrogen bonding.” The loss curve in cyclohexane is asymmet-
ric on the log scale and peaks at 140 cm™'. The oscillations in C,(¢) are
damped in benzene but not completely so (Fig. 291).

At this stage it is convenient to describe the quantized rotation observ-
able in hydrogen halides such as HBr in liquid SF¢ in terms of the ex-
tended diffusion models of gaslike molecular dynamics developed over the
last 15 years in numerous articles and reviews.’® They are, of course, dis-
cretely classical in the sense that the J—J + 1 lines are broadened by classi-
cal statistical mechanics. Lindenberg and Cukier have generalized the con-
cepts involved to an extent where direct comparison with the continued
fraction is possible for higher-order approximants than those used in the
well-known m- and J-diffusion models.

With reference to Table I, the latter is an approximant defined by the re-
lation

Ko(1)= Kep(1)exp(—|1|/7) (11.40)

where K(1) is the overall memory function and Kggr(1) that associated with
an ensemble of free rotors.  is the mean time between elastic collisions
which randomize the molecular angular momentum (J) in magnitude and
direction. The correlation function associated with (I1.40) 1s then the
Laplace transform of

II'_":'F,,._{.s+ 1/7)
— 7 Crp(s+ 1/7)

E‘.{S) a8 I

= § %Ch;;‘(s+l/r) (IL.41)

n=0
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which is identical with the form devised by Gordon for linear molecules. It
has a Taylor expansion with a term proportional to 7, since the concept of
elastic collisions implies that the torque is singular at each collision and
therefore has no definable mean. The spectral consequences are illustrated
in Fig. 30 for the methyl halides considered by Gerschel.” Experimentally,
Vmax Moves to higher frequencies, but theoretically it remains at the
frequency w, corresponding to the root-mean-square angular velocity of
the N-particle ensemble, the high-frequency return to transparency being
far too gradual. At one stage in the derivation of C, (1) for the m diffusion
model, the assumption is made that

Ko(1)= Ky(0)exp(— Y1) (11.42)

so that again the mean-square torque is undefined. The zero-THz band can
be used to evaluate this model, which is also not capable of moving 7___ to
higher frequencies. In view of this straightforward procedure it is surpris-
ing that the same indications have been so long in forthcoming with tech-
niques such as Rayleigh scattering, infrared and Raman line broadening,
and neutron scattering.”!

In fact, the conspicuous experimental shift in 7_,_(along the gas-liquid
coexistence curve of Fig. I, for example) demands the assumption of corre-
lated collisions. This has been the basis for some modifications to the origi-
nal m and J diffusion concepts whereby it becomes possible to vary the
amount of angular momentum transferred during a collision and the statis-
tics governing the distributions of intervals in between. However, the mod-
ifications still result in the aphysical /* of the Taylor expansion and the
models are still approximants of the degree represented by (I11.40) and
(I1.42). Denoting by cos(y(J )) the average cosine of the angular momen-
tum vector, it is found'® that the Poley absorption is ill-matched unless col-
lisions are assumed statistically correlated and that the angular momentum
is such that cos[y(J)] <0.

Chandler™ has discussed the translational and rotational diffusion of
rough hard spheres starting from the Liouville equation, and has found
that the derivation from Poisson behavior in dense systems means that the
first term in the cumulant expansion of the memory kernel is insufficient to
describe the dynamics of the system. This happens when the rotational mo-
tion couples strongly to collective modes in the system. It may be argued
that the amount of rotational energy and momentum transfer during a col-
lision roughly corresponds, for dense systems, to the average change
in these quantities during a time of the order of the interval between
collisions. Correlated collisions imply an oscillatory angular momentum
correlation function (see Fig. 14 to I9) which is found in Section III with
molecular dynamics systems of strongly anisotropic molecules. Restricted
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to binary collision operators, the Chandler formalism reduces to the origi-
nal J-diffusion model represented by (I1.40), where the angular momentum
is randomized onto a Poisson distribution. Frenkel, Wegdam, and van der
Elsken'® have shifted #_,. in CH;CN(/) in the context of this model by in-
voking a statistical distribution which is basically Poisson but with an
additional “pseudophonon” peak adjustable for best fit, with the zero-THz
data. However, the intermolecular potential is still ill-defined (in terms of
hard-sphere collisions). The usefulness of molecular dynamics simulations
in this context has been demonstrated by O’Dell and Berne,*” who have
collected data on rough-sphere ensembles which meet almost all the
criteria dictated by Gordon for m and J diffusion. However there is an
enormous disparity between prediction and observation of correlation
functions from the numerical solution of the equation of motion. Part of
the discrepancy seems to be in fact that collisions in the molecular frame
can, in reality, randomize only two of the three components of momentum.
A similar numerical simulation of the planar itinerant oscillator produces
results much more in accord with the analytical analysis, and is described
in Section III.

However, some modifications to the amount of momentum and energy
transfer introduced by Frenkel and Wegdam’ are useful in describing the
HBr/SF(/) spectrum and correlation functions of Figs. 4 and 37, where
the J—J + 1 lines are preferentially broadened (those on the low-frequency
side more so than the others). Using this phenomenon, Frenkel, Wegdam,
and van der Elsken'® have obtained much valuable information on the
compressed-gas and liquid-phase molecular dynamics of the hydrogen
halides. Some computer simulations by Frenkel” complement these data.

In Fig. 4 we have used an approximant defined by
K\(1)=BK gr(t)exp(—|t]/7) (11.43)

and introduced by Bliot and Constant* who describe the parameters
and  as purely stochastic in origin. By using a set of J—J + 1 lines for the
free-rotor ensemble Cgr(f), the variation of the computed HBr /SF(/)
spectrum with 8 is demonstrated in Fig. 4. No preferential broadening is
possible with this model,*' but 7, is shifted by very small changes in B.

C. Continued-Fraction Expansion and the Dense Liquid State

By “dense liquid” we mean liquids such as benzonitrile or tert-butyl
chloride which may be classed as ordinary solvents whose critical tempera-
tures lie well above ambient. These are characterized in the far infrared by
the large difference observable between the Poley frequency maximum
7. and the peak of the J—J+1 set of free-rotor transitions, which is
classically its root-mean-square angular velocity. In this section we will de-
scribe how the absorption in this phase may be used to discriminate be-
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tween some of the currently popular models of the fluid state which have
be?n classified in Table I as approximants of the Mori continued fraction
It is therefore logical to commence with a description of the work c:anieci
out recently on the approximant where the first memory function is a delta

function at r=0. In this case the (I.6) '
: . .6) reduces to the Langevin equati
rotational Brownian motion: 2 - on for

J(0)+¢ed(0)=T (1) (11.44)

wherf: J is the angular momentum, ¢, is the rotational friction tensor and
I.'(f_} 1s a random torque which is stationary and Gaussian, having a}x in-
finitely short correlation time, so that (I'()°I'(0)> =2D,8(¢), where 8(¢) is
the delta function in time, and D, the rotational diffusion coefficient. No

m_rre!ati-:}n exists .beiwceu J and I'. In a coordinate frame defined by the
principal axes of inertia, we have

Iéo+ ex(146) + ¢ Iw) =T(1) (11.45)

The sc}luti{:m of this nonlinear stochastic differential equation is simplified
l'.fy neglecting the molecular inertia. For the asymmetric top, Perrin’s equa-
tions then follow, where in the absence of an internal field correction

flw)—¢, 1| K{D,+D) " wX(D,+D,) #X(D,+D,)

©=€x 2| wtD,+D, iwtD +D,  iwtD,+D,

(I1.46)

where D, =kT/1,B,, and p*= ul+p’+ p?. Here p, is the component of the
permanent c_lipﬂie along the principal axis denoted by i, and B is the fric-
tion coefficient. By substituting D= D, in (I11.46) the resuirl simplifies
further to the particular case of the rotational Brownian motion of the in-

ertialess spherical top as treated b Ing "
| : y Debye. Converting ¢"(w) to power ab-
sorption gives the plateau value: e

a(w)—(e—¢€,)/ner, (11.47)

as w—>00, where 7, is the Debye relaxation time, and n is defined by ¢!/2
Recently, McConnell and others,®> and Morita,2! have independen?l :
solved (I1.45) with a full consideration of inertial effects. To give an idea n}fr
!%IE complexity of this undertaking, we present some of their final equa-
tions below and evaluate them against some of the most accurate and com-
prehensive zero-THz data available.

For cert.ain geometries, such as those of the needle and sphere with em-
bcdt:!ed dipoles, the use by McConnell of Bogoliubov-Mitropolsk
matrices yields the following equations, for the complex pnlarizibilili
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a*(w) [not to be confused with a(w), the power absorption coefficient]. For

the sphere, for example,

where

Y=KT/IB® '=w/B

o() _ G'=2y+ y2+{?/6}?3+{25/13}f‘+ oo (I1.50)
a(0) (F(0)) ™' =142y +(9/2)y?+(125 /DY +- - (11.51)
# 12
|—(F(0))"' of 2"'“; — There are similar expressions for the needle (the dipole axis) reorienting in
G?*+w? (1+G)+w space. For w—oo0 both expressions (for the sphere and needle) reduce to
; 3/21.\-"*1 4{1 o Gr)mrl B 2.',.,:"1 {I"(M} 5 2".!" _ 21"',!" {[1_52)
g Q2+G)+w? [(1+G)+w?]? (14 G) +w? #0) W o8
\ N o in agreement with the work of Sack on the same problem. McConnell and
.| 6(1+ G u?—2u" .y 8(1+G')w & - others have solved (IL.45) for the asymmetric top, and Morita the corre-
= (1+G P+ [+ G ’+u?) (1+G)+w sponding Eulerian equations of motion. We shall show presently that their
L [ ) results are entirely consistent numerically. However, for all geometries the
T~ 17/9)w’? 1 memoryless (I1.44) cannot reproduce the zero-THz Poley absorption, but
32+G)” | ( e | e (11.48) merely causes a slow high-frequency return to transparency of the plateau
[(3_,. G,)z_l_ma]l (B3+G) +w™ value [e.g., (I1.47)]. Nevertheless, the powerful theoretical methods used in
solving (I1.44) should be extended to the general (1.6). For the asymmetric
top, Morita shows that
a’(w) _ -, m?
= 5 i 4D
a(0) el > —-A4%s)
0 o i=xyr U
(F(0))™" G'w  2y(1+G) where s=iw, and p?= M2+ M2+ M2, in which M, is the permanent dipole

G24+6?  (1+G')  +? moment along the principal axis denoted by i, and 8. the corresponding

frictional component. 4(s) is defined as follows:

2(+GY -u?]e’ | 2046 _ (3+(3/2)G)
(+GP+a (4GP +ua?  (2+G) +a?

AO(5)=| 54 P2+ 1)~ P (gf + )] !

o)~ g N

where

2[(14 G'Vw = 3(1+ G’ |’ QAo+ Gy —w?]w
- [(1+ G +w?] [(1+ G +0?)?

pi = —4kT/I(s +2B,)(s+ B+ B.)(s + B+ B,)
Fiﬂ"d'krffk(s +28,)(s + B+ ﬁ;){-’ + B+ B)

9=4(s+B)(s+28)(s+ B+ B)(s+B+B,)

HORT/L(s+ B+ B)s+B+B) + L (42854 ,4.,)

21+ G’ (3/2)[(2+G')* —w?]w
(1467 +e?  [@+6)+a?]

S(§+(9)9)
(3+G')+u?

. (11.49)

+

HAKT/(LL1) [ (4~ L) (s +2B)(s+ B, + B)]
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4k - g
1?5"}"‘ TE(S'*‘ZIEJ:} _{Ik = ff}(3+-ﬂi+ ﬁ_,)"‘({, _Is}(3+ ﬁf+ﬂk)_

0= 35T (54 28)[ (1 L)(s+ B+ B)+ (L~ L)(s + B+B)]

L,

r)=4(s+ B )(s+2B)(s+ B+ B) s+ B+ B)

+ 2 (s+ B+ B)s+ B+ B) + T (s+28)(s+ B+ B)

o (¢} {nepers/cm™")
.®

4 (1= LY (s +2B)(s+ B+ Bo)
i‘titk
In the foregoing, (i=x,j=y,k=2), (i=y,j=2z,k=Xx), and (i=z,j=x,k=
y) in cyclic permutation. We denote by /., I, and I, the principal moments
of inertia. This equation reduces to Perrin’s equation when inertial effects
are neglected. €*(w) is the complex permittivity. Internal field effects are

neglected.
The solution of McConnell and others is, on the other hand,

1 D(D,+D,+ B,)

ol 3kT 5.:| (D,+ D, +iw)(D,+ D, + B, + iw)

(a)

15T

(ﬂf+ D, +iw)(D,+D,+p,+ iw)

Here D_=kT/I_ B, and so on. The frictional couples with respect to the
rotating principal axes of inertia are /, 8,w,, I, B,w,, and I, B,w,. Equations
(I1.53) and (11.54) produce virtually identical numerical results for all j,,

B,, and B, of interest.
For the symmetric top, where the components p, and p, are zero, the

Fokker—Planck-Kramers equation for the probability density function
P(w,w,w,0,¢,9;1) In angular velocity/Euler space yields the Laplace
transform of the dipole autocorrelation function C,(7)= {p (1)*p.(0)>

according to Morita as

|
2  Log (p)

C.(s) b /3 i (b)
p\3 = 2kT/1I 1g. 31. (a) @, Absorption of 2-chloro-2-nitropropane(/) at 293°K, taken with a P.O
s+ . — polarizing interferometer. (—), (1) Spherical-top Langevi i e
sl 2kT/1, % (kT/ 1)L,/ L) :ﬁnﬁi;m equation. (b) Calculated loss curve for zm;:z:qiw: Eﬁﬁ?}

- 4 . T (h‘d]nam: " (7 . 3 i i ” T
D il . S Y RKT/L)L/ 1) (@) & (nepers/cm), (5) €"(7); abscissas: (a) 5 (cm~"), (5) logyo(#) (cm ™).
s+3p, +B.+2B,+ 2kT/ 1,
§ X g

s+28,

(1L55)
361
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a (7){nepers/em™ ")

150 v 1-::m":I
(a)
€
1.5
1}
B ‘
» | 3 1 I p | |
-2 -1 0 1 .

Fig. 32. Key as in Fig. 31. Liquid fluorobenzene. (—), (3) Mori theory applied to C,(1), best
fit to the microwave data shown in Fig. 32b as @.

If w,(t) (i=x,y,z) is the angular velocity about the principal axis labelled i
and I, is the moment of inertia, then I, Bw(?) is the damping torque.
Numerically (Figs. 30 to 35), (11.55) reduces, in the appropriate limits, to
the sphere and needle expressions as given by McConnell [e.g., (11.48) and
(11.49)]. In evaluating (I1.48) to (11.55) against zero-THz data we proceed
as follows with the friction parameters. The only parameter of (11.50) and
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o (F)(nepers/fem™")

| (b) Log'#
Fig. 33. Key as in Fig, 32. Chlorobenzene, iodobenzene, and nitrobenzene.

:1:0&; for wt]]:;e needle, is 8, which is directly observable from the loss peak
um. :)2 en lhe_cumpnnents B.. B,, and B, are all nonzero (as, e.g., in
quid . -chloro-2-nitropropane (Fig. 31), they are estimated by sha ; -i; ;
analysis. Therefore, there are no adjustable parameters for best fiEchmmr
?rﬂ shumfs some comparisons with Gerschel’s data for fluoroform at. 29?35:11?
in the liquid phases. (The internal field corrections are discussed also h_';r
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Fig. 34. Key as in Fig. 32. lodobenzene.

Gerschel.) The needle, sphere, and symmetric-top representations yield ab-
sorption and dispersion profiles which are superimposable to a high degn_ac
of proximity, but for realistic values of the molecular parameters, B, in
(I1.55) is virtually redundant (i.e., has little effect on the band contour once
B. is determined). The Poley absorption is obviously not described. Equa-
tion (11.35), on the other hand, produces a satisfactory match for both the

80
'_*. ”
a lh--
- "e .
= 60} "
E .
E- -.. g
= - i
5401- _
20 :
-i-.. ™ 5
r Fe—k =
“q = 5 3(,':'
| | | L .
0] 40 80 120 160 200
wno.a{cm-')
(a)
16}

1 | ]

log. wno. log #
(&)

Fig. 35. Key as in Fig. 32. Nitrobenzene.
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loss peaks in the zero-THz range (Fig. 44). These two loss peaks (Debye
and Poley) having separated clearly in liquid MeF at 133°K offer a severe
test for any approximants of (1.6), especially so when empiricism is
eliminated [i.e., if ¥ and K,(0) are not adjusted for best fit as in Fig. 12].
An apparently good, but deceptive, agreement with the low-frequency loss
(or exponential tail of C,(7)) may be achieved easily with any one of (I1.49)
to (I1.55), regardless of the molecule’s true symmetric-top geometry. Before
the development of Michelson interferometry and submillimeter spectros-
copy It was common practice to use Debye’s equations for any shape of
molecule, regardless of the inertia tensor.

Figures 30 to 35 for the asymmetric-top halogenobenzenes demonstrate
how insensitive the inertia-corrected equations are to the Poley absorption.
Since the intermolecular potential is so ill defined in (I1.44), the theoretical
results for the sphere and asymmetric top are similar. Nevertheless, we re-
iterate that the theoretical methods involved are powerful enough to be ex-
tended to (1.6). Strictly speaking, of course, (I1.44) was never intended by
Langevin and Perrin for molecular dynamics, but for those of a massive

Absorption coefficient (nepers/cm)

o &
g M
ﬂ il I _i J. " | I. Il J. i J i I [l I i I i I i I

50 100 150 Wave number (cm™')

Fig. 36. -¢r Far-infrared absorption of fluoroform (liquid) at 293°K. (—), Morita’s (11.55)
for the symmetric top, needle, or spherical top; (sees), McConnell’s (11.48) for a needle; O,
McConnell’s for a spherical top; +, Morita’s model for an asymmetric top reduced to the
symmetric top. [Reproduced by permission from J. Chim. Phys., 75, 526 (1978).]
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particle immersed in a bath of lighter ones. Equations (I1.49) to (11.55)
should then be tested out against molecular dynamics simulation of this
system. Finally, of course, a critique such as this detracts nothing from the
immense labor involved in producing (I1.49) to (I1.55).

As an example of the usefulness™ of the theoretical techniques devel-
oped by McConnell and others, we indicate briefly how they can be used
to derive, using a simple kinematic principle, the correlation function C, (1)
from the approximant represented by (I.30). Consider, then, the motion of

the dipole vector u(¢) as it librates in a plane with angular velocity (7).
Kinematics yield the relation

w(t)=w()k (I1.56)

where k is a unit vector and w(¢)=|w()|. Let / be the moment of inertia of
the disk drawn out by the rotating dipole about the axis k. Then

keup=0  kX(kxuy)=—u,

where u,=u(0). Using an expansion as per McConnell and others:

{u{r)>=u,_-{l—fj; Cw,w, ) dt, dt,

<t S5t
D<€+ 5451
~f 00504 dt, - dtg+ - -
J';ﬁr.s-“ s;ﬁg.-{: §WsWawHw, dl Ig+
{ILS?)

Since the w's are Gaussian random variables, we have

<Wi| - +wf;-_.....|> =()

@ ey >=3 I w0 (11.58)
i, >,
Writing (1.6) for w,
I "K§(1 - -
o+1[ K 1= ro(r)dt =10 (11.59)

Replacing K§* by the truncated continued fraction leading to (1.30) or
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(11.35) implies that
O(1)+ J; "K©(t—1)0(1)dr=8,
8,(1)+v8,(1)=8,(1) (11.60)
Solving (11.59) and (11.60) leads to the relation

() = fl[f'fu'ﬂp( — oyt — 4)]) + Boexp(— alt, — 1))
+ Coexp(— aslte — 1)) ] (IL.61)

where the discriminant (4,) in the denominator cubic of (I1.35) islpusitive.
(The case A, <0 complicates matters by making the exponentials in (I1.61)
complex.) In (11.61) a;,...,a;, C and Ay, By, C, are constants rf:i:-ned to
¥, K(0), and K{“)(0). The second integral in (11.57) can be written as

% [2 fﬂ 'dr;j:?m{fz)w(h)ﬁ’ 1]1

and all successive integrals, as shown by McConnell et al, follow this
pattern. Accordingly,

u(t)u(0)> =exp[ E fﬂ ‘(1 = 7)¢(7)(0) cﬁ] (11.62)

A more general version of (I1.61) is derivable via the probability density
functions of Section L.A. This equation is useful in being the closed form
for the orientational autocorrelation function of the planar itinerant libra-
tor. Using (11.61) in (I1.62) and expanding in a Taylor series, there are no

linear or ¢ coefficients in C,(¢) and
C,(1)=exp(— kTi*/21+0(r%))
—exp(—kTt*/21) (I1.63)

the free-rotor limit, at very short times, when O(¢’) is negligibly small. At
the extreme t—o0, we have

C,(1)—exp(—1t/7) (11.64)

where 1 is a constant with the dimensions of time. Note, that in 3—D (Fig.
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Fig. 37. (—), (1) C,(¢) from the Frenkel-Wegdam curve of Fig. 4. (—), (2) Normalized an-
gular momentum autocorrelation function. The abscissa is in time units of th/ . [Reproduced
by permission from Chem. Phys. Lett., 42, 331 (1976).]

37), the free-rotor and long time behaviours are in general more com-
plicated. Writing (I1.62) then as

Cu(f)=exp(—f(1))

it may be shown that in three dimensions, an approximate equivalent form
1S

Cu(r)=exp(—=2/(1))

so that the space itinerant librator would produce a C(r) decaying faster

than that of the planar itinerant librator. To link (I1.59) and (II.60) to
(I1.31), we have

B,=0  K§(0)=y* [ie, theyof (1.31)]
K{(0)=(1,/1,) K§*(0)
YO =kTr, /I, (IL65)

with 7, as the inverse in the peak loss frequency produced theoretically.
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Time, (psec)

N

Fig. 38. Angular velocity and orientational autocorrelation functions for motion in two di-
mensions of the itinerant oscillator. (—) (1) Underdamped C_(1); (3) overdamped LC,(:}‘
(---+) (2) Underdamped C,(r) corresponding to (1); (4) uvﬁd.um;?ed C D) mrmspﬂndmg tn
(3); (5) exp(— kTt /2I), the C (1) for free rotation of a Maxwellian ensemble of d.l]:HJIIH: in

two dimensions. For (1) to (5), T=296°K, and /=10"2* gm-cm’. [Reproduced by permission
from Mol. Phys., 34, 973 (1977).]

Figure 38 illustrates some curves for the planar itinerant usci]latpr which
should be compared with those simulated (Figs. 70a to €) in SFEtlDI‘l INLE
by computer molecular dynamics with rough annuli within which are con-

strained disks.

1. Evaluation of Models in Liquid CH,Cl,:
Comparison with Other Techniques

The reasons for and criteria employed in evaluating the foregoing mod-
els for CH,Cl,(/) are as follows:

1. We have already made the point that the induced absorptions here are
likely to be negligible. These are treated further in Section II.E.

2. The complete zero-THz band shape is available for liquid CH,Cl, and
in solutions thereof. The data are accurate to within a few percent.

ROTOTRANSLATIONAL CORRELATION FUNCTIONS 371

3. At a long enough time after the initial =0, the molecular interactions
and motions in the densely packed N-molecule ensemble evolve such
that the decay in the correlation functions {A4,(1)4,(0)) of Section I.A
1s exponential [(I1.64) is an example]. This is to say that after suffering
many interruptions in its initial trajectory, the probability of finding a
molecule with, for example, an orientation u(¢), given an initial u(0),
decays eventually as a Gaussian in time. [This is not so in the autocor-
relation function of Fig. 37, since Frenkel and Wegdam consider there
an ensemble of interacting quantized rotors, where C (1) is periodic.]
Therefore, we assume in what follows that the low-frequency loss curve
should be modeled accurately and a(w) of the THz region extrapolated
therefrom. Using this method it will be shown that deviations from the
experimental observations are large in the far infrared, and improve-
ments in the modeling are generally needed.

4. The motion of CH,Cl, molecules in the pure liquid have been moni-
tored by sweep frequency, microwave klystron, and interferometric
techniques (both Michelson and Martin—Pupplett). This molecule is
chosen for reasons of its intense absorption, especially in the THz
range. A recent review'~ has emphasized the considerable extent to
which parallel studies have been carried out by incoherent, inelastic
neutron scattering, and other techniques. Rotational diffusion and ex-
tended rotational diffusion (m;J) have been used for the interpretation
of these results.

