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NON-GAUSSIAN DISTRIBUTIONS IN COMPUTER TRIATOMICS

~ Chemistry Department, University College of Wales, Aberystwyth, Dyfed SY23 I1NE, UK

ruppo Nazionale di Struttora della Materia del CNR, Pisa, Italy

molecular dynamics simulation of 108 triatomic molecules of Cyv symmetry reveals markedly non-gaussian statistical
utions of vectors such as the centre-of-mass linear velocity, molecular angular momentum, positional and orientational

tion we find for the first time a significant negative de-
parture from these kinetic energy ACF limits. The mo-
ment functions can be defined collectively as

@y, = Mk, xH" —1, n=1,2,3,.. , (€))

where k,, = 37/1 X 3 X § X .. X (2rn + 1). The averages
(x) themselves vanish over a sufficiently extended simu-
lation, as shown in fig. 1 for the torque component T, .
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Fig. 1. A plot of mean torque component (T against the
number of time-steps at 220 K. The mean value is very close
to zero, as indicated by the horizontal level.
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This is the case where non-gaussianicity is the most
pronounced. All the a,,, vanish for a gaussian distribu-
tion of x, given {x) = 0 at thermodynamic equilibrium.
We have simulated a,,, for a number of x vectors, in-
cluding the centre-of-mass linear velocity v, the molec-
ular angular momentum L, the torque Tq, the atomic
coordinates 1,23  f each molecule and for unit vectors
€4 p, ¢ along each principal moment of inertia axis. In
no case do the a,,, functions vanish, so that the statis-
tics are non-gaussiz 1 for all vectors. Berne and Harp
have commented ¢ the sensitivity of such non-
gaussian results to * ie number of molecules used in the
simulation. For ec' tomic reasons we are restricted to
108 molecules at [ “sent.

2. Computational = ‘ails

These will be pt
Singer [4]. The ec
ics of C,, symmet:
boundary conditic
tor method (Unive
puter Centre, CDC
the runs were mad

'shed in full by Renaud and

ions of motion for 108 triatom-
'ABA) are solved using periodic
and a two-step predictor/correc-
y of Manchester Regional Com-
00). The conditions under which
e summarised in table 1.

Table 1

Thermodynamic conc ns and other details
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The functions a,,, were calculated over a totg]
range of 3000 time steps at 220 K, and 2000 time
steps at 100 K, averaging using every third (recorded) vl
value, taken from magnetic tape. Autocorrelation fune.
tions of the form :

Co(1) = (21 (5)x27(0))/(x 2" (0)x 27(0)) (5

were built up using a running time average over thé
tal available time steps, and checked using a 1500 (0
1000) time step span for consistency and to estimate
the statistical noise level, A typical result is lllustrate
in fig. 2.

c )/ co)

3. Results and discussion 7
In table 2 we summarise the mean levels over w
steps of a,, (n=1, 2, 3) for various x, togetherw th
the standard devmtlons The gaussian level is zero i 1
each case. b2
The level of the a5, function for &, seems to drift
as the simulation proceeds but as in the other ca
have contented ourselves with a calculation of the
mean level and standard deviation. The a, functlo
for velocity v, angular momentum L and torque T

2(0)v?(C
both), (3)

A. Thermodynamic ¢ ‘tions

set temperature 1olar volume

Lennard-Jones parameters

X) n3) ek~ (K) o (m)

200 074 173.5 3x 10710

100

B. Simulation details

time steps ¢ tion of one recording allowable number of time

(total) t step (s) interval temp. drift steps initially

X) rejected

5000 ©o1 010714 every 3 steps +25 2000 (220 K)
3000 (100 K)

C. Molecular details

bond length ir ‘uded angle mass of A atoms mass of B atoms

(m) (€2 (kg) kg

1x 107 6! 2.5x%107% 25x107%
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. 2. Moment autocorrelation functions simulated at 100 K
(2000 time-step total averaging), —: (1) <w2(t)v2(0))/
RO O (2)(!14(1‘)114(0))/(114(0)11 (0 (in 3 dimensions
h) (3) (vx(t)vy(O))/<v (0)!) SO)), —_—— (1) (vx(t)vx(o))/
vx(O)vx(0)> (2) <Ux(f)Ux(O))/(ux(O)ux(o))

e step from 2000 or 3000 to 5000, and finally
ay ragmg over the number of time steps used. A typi-
1 iun is illustrated in fig. 3.
he autocorrelation functions most accessible to a
y tractable analysis based on an extension of the
cer—Planck method are those for linear centre-of-
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Fig. 3. a, for the é4 vector, plotted every few time=steps.
Gaussian level = 0.

