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A theory of the dynamical Kerr effect is developed for arbitrarily strong driving fields using a
modification of the Mori equation of motion due to Grigolini et al. Using the multidimensional
expansion of Grigolini and Ferrario the non-Markovian Mori equation may be written in Markov
form. 1t is possible then to derive a macro—micro correlation theorem for the system by applying
the method of Kivelson er al. In this way it is possible to bypass the linear response approximation
of classical dielectric theory.

In this paper we describe a method for generalising the theory of radiationless
and Kerr-effect transients * to include fields of arbitrarily large amplitude. The
method used is one derived recently by Grigolini and Ferrario 2 to describe molecular
systems where both ‘‘ intramolecular ” and * external ”* thermal baths are present
(e.g., resonant Raman scattering and resonant fluorescence). Measurements of
emission spectra in the presence of strong driving fields may be used 3 in the same
kind of way as saturation Kerr-effect studies to distinguish non-Markovian relaxations,
especially of a radiationless nature, from the Markovian ones. Kerr-effect saturation
is possible in polymer solutions with relatively low fields (E,) where the total hamil-
tonian of the system would depend on powers of E, still not greater than the
square.* * In this case the simplest theory put forward in this paper would suffice
to describe the complicated transients observed recently ¢ with Kerr-effect studies on
polymer solutions. The shapes of these transients are concentration-dependent,
implying that the simple Markovian theory (monodimensional) is not adequate to
meet the new demands imposed by the latest available data.

THEORY
The hamiltonian of a spherical system in an external field can be written as
N
H = Ho+H(t) = Ho—3Ne*E§— (o} —a)EJ(r) Y, Py(cos 6) o
n=1

t Present address: Chemistry Department, University College of Wales, Aberystwyth, Dyfed
SY23 INE.
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which describes the Kerr effects to powers of E3. The parameters a* are effective
polarisabilities independent of the field intensity E,; N is the number of molecules.
The third term on the right hand side of eqn (1) accounts for the interaction between
the symmetry axis of the jth molecule and polarisation direction of the external field.

Here 6, denotes the angle between the ellipsoidal axis and the external field Eq(¢).
The observable of interest is

Ay = K "; Py(cos 8) 2)

where K is a constant defined in ref. (1). In evaluating the time evolution of the
average value of this variable two significant simplifications are usually made. (1) The
dynamical Kerr effect is linear in the perturbation provided by the fourth term and the

r.hss. of eqn (1). (2) The cross-correlation terms of the multi-particle correlation
function

o = <P 2[cos 0,(0)] i Py[cos Gj(t)]> G
i=1

can be neglected.”

In this paper we provide a method capable of overcoming thesec assumptions
using a theoretical technique developed for the treatment of an excitation-relaxation
process in the presence of strong driving laser fields where the linear response approxi-
mation is no longer valid. Initially, we may assume that :

{Aw> = N Y <49 4
where )
AP = KPy(cos 6)). &)

The Mori formalism 8 ® provides us with the time evolution of the 4§’ variable
in the presence of a strong external perturbation. Following Nordholm and
Zwanzig '° we define a Hilbert space whose vectors are the dynamical variables
A1), i=1,...,n This Hilbert space is not unique, in that it depends upon the
definition of scalar product. Defining this conventionally, we may use the projection
operator P on the subspace spanned by the variables 4,(0)

Pg = (9, A)(4, A)'4, A = A(0)

where g is a vector in the Hilbert space. Apply this now to the Liouville equation :
d . .
5P = —i2(0p() = —i[H(), p(1)] (6)

where p(f) is the density matrix and the Liouville operator 2(¢) is defined as the
commutator superoperator associated with the hamiltonian H(#). The latter may
be divided into time-dependent and independent parts :

H@) = Hy+H,(2).
H, describes the system as isolated, while H,(#) represents the interaction of the
system with an external field. Operating with P on eqn (6) gives:
0 ‘ . 5 B
5;Pp(t) = —Pi?opp(t)+I [P(—i2,) exp {—(1—P)iPy(t—5)} x
0

(I~ P)(—iP)Pp(s)] ds—PiZ, exp { —(I1—P)iLot}(1 - P)iL ,A(0). ©)
11—18
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Using now the average value:

<A@ = (4, Pp(1))

we obtain :

(% A(t) = (Pi@yA, A™)(4, A1 4(t)+

j’ (Pi2, exp [A—P)iLy(t—s)|(1—-P)iLoA, A )(A, A7) *A(s) ds+

exp [(1— P)i2,t](1— P)iL,4(0). (8)