5. CH,Cl, has been used as a probe into the mesophase and glassy en-
vironments. The results of these investigations are dealt with in sec-
tions (I1.D) and (IL.E).

6. CH,Cl, is an asymmetric top and thus endowed with interesting rota-
tional dynamic properties. The glassy results of Section II.F show quite
clearly that the shape factor (van der Waals contour) is far from that
of a spherical or “pseudospherical” molecule. (/_=26.3x10"% g-cm?;
1,=278x10"% g-cm? 1,=253x10"% g-cm?)

1. The evaluation of (I.31) presents no conceptual difficulty if we remem-
ber that they apply, in the dynamic interpretation, to the libration in a
plane of the dipole vector u embedded in the asymmetric top. The terms
“disk™ and “annulus™ are conveniences of the mathematical develop-
ment.

Results and Improvements. These are summarized in Fig, 13a,

1. Equation (I1.44) is interesting for CH,Cl, since two broad peaks are
produced in a(#) (Fig. 12). However, the Poley resonance is, of course,
missing. In physical terms the mean intermolecular potential energy is in-
accurately defined (e.g., its derivative with respect to orientation, the root-
mean-square torque, 1s meaningless in this context). Therefore, the concept
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of libration within potential wells is also meaningless. There is room for
further progress by using successive approximants if the geometrical prob-
lems and their effect on the Gaussian nature of (1.6) can be overcome.

2. Equation (I1.41) was fitted to the experimental data by least-mean-
squares optimization of . The fit is poor since the model »_,, remains at

the value

1/2

I =21.5cm™!

Em=<m2>”z=l-k?"(fl+}—)

x ¥

the root-mean-square angular velocity. Varying v broadens the theoretical
band asymmetrically. Progress in this type of model may be pursued ana-
Iytically by using the idea of inelastic collisions, as has been demonstrated
by computer simulations in rough spheres®" and disks, and hydrodynami-
cally using slip—stick interactions.?® Satisfactory definition of a time of col-
lision, and thus of a mean-square torque would enable the desired shift in
(w®>'? to take place. Obviously, zero-THz band shapes are sensitive
measures of analytical realism in this respect, and will also be useful in
evaluating density expressions such as those of Chandler’ on the memory
operator. These allow for the effect of multiple collisions.

3. Using (11.34) to (11.37) without recourse to fitting of any kind leads to
rather too broad a band in comparison with the data (Fig. 12). [terating on
vy and K,(0) separately improves the fit, but in doing so obscures the fact
that further approximants are needed before the mean intermolecular
potential energy is satisfactorily described. The validity of some trunca-
tions at the level of (I1.34) to (I[.37) has also been investigated for the
monohalogenobenzenes®® using different versions of the memory function
K. (1). A fairly realistic result 1s obtained only from an exponential K,()
which gives an integrated absorption intensity 4 of about half that observed
in the far infrared when the loss curve is matched correctly at lower
frequencies. In Fig. 12 some results for a Gaussian and Lorentzian K,(¢)
are given which reveal the sensitivity of the Mon series to the form of
truncation used. Naturally, all these forms reduce to the same type of loss
curve at low frequency, and are indistinguishable without far-infrared data.
The halogenobenzenes are less favorable cases than CH,Cl, with which to
fit data over the whole of the zero-THz range since the collision-induced
component is relatively much stronger. Fitting the (I1.34) to (I1.37) to
microwave data alone is not a satisfactory procedure because one 1s effec-
tively fitting a simple exponential form with more than one phenomeno-
logical variable.
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4. Using the notation of (I.31) (the itinerant librator) and the approxi-
mate geometrical relation /, = 10/, for various values of f,, it is obvious in
Fig. 12 that the resonance around 7,_,, is too narrow theoretically. The
original concept with 8, =0 would therefore produce an even sharper peak.
However, iteration on 7, and f3, rectifies matters at the expense of physical
realism in the disk—annulus sense, since for best fit /, </, (mathematically
corresponding to the overdamped case). A parallel result was found by
Damle and others? for the translational space itinerant oscillator where 8,
and B, are made time-dependent memory functions. This result is reason-
able, however, in the context 8,=0 since it implies merely that K{“Y(0)>
K3“(0) (i.e., that the rate of change of torque is large). Equation (1.31) is in
one sense a zeroth-order approximant of the system devised by Damle and
others,” and perhaps successive approximants would improve matters if
the problem of too many adjustable variables could be overcome. Another .
possibility for improvement is the inclusion of rotation translation coupling
as discussed in Section [.C. Some of the adjustable variables could be
evaluated separately by molecular dynamics simulations. Using I, = 1,; 8,
=pB,=kTrp /I, in the dipole interaction representation of (1.31) produces
a poor fit (Fig. 12). This suggests that a more realistic potential ¥ is of
dipole-dipole interaction is necessary. However, K\*(0) and K{*)(0) are
not wholly electrostatic in origin and an interpretation of the far-infrared
absorption solely in these terms is obviously to be avoided.

Recently, Brier and Perry’® have obtained time-of-flight neutron scatter-
ing data on liquid CH,Cl, and have tested their results with four models of
the liquid state. They have also reviewed critically the available NMR, in-
frared / Raman, and depolarized Rayleigh scattering work. The attempts
at evaluating the anisotropy of the molecular angular motion using these
techniques sometimes end in confusion and contradiction. The m- and J-
diffusion models were used regarding CH,Cl, as an inertial symmetric top
(l.e., assuming axial symmetry of angular motion about that axis of least
inertial moment). [This assumption is however contradicted by NMR re-
sults, giving T,(H—H)#7,(C—H).] An Egelstaff-Schofield form was used
for the translational correlation function in the usual decoupling ap-
proximation [e.g., (1.39)]. The conclusions drawn as to the efficacy of the
model within this approximation are very similar to those of the zero-THz
data. Changing the values of the time between collisions alters the magni-
tude of the inelastic peak, its position remaining virtually constant. The
maximum of the predicted inelastic intensity distribution occurs at much
too low an energy transfer (frequency) for both models; therefore, within
the context of extended diffusion, treating CH,Cl, as a spherical top (Fig.
12) or as a symmetric top (neutron scattering) makes little difference to the
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final result, which is poor. It is important to realize that this does not imply
that the data are insensitive to asymmetry of orientational or rototransla-
tional motions, but rather that unrealistic and oversimplified assumptions
lead to oversimplified and unrealistic results. In common with nearly all
neutron-scattering studies of molecular motion, Brier and Perry work with
the assumption of complete decoupling of rotation from translation. Berne
and Montgomery’> have demonstrated the severity of this restriction by
showing that the analytical rototranslational neutron scattering spectrum
of a rough-sphere fluid is very different from that of a smooth-sphere fluid.
Molecular structure will increase the coupling. A self-consistent approach
is clearly needed to this problem, which would be indicated within the
framework of the (1.6). This would aim at an appreciation of the spectrum
as in Section I.C.

Studies of the depolarized Rayleigh wing complement the zero-THz
band. Brier and Perry have also discussed the depolarized Rayleigh, Ra-
man, infrared and NMR data available for liquid CH,Cl,. Ideally, NMR
and infrared /Raman band shapes provide data on single-molecule motion.
The correlation times available from these techniques are confusingly dis-
parate. An explanation is attempted based on the asymmetric-top Lan-
gevin equation, which in the light of Fig. 12, is meaningless. It is significant
that only the zero-THz [a(#)] dielectric absorption shows up clearly
enough the discrepancy between rotational diffusion and observation.
Another feature is that interpretation in terms of jump models gives di-
rectly contradictory results. This is hardly surprising, since without far-in-
frared data the 180° jump and infinitesimally small jump model both fit
the available loss data exactly. A similar kind of indistinguishability is
present when jump models are used in the theory of incoherent neutron
scattering, as demonstrated in a review by Janik (Ref. 43, p. 45).

It is clear that the available data from all sources on liquid CH,Cl, have
been interpreted using many different models, with each of which are
associated (usually) adjustable parameters, so that an overall viewpoint is
not attainable. We propose a scheme to remedy this to a modest degree.

A computer simulation, using an empirical intermolecular potential (e.g.,
atom-atom®' Lennard-Jones interactions) should be carried out on
CH,Cl,, and desired quantities such as the mean-square torque, various au-
tocorrelation functions, and collective correlation functions extracted.
These should then be compared with the values obtained from self-con-
sistent Mori approximants used with the zero-THz and depolarized
Rayleigh data, these being free from the uncertainties of vibrational relaxa-
tion, hot bands, and so on. The effect of cross-correlations may be easily
estimated from the zero-THz data by dilution, and compared with those
simulated. Isotropy or otherwise of angular orientations may be simulated
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in detail and compared with the considerable amount of NMR data availa-
hIe.‘ Rototranslational effects may be simulated and compared with the
available neutron scattering data. In this way it may be possible to refine
the t?mpirir:al intermolecular potential by evaluation against the spectro-
scopic data, especially if these were available over a broad-enough range of
number df:nsit}r and temperature. Alternatively, if the empirical potential
were considered adequate, the efficacy of the continued-fraction approxi-
mation could be measured when truncated at various levels.

D. Internal Rotations: Relation with *C NMR
Relaxation of the Zero-THz Absorption

| We digress a little in this section to discuss the concept of internal libra-
tion within the framework of a nonrigid species such as p-dimethoxyben-
zene or dimethyl carbonate. This is conveniently studied’® by means of
both zero-THz data and >C NMR (7, and N.O.E.) relaxation. One reason
1S to Fmphasize the point that different relaxation techniques used in a
cohesive study of a selected problem may be more incisive than studies un-
dertaken separately. A second is that rotational correlation functions may
gpply to systems of molecules with internal freedoms, and the far infrared
is a particularly suitable frequency range with which to determine the kin-
etics _ﬂf motions such as those of the methoxy-and methyl-group internal
ml‘.a,t;mns. A quantitative analysis in terms of a “chemical relaxation pro-
cess” permits an estimation of both the kinetic constant k& . of the di-
electrically “active” cis/trans isomerism of the para-di;;;t,]r:;xyhenzene
mnlecule,_ and of the jumping rate of the methyl group from any of its
qthn:c: equivalent positions. The methoxy torsional modes appear in the far
mfr_ared and it is also possible to assign to this frequency range the methyl
torsions.

A n.umber of low-frequency (microwave) studies has been made in the
pure liquid phase or in dilute solution on compounds having one or more
methﬂ:x:,r groups. In these previous investigations, the only practicable way
of eshmgting qualitatively the contribution of the group rotation to the
overall dielectric relaxation was by comparison within a homologous series
of compounds having roughly the same molecular shape. Such analyses
ha_ve he_en hfizarduus because of changes in dipole moment (magnitude or
orientation in the molecular frame), internal field. MICroscopic viscosity
and very often in the barrier height to internal rotation itself (e.g., in thé
case of electron donating or withdrawing aromatic substituenis}i More
F:umplate and quantitative information may be extracted on the different
111terqal motions by simultaneous measurement of the longitudinal relaxa-
tion time (7) and of the nuclear Overhauser enhancement factor (m), with
the zero-THz electromagnetic absorption. In this section we t:lna-.s:;ril:n:a-1 such
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Fig. 39. p-Dimethoxybenzene molecule in the cis-position; g represents the direction of the
resultant dipole. [Reproduced by permission from Mol. Phys., 30, 974 (1975).]

a joint study of a solution of p-dimethoxybenzene in tetrachloroethylene
(4.17; mol/p-DMB dm®), chosen for experimental convenience. There is in
the solute only one internal rotation axis, and along this, owing to the
molecular symmetry, there is no component of the electric dipole (Fig. 39).

Plots of €” vs. € at 298°K, 323°K, and 348°K are shown in Fig. 40 and
far-infrared absorption spectra obtained at 298°K for both the normal and
the deuterated compounds in Figs. 41 and 42. The overlap between the mi-
crowave interferometric measurements (University of Nancy I) and the re-
sults obtained by Michelson free-space interferometry in the region 3 to 28

Temperature:

CH CH, CH i
& 3 \ P 3 o 5.0':‘{:
{ fﬂ—@-n == 0 -0 o
CH,
0.5 |—
17.6 Ghz 9.95 Gha
- 17.6Ghz
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€ # 34.3Ghz 15.0Ghz
34.58Gh ~3.25 Ghz
031  68.12Ghz g . s
111.1-:3!11; e 9.25 Ghz
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0.2+ iy /
/! J111.1Ghz
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e

Fig. 40. Cole—Cole plots for a solution of a 4.176 mol /dm? p-dimethoxybenzene in C,Cl, at
298°K, 323°K, and 348°K. The frequencies of the (¢",¢") measurements are indicated on each
plot. The dotted lines correspond to a semicircular extrapolation. [Reproduced by permission
from Mol Phys., 30, 976 (1975).]
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Fig. 41. (=), (A) Far-infrared absorption of p-dimethoxybenzene/C,Cl, (4.176 mol /dm?) at
room temperature. (—), (8) Deuterated compound absorption at the same concentration.
(=), (€), (D) Idealized line shapes for some of the higher-frequency absorptions. (----- )
(E) Unresolved low-frequency band extracted from (A4). (—), (F) Solvent absorption. [Re-
produced by permission from Mol. Phys., 30, 977 (1975).]

em™! is satisfactory, Fig. 42. The complete zero-THz band is thus ac-
curately defined. NMR relaxation measurements were separately made on
the signal relative to the four equivalent ortho aromatic carbons, and on
the line due to the methyl carbons. The solvent peak and those of the CsDs
reference are well separated from those of the solute.

The microwave results support the existence of only one “resultant” re-
laxation time accounting for the low-frequency part of the dielectric pro-
cess. At times shorter than ca. 2 psec, however, the computed “pseudo”
rotational velocity correlation function is oscillatory. These reflect both the
librational motions as a whole of the cis conformers and the internal tor-
sional motion of the methoxy groups, but occur at too short a time (<2
psec) to affect the exponential behavior of the vectorial dipolar correlation
function (DVCF) at the time scale of the microwave measurements. The
resultant value of p, =4.5*0.4 D calculated from the far-infrared band is




378 M. EVANS, G. EVANS, AND R. DAVIES

a (nepers/cm)

g | I | J -
0 5 10 15 20

plem ')

Fig. 42. Detail of the low-frequency absorption spectrum of p-dimethoxybenzene / C;f;!,, at
room temperature. ®, Microwave interferometry with klystron sources; O, Michelson inter-
ferometry with a He{/)-cooled Rollin detector. [Reproduced by permission from Mol. Phys.,
30, 978 (1975).]

much larger than the apparent dipole moment ﬂbtainaq by diglecifnc
measurements, 1.5(4) D at 298°K, and indicates that the main mnmhuqﬂn
to this band has another origin. The shift of the band center on deuten_ltmn
of the methoxy groups supports quantitatively the hypothesis of torsional
modes of the methoxy groups. 3 |

If, for the sake of argument, we accept the oversimplified hypothesis of
isotropic molecular rotational diffusion as being adequate to reproduce the
low-frequency loss data, and the aromatic ortho carbon NMR da..ta, t%fu:n
the isotropic diffusion constant D, is related to an NMR relaxation time

THMR by
6Do=(r"™") " (L)

For the symmetric-top diffusion on the other hand, 7)™ has to be re-
placed by F(D,,D,,D,) defined for a planar molecule by

3
4D,

_(B,-D)
D +D,

F(D,,D,,D,)= (D, + D,)cos’¢+ (D, + D,)sin*¢

sin® ¢ cos’ ¢] (IL.67)

where ¢ (in our case, 30°) defines the orientation of the internuclear vector

of dielectrically active “chemical relaxation
posed by Williams and Cook’” and Goulon, Canet, Evans, and Davies.’®
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Fcn in the molecular frame, D, and D, being given by

D,=3(D,D,+ D,D,+ D.D,)
D =3(D_ + D,+D,)

The consequences of neglecting this anisotropic character lead to a dif-
ference, however, of less than — 10 to — 15% in the r

atio p=3 expected in
the rotational diffusion limit between MR and the dielectric relaxation
Diel

time 7, estimated after correction for the internal field.

Similarly, the methyl carbon relaxation time T?MR is estimable after con-
sideration of the problem of methyl group rotation about a fixed but arbi-
trary axis in the molecular frame. TE“P’;fR can be related to the jumping rate
2R /3 of the methyl group from any of its three equivalent positions by

MR EIITQ [1/(3+ R/2D,)] (1L.68)

where again the isotropic diffusion coefficient has been used for lack of
knowledge of the anisotropic diffusion coefficients D L and D,

This restriction to rotational diffusion is unsatisfactory in the light of the
foregoing behavior of the model in the far infrared, but the complexity of
the formulas is already beyond the data available. The use of NMR relaxa-
tion in isolation is therefore prone to vagueness of analysis, just in the way
that a semicircular low-frequency Cole-Cole plot is about the least dis-

criminating imaginable. It is not surprising therefore that the measured
ratio

_ . Diel /_NMR
Papp =Ty " /Te

i1s considerably less than 3 (Table VI). This may be caused by:

I. Substantial contribution from internal methoxy group rotation to the

dielectric relaxation phenomenon.

2. Breakdown of the Debye-Perrin rotational diffusion model (ie., re-

orientation of the whole molecule with memory effects).

3. Strongly anisotropic rotational diffusion of the whole molecule.

The first explanation may be supported quantitatively using the model
processes,” as previously pro-
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TABLE VI

Dielectric and NMR Relaxation Times for p-Dimethoxybenzene

T 298°K 323°K JME°K
13C NMR Coao Cois, Corbo CcH, Corho Cen,
relaxation
0 1.6(5) 1.7(5) 1.7(6) 1.8(0) LT 1.8(D
T,/ s 5.5(4) 5.1(2) 78 6.5 101 9.6(5
MR /psec 7.7(5) 2.7(3) 51(3) 2.0(7) 3.98) 1.5(5)
Dielectric ks ol ol et
relaxation
7,/ psec 122 111 7.8(8) 7.1(9) 5.5(3) 5.0(8)
Papp™ Tu/ TClortho) 1.8(2) 1.6(5) 1L.5(3) 1.4 1.3(8) 1.7

'T:I - -rPi"l; 1": C-m((2¢p+€,)/ 310}1-:7"‘".

If one assumes then that the molecule takes up two planar, cis (dipolar)
and trans (nondipolar) configurations, the rotation of the methoxy groups
gives rise to both cis/trans isomerism and cis/cis inversion mechanisms.
We can therefore summarize the internal motions using a triangular kinetic
scheme (Fig. 43). The dipolar autocorrelation function is found, then, to

have the following time dependence:

(p(0)(0) ) = 3<p(0)*p(0) )
X [exp(—t/m;)+exp(—1/7)) ] exp(—1/75) (11.69)

where 7, characterizes the reorientational process of the whole cis con-
former, considered as a rigid molecule, and 7, and 7, are given by

1/1,=ky, +2k,15k2,[1 + x,q]

1/ 7y=kyy +2kpy=ky, [ 1+ K] (11.70)
k 22
A [eis] =€ Az |eis|
b
" kay k2
" kg ka2
T [trans|

Fig. 43. Triangular kinetic scheme for p-dimethoxybenzene. [Reproduced by permission from

Mol. Phys., 30, 984 (1975)]
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According to the Curie principle stated by Prigogine and Mazur, this
form of the dipolar correlation function assumes a total statistical indepen-
dence between the internal (chemical) process and the external (diffu-
sional) process. However, the analysis leading to (11.69) and (I1.70) would
be more convincing if associated with a model other than that of rotational
diffusion, so that point 2 above ought to be considered in greater detail.
Logarithmic plots of the inverse of the two correlation times of Table VI
produce the apparent activation enthalpies

AGumr =2.2(6) kcal /mol
AGp; =3.3(4) kcal /mol

The difference between the two values may be an additional indication
that the NMR and dielectric relaxation processes are different in nature,
the former, on the basis of hypothesis |, being insensitive to any group
rotation.

A barrier height hindering the methoxy-group torsion may be evaluated
from the far infrared data. The theoretical analysis of the torsion in com-
pletely asymmetric molecules remains, as usual, a very complicated prob-
lem, but it is possible, using the methods of Goulon, Canet, Evans, and
Davies, to predict a band shift on deuteration from 7, =91-88 cm ™! to 7,
=82 cm ™. This is in excellent agreement with the experimental results, the
barrier is then calculated as 5-88 kcal /mol (2058 cm ™).

Therefore, there is little doubt that the methoxy-group internal rotation
1s fast enough to contribute significantly to the dielectric relaxation. The
potential barrier hindering this motion is about 5-3 kcal/mol, estimated
from the kinetic scheme of Fig. 43. This is sufficiently close to the 5-88
kcal/mol estimated above to be acceptable. Similarly, a value of 1-8+0.3
kcal/mol may be estimated for the apparent activation energy for the
methyl rotation. It is also worth noting that if our results are acceptable in
terms of the idea that the methyl rotation should be faster than the
methoxy-group rotation of the methyl group, our evaluation of the height
of the barrier hindering the methyl internal rotation might suggest an ap-
preciable coupling of both the methyl and methoxy internal librations.

This first attempt to investigate the dynamics of internal motions by
comparison of zero-THz and *C NMR relaxation data has run up against
the problem of interpretation in terms other than rotational diffusion (iso-
tropic at that). However, we have been able to deduce:

1. That internal methoxy-group rotation contributes significantly to the
dielectric process.

2. Quantitative estimates of the kinetic parameters governing the internal
librations and activation enthalpies.
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E. Mesophases: Liquid and Plastic Crystals, Disordered Solids

The number of specialist articles and review series devoted to various re-
searches into liquid crystal phenomena is steadily growing.” This section
deals with the special insight these mesophases provide into the isotropic
liquid state, in that the orientation correlation function C,(¢) and its sec-
ond derivative reflect the anisotropy of the molecular rotational character-
istics brought about essentially by the molecular geometry. The alignment
along the director axis (Section [) is the long-range consequence of the re-
stricted torsional oscillation starting at the level of the nearest-neighbor
cage, and reflected in the far infrared by a sharp and high-frequency Poley
band (or bands) whose low-frequency loss adjunct peaks at megahertz
frequencies, typically, in the aligned condition (Fig. 9). In consequence,
C,(1) is virtually a pure exponential decay, whereas its second derivative,
the Fourier transform of a(w), is highly oscillatory (Fig. 44). The object of
this section is to demonstrate how the zero-THz profile in phases such as
the nematic may be used to aid in the evaluation of the molecular dy-
namics. With such an objective the first far-infrared study of the nematic
phase [of p-methoxybenzylidene-p” n-butylaniline (MBBA)] was carried
out independently by Bulkin and Lok’ and by Evans, Davies, and
Larkin® in 1973.

The difference between the aligned nematic phase and the plastic crys-
talline or disordered solid mesophase also considered here is that the
molecular rototranslation in the former evidently prohibits crystallization,
or even solidification. This degree of dynamic freedom is propagated by
the asymmetric van der Waals contours (constantly fluctuating due to in-
tramolecular motions) of molecules such as MBBA which have liquid
crystalline properties. It is possible, in consequence, to supercool the
aligned nematic phase, the sample remaining a viscous fluid. The main fea-
ture of the MBBA far-infrared spectrum (taken in unaligned, aligned, iso-
tropic solution, and solid states) is a strong and broad-band peaking at 130
cm™' (Fig. 44). In the pure isotropic phase this shifts slightly to lower
frequencies (123 em™'). The band seems almost to disappear in very dilute
solution, and broadens considerably on heating a moderately dilute solu-
tion of MBBA in cyclooctane (Fig. 45). At the same time the peak moves
to a lower frequency. Thus the absorption is markedly environment-sensi-
tive, the near-neighbor interactions involved being strong in the pure
nematic phase. It is justifiable to conclude therefore that its origin is tor-
sional oscillation of the MBBA resultant dipole vector p occurring at a
higher frequency (given the MBBA moment of inertia effective in de-
termining this motion) than is usual for isotropic, dipolar liquids such as
the halogenobenzenes or CH,Cl,. On this basis Evans, Davies, and
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Fig. 44. (a) ®, Experimental absorption for p-methoxybenzylidene-p’'a-butyl aniline
(MBBA) in the nematic phase at 340°K. (—), Mori theory best fit. (b) — C,(1) for MBBA at
340°K. (c) Loss curve calculated for MBBA at 340°K. Observed ¢"(#7)=0.70; observed criti-
cal frequency=2.6 GHz; calculated=2.7 GHz. [Reproduced by permission from J. Chem.
Soc. Faraday Trans. 2, 72, 1169 (1976).]
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Fig. 45. (A) Spectrum of a 10.2% w/w solution of MBBA in cyclooctane (corrected for
solvent absorption) at 297 £0.5°K. (B) 341 £ 1°K; (C) 338= 1°K.. [Reproduced by permis-
sion from J. Chem. Soc. Faraday Trans. 2, 69, 1011 (1973).]