the Euler equations. The simulated moment ACFs of
v (fig. 2) are interestingly different from the same
type calculated by Berne and Harp [2] for CO and
Evans et al. [3] for N5, in that in three dimensions
they reach a steady long-time limit at a value much
lower than that expected from a gaussian analysis of
the statistics. The 1500 time-step run for the fourth
moment agrees satisfactorily with the 3000 time-step
runs so that it is unlikely that the deviation from
gaussianicity is due to statistical noise. The compo-
nent functions (v2” z(t)vf"y ,(0)} (in one dimension)
reach a limit of approx1mately 1/3 this time in accord
with the analytical value of 1/3.

aq ae

ay aq ae

2.55 +1.50

-+ 0.15 0.83 +0.72

+0.32 2.19 +2.21
+ 0.24 -0.55 +0.032
0.225 + 0.03 —0.515 £ 0.045
-0.60 +0.022

285+ 0.016 -0.59 +0.022

'

6.54+ 6.57

196+ 2.41

675+ 11.70
—0.78+ 0.026

-0.74 £ 0.039
-0.81 =z 0.017
-0.81+ 0.018

0.81 £0.32
0.27 £ 0.16
0.23+0.15
-0.24 £ 0.024
-0.25 £ 0.022
-0.23+0.021
—0.28
—0.28
—0.33 £ 0.056

291217
0.85+0.79
0.73 £ 0.65
-0.53+0.034
—0.55+0.03
-0.530.03
-0.59
-0.58
-0.65 £ 0.07

8.26 + 10.63
197+ 3.00
1.61+ 2.04
-0.76 £ 0.029
-0.77+ 0.024
-0.76 + 0.025
-0.80
-0.53
-0.85+ 0.053

e

deviation of 3000 time steps at 220 K, 2000 time steps at 100 K.
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Fig. 4. (1)(Tq(t)Tq(0)>/(Tq(0)Tq(0)>at 100 K,
) (Tq(t) Tq(0)>/(Tq(0)Tq(0)> at 220 K, (3) (T4(r) T3(0)/
(TGO T F(ON.

The angular momentum ACFs show up a similar
kind of negative deviation, unlike the small positive
ones discussed by Berne and Harp for CO and Evans
et al. for N,. The torque moment ACFs (fig. 4) reach
satisfactorily smooth long-time plateau levels as do
the orientational functions. Unfortunately, no analyti-
cal level is known for these functions at present but it
is noted that the ¢ > o levels at 100 K and 220 K are
different, which is once more a sign of non-gaussian
statistics.

4. Discussion

The most interesting implication of these results is
that the stochastic force appearing in any version of
the Langevin equation [5] for molecular and
brownian motion is also markedly non-gaussian. This
point may be dealt with analytically with a modified
form of markovian Fokker—Planck equation derived
from the master equation for the conditional two-
time probability density function P

8P, tlog, 0)/ar = [ [P(V', tlvy, O)W@IV)

: , (3
— P(v, thug, OOW(v'|v)] dv',

ie.

dP(v, tlug, 0)/dt
e )
= 2 (1n!) (=/ov)" [P, tvg, O],
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(uit) = fdo’(u’ —v)"W(v'|v).

provided that:

The physical meaning of eq. (3) can be clarified
through the definition of the correlation functiop of
a variable y

()= (@)

= fdyldJ’2P1(yl)P(}’2|y1,f)}’l.)’2,

since P, () is the a priori probability of ﬁndmgy m
the range (v, y + dy) and P(y,lyy, t) is the condi-
tional probability that given ¥ at initial time ¢ = Q,
may be found at ¢ = ¢ in the range (yy,y5 + dyz)
(4), when limited to the first two terms, is the usual
Fokker—Planck equation. By using a mathematlcal
model for the transition operator W it is possible to
evaluate any moment u/?. When the statistics govem-
ing the system are gaussian then only the first two
terms of eq. (4) are accounted for. By using a correc-
tion to the Fokker—Planck equation of the form

r, = ,,?3 (1/n1)(~8/av)" [u" P(o, tlvg, O]

and by approximating u"(v) analytically it is poss‘
to reproduce the results of the simulation for