In eqn (8), the perturbation liouvillian associated with H,(¢), i.e., &% (¢), will appear
both in the “ memory kernel ”” and the fluctuating force. We shall now describe a
general method for solving egn (6) in the presence of an arbitrarily strong perturba-
tion, i.e., to develop a theory of the dynamical Kerr-effect in the presence of saturating
fields in the classical limit. In the absence of external perturbation, the Laplace
transform of the memory kernel can be expressed in a Mori continued fraction form.
This is obtained by giving a special emphasis to a set of vectors f;, j =1, ...,
NoLf; = A(0)] which allow an easy way of expanding the *“ memory kernel ”’ of eqn
(8). The projection operator P, onto the subspace spanned by the corresponding
vector f;, j = 1, . . ., Ny, is defined as before. This set of states is a complete vector
space in the sense that its describes the relevant slow dynamics of the system. This
implies the identity relation :

No R
S p=1 B =
j=1

This relation may be used to show that eqn (8) may be replaced by :

V) = AP~ 7PHO)-+EY() ©)
where
A0 0
R4 0
Mo =1| |5 FPMo=| |
0 Fu®

are nx Ny-dimensional column vectors. The friction matrix Y™ is a nx Ny-dimen-
sional square matrix whose elements are all zero except for the final one, which is the
matrix y. Agp is a nx Ny-dimensional square matrix whose explicit form is to be
determined. fY(¢) is the n-dimensional column vector to be related to the part of
interest of the projected or * reduced > physical system. Eqn (9) describes a n x Ny-
dimensional Markov process, with the fluctuation-dissipation properties :

(FM)y =0
CFMOFM(s))y = [yMCPMO)VMO0)] +L VMOV MO (™) T16(s — 5).
The projection operators 133.‘, Jj=1,..., Ny are now expressed in the form:

(Pr)km = 5jk5jm1’ j’ k’ m = 1’ .oy NO
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where I is the n-dimensional unit matrix. We may use the operator P} to obtain
from eqn (9) the non-Markovian, Langevin equation driving the relaxation dynamics

of
FI@)
0
PYVM(t) = PMYM(1) =
0
This is
(% PMVYM(1) = PMAMYVPM(N+

[[ Pag exp 1A= P80~ Y001~ PYAG ~7) +

Pi"Ao exp [(A = PM) (A, —y™)E](1 - PM)V™M(0) +

[[ 2480 exp [A-PYAG =y K- 1A~ POPY ) 85 (10)
Note that PMyM = 0; P:‘FM(t) = 0. We now show that eqn (8) and (10) [and there-

fore eqn (8) and (9)] are fully equivalent, provided that :

Ao)j = (Lo ) FO7} an

and the matrix Y™ is suitably related to the Nyth order approximant of the Mori
continued fraction.

PROOF

The equivalence of eqn (8) and (10) may be demonstrated by expanding the memory
kernel. The memory kernel of eqn (8) may be written as

K(t, 5) = (iLo exp [A~P)iLo(t— ) - P)iL oA, ATVA, AT = K(t—s).
Using the properties of scalar products, K(t, s) may be expanded as follows :
K(t,5) = (1ILo—NA, f)fio f1)71 X
[(exp {A-PYiLo =)t —)}A=P)fio S [ ]
(LoD f; ATNA, AT 12)

In eqn (11), and in the following, summation on repeated indices is understood.
Using eqn (11); we may evaluate the section between the braces as :

(exp {d _P)(i-@o —9)(t—s)}(i -P)f, FHUH D
e ) Sones Frud) " HGL o= D i FEd o ST X

«1 PV £ e (o=, ms FDIrw ST
A=P)f,, S, )
e B W I W (W W B W

n=0

= &Xp {(I"PM)(AO—'YM)(t—S)}m(l "‘PM)U-
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Using this result in the memory kernel gives us eqn (12) immediately. Note that
due to the orthogonality relation between the vectors fj, A, is a tridiagonal super-
matrix defined by :

(Ao);.; =i = (Lofy, U}
(Ao)j,j+l =1= (i.?of},f}; 1)(f:i+ 15. }+ 1)_1 }
(Ao)j+1,j = —A?-—l = (i-?of_'in, fD(f;, f_;T -1

The operator 4 is defined as follows:

@i £ = @ahi £O-

These results are equivalent to those of Kivelson and Ogan.®

To extend the formalism to the case where external fields are perturbing the system
we have to tackle the following difficulties. (1) The physical system is no longer
invariant to time reversal. This implies that (2) the memory kernel K(¢, s) is no
longer dependent on the difference (—s) but is a function of the two independent
variables ¢ and s. As the hamiltonian H(f) is time dependent and in general
[H(5), H(t)] # O for t # 0, the operator .#,(¢) is no longer hermitian in the Hilbert
space defined by the scalar products. Nordholm and Zwanzig 1° have shown that