Larkin® carried out some model calculations of the MBBA absorption.
The first of these involved a theory of itinerant oscillation due to Hill* and
Wyllie,®2 and of random hopping from discrete sites due to Brot’’—an ex-
tension of the m diffusion model. Both these models are early approxi-
mants and the examples of Figs. 14 to 19 compare them against direct
Fourier transforms of a(w). Characteristically, the short-time behavior of
approximants earlier than that of (1.30) compare badly with experiment
(Fig. 19). To reproduce the observed spectrum, it was found that the
potential well experienced by an MBBA molecule in the field of its neigh-
bors needs to be considerably narrower and steeper than that of isotropic
dipolar liquids. The well depth estimated for best fit agreed surprisingly
well with a rough calculation using a potential of the form V'=aexp(— br)
—¢/r% in which the only intermolecular interactions considered were
those between the benzene rings of MBBA packed in an idealized geome-
try.

Using (I1.35) in the empirical fashion by varying y and K,(0) gives the
results of Fig. 44, where the theoretical a(w) and loss curves are in fairly
satisfactory accord with experiment. The “mean-square-torque” term K,(0)
takes on a high value compared with those found empirically in fluids such
as CH,Cl,. Across the series® MBBA : propyne : CBrF, : CCIF; : CHF;, for
example, the apparent mean-square torques decrease roughly in the ratio
200:25:10:10:8. This trend is the one expected on the assumption that
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the greater the molecular geometrical anisotropy, the greater the mean
barrier to torsional oscillation. For a high-mean-square torque the micro-
wave and far-infrared parts of the zero-THz band must be widely sep-
arated, whereas for a low-mean-square torque (as in CHF,, for example)
the two parts are virtually fused into one.

Despite the apparently good fit obtained with y and K,(0), it must be
emphasized that any modeling such as the above of the rototranslational
dynamics in MBBA must of necessity be crude and approximate because
mathematical tractability demands the use of rigid, whole molecule libra-
tion, using a very simple representation of the intermolecular potential.
The MBBA zero-THz profile is assuredly environment-sensitive but is best
described as arising from the librations of a dipole within a flexible
framework, the motions of which are determined by and in turn determine
the character of the nearest-neighbor and less immediate environment. In' a
flexible molecular framework the previous section demonstrated the degree
of extra complexity engendered even within the restricted limits of rota-
tional diffusion—it is difficult, for example, to estimate the moment of
inertia dyadic, which is time-dependent. In addition, the long-range corre-
lations are of greater import in the mesophase, so that it is likely that col-
lective motions are favored. The continuum theory of the mesophase as
reviewed, for example, by de Gennes has to be matched by molecular theo-
ries if a cohesive picture is to be built up. Computer simulations run into
the difficulties of swarm sizes being larger than the grid or cube of mole-
cules set up initially. Finally, it has been observed that in solid MBBA the
130-cm ™' band splits into at least four partially resolved peaks, so that
there is a possibility, as pointed out by Sciesinska, Sciesenski, Twardowski,
and Janik,* that the torsional vibrations and other low-frequency internal
modes of the MBBA molecule account for all the absorption below 170
cm™'. They cite the evidence of changes in the spectra which they
associate with different phases of MBBA solid and in the persistence of the
absorption in solution. However, the 130-cm ™' band is dilution-sensitive as
regards its shape and peak position, so that intermolecular sensitivity is de-
tectable.

To extend the zero-THz monitor to phases such as the cholesteric (of
cholesteryl oleate and cholesteryl oleyl carbonate, for example), it is more
fruitful to look indirectly at the effect of the environment on small
amounts of rigid, intensely dipolar solute molecules such as CH,Cl, used
as dynamical probes. (This technique is extended to glasses in the next sec-
tion.) The following advantages accrue:

l.  Cross-correlations terms between guest molecules (dynamic and elec-
trostatic), not amenable to ready mathematical analysis, are minimized
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in dilute solution in the cholesteric, nematic, or aligned nematic
solvent.
2. The probe can be chosen to be particularly suitable for model simula-
tion of its absorption profile (i.e., to be rigid and intensely absorbing).
3. The influence of a liquid crystalline environment on molecular motion
may be measured directly against the equivalent spectra in an isotropic

solvent such as CCl,.

The far-infrared spectra of the mesophases themselves are often rich in
detail but consequently very difficult to model. For example, we monitor
in this section the alignment of 4-cyano-4'-n-heptyl biphenyl (7CB) with ac
and dc electric fields of up to 7 kV/cm, and with magnetic fields, and Fig.
46 shows the appearance of extra peaks underlying the structure in the un-
aligned condition.®® However, an attempt has been made®® to use (I1.35)
with 7CB— for best fit to the low-frequency loss data, the THz peak corre-
sponding to rigid end-over-end torsional oscillation is very sharp, centered
at over 100 cm ™', but obviously (in the light of the electric and magnetic
field work) one of many possible such absorptions, all markedly environ-
ment sensitive. The effect of applying an increasing dc electric field to the
nematic phase of 7CB is shown in Fig. 46. The overall intensity of the ab-
sorption decreases across the whole of the far-infrared range and the
spectrum is split into peaks hitherto unresolved in the unaligned condition.
An intensity decrease on application of an external field has been observed
in the Raman by Schwartz and Wang.?” In the nematic phase of two com-
pounds, striking changes in the relative intensity of several Raman bands
were observed as a function of applied electric field strength. An explana-
tion was given in terms of the collective stabilization due to the large en-
semble of molecules aligned by the field. However, the appearance of so
many extra peaks in the far infrared is entirely novel. If these peaks are all
intermolecular in origin, partially so, then one possible explanation of their
appearance is that the increased alignment under the effect of a field
accentuates the underlying lattice modes [i.e., brings out single-crystal-type
behavior, but with the residual translational freedom (NMR studies)
associated with the liquid crystal phase still being retained]. This kind of
dynamical effect is indicated also by the fact that the overall intensity
drops due to polarization of the radiation reaching the detector (ie., the
aligned nematic phase is acting as a polarizer). The question of what
happens to the torsional oscillating Poley absorption in these circum-
stances is an interesting one. It was in an attempt to describe quantitatively
this process and its low-frequency counterpart, the loss peak observed by
Moutran in 7CB at 6 MHz that (I1.35) was used for 7CB as described

already.®
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The observation of the probe Poley absorption,” on the other hand, is
designed to avoid for the moment the difficulties of quantitative interpreta-
tion associated with the far-infrared spectra of pure hquid crystals. We
chose CH,Cl, because its far-infrared absorption is intense and well de-
fined (Fig. 20). The far-infrared broad-band absorptions in CH,Cl, have
been measured carefully in isotropic solutions in CCl,, decalin, cholesteryl
linoleate, cholesteryl oleyl carbonate, and 7CB in order to bring out by di-
rect comparison unusual dynamical effects on the CH,Cl, molecules
themselves. Whereas the CH,Cl, band maximum (#_,,) shifts by about 30
cm ™' to lower frequency on dilution in both CCl, and decalin, there is a
smaller corresponding change when CH,Cl, is dissolved in cholesteryl lino-
leate and cholesteryl oleyl carbonate (Fig. 47). This may be attributed to a
persistence of statistical cross-correlations (time-dependent Kirkwood g-
factor) which vanish gradually in isotropic solvents. The observed in-
tegrated intensity per molecule (4 /N) of CH,Cl, is decreased significantly
compared with that in CCl, or decalin. However, the opposite effect is ob-
served in the microwave region, where the CH,Cl, apparent dipole mo-
ment increases on dilution in cholesteryl linoleate. Thus there is an inhibi-
tion of the intensity of the Poley process of CH,Cl, when dissolved in
molecules such as those which form a cholesteric phase. The integrated ab-
sorption intensity vs. molecular number density is plotted in Fig. 47 for the
CH,Cl, Poley band in various solvents at 298°K. These are carbon
tetrachloride, decalin, cholesteryl oleyl carbonate, and 7CB. In CCl, and
decalin, 4 /N is constant within the experimental uncertainty over the
whole range of dilution, while it is clear that dilution in the solvents which
have liquid-crystal-type phases reduces 4 /N considerably. This reflects an
unusual constraint on angular movement (polarization) which persists
when the concentrations of CH,Cl, are such that no liquid crystalline
properties are apparent on a macroscopic scale (e.g., when birefringence
has disappeared from the 7CB solutions): this is substantiated by recent
Kerr effect studies®® where it was shown that the beginnings of liquid
crystal behavior can be discerned in the “isotropic” phase long before the
transition temperature into the mesophase, which is cloudy in visual ap-
pearance.

In the mesophase itself, this type of partial ordering was first observed
using NMR methods of studying benzene in a nematic phase. A spectrum
is obtained consisting of broad bands attributable to the solvent, superim-
posed on which was a series of sharp lines. Benzene acquires a preferential
orientation due to solvent—solute interactions and its NMR spectrum 1s
governed dipole-magnetic dipole interactions which are uniquely in-
tramolecular in origin. The benzene molecules retain a translational free-
dom with respect to the nematic solvent which explains the sharpness of
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Fig. 47. (a) Plot of integrated absorption intensity (A) against N for all environments at
298°K: O, in CCly; O, pure CH,Cly(/); ®, in decalin; €, in cholesteryl oleyl carbonate
(c.c.0.); », in cholesteryl linoleate (C.L.). (—) Best straight line through the CCl, and decalin
data. (b) Plot of #,,, against number density in CCl, and decalin: (—) best straight line
through the CCl, and decalin data; (—) best straight line through the cholesteric data; [,
pure CH,Cly; ©, CCl, solution; ®, decalin solution; <5, in cholesteryl oleyl carbonate; s, in

::]m}ljnu[ﬂu. [Reproduced by permission from J, Chem. Soc. Faraday Trans. 2, 74,

the_NMR lines. The orientation is in the direction of the principal mag-
netic field. Since this discovery analogous NMR studies have shown that
mnst.mnleculcs are preferentially oriented in a nematic phase. The effect
of this on its far-infrared Poley absorption is retained in CH,Cl, well into
the apparently isotropic condition® Additional dynamical information is
of course available in the zero-THz range because the band shape of the
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Poley absorption contains dynamical information at short times in the
orientational autocorrelation function, while NMR studies yield areas be-
neath a correlation function, and not the details of its analytical depen-
dence. We illustrate this point in Fig. 48 where by roughly reproducing,
using (1.30), the Fourier transform of a(w) of CH,Cl, in chuiesteryl oleyl
carbonate, the following related functions may be produced analytically.

1. The orientational acf or dielectric decay function {cqsﬂ{r]!ms #(0)>,
where @ is the angle between the dipole and the measuring field (1.30).
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Fig. 48. (a) (—), (1) C,(¢) for pure CH;Cl, liquid at 296°K; (2) C (1) for 1.97 X 10*' mole-
cules CH,Cl, /cm? in CCl,. (b) (—), Curve (@) 2; (—), (1) = Cooeelf), least-mean-squares best
fit to curve (a) 2; (2) C.oea(f), calculated from the fitting; (3) Cg(#); (4) Cg(¢). Curves are nor-
malized at the origin. [Reproduced by permission from J. Chem. Soc. Faraday Trans. 2, T4,

350 (1978).]
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2. The torque acf which mirrors the molecular librations by oscillating
about the abscissa (time axis) [i.e., (8(r)8(0)>].

3. The angular velocity acf the area beneath which is the NMR spin—ro-
tation relaxation time.

1. Plastic, Disordered, or Amorphous Solids

We define these phases in terms of the continuing rotational freedom of
individual molecules whose translation is very strongly hindered. In terms
of the zero-THz profile different plastic and disordered crystals exhibit the
full range of frequency coverage sketched in Fig. 9. Molecules with sym-
metric van der Waals contours, such as (CH,),CCl, absorb with essentially
the same zero-THz loss profile in the plastic crystalline phase as in the
liquid just above the melting point. Any residual difference may then be
attributed to the effect of rototranslation in the liquid as opposed to pure
libration. Some of the rotational velocity correlation functions of these
plastic phases are shown in Figs. 14 to 19 and have been discussed in
greater detail by Haffmanns and Larkin® and by Davies.™® In this section
we are concerned more with the disordered and amorphous solids giving
rise to a zero-THz profile with widely separated loss maxima on the
frequency scale (Fig. 9). The rotational freedom remaining in these phases
ensures that at THz frequencies a remnant of the liquid Poley-type absorp-
tion will remain as an indication of the torsional oscillation of the molecu-
lar dipole. This torsional oscillation will not be confined to one potential
well over a long period of time, and a gradual movement through larger
angles will give rise to an adjunct of the THz loss peaking at kHz frequen-
cies and lower. The complete profile, sometimes covering much more than
a dozen decades of frequency, must be amenable to treatment by an equa-
tion such as (1.6) represented by approximants such as (I.30), which are
sophisticated enough to approximate C,(r) adequately at short times. On
these grounds alone the THz peak and low-frequency peak in the overall
loss should form parts of the same continuous function of frequency. In
terms of C,(¢) and its second derivative, the former decays exponentially
from about 0.5 ps onwards, taking upwards of milliseconds and sometimes
much larger, but the latter is oscillatory, being damped to zero in roughly
the time that C,(7) takes to become exponential. Theories of the low-
frequency dielectric loss in disordered solids have usually been based on
rotational diffusion (or alternatively on inertialess charge carrier hopping)
which match the decay characteristics of C,(¢) but leave its second deriva-
tive undefined and produce not the required THz resonance but the Debye
plateau. The contribution the far infrared can make to the molecular dy-
namics in these media has therefore been ignored. In this section we
attempt to remedy this by showing that even the simplest form (1.30) of
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approximant capable of shifting #_,, in the THz region may be used to re-
produce the overall features of the complete zero-THz profile.

The itinerant librator as described in (1.30) and (I.31) is particularly well
suited geometrically to describe the loss in the disordered phase of the
hexasubstituted benzenes, since these are known to rotate in a plane about
their hexad axes (Fig. 49). In pentachloronitrobenzene (PCNB), for exam-
ple, Aihara, Kitazawa, and Nohara in 1970 detected a loss peaking be-
tween 30 Hz and 1 MHz in the temperature range 293 to 372°K with a
large energy barrier to rotation.”’ An entropy difference between the
stationary and transitional positions was calculated on the basis of plane
reorientation between two opposite wells, ignoring the effect of molecular
inertia. In the far infrared a peak at 38 cm ™' has been identified recently
as librational in origin (Fig. 50) by invoking the harmonic approximation
for reorientation of six-fold symmetry in the manner of Darmon and
Brot,” who assume that the angular movement of the molecule occurs in a
fixed crystalline potential. The libration frequency #, is then defined for
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Fig. 49. Projection of the pentachloronitrobenzene crystal structure. [Reproduced by permis-
sion from Acta Crystallogr., 30B, 1546 (1974).]
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Fig. 50. Far-infrared part of the total loss profile in CH,Cl, solutions. (1) Glass at 118°K
(inner scale); (2) glass at 114°K (outer scale); (3) solution (liquid) at 298°K. Ordinate: af#)

(nepers,/cm); abscissa: # {cm ™~ '). [Reproduced by permission from Chem. Phys. Lett., 56, 529
(1978).]

simple symmetries such as that of benzene by

i A Yl
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where J 1s the moment of inertia about the hexad axis. Naturally, (I1.71) is
an approximation for PCNB, especially since the large NO, group will set
up potential barriers to rotation of different magnitude, resulting in an ob-
served distribution of dielectric “relaxation times” which become nearly
identical only at about 372°K. No account is taken by (IL1.71) of inter-
molecular coupling. This results in a distribution of librational frequencies
and sets up vibrational waves throughout the lattice. Equation (I1.71) has
been used® to predict the observed Raman or far-infrared peak libration
frequencies in plastic crystalline benzene, furane, and some other
hexasubstituted benzenes which all lie in the range 30 to 60 cm ™',

The frequency 2wp,c from (I1.71) may be identified with w, of (I.31) in
order to reproduce theoretically the required zero-THz profile of PCNB,
which ranges experimentally from 30 Hz to 38 cm™'. The factor 8, of
(L31) is related to the low-frequency loss through 7, the inverse of the loss
peak frequency. Therefore, the only phenomenological variable to be
evaluated empirically is 8,, which has the effect of broadening the 38-cm ™!
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resonance. No force fitting of the molecular parameters of the itinerant

librator model is attempted. The moment of inertia of the annulus 7, is
estimated using the X-ray data of Tanaka, Iwasaki, and Aihara.”? In the

limit AT/ I,y* 0.1, the complex polarizability from (1.31) reduces to

H((B— )+ oy —H{oBix—r(B—a") ]
2

kT
ar(s)= 7

2 Iz“l'}‘

X Emll:mz = xj) + .r,(x‘ = .xzwl)

y=m(x¢+x,[,r3—w2) = xzmz) '["-72}
with
kT B
= - Fig. 51. Log(¢”) vs. log(w) representation of the total loss profile in glassy CH,Cl,/deca-
I, B, Bl"’%'l' B8 lin at 114°K (1.97x 10*' molecule /cm® of CH,Cl,). ¢; Some experimental points indicating
that the observed low-frequency loss is broader than the model loss. The various high-
x,=f3;+ P, frequency curves are for 8, =0.1, 2, 5, 10, and 20 TH,. This illustrates the broadening effect

of this friction coefficient. (—-), Loss curve of a solution of CH,Cl, in decalin at 296°K

PP 2
xy=wqo+ %+ B, B (room temperature). [Reproduced by permission from Chem. Phys. Lett., 56, 529 (1978).]

2
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Values of the various parameters used for PCNB are listed in Table VIL. Lig. &fp)
For B,=0, the THz resonance at the frequency (y/2mc)=38 cm™ ! is too 1+ _
sharp and Debye loss curves are produced theoretically at the low Bk | | : o

frequencies, which are too narrow (Fig. 51) in comparison with the hma:d i 5 10 15
experimental data. The effect of increasing 8, is most clearly depicted in Log w =
e A

terms of the absorption coefficient a(w) of Fig. 52, where the THz reso-
nance is depicted theoretically as rising above the intermediate Debye

lateau.
’ 4= o
TABLE VII L 4
Parameters for PCNB Used in the
Itinerant Librator Model (1.31) (/,/1,=10) 6 =
KT [ ' S
Temperature (°K) T, (sec) Ly? v/ By gl / i
293 1.1x10-* 0.002 6.4x10°8 - g
313.4 1.3%10°% 0.002 49%1075
== —i .
333 3.1x10 : 0.002 20x% lﬂ_. Fig. 52. Loga(w) vs. log(w) representation of the absorption in glassy CH,Cl,/decalin. Note
353.7 82x10° 0.0025 6.9 % I'ZI_:i ihe hosizoniial Ticbys sldican, which contianeah i or Hasical thode of Brsiit
372.1 2.7x 10~ 0.0026 20x10 motion. The far-infrared rives stoepiy & this at 90 cm~" (114°K) in iﬁnmcmm

oscillation. [Reproduced by permission from Chem. Phys. Lett., 56, 529 (1978).]
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Taken overall, then, the approximant of (1.6) represented in (1.31) pro-
duces a fairly realistic picture of the overall zero-THz profile in TCTMB
which may be extended to the losses observed generally in amorphous and
disordered solids, as reviewed recently by Lewis.>® Here it was emphasized
that despite large differences in composition and structure among these
solids, it is remarkable that the ac conductivity [o(w)= we"(w)] varies
according to an apparently simple law, albeit over a restricted range of low
frequencies in the zero-THz range. In fact, this law is known to break
down at frequencies greater than about 10'° Hz, and must do so in the
THz range where the Poley resonance still remains on general theoretical
grounds,

Examples of these solids are vanadium phosphate glass, doped silica,
aluminium oxide, amorphous selenium, organic polymers, and molecular
solids such as frans-carotene. In dielectric terms the response in these
solids is coming from the high-frequency side of a loss peak [i.e., where
€”(w) decreases as w increases], the peak itself and the low-frequency side
beyond being inaccessible to conventional experimentation, owing to their
very low frequencies. One of the objects of the review was to show that the
classical concept of rigid dipole reorientation and that of localized hopping
charge carriers can be unified and shown to be capable of describing simi-
lar phenomena in a noncrystalline solid. In view of the foregoing argu-
ments, such models, to be entirely realistic, must be able also to produce
an equation for the loss that will be realistic in the THz region (the far in-
frared). This is to say that the molecular libration, taking place as usual at
THz frequencies, must be built into the basic equations for elementary
polarization induced by donor-acceptor charge transfers. As it stands, the
carrier hopping theory produces Debye-type equations for the elementary
loss, which is integrated to give the total dielectrical response over all
barrier heights in the solid. The broad, very low frequency loss may then
be calculated theoretically without recourse to the empirical concept of a
spread in Debye times. However, any Debye-type formalism is physically
unrealistic when extrapolated to far-infrared frequencies, where the sharp
quasiresonant Poley absorption is still to be expected whenever there is
enough molecular freedom of rotation to give rise to a low-frequency loss or
ac conductivity. This is true even though the broad loss peaks at frequen-
cies too low to be measured.

In physical terms the spatial distribution in the solid consists of localized
states which are oscillating at high frequencies. At a much lower range of
frequencies, charge hopping occurs from one site to another, giving rise to
the observed ac conductivity. This may be formulated by considering the
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elementary polarization

p(ty=v~"! % e(1—=f)r,cos,— > e;:r,.cusﬂ,} (I11.73)
A

where e is the electronic charge, f, the probability that a state i (donor or
acceptor) is occupied by an electron, r, the distance of this state from a
chosen origin, the angle between r;, and F(¢), the probe field (not neces-
sarily the internal field). If the vector r, remains fixed in space, Debye-type

equations for the elementary loss are obtained after certain simplifying
assumptions:

2
, ;c08’8  wP P,

T
if
kT l‘.-.?,-j(mz -+ wé-

Ae"(w)=e (11.74)

where P; and P, are transition rates between sites, and w;;= P, + P,; is the
characteristic relaxation frequency for the pair element in question. How-
ever, the dipole moment determining the polarization is er;, which is
affected by a torsional oscillation in r,; at far infrared frequencies. Thus in
(I1.73), if r;; were given a characteristic libration frequency, cosé, would
become time-variant and the necessary high-frequency Poley adjunct
would appear. The overall time correlation function for the reorientation of
er;; would then be well behaved. It remains to be seen whether these ideas
are mathematically tractable, but certainly librational-type absorptions in
the far infrared should be observed for all the amorphous solids mentioned
by Lewis as well as in zeolites and clathrates with dipolar guests, where
whole molecule rototranslation, as opposed to libration, is the more im-
portant consideration. Pardoe and Fleming®™ have recently observed such
bands in certain inorganic glasses. It may be mentioned finally that the
libration of er,; would depend inversely as usual on an effective molecular
or intermolecular moment of inertia, thus bringing the charge-carrier hop-
ping model into line with the concept of inertial effects in the far infrared.
It should be emphasized that in this type of theory we are not necessarily
confined to molecular dipole autocorrelations, since hopping occurs be-
tween different librating molecular frameworks. Naturally, r,, does not

- - - - '] II
coincide with the molecular permanent dipole vector, in general.

F. Zero-THz Absorptions in Glasses and Viscous Liquids

The influence of viscosity in the medium surrounding a particle or mole-
cule undergoing rototranslation in the fluid state is of basic interest.
Viscosity is a factor which can be varied conveniently through orders of
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magnitude by supercooling solvents such as decalin or o terphenyl. This

section purposes to demonstrate the influence of a highly viscous environ-
ment on the rotational dynamics of small dipolar molecules (in particular,
CH,Cl,) in glassy and viscous liquid decalin and other convenient solvents.
These manifest themselves in a similar fashion to those described in Sec-
tion ILE [i.e., over a frequency range extending from audio frequencies
(kHz) and below to the far infrared (or THz)]. This is in very marked con-
trast to the loss in the equivalent room-temperature solution, where it 1s re-
stricted (as in CH,Cl,/decalin, for example) to the microwave (GHz) on
the low-frequency side.