W (£)v2(0))/<w27 (0)v27(0)) analytically. The fi
tion u’'(v) may be approximated analytically with
Mori continued fraction expansion of the Liouvillei
equation truncated at various orders (or approximants)
and interpreted analytically in terms of mechanical
models [6] such as the itinerant hbrator—oscﬂlator
[7) or harmonic oscillator [8]. To produce the re-
sults of fig. 5 we have used the latter to least mean
squares best fit the simulated velocity autocorrela
function. An alternative approach to dealing with nomn
gaussianicity is through use of the moments of the
stochastic force f(r) of the Langevin equation ,
u(t) = —Bu+f(1), ¢

bt

in its simplest (markovian) form. The moments u"j
can be evaluated through the stochastic average { 201
the stochastic force f(¢) as follows

@)= lim (Av")/At,
At~0



g0 &1 Volume 71, number 1

— Time/ps

i 1) Best ﬁt to the s1mulated velocxty autocorrelatmn

At .
2o [ f ) f) n>2.
G

Case p(v) = 0, for n 2> 3. In order to

- 12)8(ty — 13) . 5(ty_ 1 — 1,)

which means that the stochastic
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force is not a gaussian process, but it is still a purely
random one. As a consequence, directly from eq. (6)
we obtain the result that the correction to the
Fokker—Planck equation reads

= B(e;303 /003 + €,4%04[av? + ).

The parameters €3, €4, ... have to be taken as being
small perturbation parameters in such a way as to mod-
ify the result, provided by the usual Fokker—Planck
equation. It is clear that gaussianicity is destroyed by
the presence of I'y . A non-Markov, non-gaussian dif-
ferential equation of the general form

k)

ar “\ov oW
2 3 4
+{3( +A2L+eA3—a—+e4A4—a—+...)P
ow?2 ow3 ow4

can be built up to take account of memory and iner-
tial effects which dominate the simulated coefficients
at short times [9] . By expanding the solution P on
the set of Hermite polynomials He,(v/A) He,,, (W/A)
times exp [—(v? + W2)/2A2] we can reduce the prob-
lem to the numerical diagonalization of the matrix ex-
pression of the diffusion operator in the above equa-
tion.

By varying €3 and €4 we have evaluated

W ()2 (0) (W2 (0)v27(0))

and have obtained the results of fig. 5, in qualitative
agreement with the simulation, i.e. a negative devia-
tion from the long-time limit. A full account of the
numerical solution of equations similar to this is given
by Risken and Vollmer [10]. An account of our spe-
cific method is published elsewhere [3].

Further work on this subject will be concerned with
similar analytical evaluation for the rotational and roto-
translational motions. However, the analysis in this
case is severely complicated, as usual, by the dynami-
cal properties of the rotating asymmetric top. The
route to be taken involves a generalisation of Favro’s
elegant gaussian—markovian operator methods [6].

Acknowledgement

SRC is thanked for financial support, and especially
Professor Konrad Singer for the algorithm TR12 ina
prepublication version.

143




-

Volume 71, number 1 CHEMICAL PIIYSICS LETTERS

References [5] R.F. Tox, Phys. Rept. 48 (1978) 179.

[6] A.D. Favro, in: Fluctuation phenomena in solids, ed 7
[1] A. Rahman, Phys. Rev. 136 (1964) 405 R.E. Burgess (Academic Press, New York, 1965) p. 79,
[2] B.J. Berne and G.D. Harp, Advan. Chem. Phys., to be 71 ;A;”flgC;gt)”ez/ﬁl\d W. Evans and G.J. Evans, Mol, Phys :
published. ;'
[3] M.W. Evans, G.J. Evans and A.R. Davies, Advan. Chem 8] C. 91?;;“ and B. Lassier, Discussions Faraday S8 48
-W. Evans, G.J. .R. S . . (1969) 39,
Phys., to be published.
[4] K. Singer and R. Renaud, Computer Phys. Commun., to © l(vi9};;r)nirolg and P. Grigolini, Chem. Phys. Letters 62
be published. [10] H. Risken and H.D. Vollmer, Z. Physik B 31 (1978 )