In Figs. 50 and 51 we illustrate the low- and high-frequency parts of the
experimental loss in a solution containing 1.97 X 10?' molecules/cm’ of
CH,Cl, in glassy decalin at 114°K as represented by the itinerant librator.
A temperature difference of 4°K is enough to move the loss peak through
almost two decades of frequency, so that the Arrhenius activation enthalpy

for the process is high. The far-infrared part of the loss is shown over the

temperature range 109 to 113°K in Fig. 50 as the absorption coefficient
a(w). There is a slight movement to higher frequency as the temperature is
lowered. There is also a slight drop in intensity. In comparison, the same

concentration of CH,Cl, in decalin liquid at 293°K produced a far-in-

frared peak at 61 cm ™', almost 50 cm ™' below that of the glassy solution

at 109°K. The low-frequency loss peak, which appears at 3.67 cm ™' in the
high microwave at 293°K, has of course shifted downward by many de-

cades in the glass.

For (kT/1,y*) <0.1(as in this case) (I11.72) may be employed to calculate

analytically the zero-THz multidecade loss profile. The optimum value of
B, for best fit to the far-infrared data is 10 THz, while 8,=3.6x10'"" THz
at 109°K. The vast difference between the two friction coefficients reflects
the difference between single-molecule libration and collective reorienta-
tion of the cage of nearest neighbors—the latter, involving some transla-
tion, being much the more energetic and slower process. It is of course
only by collective efforts that the encaged dipole ever manages to
surmount the potential well in which it is librating at THz frequencies.
Such an oversimplified model as (1.31) represents may be expected to re-
produce only the gross features in the available expennmental data [e.g., a
distribution of inverse frequencies (or relaxation times) is seen at low
frequencies]. However, the most urgent point here again is that the loss
profile is not confined to the kHz frequencies but continues into the THz
or far-infrared range where the Poley resonance is still clearly defined.

In the supercooled viscous liquids studied by Johari and others,” two
absorption peaks (a and B processes) are often observed in molecules con-
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taining rigid, asymmetric, aromatic probes such as halogen and methyl-
substituted benzenes and naphthalenes. Below the glass transition only the
secondary relaxation is still observed. The loss curve we see in glassy
CH,Cl,/decalin rapidly shifts up to microwave frequencies over a very
narrow range of temperature at the glass-to-liquid transition lemperature
(T,), in contrast to the larger molecules studied by Johari. With very fine
temperature control an a and 8 spectrum appears in this small temperature
range for CH,Cl, also, so that in the viscous liquid the overall loss profile
peaks rhree times, in the audio, MHz, and THz f requency regions. It is rea-
slnnalhie to suggest, therefore, that there exists in the viscous CH,Cl, /deca-
lin quuid three loss peaks in the zero-THz profile which in general may be
de51gnated as primary, secondary, and tertiary processes of the overall dy-
nflmmal evolution. The tertiary (y) process is that of libration of the guest
dipole showing up at THz frequencies, the other two being well docu-
mented by Johari and others and by Williams.* The 8 process represents
the influence Pf nearest-neighbor cage fluctuations on the libration of the Y
process, creating a diffusion of the encaged molecule from one energy well
n;- another. It is the remnant of the liquidlike rotational process (more pre-
_cisely rototranslational of course) first described by Debye in terms of
mer!ia%ess spherical diffusion. The a process is one of bulk reorientation
(inclusive of next nearest neighbors, etc.) and is the slowest. In the glass
the cooperative motion becomes infinitely slow, and the « loss peak moves
to zero _frequency, leaving the 8 and y processes to be described by our
simplistic itinerant librator (i.e., simplistic in concept, almost intractable
analytically).

The far infrared y peak (i.e., the Poley absorption) is shifted dramati-
cally to higher frequencies in the glassy CH,Cl,/decalin solution, (i.e.,
from 60 cm™" at 298°K to 116 cm ™! in the glass). To put this in perspec-
tive, the root-mean-square angular velocity for a freely rotating CH,CI, en-
semble is classically 21.2 cm ™', so that the change in y=2mv__ ¢ plfodflced
by a glassy environment is commensurate with that pmdu?ed by con-
densing the infinitely dilute gas into the liquid at ambient temperature. At
the same time, the B part of the Zero-THz profile moves from 110 GHz at
298°K to 5 kHz in the glass at 111°K. Very much smaller shifts to higher
frequency in y have been observed'? by compressing under kilobars of ex-
ternal pressure liquids such as C;H,Cl and CS,.

I_n contrast to the behavior of CH,Cl,/decalin glass, the enthalpy of
activation of the 8 process of 10% v /v fluorobenzene /decalin is very low
(+IE kJ/mol). The predominant 8 process is observed to peak here at 77°K
(ie, 5{}‘_’K below the glass transition). Assuming that the § process is due
to rotation about the sixfold axis in this case, a simple model of harmonic
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libration such as that of Darmon and Brot produces a resonant delta func-
tion at 60 cm ™' using the enthalpy of activation measured at kHz
frequencies. The observed y peak is at 56 cm~'. Across the halogenoben-
zene series the glassy 8 process shifts to lower frequencies, and is hardly
detectable in bromobenzene. There i1s a corresponding shift to higher
frequencies in the y part of the overall loss, but not nearly as pronounced
as that in CH,Cl, /decalin.

Tetrahydrofuran /decalin glass is also interesting and contrasts the
CH,Cl, /decalin system in that the y shift is much less and the enthalpy of
activation again much smaller.

An oscillatory angular velocity autocorrelation function may be ex-
tracted from the best fit of (I1.31) to both glassy 8 and y parts. In Section
IIT we simulate nitrogen in a high-temperature disordered lattice by com-
puter molecular dynamics and find that this oscillatory behavior 1s also
characteristic of the linear velocity autocorrelation function C,(¢). This in-
crease of the oscillatory character is of course accompanied by the large v
shift. The g8 shift implies that C(r) will decay, almost exponentially, much
more slowly in the glass.

IIl. MACHINE SIMULATIONS OF ROTATIONAL AND
TRANSLATIONAL CORRELATION FUNCTIONS

There are available reviews™®! and some books™* partially devoted to
this topic, usually referenced under “molecular dynamics™ and “Monte
Carlo methods.” Within the scope of this chapter the most incisive use of
computer time may be made by pitting these techniques against our pre-
conceptions of the fluid state. Modeling demands a degree of intuition be-
fore any equations may be set down on paper. The computer yields enough
information about a small ensemble of molecules (N==10? or 10°) to sound
its depth. The “molecular dynamics™ technique 1s particularly useful in our
context since the Liouville (or Newton) equations are solved for a given in-
termolecular potential, the results being that for each molecule its trajec-
tory is defined over a fraction of a picosecond or longer in terms of the
first five derivatives of orientation and position. Therefore, it is possible to
draw up a picture of our artificial droplet to a degree of detail which is
itself almost as puzzling as a contemplation of the original fluid. Statistics
therefore appear in terms of autocorrelation functions and multiparticle
correlation functions, the latter being more difficult to compute, since a
great deal more averaging is involved.

Some of the models of Table I have already been evaluated using this
technique. Rahman,”” in 1964, using 864 potentials representing argon
atoms, demonstrated that the velocity autocorrelation function of the
assemblage displayed a negative region out at long times (a few ps). The
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Langevin equation (1.6), with A=[v], i2, null, and ¢, a delta function, is
therefore oversimplified, since {(v(#)*v(0)) is exponentially decaying (but
not when rotation is considered). Berne and Harp®® in this series have
simulated numerically the first memory function of CO, with a modified
Stockmayer potential. Since then the number of simulations has grown—
for example, the J-diffusion testing with rough spheres has already been
mentioned. The development with which we are involved here is the exten-
sion to atom-atom Lennard-Jones interactions in diatomics of the molecu-
lar dynamics technique initiated by Barojas, Levesque, and Quentrec,?
Cheung and Powles,”® Streett and Tildesley,”® and Singer and others.'® In
this section we use the algorithm developed by Streett and Tildesley to add
a further dimension to the experimental evaluations of Section II. We
simulate also, using disks bound within rough annuli, the analytical results
of (I.31) with 8,=0. Essentially, this allows us to evaluate how well rough
annulus/rough annulus interactions reproduce the Wiener statistics. If the
match between the analytical results and the simulation is satisfactory in
two dimensions, it will be reasonable to extend the simulation to three di-
mensions, and to simulate joint probability density functions which are in-
tractable analytically. Throughout this section the following dimensionless,
or reduced units are employed.

Bond length: L* = L/o (bond length /atom diameter)
Temperature: T = kT/e
Density: p* = po (where g, is the diameter of

a sphere having a volume equal
to that of the diatomic)
Pressure: P* = Pg’/e

Here & is defined through the fact that the potential energy of two di-
atomic molecules interacting via an atom-atom potential is the sum of
four interactions between pairs of atoms not on the same molecules. For
the Lennard-Jones model the atom—atom interactions take the form

Uu{r}=4ﬁ[(%)lz~(f—)ﬁl (1IL1)

r

where r is the distance between atoms on different molecules.
For a purely repulsive (hard) diatomic the equivalent potential is

UUR(F}=4£[(E)II_(E)5+1} (r/o) <2V/6

r r -

=0 (r/a)>2"/8 (111.2)
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A. The Molecular Dynamics Method

We briefly review the method involved, following Streett and Tildesley,
who base their algorithm in turn on that developed by Cheung and Powles.
The equations of motion are written in vector form:

M¥, =F, (I1L3)

ML%s,=A4T, (111.4)

where r, is the center-of-mass coordinate for molecule /,w; its angular
velocity, and F, and T, are the net force and torque exerted on particle i by
all other particles. Forces and torques are computed for all molecular pairs
having center-to-center separations less than 2.5¢ + L, where L is the inter-
atomic separation. This ensures that all atom-atom interactions at dis-
tances of 2.5¢ or less are counted. At this distance the potential energy of
two atoms interacting via the L-J potential (III.1) is of the order of 1% of
the well depth. The virial theorem is used (as per Cheung and Powles) to
correct the computed pressure and energy for long-range interactions.

Equations (II1.3) and (III.4) are integrated numerically by means of a
fifth-order predictor-corrector method due to Gear.'”" Since the particles
involved are, ideally, linear, all centers of force within a molecule lie on its
axis. As a consequence, vectors representing the torque, angular accelera-
tion, and higher derivatives of angular position are always perpendicular to
the axial vector L of the molecule. This allows the use of (111.4) rather than
a second-order equation for angular position. Simulations in this section
are carried out with a cube of 256 diatomic molecules arranged initially on
an a-nitrogen lattice (fcc). Periodic boundary conditions are used which
ensure that when a molecule leaves one side of the cube during the course
of the simulation, another replaces it with the coordinates (x,y,z) dis-
placed by the cube side length. After a complicated initial step, the simula-
tion is allowed to run for about 1600 time steps [in units of (Ma?/¢)'/?],
each of 0.0016 after rejecting the first few unstable steps. These units each
correspond to a real time of the order of 10~ '° sec. The calculated pres-
sures and configurational internal energies are in excellent agreement with
those calculated by Singer and others,'™ who have used a completely dif-
ferent molecular dynamics algorithm based on a different method of solv-
ing the equations of motion. The unpublished Monte Carlo calculations of
Streett and Tildesley are in excellent agreement with their molecular dy-
namics data for L*=0.3292(N,), as well as with those of Cheung.

1. Computation of Correlation Functions

The fifth-order predictor—corrector algorithm used means that the first

five derivatives of orientation and position may be stored on magnetic tape
for future statistical analysis. For any element A of (1.6), its autocorrelation
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function may be calculated using the running time average

C.(1)= —'?: J{; Tzf A(7)A(7+ 1) dr (I1L5)

J=1

using different initial times. In (IIL.5) 7 is the total time over which the
simulation runs with j molecules. We notice that in any algorithm which
conserves the total linear momentum (X, Mr,=0), the normalized autocor-
relation function and cross-correlation of velocity and force will decay
identically. This is because

N
V(0 3 utr)=v,,--( > vktr>-vjfr})

ke o ko= 1

= —v,(0)v,(1) (111.6)

Therefore, it is possible to calculate collective correlation functions only
when these take forms such as those of the longitudinal and transverse cur-
rent and spin densities of hydrodynamical theory:

Clk, 1) = % j; LI k) (k 1+ T) dr (111.7)

where the wave vector k stands for k, or k, and T is the total simulation
time. We have, for current densities,

Jk,1)=N""23 [ My"(1) exp(ikeri"(1))
+ My (1) exp(ik12(1)) |

where v{')(¢) is the velocity of the first atom of the jth molecule, v{”(r) that
of the second atom. In Section IV we build these up from individual
molecular vectors and thus attempt to bridge the gap between molecular
and hydrodynamic theories.

We shall illustrate the use of molecular dynamics simulations in evaluat-
ing the approximation, (I.31), when the equations are applicable to space-
itinerant oscillation of the molecular linear velocity v.

B. Translational Motion—
Simulations and Itinerant Oscillation

The itinerant oscillator model for motion in atomic fluids and uncoupled
linear motion in molecular fluids was developed by Sears'® in 1965 follow-
ing some speculative remarks by Frenkel. Unfortunately, Sears's paper is
mathematically a little flawed, as was pointed out by Damle and others.*®
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In this section we shall use the simplest version of this model consistent
with the concept involved to calculate C (1), the linear velocity autocorre-
lation function. The analytical C () is then compared with that simulated
using (IIL.1), (IIL.3), and (111.4). The self part of the van Hove correlation
function G,(r,7) is evaluated analytically and compared with the experi-
mental neutron scattering results of Dassannacharya and Rao'® on liquid
argon, and the theoretical C,(¢) is also compared with the computer simu-
lation of this function for liquid argon carried out by Rahman.”” This is a
good check on internal and interexperimental consistency, since G,(r,?) can
be expressed in terms of C,(r) using the techniques of Section I. By
evaluating the speed acf (that of |1r1) and that of the direction of the veloc-
ity, following Berne and Harp,”® it is shown that a constant-speed

approximation is valid in treating translational properties of fluids, con-

firming their results for CO.
Equation (1.6), for uncoupled, linear motion of the center of mass of an
atom or molecule of mass m, reduces to

V(1) + fn K(t—7)v(r)dr=1(1)/m (I11.8)

where f (1) is defined by

m

K(0) =< (01 (0)> 577
Since {f(¢)*v(0)> =0, we have the further relations

C(1)=— fﬂ "K(t—1)C,(1)dr (111.9)

and the Mori series

d |
=K, _\(1)= _f:: K,(t—1)K,_,(7)dr (111.10)
where n=0,..., N are positive integers. In this notation K _ I{I)EC,{I}. No
intermode coupling or cross-correlations [describable by G (r,f), the dis-
tinct part of the van Hove function] are accounted for in these equations.
Truncating (II1.10) with

K\(7)=K,(0) exp(— y?)
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produces a result for C,(s) formally identical with that for the equations of
motion:

mig, (1) + myq,(1)— m Ky(0)[q—q,] = m,W,(r)
mi(1) + mK,(0)(q—q,)=0 (TL.11)
K(0)=(m/m,)K(0)
Ko(0)=wg

Here m is the mass of the atom or molecule whose coordinate is q and
which is surrounded by a diffusing “cage” of such particles whose center
of mass is at q, and whose total mass is m,. The inner particle m is
harmonically bound at a frequency w, to the diffusing cage with a restor-
ing force constant K,(0). We note that v=4q. A frictional force yq, acts in
opposition to the diffusing cage and W,(¢), which is represented by a statis-
tical Wiener process, is the force on the cage caused by “random” colli-
sions. The two versions of C,(¢) [from (111.8) and (II1.11)] take the form of
(11.39).

The van Hove function G(r,?) for self correlations may be evaluated by
considering (I11.8) in the form

F(1)+ j; K(t=1)i(r)dr=1(1)/m (IIL.12)

and classically from (IIL.11) by a method to be described shortly. In
(1I1.12) we have f=v=4¢, the velocity of the tagged inner particle of mass
m. G,(r,7) is the probability of finding this particle at r at time ¢ given that
it could be found at r=0 when 7=0. Using (1.33) and (1.34), the probabil-
ity density function

p(r{rj,r{ﬂ},v(ﬂ];r}=[ zﬂ;(!} rﬂexp! - %!%‘ (I11.13)

where

y(r)=r(1)=r(0)—T,(1)¥(0)

i -’}_; j; T (t—1)dr
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is the solution of (I11.12). In (1I1.13)
T(1)=2;"[s(s+K(s))] ™"

SKOVO) I11.14
o H(0)v(0)> e
B(t) BkT[EI T (1 }dr—I‘E{f}] (I11.15)
To obtain G,(r,f) we must average over all initial v(0) values so that
| 3/2 3 3|l‘(f}|1
G,(rt)= 27B(0) ] f:xp[ 2B(1) (IT1.16)

Equation (I11.16) links G (r, ) directly to C.(¢). In classical Brownian trans-
lational theory, C (1)=exp(— i), so

I (t)=(1—exp(—p1))/B

and B{f}—£{23r+4e Bt _ ¢~ 2B _3)
mp*

in agreement with the calculations of Uhlenbeck and Ornstein.'* In our
case the equivalent expressions are

L (t)= xﬂ[ 1 —exp( — a,7)(cos Bt + x,sin ft) + x,(1 —exp( — ﬂ’lf})]

where

200+ 1,y ai - p*+Taja, _ F(“f'*'ﬂz)

ST an@A) 1 BlatTa) T a2a+Ta)

1. Probability Density Functions from (111.11)

Without loss of generality one may consider for purposes of computa-
tion the behavior of the ith component (i=1,2,3) of (I11.11), which may be
written'® in the matrix form

X(1) =AX(r)+BW,(1) (111.17)
where
0 0 1 0 | il -—37:11 R,
ﬂ' D’ ﬂ 1 ﬂ K-— Xl rl'
ATl e Wb 0 0 BRlol TR X |T| R
% -9 0 -B| L EAREY
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Here

ﬂ%-[ml/m)mg R=q

Equation (IIL.17) may be solved formally to give
X(1) = (expAr)X, + fu ‘exp[A(t — 1) |BE(dr) (111.18)
with
Wi(t)— Wi(1))=£&(t,—1,)

The van Hove function may be calculated from (I11.17) and (I11.18) by

virtue of the fact that it is the Gaussian probability density function of
X,(?). Thus

3 3/2 3 }fl{:}
G(X,t)= - :
.s( 1 t) [2w< }"III'.:I}:) ] EIP! 2 Yﬁf}} J {"l 19)
It turns out from the formal solution, (I11.18), that
Y(1)= fu w3 j; ;_Tg;(u]duéfd'r}
so that
| =7 2
iy =aic? [ [ sy ar
with
(1) = [{uf—azf—ﬁ-’-r'[ ‘““‘“’B‘f‘(“g“'“’"ﬁ D 4o exp(— )

The constant C? is deduced from the limit at long times of (II1.19).

2. Comparisons with Molecular Dynamics.
Simulations of N,

The atom-atom computed force, velocity, speed, and direction of veloc-
ity autocorrelation functions are shown in Fig. 53 along with the least-
mean»squarcs best fits for the force, (mv) acf’s calculated from (11.39) with
wi, 92, and y as variables (Table VIII).
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Fig. 53. (a) (—), (1) Atom-atom simulation of the force acf Cg{1) for a reduced interatomic
separation, L* of 0.1. (—), (2) Simulated velocity acf. (—), (3) Simulated direction of velocity
acf. (—), (4) Simulated speed acf, the horizontal line is at 8/(37). (-—-), (1) Least-mean-
squares best fit of the itinerant oscillator to the simulated Cg{t). (—), (2) C.(r) (itinerant
oscillator), calculated with the w3*, 02%, and y* estimated by fitting C(1). (b) L*=0.3; ()
L*=0.5; (d) L*=0.7. Ordinate: C(r); abscissa: (time steps)/200. [Reproduced by permission
from J. Mol. Struct., 46, 395 (1978).]

(d)

Fig. 53. Continued
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TABLE VIII
Parameters for Least-Mean-Squares Best Fit to Molecular Dynamics
Data of C{r) (p* =0.64, T*=2.3)

L* m&- ﬂﬁ- Tt

0.1 56.5 3139 38.6
0.3 47.8 263.3 29.1
0.5 80.6 213.3 21.4
0.7 127.9 250.6 30.8

wi*, 2%, and y* are in reduced units. Velocity spectra are compared
with those simulated by Berne and Harp® (on carbon monoxide), and
Rahman (on argon) in Fig. 54. From the formal equivalence of C,(s),w; is
proportional to the mean-square force, computed as {F*) using the
atom-atom algorithm. This is tested in Fig. 55, where the simulated (F*)
is plotted against wj obtained by fitting Cg(r). The overall trend is similar,
but w? increases the more rapidly as L* lengthens (i.e., the more aniso-
tropic the intermolecular potential becomes).

Figure 54 shows the least-mean-square best fit to the velocity acf com-
puted for liquid argon in the 864-particle simulation of Rahman. The ex-
tended negative tail (or low-frequency peak in the velocity power
spectrum) is not reproduced by the itinerant oscillator. The so-called hy-
drodynamic tail is a decay from the positive side of the C (¢) axis, and dif-
ficult to measure in comparison with the extended negative portion. This is
found again in the CO simulation (Fig. 54) and may be discerned (Figs.
53a and 53d) in the atom-atom C,(¢). In contrast (Fig. 54d), the angular
velocity acf and power spectrum for CO are fitted more closely overall by
the itinerant librator (tractable only in two dimensions). The simulated and
analytical mean square forces are plotted in Fig. 55 as a function of L*.

The parameters obtained from the least-mean-squares best fit to
Rahman’s C,(r) are used in Fig. 56 to match the mean-square displace-
ment, defined by

(A2 =2 f ‘(1= 1)¥(1)¥(0) > dr (111.20)
0

simulated by Rahman, and also the G(r,¢) derived experimentally by
Dasannacharya and Rao,'® using incoherent, inelastic, thermal neutron

scattering.

1.E—|
1 - E:,
= W
= =
) | 3
iy

5 —

B (et S

5 1.5
(h) Time (psec)

Fig. 54. (a) (—), (1) Berne and Harp computed velocity acf for CO. (—), (2) Computed,
velocity power spectrum. (—-), (1) Itinerant oscillator least-mean-squares best fit to the veloc-
ity acf. (—), (2) Corresponding normalized velocity power spectrum. Ordinates: left—C(r);
right—C(w)/ C,(0). Abscissas: top, time (psec); bottom, frequency (THz). () (—), Rahman
C,(1), simulated for liquid argon by Rahman. (—), (1) Itinerant oscillator, best fit. (—), (2)
Cg(r) estimated from the C_(1) best fit. Ordinate: C(f); abscissa: time (psec). (¢) (—), Rah-
man-simulated, normalized, velocity, power spectrum. (—), (1) Velocity power spectrum
calculated from the itinerant oscillator best fit to C (r) (Fig. 53). (—), (2) Itinerant oscillator
normalized force spectrum. Ordinate: intensity; abscissa: frequency (THz). (d) (—), (1)
Berne and Harp simulated angular velocity acf for liquid CO. (—), (1) Best fit to (1) of the
itinerant librator in a plane. (—), (2) Simulated normalized angular velocity power spectrum.
(-—), (2) Itinerant oscillator normalized power spectrum calculated from fitting the acf.
Ordinates: left—C_(r); right—C (w)/C(0); abscissas: top, time (psec); bottom, « (THz).
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| | |
'o 0.5 1

e
Fig. 55. Plot of (—), ¢{F*» and (@), n.'ré vs. L* normalized at L*=0.3. [Reproduced by
permission from J. Mol. Struct., 46 (1978).]

In Section I it is of interest to know whether the Wiener process is, in
fact, a justifiable statistical representation of random force and velocity.
We adopt the method of computing acf’s of moments of velocity and force
to investigate this further. For example, the second moment of velocity (or
kinetic energy) acf,

Cy(1) = <{0*(1)0%(0)) /<{v*%(0))

should be related to C,(¢) by

Colt)=3[1+ 1Ci(n] (I11.21)

where the probability density function of velocities is Gaussian. Similarly,

Ca(1)=(225+600C (1) + 120C (1)) /945 (111.22)
and so on, as evaluated by Berne and Harp. The functions C,,(1) and
Ca(?) are calculated analytically using the atom-atom Cg(?) to optimize w?,
and @3, and y. They can also be simulated independently using the atom-
atom algorithm, and the two sets of functions are compared in Fig. 57.
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Fig. 56. (a) Plot of mean-square displacement. (—) (Ar’(f)} calculated from the itinerant
oscillator fitting to Rahman’s C (/). ®, Mean-square displacements computed independently
by Rahman. Ordinate: (Ar(7)) (A); abscissa: time (psec). (b) Plot of G,(r,f) calculated for
the itinerant oscillator from fitting the Rahman C,(7) function. Ordinate: G,(r,1) (A~?); ab-
scissa: r (A). [Reproduced by permission from J. Mol. Struct., 46 (1978).]
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Fig. 57. (a) Kinetic-energy acf’s. (—), (1) L*=0.1 Atom-atom simulation: (—) (2) L*=
0.5; (000), (1) L*=0.3. Itinerant oscillator, calculated from fitting C{r): (—-), (1) L*=0.1;
(2) L*=03; (3) L*=0.5; (4) L*=0.7. The horizontal line represents the Gaussian limit.
Ordinate: C(r); abscissa: reduced time units. (b) As for (@), C,(f). (¢) (F¥NF*0)>/
(F%0)>, atom-atom potential. (1) L*=0.1; (2) L*=0.3; (3) L*=0.5. Ordinate: C(1); ab-
scissa: time steps. [Reproduced by permission from J. Mol. Struct., 46, (1978),]
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In the classical theory of uncoupled translational Brownian motion,
C,(1) decays exponentially,'™ and is therefore incapable of reproducing
any negative parts of the computed velocity acf’s. Further, in the classical
case the mean-square force is not defined, since exp(— y|¢|) is not differen-
tiable at the origin. Not only is { F*)> well defined (through ) in itinerant
oscillation, but also Cg(¢) can be followed, by optimizing wj, £, and 8 as
L*, the interatomic distance is increased (Fig. 53). As L* increases, both
Cg(1) and C,(r) become markedly oscillatory, such being the case also for
the acf of the direction of velocity, while in contrast the speed acf (that of
lv]) consistently and quickly decays to its theoretical long-time value of
8/(37). The similarity between C (/) and the acf of velocity direction
favors theories with a constant-speed approximation, as was pointed out
by Berne and Harp, who first suggested this type of simulation.

Knowing Cg(#) analytically means that C (¢), (AP, and G,(r,7) may
be calculated and compared with those independently computed or
measured experimentally. In Fig. 53 this i1s done for C (f), and it can be
seen that there is a consistent small difference between the simulated C (1)
and that calculated from the optimized Cg(r), although the main features
are similar. At L*=0.3 and L*=0.5 there are indications of negative
long-time tails in the simulated C (r). This tail is well defined for CO and
argon, and causes low-frequency peaks in the velocity power spectra which
are not reproduced by itinerant oscillation as treated analytically in this
paper. Damle and others* have obtained agreement with Rahman’s veloc-
ity spectrum with a six-parameter model of itinerant oscillation with two
friction coefficients, two fluctuating forces A and B, and thus two memory
functions corresponding to {A(7)*A(0)> and {B(7)-B(0)>, respectively,
the latter being assumed exponential or Gaussian. In either case two pa-
rameters were needed for their definition. Equations (I11.11) compose a
zeroth-order approximant of the Damle et al. equations, but with fewer
parameters. Both treatments neglect the cross-correlation in the total veloc-
ity correlation function as distinct from the autocorrelation function. This
is tantamount to a neglect of intermolecular dynamical coherence, em-
bodied in G,(r,r) the distinct van Hove correlation function, which is the
probability of finding anorher particle at r given one at the origin initially.

Light- and neutron-scattering experiments are interpretable generally in
terms of the sum

G.(r 1)+ Gyr,t)= % {n(r,1)n(0,0))

where the time-dependent particle density n(r,7) is given by

n(r,1)= 2 8(r—r,(s))

and it is never straightforward to separate G (r, ), usually estimated on a
molecular basis, from G,(r,7) estimable on a hydrodynamic basis. How-
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ever, this has been attempted experimentally for liquid argon at 84.5°K
and therefrom found to be Gaussian within the uncertainty. The Rahman
simulations of C (t) is carried out at 94.4°K, but it is instructive to com-
pare G,(r,t) calculated from the itinerant oscillator fitting to C(¢) at
94.4°K with the G,(r,?) estimated at 10°K lower. The results are illustrated
in Fig. 56. The mean-square displacement is reproduced well, but this is in
any case rather insensitive to environmental effects on molecular motion
compared with van Hove’s functions. The overall features of the experi-
mental G,(r,?) are reproduced [e.g., the itinerant oscillator decays to zero at
about the same r values for given 7, but the experimental G,(r,?) is always
much the larger in magnitude]. The greatest difference is at 1=0.1 psec,
where the experimental G,(r,?) is 27 A~ at r=0 and the itinerant oscillator
about 6.5 A™°.

Rahman®’ has demonstrated that the simulated G,(r,7) in argon displays
an initial non-Gaussian behavior lasting until 10 psec, and in the atom-
atom simulation of Fig. 57 it seems that up to 200 or more time steps (ca.
1 psec) the Gaussian limit in C,,(¢), 0.6, is not reached. This is confirmed
in Fig. 57b, where the simulated C,(r) does not reach its equivalent limit
of 0.2381. In Fig. 57¢ the acf (F}1)F*0))/{F%0)) is displayed for
L*=0.1, 0.3 and 0.5, and it is clear that no common, single-valued (or

1.18

_I_///T_\’ ——

(a)

Fig. 58. Rotation-translation speed-correlation functions for T° =232, p* = 0.643. (1)
(e(0)|jee )] | @ {o*(0) (1)) | 3) (w4 (0)-w*(1)) | @ Co(0)o(r)> | ) (e 0)e(r))
(e(0)] (0> " ™7 o2(0)w?(0)>" 7 (o*(0)w*(0)) ' {o(0)0(0)) " 7 (w(0)e(0))
(a) L*=0200; (&) L*=02392 (N;); (¢) L*=0.500. In (a) to (c), all curves are computed
averaging over 1500 times steps.
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3.  Translations in Glassy, or Amorphous, Nitrogen

By using a reduced density p*=0.80 and a reduced temperature 7™ =
2.00, nitrogen may be simulated in a metastable solid state induced by
kilobars of external pressure at a temperature beyond the normal melting
point. In this case G,(r,¢) is markedly non-Gaussian, as expressed by non-
zero values of a (1), defined by

qrn-r@]"
a{[F(1)—x(0)]>)"

where a, =(2n+1),...,5.3.1/3". The link with the van Hove function is

a,(t)= (111.23)

([HO)=rO)]*"> = [ 116, (r,, 1) d,
| =i e o in
=5 2 [r(0-r0)]

where r,=r(f)—r(0). Berne and Harp, in their simulation of CO with a
modified Stockmayer potential, found a,(7) to be moderately sensitive to
variations in N, the number of molecules used. a () become less signifi-
cant as NN is changed from 256 to 500 or thereabouts. Accordingly, it is ex-
pected that our simulation would overstress these deviations [of a,(f) from
zero] to an unspecified extent. Further, it is difficult to estimate the effect
of our periodic boundary conditions on these functions. Berne'® has dis-
cussed their effect on long tails in the autocorrelation of angular velocity.
The complicated dependence of a,(f) (n=2,3,4) upon time (from an arbi-
trary =0) (Fig. 60) is not correlated with statistical noise in the ratio of
rotational to translational kinetic energy, as illustrated in Fig. 60. It would
be difficult to follow these analytically with the techniques available at pre-
sent except perhaps in the case of computer argon and other atomic fluids
where the curves a,(r) are simpler in overall form.

The mean-square displacement of argon atoms as simulated by Rah-
man”’ is reproduced satisfactorily by a process of itinerant oscillation (Fig.
36), but Fig. 61 shows clearly that the rate of diffusion in the glass is far
too high analytically. This analytical rate is again calculated by a least-
mean-squares best fit to the force correlation function. Only at times close
to the start are the simulated and analytical functions similar; thereafter
the former flatten out and increase only slowly with a tendency to oscillate
as in a clathrate solid. It seems therefore that an improved rototransla-
tional itinerant oscillation model should be capable of taking this high-
density behavior in the glass in its stride. The rotational constraints are
clearly discernible in Fig. 62, where elongation of interatomic distance is

0.4

(b)

WLIES! | . = ——

Fig. 60. (a) Plot of a,(¢) (see text) for n=2,3,4; L*=0.200. (b) As in (a) L*=0.3292. (c) As
in (a) L*=0400 (200 to 600 time steps). (d) As in (a) L*=0400 (after rejecting 800 steps).
(¢) Ratio of kinetic to rotational energy. (—), After 800 steps; (—), 200 to 600 steps. Ab-
scissas: (a) to (e), time steps (see text).
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Fig. 61. Mean-square displacements. (—), (1) L*=0.20; (—), (2) L*=0.3292; (—), (3) L*
=0.40. (—), (3) i.0. mean-square displacement calculated from the optimized Cg(¢). Ordinate:
(R(t))*; abscissa: time steps.

Fig. 62. (a) (FAOFX0)> /(FY0)); (b) (FYOF%0)>/{F¥0)): (1) L* =0.200; (2) L*=
0.3292; (3) L*=0.400. Abscissas: time steps.
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the only variable. Figure 6256 brings out the coupling through the fourth
force moment acf, a function which for free translation falls at the time
origin immediately to its long-time limit. The falloff is collision-free and
thus the same for all elongations up to 10 time steps or so, but thereafter
molecular interaction occurs and the three curves behave differently, even
though p* and 7* are identical for each. In fact, throughout Fig. 62 the
constant long-time limits expected of Gaussian statistics are reached with
difficulty (if at all) for both the second- and fourth-moment acf’s of veloc-
ity and force. There is little doubt, however, that this is due in part to stat-
istical noise in the averaging [e.g., the simulated C, (¢) function for L*=
0.3292 falls below the theoretical limit of 0.2381]. In other instances, how-
ever, these moment acf’s behave similarly to those computed by Berne and
Harp for CO, in that a limiting constant is reached at long times. Finally, it
is clear that acf’s of molecular speed must be conserved fairly well in any
system [decaying, as they do, to only 8/(3) of their initial value], but even
here there are discernible effects of elongation on the translational motion,
the decay being oscillatory and faster the longer the molecule. The in-
fluence of center-of-mass translation upon the rotational velocity in nitro-
gen and symmetrical diatomics may be simulated (so far only in the liquid)
using the functions

vO)llex(n)]>  and  PH(0)™(1))

n=1,2, which are products of scalar quantities (speeds) which have no di-
rective properties. These are illustrated in Fig. 58 for L*=0.2, 0.3292 (N,),
and 0.50. Despite the statistical noise at L*=0.50 (due to the similanty in
the decays of {(v(7)v(0))/<v(0)v(0)) and (w(7)*w(0))/{ex(0)*w(0)) at
longer times), it can be seen that the interaction is very sensitive to molecu-
lar elongation. {v(0)+w(f)> and {v*"*'(0)w***'(¢)> are zero for molecular

symmetries such as those of N,, but not necessarily so for lower symme-
tries (e.g., C,,, the angular triatomic). As L* shortens, the interaction func-
tions are longer-lived and more featureless than those in the more pro-
nounced dumbbell represented by N,, where oscillatory features become
more discernible. At L*=0.5 there is a sharp surge of interaction at peri-
odic intervals and the interaction functions are pronouncedly oscillatory.
We are in the course of investigating these simulation results with the

stochastic Liouville equation in the Mori form by using the column vector
[;;] to evaluate the interaction-speed correlation functions using a trun-
cated continued fraction. By forcing a fit between the theoretical and

simulated autocorrelation functions of v and «, we hope to reproduce, at
least in outline, the interaction functions simulated here. Simulations will
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then be extended to triatomic molecules of C,, Symmetry and the cycle re-
peated. In this way we hope to discern stochastic features in how the

center-of-mass molecular translation affects (w(0
w1t
spectral functions &(0)*e(#))> and therefore the

P, u(1)-u(0)>

in Ihe: case (¥(0)+w(r) ) #0. This will enable us to check whether these latter
are directly or indirectly sensitive to molecular translation, and if so, in
u_.rhat way. Are they, in the purist sense, rotational or strictly mtmran;Ia-
tional? For which symmetries is it then valid to use a purely rotational

s_tucha#ic Liouville equation? We hope to answer these fundamental ques-
tions aided by computer simulation.

C. Simulations of High-Derivative
Autocorrelation Functions

_In thj§ sert:tinn we investigate the time decay of correlation functions of
high derivatives of position and orientation. This is necessary because the

equilibrium (zero-time) values of successive memory f '
: _ unctions K
defined in terms of = ReLe:

C™(0) =<A™(0)4™(0)>

wheref (n) denotes the nth derivative of 4. Thus, if the C ")(#) are intricate
func?agns of time, then by implication so are the X (1)(n=0,...,N)
Specifically, we aim to see whether the exponential appr::m;imatinn, K 1:1') is.
worthwhile. The decay with time of each member of the], set
[:K'U(IJ, Ki(1),...,] is determined by that of the successive CYz). Tt is dif-
ficult and time-consuming to calculate the memory functions K () directly
_because of their definition only in terms of projection operators, but such
1s not the case for C™(¢), since the predictor—corrector a]gnrithr;]s used in
molecular dynamics to solve the initial equations depend for their useful-
ness upon the calculation and storage of up to the first five derivatives of a

dynamical variahle A, typically the center-of-mass velocity v or the total
angular velocity w. The autocorrelation functions

C\(1)=¥(r)¥(0)),
Cy(1) = (¥(1)-¥(0)),
Gy(1) =<a(1)a(0)),
Cy(2) = (é(1)-ex(0)

are simulated using the atom-atom algorithm, over a range of temperature
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(T*) at constant number density (p*), and vice versa. In the first calcula-
tion an interatomic distance (L*) of 0.3292 was used, corresponding to N,.
In the second we used the best available Lennard-Jones parameters for
nitrogen with an interatomic distance of 0.4, so that we do not deal in this
case with a “real” molecule. The statistical stability of the computed acf’s
is judged as usual by using different numbers of time steps (ca. 5X 19—
sec) for the ensemble averaging.'”” No difference could be perceived be-
tween runs of 200 and 400 steps. All the results shown here were obtained
with the latter. A few runs of up to 1600 steps were carried out initially to
look for any drift in quantities such as the mean-square torque and force
as well as thermodynamic data. The first 100 or 50 steps of each run are
unstable and are rejected in forming averages of any kind, and no acf 15
plotted beyond about 0.5 psec. Real time was divided into batches of up to
1200 decimal seconds each of CDC 7600 (U.M.R.C.C.) time.

It is clear from Fig. 59 that C,(f) and C,() are intricate functions of
time, being oscillatory sometimes, sometimes very rapidly decaying, but
more often with a decay on the same time scale as C; and C;. Therefore,
were we to take the set [w,@,@] or [v,¥,V] in a three-variable formalism, the
autocorrelation functions of each would decay usually on much the same
time scale and the “fast variable” hypothesis would be inapplicable.

The complicated analytical form of members of the set [ K(0),..., K,(0)]
for n greater than 2 may be clearly demonstrated as below for the orienta-
tion, dipole unit vector u by evaluating the Maclaurin expansion and coef-
ficients of <u(f)-u(0))>. Here we carry this out for the coefficients up to that
of 1® in a symmetric-top or linear model. The terms to be evaluated are

M,=1 (the coefficients of ¢°)
M,=*0)) M =<i*(0))
M =<*(0)>  My=<u?*(0))

The method employed is an extension of that of Desplanques,” which
aims at an expansion of each coefficient in terms of @, , the component of
the angular velocity perpendicular to the Cj, axis. This is useful since its
time derivative is a torque component, itself a derivative of a potential with
respect to orientation.

Gordon has evaluated M, and M, for a linear molecule, and
Desplanques has extended this to the symmetric-top symmetry. We have

M, = (a(0)-a(0)) =2kT/ I, (I11.24)
M = Cii(0)-i(0)

A ETN . L), Cor)D

_2(2 I, ) (]+4fﬁ)+ 7 (111.25)
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where I, and 7, are the usual moments of inertia of the asymmetric top
and {O(V)’) denotes the mean-square torques, V’ being the mean inter-
molecular potential. This is in the direction perpendicular to the C,. axis
Thus K (0) for u is proportional to (O(V)?). The expansion of m ;:ul m.
may be accomplished by repeated differentiation of the relation ﬁ '

0= X il +u X i (IT1.26)
so that M= (ii(0)+a(0) >

=W >+ (0, ) +Ué )P
s{ 4, 2\ d’
([ @] (2 Sen)

The coefficient of 1° is related to the mean-square torque derivative term
(the third) and also four others of the same dimension. my 1s related to
K,(0) and therefore throughout its domain of existence (1 >0) must reflect

Fhe time decay of all the vector terms in the right-hand side of (111.27), and
1s consequently an intricate function of time. ’

Differentiating (I11.26), we have

(111.27)

@, =20 xi+uxi (I11.28)
giving
CU(0)-w(0) ) = (& ) — 2w’ > — 4¢w? (&)%)
#2661 +10(w (L)) ) -9(ut Lt )
. d? 5/1( d? .
_5 SRE | ml oo a7 2
<(‘ml} d!'l( ) 4 < |. r:ﬂ'z (""}L ) >

] Ppon 38, @ Bya
+3<df( J.)[dra(wl.}_ia{ml} —E(WL}D

The coefficient my is related to K,(0).

The uvm]l time dependence of functions such as these is supplied in
great detail by a molecular dynamics calculation and one of the more obvi-
ous results {Fi_g. 59) is that both C,(1) and C,(r) seem to be sensitive to
1small changﬁ in 7* or p*, whereas C (1) and C4(7) are not. C, and C,, be-
Ing probes into the extreme short-time dynamical properties -::i? the mnTecu-
lar ensemble, are revealing details about changes in the linear and angular
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acceleration, those changes which must be taking place during the course
of an interaction or “collision.” The fact that all the acf’s exhibit negative
regions is not surprising in view of the fact that the velocity and angular
velocity acf’s themselves oscillate out to fairly long times (see previous sec-
tions) at higher values of p*. It is not surprising either that C, and C,
oscillate so rapidly in comparison with C, and C,, the same relationship
has been observed spectroscopically, of course, for (u(r) -u(0)> and
Gi()=(0)>. It is merely another expression of the increased sensitivity of
derivative auto correlation functions to short-time, or high-frequency phe-

nomena.
An interesting fact of the molecular motion is revealed when C; and C,

are plotted together as in Figs. 59, since the types of decay at each dif-
ferent T* and p* resemble each other so closely. When one function is
rapidly oscillatory, then so is the other, and the same is true when both are
long-lived. This seems to be indicative of a great deal of those translation-
rotation effects, typified in the extreme case by the propeller action. It 1s
known that in the Markov limit such coupling is rigorously zero for sym-
metry inclusive of C, and D_,. Needless to say, the Markov limit is un-
realistic (delta memories) but under inversion v——¥v and w—w, whereas
the Liouville operator remains unchanged. This implies that

but C27(1)={v™(0)w?(t)) is finite (Figs. 58). It needs to be emphasized
that a similar decay rate for the velocity and angular velocity autocorrela-
tion functions is not itself indicative of coupling, since in the absence of
any intermolecular interaction, both normalized autocorrelation functions
would remain indefinitely at unity.

To close this section we emphasize that the intricate nature of these
functions does not imply that the memory function expansion of Mori is
unusable, but the protagonists of two and three formalisms should note in
particular the longevity of the autocorrelation functions of some of the
higher derivatives. Also, we are of course always considering an artificial

droplet of liquid.

D. General Dynamic Properties of Computer Nitrogen:
Collective Correlation Functions

In this section we use the Tildesley—Streett algorithm to study the be-
havior of five autocorrelation functions: linear and angular velocity,
orientation, torque, and force under the following conditions: (1) increas-
ing number density (p*) at constant temperature (T*) and interatomic dis-
tance (L*), (2) increasing L* at constant T* and p*, and (3) increasing 7™
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at constant p* and L*. The following indications appear: (1) The mean-
square torque and mean-square force can exhibit maxima or minima as a
function of p* or L*, but over a restricted range seem linear in T* at con-
stant p“" and L*. (2) Autocorrelation functions of high derivative of the in-
teratomic vector u or the angular velocity « decay generally on the same
time scale as the vectors themselves and become more complicated, as de-
scribed in the previous section. (3) The effect of elongation at constant p*
on dynamical properties such as the above is much more pronounced than
is that of p* at constant L*, indicating that hard-core anisotropy is the im-
Furtant factor in the determination of, for example, nematic behavior. By
increasing L* we effectively change from a pseudospherical molecular
shgpe to a dumbbell, and so measure the effect of increasing geometrical
anisotropy on spectral properties.

The results are illustrated in Figs. 63 to 66 in terms of several different
autocorrelation functions and as plots of mean-square torque and mean-
square force against reduced number density p* at a constant temperature,
and vice versa. The features of these functions can be used to criticize the
models in Table I. It is clear that purely rotational diffusion is inadequate
to explain the simulations, even in its inertia-corrected form, where the an-
gular momentum autocorrelation function is a single exponential, and
where the torque autocorrelation function is not defined. The M and J dif-
fusion models for the motion of the interatomic vector L* may be derived
quite. easily using projectors whereby the autocorrelation functions of L*
and L* are slowly decaying compared with that of L*. Since the autocorre-
lation function {L*(0)-L*(¢)) has the units of angular acceleration, it is re-
lated to the torque autocorrelation function, which in Fig. 59 decays on the
same time scale as (L*(0)-L*(7)). It seems that {w(1)+*w(0)) sometimes de-
cays on a much longer scale, but more often it does not. Even the autocor-
relation function {&(#)+@(0)) (previous section) sometimes takes longer to
decay than (L*(r)-L*(0)>, and apparently is a much more complicated
f}mctinn of time than the latter. The Mori continued-fraction representa-
tion depends partly for its usefulness on the hope that autocorrelation
functions of derivatives of L* might have simpler time dependencies than
that of L* itself. It seems that successive kernels in Mori’s series are more
complicated than envisaged (on the results of Section II1.C), but Singer et
al.’s'® simulation of memory functions shows that these are much less so
than are high derivative acf’s such as {é&(1)+@(0)). Also, of course, the
memory function series is a useful way of generating the whole time depen-
dence of an autocorrelation function knowing only the short-time behavior
:;, tsa}r,, its second memory function. We discuss hereafter some specific

stems.
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Fig. 63. Left to right, top to bottom (T*=3.6, L*=0.1): (a) Plot of 10°(Tg*) vs. p*.
(b) Plot of {(F?) vs. p*. (¢) Autocorrelation functions for p*=0.2: (1) velocity; (2) orienta-
tion; (3) angular velocity; (4) force; (5) torque. (d) As in (c), p* =0.3. (¢) As in (), p*=04.
(f) As in (c), p*=05. (g) As in (c), p*=0.6. (h) As in (c), p*=0.7. (/) As in (c), p*=0.8.
Ordinates: (a) 10%(Tg?), (b) (F2); abscissas: (a) p*, (b) p*, (¢) to (i) time steps. [Reproduced
by permission from Adv. Mal. Rel. Int. Proc., 11, 295 (1977).]
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Fig. 64. Left to right, top to bottom (p*=0.1; T*=3.6): (a) {Tg?> vs. L*. (b) ¢ F2) vs. L*.
(¢) autocorrelation functions: (1) velocity; (2) orientation; (3) angular velocity; (4) force; (5)
torque, 4* =0.1. (d) as in (c), @*=0.2. (¢) as in (c), d*=0.3. (f) as in (), d* =04. (g) as in (¢)
d*=0.5. (h) as in (c), d*=0.6. (i) as in (c), 4*=0.7. Ordinates: (a) {Tg>>, (b) {F?); ab-
scissas: (@) L*, (b) L*, (c) to (i) time steps. [Reproduced by permission from Adv. Mol. Rel.
Int. Proc., 11, 295 (1977).]
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Fig. 65. Left to right, top to bottom (p* =0.643, T® =2.3): (a) {Tg*) vs. L'._l{b} {F?%) vs.
L*, (c¢) autocorrelation functions: (1) velocity; (2) orientation; (3) angular jmlumtjr; (4) force;
(3) torque; L*=0.7. (d) as in (¢) L*=0.5. (&) as in (c), L*=0425. (f) as in (c), L*=0.3292.
(g) as in (c), L*=0.3. (k) as in (¢), L*=02. (i) as in (c) L*=0.1. Drdmau.a l;a} {Tg*>, (b)
{F?*»; abscissas: (a) L*; (b) L*, (c) to (i) time steps. [Reproduced by permission from Adov.
Mol. Rel. Int. Proc., 11, 295 (1977).]
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Fig. 66. Left to right, top to bottom (for nitrogen): (a) 10 Tg?) vs. T* at p* =0.6964, d* =
0.3292. (b) {F*) vs. T* at p*=0.6964, d*=0.3292. (c) 10{Tg*> vs. p* at T*=1.75, d*=
0.3292. (d) (F?) vs. p* at T*=1.75, d* =0.3292. (¢) Autocorrelation functions: (1) velocity;
(2) orientation; (3) angular velocity; (4) force; (5) torque; T =1.75, p*=0.6964. (f) As for
(€), T*=1.75; p* =0.68. (g) As for (e), T*=1.9; p* =0.6964. (h) As for (e), T*=1.75; p*=
0.74. Ordinates: (a) 10{Tg?), (b) (F?), (c) 10{ Tg?>, (d) (F*). Abscissas: (@) T*, (b) T*, (c)
P* (d) p*, (€) to (h) time steps. [Reproduced by permission from Ado. Mol. Rel. Int, Proc., 11,
295 (1977).)

I*=3.6, L*=0.1, p*=0.2 to 0.8 (Fig. 63). This set of data is intended
to simulate the effect of increasing reduced number density on a roughly
spherical molecule at constant reduced temperature. Throughout, the
orientational autocorrelation function is inertia-dominated, decaying
rapidly and exhibiting a secondary maximum similar to that observed by
Kneubiihl and Keller*® for the exceptionally free rotations of HF and HCl
in SF; solvents. The torque acf tends to oscillate at the higher p*. It is
significant that both the mean-square torque and mean-square force go
through a minimum at p*=0.5, whereas theories of hard collisions and
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harmonic well oscillations predict a monatomic increase with number den-
sity. Recent work on the far-infrared induced absorption of compressed
gaseous ethylene has suggested that the mean-square torque exhibits a
turning point with increasing pressure, and similar work of CCl, and CS,
liquids has revealed that the mean-square torque may increase or decrease
with temperature at constant p*.

The force and linear velocity acf’s have maximum variation through this
pressure range. At p* =0.2 the latter decays very slowly and the former has
an extended negative tail. At p*=0.7 the force acf oscillates with a long
period, and the velocity acf in turn develops the well-known negative tail.
The slowly decaying acf’s at the high p* are those of angular and linear
velocity, although their short-time behavior becomes progressively dif-
ferent. These, together with the fact that there is now an apparent shift in
the minimum of the orientational acf, shows up the considerable freedom
of angular movement and gradual constraint upon translational movement
as p* increases. The changes in the autocorrelation functions throughout
their range are indicative of the nature of the collision rather than any

“structuring” in the fluid.

™ =36, p*=0.1, L*=0.2 to 0.7 (Fig. 64). The torque increases by an
order of magnitude with elongation, and the angular velocity acf simulta-
neously decays more quickly. The most interesting aspect of this progres-
sion is that the velocity and angular velocity acf’s get progressively closer
together and at d*=0.7 decay at virtually the same rate as do those of
force and torque. It is apparent from a comparison of this progression with
the first that elongation has a larger impact than number density in this re-
spect at constant reduced temperature. Here we have the first vague indi-
cations of factors important in the formation of a nematic phase—the
molecular log-jam leading to birefringence. The only one of the five acf’s
to decay more quickly with increasing elongation is that of angular veloc-
ity, and this occurs even though the molecular moment of inertia is in-
creasing with L*, which in the absence of intermolecular effects would
alone cause the torque, angular velocity, and orientation to decay more
slowly on the scale of absolute time (in psec). The mass of the molecule is,
of course, unaffected by elongation.

p*=0.643, T* =23, L*=0.1 to 0.7 (Fig. 65). At this density there is a
pronounced change from gaslike to liquidlike behavior as the elongation
L* increases at constant T™*. For example, the angular velocity acf decays
slowly at L*=0.1, but is oscillatory at L*=0.7, where so are all the others
except the orientational. Hard-core anisotropy must be an important factor
in the determination of “structure” in liquids and, in this limit, in the ap-
pearance of nematic properties, where the orientational acf has been ob-
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served to be a slowly decaying exponential, and where the memory func-
tion, which is {L*(0)-L*(¢)> at r=0, oscillates very rapidly. In an Einstein
solid the velocity acf is a pure cosine, but the nematic phase is char-
acterized by rotational (albeit restricted) and translational freedom. and
the forms of the five acf’s may well be an extreme version of ours at 4* =
0.7 for the Lennard-Jones dumbbell.

The linear velocity acf at p* =0.643 decays initially much more quickly
for the longer molecules, the torque and orientational acf’s more slowly,
but at L*=0.1, the decay time of the orientational acf’s at p*=0.643 and
p*=0.1 are virtually identical, although the linear velocity acf decays
much faster at the higher number density. On the other hand, for L*=0.7,
the velocity acf at the /ower number density is slower to decay. For the
longest molecule the decay time of the orientation is much longer at the
higher number density.

The effect of elongation at constant reduced number density is much
more pronounced than the effect of p* at constant elongation, and the
built-in hard-core repulsive part of our double Lennard-Jones potential
seems dominant in promoting oscillations in some of our acfs.

™ =175, L*=03292, p*=0.68 to 0.74 (Fig. 66). In this range the five
acf’s change very little, but the mean-square torque and force trend up-
ward in value with increasing p*, although there is an inflexion, or maybe a
slight maximum, at p*=0.715. The elongation corresponds to that of N,,
s0 our results are for a real molecule at constant reduced temperature. It is
interesting to note that the mean-square torque for ethylene, calculated
from far-infrared pressure-induced absorption, shows a minimum as pres-
sure decreases at constant temperature. Ethylene is isoelectronic with
nitrogen.

It is clear from the varied forms of autocorrelation function displayed
here that further experiments (such as scattering of laser radiation, de-
polarization of fluorescence, infrared, and Raman wings) will be more
fruitful when carried out simultaneously on one selected fluid, so that
several different aspects of the motion of L* can be discerned. It is clear
t!'mt a study of (L*(7)+L*(0)) done by one experimental technique in isola-
tion disposes of a lot of information by statistical averaging; and in fact
experiments on Debye relaxation at frequencies below those of the far in-
frared look at the long-time tail of this autocorrelation function, which is
almost always exponential. Such experiments, although carried out with
great experimental skill and effort, thus yield the minimum information
about the trochilics of a typical molecular fluid, even when this happens to
be dipolar. Now we are fortunate in having available large computers
which, with admittedly rough-and-ready intermolecular potentials, can be
used to yield useful, complementary, incisive data.
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1. Collective Motions— Hydrodynamics and the Mori Equation

One of the clearest illustrations of the use of (1.6) in the field of hy-
drodynamics is that by Lallemand. A further incisive discussion on the
topic is that of Kruus.?® In this section we simulate functions such as the
current and spin density from the molecular level, and attempt to fathom
the gap between molecular and hydrodynamic theories of the fluid condi-
tion. This relation will continue to be intractable without the aid of com-
puter simulation techniques, whereby information on individual molecules
may be averaged to produce the correlation functions employed in the hy-
drodynamic equations of mass, momentum, and energy conservation lead-
ing to the linearized Navier-Stokes equation and to the Brillouin peaks of
scattered light.

In this section we present some preliminary results on the simulation of
current and spin density correlation functions for N, in the liquid and
glassy states starting from the atom-atom potential and Newton’s equa-
tions for individual molecular motions. The results are discussed very gen-
erally in terms of generalized hydrodynamic theory as first propounded by
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Fig. 67. (1) Autocorrelation function of velocity for N, in the liquid state at a reduced num-
ber density (p*) of 0.643, reduced temperature (7*) of 2.32. [, Cross-correlation of velocity,
1000 time steps; ¢, cross-correlation of velpcity, 1600 time steps. (2) Autocorrelation function
of force for N, in the same liquid state.-(; Cross-correlation function 1600 time steps; ©,
cross-correlation function 1000 time steps. Ordinate: C(r)/C(o); abscissa: time (psec). [Re-
produced by permission from Chem. Phys. Leti., (1978).]
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Zwanzig et al. for computer argon. This is the hydrodynamic equation for-
mally equivalent to (I.6). Both the longitudinal and transverse current-den-
sity correlation functions are expected to be purely exponential decays on
the basis of classical hydrodynamic theory, and so is the transverse spin-
density correlation function. The spin-density correlation functions (longi-
tudinal and transverse) are evaluated similarly. To check on the reliability
of the statistics in the simulation of these collective correlation functions,
the cross-correlation functions of velocity and force were evaluated using
1600 time steps and checked against the equivalent autocorrelation func-
tions. Figure 67 shows that the decay of each is satisfactorily similar. All
the hydrodynamic functions were thereafter evaluated using 1600 time

steps of ca. 5x 10~ '° sec after rejecting the first 200.
In Fig. 68 are illustrated some longitudinal current density correlation

functions C,(k, ) for large and intermediate values of momentum transfer
(wave vector) k. In the N, fluid, Cy(k,r) 1s oscillatory with pronounced
negative regions as k increases. Even with |k|=0.1 (in reduced units of
1/ 0, where o is the Lennard-Jones parameter for N,), the correlation func-
tion is far from exponential, as is the assumption of classical Navier—
Stokes equations. Our calculations of the transverse current correlation
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o

Fig. 68. Longitudinal current density correlation functions for different values of momen-
tum transfer k (in reduced units of o). (1) [k[*=0.3; (2) 3; (3) 15; (4) 45: (5) 60. Ordinate:
Cy(r)/ Cy(0); abscissa: time (psec). [Reproduced by permission from Chem. Phys. Lett.,
(1978).]
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function indicate the same results, It is clear that a generalized hy-
drodynamic formalism is needed to account for the correlation functions
simulated in this paper. The form suggested by Ailawad et al. 1s

d % A gt
P CORES fu K(k,t—1)C, (k1) dt (111.29)
where the memory function K (k,7) may be expressed as the sum
,[ kT
K(k1)=k [ = (k) + (k1) (I11.30)

Here S(k) is the equilibrium structure factor determined by a k-dependent
compressibility, and ¢,(f) is an after effect, or memory function, describing
the delayed response of the longitudinal part of the stress tensor to a
change in the rate of shear. We propose here, very tentatively, to develop
(I11.29) into a Mori continued fraction and in order to maintain compati-
bility between macroscopic and microscopic levels the series of equations
in the Mori expansion of (II1.29) may be truncated at the three-variable
level already widely used in molecular theories of itinerant oscillations
cited in this section.

;

Gks) K7 00) 11131

C,(k,0) . - K{"(k,0) e
L T sy -

Here K,”(k,0) and K/"(k,0) are the first and second memory functions of
C,(k,s) at 1=0. y(k) is defined by

K{V(k,1)= K{(k,0)exp[ — (k)] (I1L.32)

Naturally, (I11.31) is empirical in the sense that three parameters are un-
known: K 9(k,0), K"(k,0), and y(k) and have to be fixed by least-mean-
squares iteration to the simulated C,(k,7). However, some physical signifi-
cance and dependence on |k| may be extracted as illustrated in the article
by Ailawadi et al.'®

The transverse current density correlation function and the spin density
correlation functions oscillate about the time axes in the same way as the
foregoing representative curves, being drawn in Figs. 68 and 69. The trans-
verse spin density correlation function may not be derived in any other
way than by computer simulation, since neutron scattering is insensitive in
this context. It is obvious that the coupling between transverse spin and
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Fig. 69. (1) Longitudinal spin-density correlation function Ny, p*=0.643; T°=232; |k|*=
45. (2) Transverse spin-density correlation function, N,, p*=0.643; 7% =2.32; [k[*=30. (3)
Longitudinal current density correlation function, N,; |k|*=60. N, in the glassy state at p* =

D.E;]I}. T*=2.30. Abscissa: time (psec). [Reproduced by permission from Chem. Phys. Lett.,
(1978).]

current density will be complicated in fluids of more pronounced shape an-
isotropy than N,, and the limit of analytical tractability will be reached
very quickly in dealing with this rotation-translation problem. This leaves
Dn]y computer simulation as a practical means of investigation given a
suitable intermolecular potential and improved numerical method. It
would be particularly useful, therefore, in further work to solve numeri-
cally the equations of motion for a given molecular model, such as the
itinerant oscilator, and then to determine directly whether the current and
spin density correlation functions are describable by the same type of Mori
approximant as are their molecular counterparts. This type of simulation
would then be effectively a method of evaluating hydrodynamic functions
from a specific model, of, say, a Brownian plus resonance type. In the next
section we take the first step toward this goal by numerically solving (1.31)

with the molecular dynamics techniques developed by Bellemans and Her-
mans, Kestemont, van Loon, and Finsy.'®

E. Molecular Dynamics Simulation of
the Planar Itinerant Librator

In this section we use the molecular dynamics method to simulate the
system of ring/annulus itinerant libration developed by Coffey et al.,
(L.31), for angular planar reorientation of the asymmetric-top dipole vec-
tor. The main aim is the limited one of ascertaining to what precision the
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numerical solution of the equations of motion used in the numerical simu-
lation reproduces the stochastic differential equations of the analytical ap-
proach. Therefrom, the simulation may be extended to fields beyond ana-
lytical tractability. The assumptions inherent in a model of molecular mo-
tion may be satisfied exactly by (for example) rough-sphere simulations,
and therefrom analytical and simulated autocorrelation functions may be

compared. In this way, O’Dell and Berne'® have demonstrated clearly the -

limits of applicability of the J-diffusion model for spherical tops. Similarly,
the itinerant librator model of molecular motion may be simulated by a
two-dimensional molecular dynamics system consisting of rough rings
within which are disks, bound harmonically. Exchange of linear and angu-
lar momentum occurs when two rings collide. This may be compared with
the system devised analytically where the annulus of moment of inertia /,
is subjected to Brownian motion with friction coefficient {. It turns out
that the analytical results varying { may be simulated very precisely, so
that the latter may be used to extend the formalism to three dimensions, or
to include, for example, the effects of rotation—translation coupling.

1. Computational Details'®

We use an assembly of 120 particles (i.e., disks /annuli) of total mass m
and diameter D. The motion of the annulus is perturbed by collisions, be-
tween which the center of each particle moves along a straight line at con-
stant velocity and total angular momentum. The rotational motion of the

annulus and disk is governed by

L6,()=—y[8,()—8,1)] (111.33)
Loy(1)=[8,(1)—0,(1)] (111.34)

Here I, and I, are the moments of inertia of the annulus and the disk; 8,
and #, specify the position of a point on the rim of the annulus and the
position of the dipole on the disk. y is the restoring torque constant be-
tween ring and disk. The dipole on the inner disk is supposed vanishingly
small so that dipole-dipole coupling is neglected. When a collision occurs,
an energy transfer takes place between rotational and translational degrees
of freedom, depending on the dimensionless quantity

41,

mD?

T=

(111.35)

We seek to establish how closely r may be used to simulate the frictional
torque {#,() and A(?), the random couple of the Brownian motion assumed
analytically. In the molecular dynamics the change of linear and angular
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velocities at a collision between particles 4 and B are given by the follow-
ing set of equations:

’ (20 - 1
Y=V, + s e (kev) (111.36)
' il 1 :
Al o R s ) (I11.37)
- 2 '
@, —m‘,,—{—];)—ﬂkxv (111.38)
) 2

Wy =g — mk XV (]II.39J

Here v, and v, are the translational velocities and 4 and w, are the angu-
lar velocities of the annulus, that of the inner disk being unaffected by the
collision. The primed variables correspond to the situation just after the
collision. k is the unit vector directed from the center of the B particle to

that of 4 at the time of collision. v is the relative velocity of the points in
contact:

V=vp—v,— 3 DkX (0, +wp) (I11.40)

Initially, the 120 particles are arranged in 12 rows of 10 at the nodes of a
tl_-iangular lattice whose dimensions are chosen to obtain the desired den-
sity d expressed as the number of particles per unit surface. Periodic
hﬂunfigry conditions are used, and initially the translational and angular
velocities and the orientation of the two parts of each particle are ran-
domly distributed. Reduced units of I,/kT=1,D=1, a=v/kT, and R=
1,/ 1, are used. After the system has reached equilibrium it is followed for
up to 1024 time intervals of 1=0.05(kT/1,)"'/%. The two components of
the unit vector parallel to the dipole, the two components of the derivative
of this vector, the angular velocity of the disk, and the torque on it are re-
r{nrdcd for each particle for subsequent calculation of correlation fune-
tions.

In Fig. 70 some autocorrelation functions for this system are illustrated.
The_analytical curves for least-mean-squares best fit behave similarly and
are inseparable by eye for various values of {. This justifies the use of
51+mu]atiﬂn in two dimensions, and therefore future computation in three
dimensions for itinerant libration or itinerant libration—oscillation may be
contemplated. These simulations will be of great utility in, for example, the
c}*aluation of the approximation to (1.6) of (I.31). It would be useful to de-
fine the difference between these equations in the itinerant librator—oscilla-
tor system, and future work will concentrate on this. It will also be possible
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Fig. 70. Autocorrelation functions of orientation of the disk dipole vector a. (a) (1) Re-
duced density (d*)=0.6; a=10"; R=10, r=0.50; (2) 4*=0.8; a=1.0; R=1, r=0.50; (3) 4"
=06; a=1.0; R=10, r=0.50. (b) (1) d*=0.6; a=0.1; R=1, r=0.50; (2) d*=1.0; a=1.0; R
=10, =0.50; (3) £*=0.8; a=1.0; R=10, r=0.50. (¢), (d) Autocorrelation function {u(t)
-#(0)). (¢) (1) Reduced density (d*)=0.6; a=1.00; R=1.00; r=0.50; (2) &*=06; a=10°; R
= 10.00; r=0.50; (3) d* =06, a=1.00; R=10.00; r=0.50. (d) (1) Reduced density (d*)=10.6;
a=0.10; R=1.00; r=0.50; (2) d*=1.0; a=1.00; R=10.00; r=0.50; (3) d* =0.6; a=10.00;
R =1.00; r=0.50. (&), (/) Autocorrelation function of the disk angular velocity {w(1)*w{0)).
() (1) Reduced density (d*)=0.6; a=1.00; R =1.00; r=0.50; (2) 4* =0.6; a=10"; R=10.00;
r=0.50; (3) d*=0.6; a=1.0; R=10.00; r=0.50; (/) (1) Reduced density (d*)=0.6; a=0.10;
R=1.00; r=0.50; (2) d*=0.6; a=10.00; R=1.00; r=0.50; (3) d*=08; a=1.00; R=1.00; r
=().50. ( g), (h) Autocorrelation function of the disk torque (@(r)*(0). (g) (1) Reduced den-
sity (d*)=0.6; a=0.10; R=1.00; r=0.5; (2) &*=0.6; a=10°; R=10.00; 7=0.5; (3) 4*=0.6;
a=1.0; R=10.00; r=0.5. (k) (1) d*=0.8; a=1.0; R=1.00; r=05; (2) d*=06; a=1.0; k=
1.00;: r=0.5; (3) d*=0.6; a=10.00; R=1.00; r=0.5. Abscissas: time steps. [Reproduced by
permission from Chem. Phys. Lett., 58, 521 (1978).]

Fig. 70. Continued
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Fig. 70. Continued

numerically to simulate probability density functions which are analyti-
cally almost intractable by classical methods, although less so with those of

Section I.

[V. INDUCED ZERO-THZ ABSORPTIONS AND
ROTATION /TRANSLATION OF MOLECULES

We have mentioned in Section I that nondipolar liquids and compressed
gases absorb in the zero-THz frequency region due to a fluctuating (time-
dependent) dipole induced by the other molecules in the ensemble. Here
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we consider how the phenomenon may be measured in terms of the molec-
ular rototranslations and intermolecular potential energies. Although only
broad bands are observable, whose breadth corresponds roughly to the
lifetime of the induced dipole, a quantum theory using a multipole expan-
sion of the electrodynamic field has often been used as an approximate
representation, using radial averaging of the Lennard-Jones potential. We
review this briefly and adopt also a classical description in terms of the
Mori expansion which is empirical in approach, but affords a very close fit
to the available data and 1s useful for their intercomparison.

Early evidence of an absorption at high microwave frequencies in highly
purified nondipolar liquids was presented by Whiffen.''® The first indica-
tion that the absorptions are of a rototranslational rather than purely trans-
lational origin came via Savoie and Fournier,''' who obtained the far-in-
frared spectra of CH, and CD, as the liquid and plastic crystal down to
12°K. The liquid exhibits a broad maximum at about 200 cm™' for CH,
and 150 em™' for CD,, which the authors interpreted as /'/2 (rotational)
rather than m'/? (translational) dependence. Davies, Chamberlain, and
Davies''? made the first attempt to interpret these bands in terms of the
torsional oscillation of a molecule within the cage formed by its neighbors.
They carried out refractive-index measurements on nondipolar liquids, and
discovered that these indices had shallow minima in the far-infrared re-
gion. Evidence of a substantial intermolecular mean-square torque which
hinders the molecular rotational-type motions in liquid CO, as compared
with the compressed gas put forward by Birnbaum and Rosenberg'"® and
by Baise.''* The absorption of the liquid at 273°K has an integrated inten-
sity an order of magnitude less than that in the gas phase, where rotational
type J—J +2 (quadrupole-induced) band shapes predominate. Significant
intermolecular forces shift the peak by about 25 cm™' to higher frequen-
cies in the liquid. The authors argue then that the large quadrupole mo-
ment of CO,, which has a dominant effect on the gas-phase absorption, is
apparently much reduced in value in the liquid. This is the result of the
“local order” and the symmetry arising, for example, in three-body colli-
sions, the effective induced dipole being smaller. Carrying this argument to
the static limit, collision-induced absorption would disappear if each mole-
cule occupied a site of inversion symmetry. Such behavior was verified by
Evans''® in the more strongly quadrupolar cyanogen, and by Baise''* in
the weakly dipolar nitrous oxide.

Thus the evidence is in favor of a torsional cum rotational diffusion type
of motion as the principal source of the far-infrared absorptions in these
nondipolar liquids, closely analogous to that in their dipolar counterparts,
so that (1.6) may be used to predict the spectral function C(s). In this case
the relevant element of A is the net induced dipole moment at the instant 1.
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The simplest theories may be constructed classically with this one element
alone. First, however, we summarize the quantum theory as developed in
symmetric tops by Frost.''®

A. Multipole-Induced Absorption in
Symmetric-Top Molecules

Nondipolar molecules absorb in the zero-THz region because inter-
molecular electrostatic fields distort the overall symmetry of a given
molecule’s electron cloud, producing upon “collision™ a small dipole mo-
ment that changes in magnitude and direction rapidly with time. Thus
compressed gaseous mixtures of rare gas atoms absorb, whereas the com-
ponents when separated and moderately pressurized do not. A pair of col-
liding helium atoms, for example, will not possess a resultant electronic
cloud of dipolar asymmetry, whereas a helium-neon pair will modulate the
electromagnetic field over a broad band of far-infrared frequencies com-
mensurate with the most probable frequencies at which interatomic colli-
sions occur. Atomic-induced absorption is of a purely translational origin,
a mechanism that persists in molecular fluids such as hydrogen and nitro-
gen as the absorption AJ =0, where J is the rotational quantum number. A
dipole moment set up between a pair of colliding molecules will in addition
absorb by rotational means since even without relative translation of
molecular centers, the effect on each other of their rotatory electrostatic
fields will not cancel. A practical means of dealing with these intermolecu-
lar absorption mechanisms is to treat them separately. The rotational ab-
sorption is dealt with by expanding the field in terms of multipole tensors,
which all vanish only in the case of spherical symmetry such as that of
atoms.

Pseudospherical molecules such as SF, retain the higher multipoles
(those above and including the hexadecapole for O, symmetry), and thus
display a weak, rotational-induced band at moderately higher number den-
sities. The first nonvanishing multipole in a homogeneous diatomic such as
N, i1s the quadrupole, which produces a dipole on molecule A which is
modulated by the rotational motion of the inducing molecule B. The sym-
metry of the quadrupole moment is such that it rotates twice as fast as the
molecule itself and thus produces quantum absorptions with the selection
rule AJ =2, in contrast with the AJ = | rule for the rotation of a permanent
dipole. Similarly, the first nonzero multipole moment for T, sym-
metry—the octopole—produces AJ =3, and the hexadecapole AJ=4. The
formal quantum-mechanical equation for multipole-induced dipole absorp-
tion has been developed by Colpa and Ketelaar'!” for linear molecules,
and extended as follows by Frost.'!
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The absorption is attributed to the mutually induced dipole moment
p(R) on orientations of the molecules is expressed by expanding p(R) in
terms of quantities ﬂ;:‘., (¢,,8,, x,)ﬂpf;il{rpz,ﬂz. X2), where a DJ} is a matrix
element of an irreducible representation of the rotation group. This permits
evaluation of matrix elements of p(R) between eigenstates of a molecular
pair. The expansion coefficients are then evaluated in terms of the polariz-
abilities and multipole moments (of any order) of the molecules. The the-
ory performs summations over “uninteresting” magnetic quantum num-
bers and produces expressions for the intensity of pressure-induced in
terms of Clebsch—Gordan coefficients. The center-of-mass motion of each
molecule is treated classically, with each molecule at rest, so translational
absorption is ignored. The pressure-induced intensity of an absorption
band is calculated in terms of quantities:

2 [<im|p(R)| fm,>|* (1V.1)

mymy

wh_ew: |‘1'm‘-}, | fm;> denote rotation—vibration energy eigenstates for the
pair, with m;,, m, as degenerate magnetic quantum numbers. The dipole
moment p(R) which occurs in (IV.1) is a sum of two parts:

p(R)=p(1;R)+p(2; R) (IV.2)

where p(1; R) is the moment induced in molecule 1 by the electric field of
molecule 2, and vice versa. The electric field at 1 due to 2 depends on the
orientation ¢,; #,, x, and the vibration coordinate s, of 2, while the
polarizability of 1 depends on its orientation ¢, #,, x, and vibration coor-
dinate s,. Therefore, u(1; R) depends on the orientation and vibration co-
ordinates of both molecules. The same applies to i(2; R), so

B(R)=p(R;¢,,0,,x,,5,; 05,05, X35,)

Although the molecules are interacting, it is assumed that an eigenstate
of the pair is simply a product of eigenstates of the isolated molecules. This
result is exact only if the intermolecular potential is independent of the
Euler angles #, ¢, x, and therefore the theory is restricted to the range
v:rhere R is determined primarily by the central part U(R) of the interac-
tion potential. Frost now takes the intensity (/) of the absorption band as
defined by Colpa and Ketelaar for a gas consisting of two types of mole-
cule, species A of number density n, and species B.

I=1 4 Ig+ Ly (IV.3)
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where
AB
i 87’y (2—8,5p) HAfg E F}m - Ff
3hc 2 if 4."‘“ df"‘n
Ej— Ej=hy

X [[47R%exp(— Upg(R)/KT) 3 |Cim|u*®(R)| fmy>| dR
;g

The summations over the quantum numbers i, f are restricted to those tran-
sitions i—f for which the absorbed frequency »‘t“{j’*jJIr — E;) hes in the
absorption band of approximate frequency ». The quantities 4, d; are the
degeneracies of the quantum numbers i, f [d. =(2J, + 12/, + 1)]. The
quantities Fj, F; are the fractional populations of pair states with quantum
numbers i, f, respectively: for example,

d,exp(— E,/KT)
S dexp(— E;/kT)
g

j-'}:

We emphasize that p(R) is the induced dipole moment of a pair of mole-
cules and does not include the permanent dipole moment p'"+p® of the
pair. The latter is independent of R and leads to a divergence of (IV.3),
which gives absorption which may be attributed, wirh the neglect of pressure
broadening effects, to transitions of i1solated molecules. Later we shall show
how pressure broadening may be accounted for classically using approxi-
mants of (1.6). Evaluation of the dipole moment matrix elements yields; for
pure rotational transitions

2 |<fmfip{ R )If”'{f)‘ |1
1, my

=i 2 2 | P Ry, K = K3 g 1, K3 = K3))|
Ajhy Bipy m

Hi1
27+ 1 ) . .
> H:-l-l C{J“}\]r‘f[;KHKI_KIFKI)I
2J,+1 ) , o
X 2&:+I CUp 03 K K3~ Ky, K)™ - (IV.4)

in terms of Clebsch—Gordan coefficients C. Here the dipole moment pu(R)
is regarded with rectangular Cartesian components p(R)(j=1,2,3) rela-
tive to the space fixed frame. These are Hermitian operators. Each of p, in
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(IL.5) then ranges from —A, to +A,.J and K are defined by the rotational
part of the mnlecu_lar eigenstate of a rigid symmetric top:

27 +1)"2
KM =000 =( 250 ) D2 sy (8.0,

m

where the D values are the irreducible representations of the rotation
group as defined by Rose. The expansion coefficient F, depends on
molecular parameters such as the polarizability and is in practice negligible
for all but a few values of A, and A,. To evaluate F,, we want the Cartesian
components in the space fixed frame of the induced dipole moment p(R)
in the form

H;(R } == % a}.it:}(‘rij'#pEl!XI}E?}(R;S::#}::ﬂjrxz}

" % “}5}(31=¢mﬂmleﬂi'}(ﬂ:Iu%ﬁ'pxl} (IV.5)

where, for example, the )’ are the components of the polarizability tensor
a'V of molecule 1, while the E/? are the components of the electric field at
molecule 1 due to molecule 2. The polarizability tensor is then cast into a
spherical form relative to the space fixed frame. Let X,, X,, X, denote the
body fixed principal axes of inertia of a symmetric-top molecule, chosen so
that the x, axis is the symmetry axis. Then there are also the principal axes
of polarizability of the molecule; that is, if 1t 1s subjected to an external
electric field, with Cartesian coordinates E; relative to the x-frame, the
components of the induced moment are

a, 0 O
E=SaE a=|0 a, 0 (1V.6)
k
0 0 o«

The spherical component version of (IV.6) is then

(¢, 0 0]
T g ApmlS)E, A=(0 o 0 (IV.7)
h 0 0 a

The space fixed x-frame is then rotated into the x-frame along with the
components of the field and polarizability. It turns out that as far as
polarizability is concerned, symmetric tops behave like linear molecules

since, for both sorts, (IV.6) has two equal components.
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The expansion coefficient F,, of (IV.4) may now be evaluated in terms of

polarizability and multipole moments. The dipole moment induced in
molecule I is then

The electric field is now expanded in terms of multipole moments. The
electrostatic potential caused by a molecule at a point R, with polar coor-
dinates R, ©, @ in the x-frame is then given by

Bo(1; R)= a&”;ﬁ (= 1™V, +1)(2A,+3) R A+

= A (4 \\2Q)V3,
V(R}-EM.E_A(?—HI) —or(8,9) (IV.8)

X 2 (=178, OO+ 1, 1255 0,1, 1) DEo(1) D)3 (2)
A F il

Here the uth component of the Ath multipole moment of the molecule in
the x-frame 1s

Q:=( 2:: i )lﬂfffg’“ﬂp{uﬁ],{s.ﬁuﬁ)gzdésinu:dﬂdﬂ

+(— l)m\/é_ 3“}2 (— l}lﬁ I\/{;'Lz+ D(2A,+3) R ~%*D
Az

X 2 (=1)'"R0Mc(1,1,2; —m, — ppp,)

where p is the charge density of the molecule at a point ¢ with polar coor- 2 2,
1 r i |

dinates £, a, B in the x-frame. We then have for the required fields:
X C(A,+1, l,hl;ﬂ,pz,.uz}ﬂ:n{]}ﬂ:: 1(2} (1V.9)

E(R*)=23 EL(R¥) i
A

A similar expression for p,(2; R) is obtained from (IV.9) by first omit-
ting the factor (—1)"**! and then interchanging all superscripts and sub-
scripts | and 2. The sum of these yields an expansion of 1. (R) in terms of
the orientation functions ﬂ;:h{l}ﬂf;;lﬂ). The expansion coefficients con-
tain the polarizabilities a,, anisotropies 8, and the multiple moments Q* of
the molecules, quantities which are functions of the vibration cnardin!;tes
s. Consequently, from each coefficient in this expansion of L. (R), we ob-
tain‘ the corresponding F,, by setting all vibration coordinates to their
equilibrium values, (i.e., by using the equilibrium polarizabilities and multi-
pole moments). It follows from (IV.9) and the corresponding equation for
ih,(2; R) that an F, (R; A, p,»,; A, wy»,) is nonzero only if one of AjorA,is0
or 2. F, (A, =0,A, =0) is zero, since we presume that each molecule has no
net charge (i.e, 0y'=0). An F,, (A\;=0 or 2,A,%2) is obtained entirely from
the expansion of p,(1; R) (i.e., such an F, depends only on the dipole mo-
ment induced in molecule 1 by molecule 2). An F,, (A\,#2,A,=0 or 2) is
obtained entirely from the expansion of p_(2; R). The coefficient F, (A=
2_,{\1-2) is the only one which must be calculated from the sum. The quan-
lities

with

ENR®E)=(-1)" (= )M (VA+1)(2A+3) /RM?)
x C(A+1,1,A;0, —m, —m) >, D* . (68x)0)**

Here R* denotes the case ®=0 while R~ denotes ©=n. The multipole
moment components of E:“ of a symmetric top are severely linﬂte‘:d by the
fact that the x-axis is an n-fold axis of rotational symmetry, with n 2 3
Therefore:

1. For A=1, only Q/ is nonzero. Since Q}*=(—1)*Q*, this quantity is
real and is the usual dipole moment of the molecule.
2. For A=2, only Q2 is nonzero. This real quantity is the usual quadru-

pole moment defined by Qg = g = g55, Where
=3 [ [ oo BEE)[ 86 ~E%, ] dEdisct,

is the Cartesian quadrupole moment tensor in the principal f_ratpe:.

3. For A=3, only Q7 and 03 , are nonzero if n=3, while only Qg is non-
zero for n>3.

4. For A>3 (hexadecapole moment and higher), the number _ﬂf NONzZero
components 0, depends in an obvious way on n. For 2 linear mole-
cule n= o0, and each multipole moment has only one nonzero compo-

nent Q).

2 E (R pyp, A, powy)]?
M) B2

of (IV.4) may now be evaluated since they reduce to sums of Clebsch—
Gordan coefficients. They are tabulated in Table IX.
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TABLE IX
Summation of F_ in (1V.4)

Ay Az T|F2|

0 1 gmtﬁ*:ﬂag.lpﬂ}jlﬂ =6

0 2 80w, 80,,15(af'gPyR ~*

0 Any A, 5&;“‘:+1Hﬂ:+l}[aﬁ"lﬂm’“l}zﬂ ~ 2+ D)

2 l 80, 80,,(20/3H8 Vp@)R ~

2 Any A, #0,2 S0y, (10 /90 Ay + 1)(2A, + I8 E{f}"]):ﬂ =erd)

2 2 Bow,80,,(10/3)5(8 Vg )2 + 5(8 Pty — 65 (5D R ~*

Selection rules in (IV.3) arise from two sources:

1. General limitations on Clebsch—Gordan coefficients.
2. The nature of symmetric-top molecules is such that $|F?2| is nonzero
only for restricted values of », and »,. A term in (IV.4) is zero unless:
AJ,=J—J,=0,%x1,..., A
&Kl=K;_K]=U‘ inl.p}I} imlﬂ] {mlﬂt‘:_:.}tl)
AJ,=J,—J,=0,x1,..., A,

I'.I‘I.KI= K;_:_“ K2=D, tﬂz,.“, ifﬂzﬂ: {miﬂl 5?&1}

>

Here m, or m, is a positive integer or zero, while n, or n, denotes the rota-
tional symmetry class of molecule 2, respectively. Since one of A, or A, in
(IV.4) must be 0 or 2, the allowed transitions are any AJ,, AJ, provided
that one of |AJ,|, |AJ,| <2; AK,= + mn,, AK,= + m,n, provided that one
of my,my=0; m;=0if |AJ,|>2, my=01f |AJ,|>2. An allowed transition will
contribute to (IV.4) only through terms with A,, A, such that A, =
max[|AJ,|, |AK;|], A, = max[|AJ,|,|AK;|). For example, if the dipole and
quadrupole moments are the only important ones, the summation in (IV.4)
is over A, <2; A, <2, and the selection rules reduce to AJ,=0, =1, +2;
AK,=0; AJ,=0, +1, +2; AK,=0. If the octopole moments are also im-
portant, and if both molecules have threefold rotational symmetry, the
summation in (IV.4) is over A, <3, A, <3, and the selection rules are

+AJ,=0,1,2(0,1,2|3 0,1,2
+4AJ,=0,1,210,1,210,1,2|3
+AK,=0 3 0,3 |0
+AK,=0,3 |0 0 0,3
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where any combination may be chosen within a given block. For a given
allowed transition in a pair of true symmetric tops, there will in general be
contributions to (IV.4) from all (A,,),) terms with A, and A, bounded be-
low and above by the selection rules, by whatever are taken as the im-
portant multiple moments and by the demand that one of A, or A, is 0 or 2.
For example, if the transition is AJ,=1, AJ,=1, AK,=AK,=0, then in
general all the terms with (A;,A;)=(1,2), (2,1), (2,2), (2,3), (3,2)... will
contribute to (IV.4). Finally, only those terms contribute in (IV.4) for
which A, +AJ, is even.

For a pair of linear molecules the selection rules become any AJ,, AJ,
provided one of AJ, or AJ, is 0 or +2. An allowed transition will contrib-
ute only through (A, A,) terms for which

A2 A Ay +A4AJ, is even
:'hkz > 1M2| }\.I'l‘ﬂdf: 15 even

B. Linear Molecules—The Intermolecular
Potential in O, Gas''®

In this section we illustrate the intricate general theory by demonstrating
how the rotational absorptions of the O,-induced dipole may be explained
in terms of a modified potential consisting of a quadrupole and hexadeca-
pole moment. The theory is applied to the case of compressed O, gas,
whose absorption, observed by Bosomworth and Gush''® in the region 20
to 400 cm ™', could not be explained satisfactorily on the basis of quadru-
pole-induced dipole absorption alone. Values of |Q| and |®|, the quadru-
pole and hexadecapole moments, are obtained from the best fit to the ex-
perimental intensity and band shape. A justification for the use of the very
short range (R ~'*-dependent) hexadecapole field is based on the evalua-
tion of the approximate range of the induced dipole moment. Equation
(IV.4) is conveniently presented in terms of the dipole, quadrupole, oc-
topole, and hexadecapole terms. We include the anisotropy terms (8), but
these are small.

Dipole / Induced Dipole Absorption

4,5,3#1‘;\;2 o0 "
Al = _FZE.’; 47R ~*exp(— U,,(R)/kT)dR

X (1—exp(—hew,(J)/kT))exp(— E;he / kT)5,(J)

8s2(J+ 1)"(J+2))
3 (2J+3)

X (4:1;(14- 1)+ (IV.10)
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where

5(J)=2B(J+1) and E,=BJ(J+1)

Quadrupole / Induced Dipole Intensity

41?392”1 a0 i
AL 2= 3heZ J;d'WR exp(— U, (R)/kT)dR

X (1 —exp(— hewy(J)/kT))exp(— E he / kT )(J)

(J+1)(J+2) 18 L{(J+1)(J+2) ) -
90657 +3) +55( (27 +3) ) 0

X

where v,(J)=2B(2J + 3).

Octopole / Induced Dipole Intensity
AR Gia™ %E Jl;m-‘-l-rrﬂ ~Sexp(— U,,(R)/kT)dR
X (1 —exp(— hevs(J)/ kT))exp(— E he / kT )5(J)
+DI+2)(J+3) | anﬁz( (J+1)(J+2) )1 (J+3)
(2J+3)(2J+5) 3 (2J+3) (2J+5)
(IV.12)

X {4&&3 ¢

where #y(J)=6B(J +2).

Hexadecapole / Induced Dipole Intensity

APPIN? oo
'ALJH:WTMZ_ f{; 4mR ~exp(— U, (R)/kT)dR

X (1 —exp(— hev(J)/kT))exp(— E;he / kT)ig(J)
[ 175(J + NI +2)(J+3)(J +4) ,

22J+3)2J+5)27+7)

(IV.13)

875 oo U+ D +2) )1 (J+3)(J+4)
12 ( 27+3) ) @I+5)2J+7)

where v, =4B(2J +3).

ROTOTRANSLATIONAL CORRELATION FUNCTIONS 455

By comparison with oxygen, the induced zero-THz absorption in N, is
much narrower and is fairly well simulated by the frequencies and relative
intensities of the unbroadened AJ=2 rotational transitions calculated''®
with an equation similar to (IV.11). The induced absorption in N, has also
been simulated by computer molecular dynamics by Jacucci, Buontempo,
and Cunsolo.'” Bosomworth and Gush'"® attributed the high-frequency
part of the oxygen spectrum to a short-range overlap contribution to the
dipole moment, but made no quantitative analysis of the phenomenon.
However, with (IV.10) to (IV.13) it is possible to simulate the oxygen band
with two contributions to the bimolecular collision-induced dipole mo-
ment, assumed to arise from the quadrupole and hexadecapole moments of
the field of the second oxygen molecule, and vice versa. Oxygen has no di-
pole or octopole moment by symmetry. The hexadecapole field, being
R ~'*.dependent, is important only at very short separations R. Justifica-
tion for its employment comes from a simple analysis given by Bosom-
worth and Gush involving a rough measurement of p, the range of the in-
duced dipole moment, which may be obtained from the width of the
spectrum. Classically, the spectrum is proportional to the Fourier trans-
form of the correlation function of the dipole moment; the width function
of the induced dipole is roughly equal to the duration of the collision. Thus

(IV.14)

1
P ==
Zﬂ'ﬁl f:f

where 7, , is the width of the spectrum at half peak height. For oxygen at
300°K, V) =160 cm™'; thus r=0.1 psec. Then p can be estimated by mul-
tiplying the duration of collision () by the average rate of change of the
intermolecular distance (R,,). Now 3 mR2 =1kT, where m is the reduced
mass of the colliding molecules. Thus p= R, r=0.055 nm at 300°K. The
Lennard-Jones diameter (o) of an 0,-0, pair is 0.792 nm; thus the in-
duced dipole moment is practically zero until the colliding O, molecules
enter the repulsion part of the intermolecular potential, and rises rapidly as
the van der Waals contours interpenetrate. In other words, the high-
frequency wing arises from the absorption of the dipole moment induced
in the temporary O,-0, pairs.

Values of |Q| and |®| can be estimated (Fig. 71) by resolving the O, pro-
file into a quadrupole-induced and hexadecapole-induced dipole absorp-
tion band. These are based on line spectra calculated from the even J val-
ues in (IV.11) and (IV.13) since oxygen has no odd J due to nuclear spin
statistics. Of course, the considerable broadening of each line expected in
practice might lead to a different overall profile than that suggested by the
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amagat®); abscissa: # (cm™'). [Reproduced by permission from Mol. Phys., 29, 1345 (1975).]
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line spectrum even if this ever exists in practice; ne:ugrtheless‘, a forced
agreement can be obtained''® with simple profile joining. Using €/ k_;
118°K, 0=0.346 nm, B=1.45 cm™', a;=1.6x10"* cm?, §=1.14x10

cm® gives
> AL.,.,=361X10"°N?Q? nepers/cm?/amagat®
2nJ

> AL, =451 107°N*®* nepers/cm’/amagat’
2n/

U‘m@dﬁ)=3_ﬁﬁx 10~° nepers/cm?/amagat’
o N

Summing (IV.11) and (IV.13) over 2 n/, we find, for empirical (forced)
agreement,

10|=1.0x10"% cm?  |9]|=3.7%10"% cm*

The value of |Q| compares well with that of —1.34x10™% -:111‘2 found by
induced birefringence, and |®| is the “expected” order of magnitude.
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The hexadecapole moment is one facet of transient O, formation which
may be interpreted perhaps in other ways which are theoretically less con-

venient. A complete treatment of the O, absorption would have to include
in addition such complicated factors as:

The overlap dipole contribution.

2. Translational and rotational contributions of the interference between
the quadrupolar and overlap induction, and of the hexadecapole and
overlap induction.

3. The pure translational (AJ, =AJ,=0) contribution observable clearly
in the H,-induced absorption.'"

4. Classical broadening'”' of the quantum stick spectra.

In the next section we use the J-diffusion model to investigate the effect
factor 4 for cyanogen and its zero-THz absorption.

C. Quadrupole Induced Absorption in (CN),:
Classical Broadening
In order to develop this theory we need to extract the Fourier transforms
of (IV.10) to (IV.13) as follows. These equations may be manipulated into
a continuous form, conveniently with time as a variable. The usual expres-

sion for a rotational absorption band shape, in terms of transitions be-
tween quantum states, is

3hco(w)
41?11:..:[ I —exp(—hw/kT)]

Hw)= (IV.15)

where o is the absorption cross-section per molecule. The Fourier trans-
form

()= [ " w(w)expliot) dw (1V.16)

- ol

is recommended by Gordon and used here to weight the intensity toward
the higher frequencies (10<<7<450 cm "), where accurate data are availa-
ble. Here o(w)= a(w)/ N, where a« is the power absorption coefficient and
N the number density in molecules /cm’. The theoretical functions of time
are obtained by substituting into (IV.16) using the continuous expression
for the contours passing through the points of /(7) obtained by eliminating
J. For a linear molecule in the absence of broadening, one has then the
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theoretical contour

L heB [ 7 7
"*h("}“(zs“ 5 )QI“F[- 4kr(zﬂ_3)(ﬁ“l)l‘43
24( 7 2B\.,], (7+4B)(7+12B) .,
5 (2 )E }+ GG+8B)

B i
heB [ 7 7
- 4kT(4B _.5)(@ _3)}“'2

L85 o ¥ _23)1
36 2B ¥

x[12a§+

X exp 175 2( {F—IZB}(F—4B])

96 “°\ " B(7-8B)

(IV.17)

where

A - “sﬁzfm4win—"ex (-U,,(R)/kT)R*dR  (IV.18)
n heZ 0 P AA '

In the time domain, therefore,
Calt)= [ 1a(7) expQrizet)ds | [~ 14(7)7d
0 0

The direct Fourier transform of the experimental data can be made in the
same way, giving

% pa(v)exp(2mivct)dy
Cas®)= | A expttgzskryy/ =@  @V19)

The functions Cy(f) and C,,(f) are compared for various values of |Q|
and |®| in Figs. 72 to 74 in the compressed gaseous states of oxygen,
carbon dioxide, and cyanogen. Fourier transforms are carried out directly, .
by Simpson'’s rule, and via the fast Fourier transform algorithm of Cooley
and Tukey, implemented in A/gol by Singleton and developed by Baise.'*
The time functions seem to be extraordinarily sensitive to small changes in
|@| and |®| used. This is illustrated in Fig. 72 for oxygen where the previ-
ous section’s frequency-domain curve fittings, using values of |Q|=0.30X
10726 esu, yields a C,(f) function which is quite severely underdamped
compared with C,,.(¢). However, with slight changes, |Q]|=0.36 X 10-%6
esu, and |®|=0.4x10"* esu a much better fit is obtained, Cy(¢) now
showing very short time “oscillations,” although they are slightly displaced
along the time axis from those of C_, (). Analysis in the time domain,
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Fig. 72. Fourier transforms for O, gas at 300°K, 35 to 75 amagat. (@-9-®), Exp (/) as de-
rived from two different algorithms. (----), (1) Cy,(7) calculated with |Q|=0.30x 1026 esu, | @
= 11X 107 esu; (2) Fy(r) with |Q]=0.36% 1072 esu, |&|=0.4X10~* esu; (3) F () with
|Q]=0.38 % 10" % esu, |®|=0. [Reproduced by permission from J. Chem. Soc. Faraday Trans.
2, T1, 1257 (1975).]

then, is quite pronouncedly more sensitive than that in the frequency
domain.

However, for cyanogen, no satisfactory fit can be obtained. The extrac-
tion of a continuous-time-domain function C,, () by transforming the sum
of the profiles of the 8(#) functions may be affected by neglect of the
classical broadening of each line observed in practice (i.e., the experimen-
tal absorption is a broad band and not an assembly of lines). A broadening
mechanism based on the Gordon J-diffusion will be considered presently,
but a few remarks on the cyanogen spectrum are needed first. The only
satisfactory feature of Fig. 74 is that of the |Q| and |®| used confirm an
intuitive expectation of certainly a large molecular quadrupole moment,
and possibly a large hexadecapole moment as well. The C (7)) curves are
not underdamped compared with the C.,p(7) curves, which suggests that
triple collisions are not important at 33.5 bars. Attempts to modify the
Frost theory''® with angle-dependent intermolecular potentials such as
Usu(R)+ Upyp will have no effect on the normalized Jine shape because
Uop is independent of the rotational state of a molecule provided that the
rotational wave functions are assumed to be unperturbed. While the ab-
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Fig. 73. Fourier transforms for CO, gas at 273°K, 85 amagat. (@-@-®) C_, (1) as derived
from two separate algorithms. (---), (1) Cy (1) with |Q|=5.03¢ 1072 esu, [P =6.13 10™* esu.
(2) Cul®) with |Q|=5.2x 10" esu, |®|=0. [Reproduced by permission from J. Chem. Soc.
Faraday Trans. 2, 71, 1257 (1975).]

solute values of |Q| and |®| are very sensitive to the Lennard-Jones param-
eters €/ k and o, the relative values of 4, will not be changed much. There-
fore, ¢ /k and o have little effect on the normalized line shape represented
by C,(#). Quantum mechanically, therefore, a theory of pressure-induced
absorption is needed which either disposes with point multipole expansions
of the electrostatic field, or retains this approximation and then proceeds
(albeit discordantly) to take into account the effect of molecular anisot-
ropy on the eigenstate of a pair of molecules.

To broaden the set of J—J+2 absorptions in compressed cyanogen,
oxygen, or carbon dioxide, we assume that the broadened contour C,(r)
has the general property of being an even function in time, and is also a
solution of the integrodifferential equation

Cy(t)= - fﬂ Ky(1—1)Cy(7) dr (IV.20)
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Fig. 74. Fourier transforms for (CN), gas at 383°K, 33.5 bars. (9-8-®), C,. (1) as derived
from two separate algorithms. (1) Cy(r) with [Q[=15.5% 10726 esu, |®|=0; (2) Cy(r) with
|@]=12.0% 1072 esu, |®|=44x10"*? esu: (3) Cp(f) with |Q|=9x 10728 esu, |P|=56x%
1074 esu; (4) Cy(r) with |Q]=14.5% 10726 esu, [®] =24 % 10~ 42 esu, [Reproduced by permis-
sion from J. Chem. Soc. Faraday Trans. 2, 71, 1257 (1975).]

\\fhere thEe memory kernel may be expanded in a set of coupled integro-
differential equations analogous to the Mori expansion.

9 =— ["KCHAK® (4_
= K?\(1) fn KP(1)K® (1= 1) dr (Iv.21)

Tn effect broadening we now forge a link analogous to that leading to
J-diffusion in the case of permanent dipolar absorption:

K§?(1)= Ky(1) exp(—|1|/7) (IV.22)

where K, (1) is associated through an equation identical with (IV.20), with
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C;(1) the correlation function of the set of unbroadened J—J+2 transi-
tions. For bimolecular, quadrupole-induced dipolar absorption in linear,
nondipolar molecules, neglecting the hexadecapole term, we have

/i " £o(Q) cos ed R
0

= (IV.23)
j; fo(R)dQ

Cy(1)=

for each J—J + 2 transition, where

Q 4mBc hcB 2 Y
fﬂ{m_( 4nBe  Q )ﬂp[ N 4kT(4ﬂ‘Bf _3)( 4mBc l)]

(1V.24)

For nondipolar symmetric tops, up to the quadrupole term a similar, more
complicated expression may be derived. C,(#) and Cg(¢) may now be linked
by equations identical with (I11.41) the broadened set of J—J +2 lines is ex-
tracted from

Cp(w)=Re[ C,(iw)]

=RE' Ci(iw+17")
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where n(w) is the frequency-dependent refractive index, and ¢ the velocity
of light. For quadrupole-induced dipole absorption in pair collisions,

4 00
(= e)= T M50 [ "R ~Cexpl — 402

T dR

with @, as the mean molecular polarizability and Q the quadrupole mo-
ment.

Figure 75 shows how (IV.26) produces an absorption which simulates
the broadening and eventually fuses the J—J+2 lines in cyanogen (B =
0.1570 cm™"). A broad continuum is reached at = 10 psec, which, accord-
ing to kinetic theory, corresponds to a mean free path of about 38 A.
Therefore, a continuum is reached well before triple collisions become sta
tistically significant. Equation (IV.26) is matched with nitrogen data'?! in
Figs. 76 and 77 (gas and liquid). An effective quadrupole moment of |Q|=
5x 107 cm?® was extracted from this curve-fitting procedure for the total
dispersion (¢,—€_,). Despite the neglect of many factors, such as transla-
tional and electronic overlap absorption, this estimate of |Q| compares

IV.25
| —77'C(iw+77") ( )
Arbitrary units
where r
Cs(iw+1 )=T+iA
with
&0 ‘ T (VA TALE S S - o0
Tw)= [ “fo@)| ——2 o) a9/ [“f@)a0
0 | (= ?+ 773 + A0’ 2 | 0
o0 I w(R*—wt—77%) | x
Aw)= [ f(®) a2/ [ f(@)de
fﬂ | (-0 + 772 + 402 fm | |
e ] N | =]
The absorption coefficient a(w) is then given by 10 2.0 _1;31 4.0 5.0
be=w) w2 1 Fig. 75. First few J—J +2 transitions for cyanogen broadened by (IV.26) at 350°K. (Rota-
E{W} = 0 ) Cb(ﬁ-’) {Ivzﬁ} tional constant B=0.1571 cm™ '_} I:]} =100 psec, {2] r=735 psec, [_']]. =10 psec. Abscissa: 7

n(w)e (cm~"). [Reproduced by permission from Spectrochim. Acta, 32A, 1253 (1976).]
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Fig. 76. (—), Expenmental absorption of compressed nitrogen at 300°K. (---), Equation
(IV.26) with r=0.4 psec. |Q|=5x10"* cm? Ordinate: intensity (10° cm~'/amagat®); Ab-
scissa: 7 (cm™"). [Reproduced by permission from Spectrochim. Acta, 32A, 1253 (1976).]
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Fig. 77. O, Absorption of liquid nitrogen at 76.4°K. (—), Equation (IV.26) with 7=0.1
psec, |@]=3x10"* c¢m?® Ordinate: a (neper cm ™ '); abscissa: # (cm ™). [Reproduced by per-
mission from Spectrochim. Acta, 32A, 1253 (1976).]

favorably with Kielich’s collection'? of |Q]|=4.5—6.9x 10" ¢m?. Equa-
tion (IV.26) is less successful for N,(1) at 76.4°K (Fig. 77). The calculated
curve is for r=0.1 psec and normalized to the a,,,, of the observed band.
The |Q| estimated from this is 3 10”* cm?, significantly less than that
deduced from the gas.

This apparent decrease in |Q| on going from compressed gas to liquid is
characteristic of a model of bimolecular-induced absorption. An explana-
tion is the reduced effectiveness of multimolecular collisions in generating
induced dipoles, as discussed earlier. In liquid CO,, for example,'” that
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Fig. 78. Absorption of liquid cyanogen at 301°K. (—), Equation (IV.26) with r=0.] psec.
{Q]-lﬂ.'?x 1072 esu. Ordinate: a(7) (nepers/cm); abscissa: 7 (cm™'). [Reproduced by per-
mission from Spectrochim. Acta, 32A, 1253 (1976).]

part of the induced dipole moment due to quadrupolar induction is effec-
tively canceled in the liquid, leaving essentially the contribution from
shorter-range interactions.

Equation (IV.26) is not successful at all for cyanogen liquid"'® at 301°K,
where analogously to the case of permanent dipole absorption, there is a
la{ge. discrepancy between the observed and calculated ¥ .. (Fig. 78). This
shift in the observed #,,, can be interpreted reasonably in terms of the in-
creased amount of shorter-range interactions in the liquid phase where the
torques in the rod-like molecules (CN), will be greater than those N,. This
Is saying merely that collision-interrupted free rotation is not the case in
t_he liquid phase of the great majority of both nondipolar and dipolar
liquids. The present J-diffusion type of model cannot move the position of
Vmax De€cause the reorientation of the molecular angular momentum is
assumed to take place during an infinitely short time, and it is thus 1mpos-
sible to get any information about, or take account of, the intermolecular
mean-square torque.

However, a different continued-fraction representation might yield the
correct absorption contour, by involving implicitly averages such as K(0)
and K,(0) which are both torque-dependent. An expression for C () might
then in principle be attainable which takes account of the contour in terms
of the mean-square torque and its derivative. This method has been em-
ployed for compressed ethylene gas,'* where the quantum theory fails
even at low pressures. This empirical approach has been used successfully
in nondipolar liquids, as described in the next section.
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D. Absorptions in Nondipolar Liguids—Use of the Continued
Fraction
Any absorption band in the infrared, whatever its molecular dynamical
origin, is a probability distribution of frequencies, C(w), and is related to a
correlation function C(¢) by the fundamental statistical theorem, which is
classically

C(1) = j; ” coswtdC(w) (IV.27)

The quantum theory of induced absorptions in an N-body interaction is
obviously hugely complicated, but in the classical limit (IV.27) holds quite
generally if we define the correlation function C(r) as follows:

()= 3 (1) (0) (1V.28)

where p, is the induced dipole on molecule i at time ¢. C(¢) is an
orientation/interaction correlation function dependent simultaneously at
time ¢ on the orientation of a molecule with respect to all the others. We
now expand C(¢) in a continued fraction formally identical to that of Mori,
and truncate with

K\(s)=K(0)/(s+7v) (IV.29)

Using an equation such as (IV.26) then allows us to fit directly the
frequency-domain data® iterating on K, (0), K,(0), and y (Table X).

TABLE X

Parameters K(0), K;(0), and y for Nondipolar Liquids®

Temp.  10%,
Liquid °K)  (grem?) y(Ip/2kT)'? K(ls/2kT) K\(I5/2kT) (eo—€)
Nitrogen 76.4 122 106 5.9 378 0.005
Carbon dioxide 273 7.2 115 8.6 51.9 0.007
CCL, 296 484 14,2 10.9 80.6 0.002
CH, (rot. phase I) 76 5.3 106 14.7 479 0.009
Cyanogen 301 155 10.9 14.9 66.5 0.050
Methane 98 534 145 16.8 75.7 0.007
Benzene 296 198 12.8 20.8 100.6 0.023
CS, 296 259 20.3 26.2 170.2 0.026
Cyclohexane 296 178 21.1 284 194.3 0,040
Trans-Decalin 296 1020 22.7 70.7 3353 0.003
1,4-Dioxan 296 160 7.8 10.4 46.5 0.06

“Reproduced by permission from J. Chem. Soc. Faraday Trans. 2, 72, 1194 (1976).
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The three-variable fit is very close in the far infrared (Figs. 3 and 79)
and there also is a tendency for K,(0) and K /(0) to increase as the geomet-
rical anisotropy of each molecule. The absolute magnitude of the absorp-
tion can be related via (¢;,—¢_ ) to an “effective induced dipole” or higher
multipole given some simplifying assumption about the molecular dynami-
cal and electrostatic origin of these very broad bands. The Increase in
Ky(0) and K(0) is illustrated in Table X in units which take account of in-
ertial factors. The satisfactory fits to experimental data over almost three
decades of frequency show that the analytical dependence of a upon 7 is
that of (IV.26) in this frequency range, but the physical interpretation of
Ko(0), K(0), and y remains obscure, apart from the obvious interaction de-
pendence. The curves for C(¢) then can be calculated and are illustrated in
Fig. 80, where are illustrated also some predictions of the “cell” model of
Litovitz and co-workers and (where applicable) the model of multipole-in-
duced absorption in a two-molecule collision. The latter is usually inade-
quate in describing the more complex interactions of the condensed phase.

We note finally that in deriving (IV.26) we are assuming that the molec-
ular ensemble obeys classical equations of motion (A—0). This is consistent
with our basic assumption that Mori formalism is applicable to the classi-
cal correlation fraction defined in (IV.27). This assumption rests on the
broad and related generalizations which lie at the root of our present un-
derstanding of transport properties (i.e., linear response and fluctuation—
dissipation). Classically, the latter can be derived for a canonical ensemble
using the Liouville equation:

E _ ( dH 0B " JdH 9B
dt ; \ dp; dg; dg; dp,

describing the motion of B which depends on time ¢ by the intermediacy of
coordinates ¢; and their conjugate momenta p,. Using quantized mechanics
the Poisson brackets are replaced by the commutator A~ '[H, B], and the
relation between a classical correlation function (#{(0)-p,(t)) and the
quantized analog {[s,(0)- p,(1)]) is

J &< Orm (1) ]> doo= (1= /%) [ i () (1) s

The quantum-mechanical correlation function is real and contains odd
powers of ¢ in its Maclaurin expansion. The classical correlation function
contains only even powers of ¢, in accord with the Onsager principle of
time reversibility. Mori has shown that the equation of motion of an arbi-
trary dynamical variable of an arbitrary system can be transformed
rigorously to a linear generalized Langevin equation form: and Kubo
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shows that a subsystem of an ensemble when perturbed will relax to ther-
mal equilibrium via the same generalized Langevin equation. Neither the
arbitrary subsystem nor the variable need be quantized. That an ensemble
of molecules as small as nitrogen or methane can be treated with classical
equations of motion is the basis of the technique of computer molecular
dynamics, including the simulations of Section III.

E. Eiffect of Kilobar Pressures on Liquids—
Plastic Nondipolar Crystals

In this section we are concerned with the approach to the solid state in
nondipolar fluids by application of external hydrostatic pressure and by
freezing. Carbon disulfide can be solidified at room temperature by the ap-
plication of 12 to 13 kbars of external pressure. The only far-infrared study
available of the dependence of the induced absorption upon pressure is
still that of Bradley, Gebbie, Gilby, Kechin, and King'®® in 1965, using
prototype apparatus and pressures of up to 11.6 kbars. They found that the
absorption peak shifts by about 35 cm™' to higher frequency through the
pressure-induced phase change at 293°K. We show here that this is equiv-
alent to a large increase in both K 0) and K,(0) [i.e., an increase in the
mean-square torque (in the slope of the intermolecular potential depen-
dence on orientation)]. Such pressure data are technically very difficult to
come by, and we have taken the other approach (temperature) in liquid
CCl, (298 to 343°K). The change in K,(0) and K,(0) with temperature is
less pronounced, but real. The results are summarized in Table XI and
Figs. 81 and 82. They were obtained'?® by fitting (IV.26) to the experimen-
tal data on the three-variable basis of Section (IV.D). At 11.6 kbars in
CS,(/) it 1s clear from the zero-THz band that there is a greater probability
that the motion of the induced dipole moment is associated with the
central frequency (w,) of ~100 cm ™' (0.33 psec). This process is reflected
in the behavior of the correlation function associated with these bands
(Fig. 81b). The less-damped behavior at 11.6 kbars is an indication that the
orientational correlation is greater.

The angular forces resulting from mechanical anisotropy seem to be en-
hanced at the greater pressure, an effect that can be seen reflected in the
very large increase in the torque-dependent parameters K,(0) and K,(0)
(Table XI). The equivalent correlation function of depolarized Rayleigh
scattering has recently been observed with applied pressure by Dill, Livo-
vitz, and Bucaro,'”’ van Konynenburg and Steele,'?® and Perrot, Devaure,
and Lascombe.'”® The effect of temperature is not as pronounced on Ky(0)
and K,(0) as that of pressure, but for CS,(/) both increase with T. This de-
pendence of mean-square torque upon temperature is predicted both by
harmonic well dynamics and hard-core collisions. Therefore, no discernible
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TABLE X1
Parameters for CS,(/) and CCl (/)

Temp. P 10
Liquid  (°K) (bars)  (g-em’)  xKy0)  xK,(0)  x'/% (¢o—¢)

Cs, 296 1 258.6 26.2 170.2 20.3 0.026
293 11,600 » 79.9 247.6 32.7 0.018
232 1 .y 219 1143 12.0 0.034
315 | " 29.9 212.0 27.0 0.020
ccy, 296 I 242 10.9 80.6 14.2 0.019
313 [ " 10.2 65.1 12.2 0.017
328 ] : 9.1 51.2 10.1 0.016
343 1 - 10.3 7.7 14.6 0.016

“Reproduced by permission from J. Chem. Soc. Faraday Trans. 2, 72, 1206 (1976).

I

X B

2kT

"loosening up” of internal structure can be observed in CS,(7) over the
range 232 to 315°K, the intermolecular torque being determined by the
thermal energy available to each molecule (k7).

The situation is different in the spherical top CCl, (Fig. 82) over the
range 296 to 343°K, the latter being a few degrees below the boiling point
at 1 bar. Both K(0) and K,(0) decrease as T increases, although the values
at 343°K are slightly anomalous (Table XI). Therefore, there must be a
considerable increase in free volume, and thereby translational freedom, as
the boiling point is approached in order to overcome the purely thermal in-
crease (cc kT’ in the mean-square torque. An important indication is that
the mean-square torque is always much smaller for CCl, than for CS,, im-
plying that molecular geometry plays an important part in rotational free-
dom of motion. This is particularly so in the plastic crystalline phase of
CBr, dealt with below.

It is relevant to note that the nuclear magnetic resonance spin-rotation
relaxation time T, of liquids is observed to decrease as temperature is
raised, following an Arrhenius law. T, is inversely proportional to 7,, the
angular momentum correlation time, which thus increases with tempera-
ture. 7, is a measure of the mean time during which a molecule seems to
retain its angular momentum, and in spherical-top molecules in the liquid
state 1t is known that spin-rotation interaction is the dominant relaxational
mechanism, 7, becoming long even at temperatures well below the critical
point. In contrast, for asymmetric tops and sticklike molecules, spin-rota-
tion interaction becomes appreciable only at high temperatures, the ratio
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I.  Rotational Correlations in Plastic CBr, Crystals

In this final section we comment upon the zero-THz induced far-in-
frared absorptions in plastic crystalline and liquid CBr, in order to study
the change in rotational dynamics brought about by the increased transla-
tional constraint and packing symmetry of the solid. It turns out'! that the
barrier to rotational motion is slightly increased on going from the solid to
the liquid a few degrees above the melting point. The integrated intensity
per molecule is slightly greater in the liquid, which suggests that the spatial
disposition of the electrostatic part of the intermolecular potentials is im-
portant in determining the magnitude of the molecular-induced dipole mo-
ment. The dipole cross-correlation function corresponding to these bands
is compared with that of octopole-induced dipole absorption of a two
molecule collision of spherical tops, and with the autocorrelation function
for a Maxwellian ensemble of freely rotating molecules of this symmetry.
It is found that the mean torque greater initially in the condensed phases;
thereafter rotational motion is correlated.

In the plastic crystalline phase of CBr,, in comparison with the room-
temperature monoclinic form, each molecule is left with a characteristically

o (nepers/cm)

¥ lcm 1]I

Fig. 83. Absorption of the Th®(Pa’) monoclinic phase at 298°K. ®, Absorption of the
plastic (simple cubic) single crystal at 358°K; », absorption of the liquid at 376°K; (—), (A),
(B) Mori three-variable theory. [Reproduced by permission from J. Chem. Soc. Faraday
Trans. 2, T2, 2147 (1976).]
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generous amount of rotational freedom, but translational freedom is
limited, although not entirely absent. In contrast, both types of dynamics
are available and strongly coupled in the liquid. The broad bands centered
near 32 cm ™' (Fig. 83) in both liquid and rotator phase are interpreted as
intermolecular in origin, since they do not correspond to any known dif-
ference modes or overtones or fundamental, and occur at frequencies
where such bands are prevalent for nondipolar molecules. In the Th®(Pa®)
monoclinic phase at 298°K this band is replaced by a doublet, both com-
ponents of which are considerably broader than the fundamentals at 125
cm™' and 270 cm ™", In the plastic crystalline phase at 376°K, the funda-
mental at 124 cm™' is broadened compared with the monoclinic phase,
and considerably so in the liquid.

If a CBr, molecule whose center of mass is at the point R(r,8,,x) is
assumed to develop a temporary dipole moment under the influence of the
electrostatic fields of its neighbors, then the vector sum of these fields at R
at any instant will be determined by the relative positions of all other
molecules in the ensemble at that time, and consequently will be a measure
of the disorder or ordering in the lattice of molecules near enough for their
fields to be sufficiently influential. In order then to estimate absolutely the
degree of rotational freedom retained in these condensed phases, it is prof-
itable to compare the correlation function derived experimentally (Fig. 84)

1.0

0.01 | |
0 1.0 2.0

Time (psec)

Fig. 84. Correlation functions for CBr, from induced far-infrared bands. (1) C(f) (Liquid);
(2) plastic crystal; (3) Cgg(?); (4) Cy(r). [Reproduced by permission from J. Chem. Soc. Fara-
day Trans. 2, T2, 2147 (1976).]
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with those estimated using models of rotational motion in the gas phase.
The correlation function for the free rotation of a Maxwellian distribution
of spherical tops is given by the classical expression

2 kT kT I
CFR(I)= E(I —fIT)EIP(—IEﬁ)'FE

This is illustrated in Fig. 84 for CBr, at 376°K and decays much more
slowly than the functions C(¢) of the condensed phase. Thus the effect of
intermolecular forces is clearly seen in the time domain. The bimolecular
octopole-induced band produces in the classical limit a correlation func-
tion Cq(t) as follows, and is compared with Cgg(7) and C(¢) in Fig. 84.

The total integrated intensity of an octopole-induced dipole absorption
band spherical tops is given by Ozier and Fox'*? as

A= A(J,J)
J#=J]
where
: _(Ew}dﬁzﬂzag S
AT =" — j;n exp(— U(R)/kT)dR

Xv(J,JW2T+ 1) (2T + l)[ﬂxp(—.-zf(.!+ 1))—exp(—at'(J'+ I))]
with
a= Bhc/kT ST )= B[J’{J’+ 1)—=J(J+ 1}]

and where AJ=J"'—J=0, 1, 2, 3 are allowed. Here N is the molecular
number density, a, the polarizability, B the rotational constant (cm '),
and Z rotational partition function.

Z= (2J+ 1) exp(—aJ(J+1))
I

Thus the overall band is the sum of the individual transition intensities
A(J,J+ 1), A(J,J+2), and A(J,J+3). The correlation function is thus
given by

3
Colt)= 2

im 1,3

f“'-" A(J,J + i) cos(2mvet)dy
o Dp[1—exp(—hP%c/kT)]
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with
Wp=2B(J+1) P5=2B(2J+3) i=6B(J+2)
[t may be shown that

A, I+ 1) D527 +1)(2J +3)exp[ —aJ(J+1)][ 1 —exp( =~V /kT) ]
A(J,J +2)xc D527 +1)(2J +5)exp[ —aJ(J +1)][ 1 —exp(— hcP7/kT)
A, J +3)x D52 +1)(2J +T)exp[ —al(J+1)][ 1 —exp(— hcD7/kT)]

the proportionality constant being in each case the J-independent part of
(I.7). We have, finally, in the classical sense

Cn{:)cr:j';m[(% -1)(%+I)exp:l—a(%—l)—;]

+(L rr~£~+3)i.:;w: -—a(i—l)(i— ) cos2mvctdv
3B \3B Pl " 'eB ")\ 6B e

This function (Cg(1)/ Cy(0)) displayed in Fig. 84 looks very little like the
correlation functions of the condensed phase bands, which fall off initially
faster and thereafter exponentially and more slowly. This octopolar func-
tion becomes negative after 0.7 psec, exhibits a minimum at 1.2 psec, and
is damped to zero after 5.0 psec. The fact that Cy(1)/ Cy(0) falls off faster
than Cgg(f) means that a, is affected in some way by molecular interaction
in the classical expansion

t
C(r}*l—ﬂlf|~+-~

From Fig. 83 it is clear that CBr, molecules in both the liquid and plastic
crystalline experience a torque almost immediately after the arbitrary t=0.
This is greater in magnitude than that in a bimolecular encounter of oc-
topole fields, since C(¢) falls off faster initially than Cg(#)/ Cg(0). Rotation
motions are then correlated in the condensed phases, and after ~0.7 psec
both C(¢) become exponential and decay relatively slowly compared with
Cq(1)/ C(0). O'Dell and Berne'® have discovered recently that rotational
motion is freer in the solid just below the melting point in rough-hard-
sphere ensembles. This seems to be the case here since C(¢) for the liquid
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falls off initially a little faster. The greater initial torque in the condensed
phases can be explained superficially in terms of the greater packing den-
sity since the intermolecular potential would be much greater on average

with van der Waals radii overlapping (repulsive domain) for a greater per-
centage of the time. However, this is, as always, too simple a view, since
the packing density in the plastic solid is the greater while the mean torque
is smaller. This can only mean that symmetry of packing and the resultant
restriction on molecular diffusion is an important factor in determining the
ease of rotational movement in the plastic phase.
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