13)

—
in this case (denoting by <. . .), the average value at time 7 and by exp a time-ordered
exponential) :

2 (), = PO+

j ' ds <Pi.@(s) e;p {f ds,d—-P)i«(s, ))}(i — P)i.@(z)A> +

<e;p { f ' dsd- P)i.‘?(s)}(i - P)i.«?(t)A>0
0
= (Pi2(1)A, A4, AT~ 1AMD> +

f (Pi2(s) e;p {f'dsl a- P)i.@(sl)}(i —PYi 21X A, AT A, ADCAG)>+
V] s

<e;p {f' dA-P)i2(s) ds}(i —P)i.‘?(t)A(O)>. (14)

Eqn (9) may be rewritten !! using the equivalent of eqn (11) in the presence of an
external field :

Ay = [i-?l(t)f:i’ D! (15)

No
In the Nyth-order approximation ( ). = 1), eqn (9) may be replaced by :
=1

S V) = (At A1V =V +EQ) 16)

We now prove the equivalence of eqn (14) and (16).
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Proof: Project eqn (16) for the variable of interest, PMF™(¢)

:;—tP“V“(t) = PM[Ao+A,(D]BPMVM(1) +

[ Prac+ a0 - e {[ A=A+ A1 ds, |
A—PMY(Ay+A,(5)—yPMPM(5) ds +

e;p {J.t A-P"[Ao+A(s)—™] d51}(i —PMYM0)+
0
j'o PMA,+A,(D—-7™] e;p {j' A-P"[Ao+A,(s)—] dsl} x

(1—-PMFM(s) ds. (17

Then, expanding the memory kernel of eqn (14) on the set of the Mori variable
Jii=1,..., No:

K(@,s) = (f’i.‘?(s) e;p { f ' A-B)iL(s,) ds,}(i —P)i2()A, AT)(A, AN™!
— G20 -DA f o £
(o0 {[ a-Pi2eo-nssa-ps 1) ]
((2(s)=NSj, ATNA, A,

By focusing our attention on the contribution in square brackets, we obtain :
-+ t
(exe{] a-P26-p asiba-prs s5)ssp

© 1 t ' ~ -~
= Zo;! dtl .. .J dt,, {((1 _P)fk, qu](fmp frTnl)_ '

(A-PYi2(t) - NA-PYiZ(t,-1)~9) . . . x
oo G2 =D S S DS D71

= 20'% dtl...j dt, {((I-P)f, FT,) x

(fons S 2) T HAL D) =Dy SIS 1) %
(A-P) iy, [o IS S2) 7o ¥
(L) =S SENSos S A=PY, S5 D7)

@ t 4
=Y '% dtl...J~ dt, {A—P"),,,, x
n=0"t-Js s

(Ao+Ay(t) "')'M)m,,t,(i - PM)ll,mz X
e (oA (1) - ')’M)m,.,z,.(i —P ™)}

= exp {j ds, [(i—PM)(Ao+A1(s1)—yM)]}k -,
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using eqn (15) and (11) for the third step. We therefore obtain :

K(t, 5) = (Ao+As(D) =714 oxp {j ds, (i —PM)(A0+A1(s1)—yM)}H y

A—PY), (Ao + A (5)— ™))
which is exactly the memory kernel of eqn (17). This concludes the proof.

We can focus our attention on the projection operator which projects a generic
vector ¥ on the subspace spanned by the first variable of the chain of Markov
variables. Using this operator, we can apply to eqn (16) the Mori methodology.
It is possible to show 12 that the generalised master equation obtained is endowed
with preciscly the same memory kernel and the same fluctuating force as those appear-
ing in eqn (14). It follows that eqn (16) may be used to describe the effect on the
system of an arbitrarily strong driving field such as E, of eqn (1). Eqn (16) in turn
may be solved by using the matrix diagonalisation approach of ref. (2). This treats
the excitation-relaxation process without the usual approximations that the excitation
field is weak and the time duration of the external perturbation is very short with
respect to the relaxation times. It is interesting to remark '+ ** that in the field of
radiationless transitions in molecular condensed phases a time-dependent behaviour
of the emitted fluorescence has been detected which is very similar to recent results
on Kerr-effect transients in solutions of polyethylene glycol polymer. This type of
transient behaviour may be explained in terms of the multi-dimensional Markov
representation as follows. A three-state model may be constructed for the process
where the intermediate is interpreted as a  virtual ” state simulating the non-
Markovian behaviour of the radiationless relaxation resulting from the coupling of
the excited state of interest with an intramolecular dissipation continuum. The
phenomenological approach of ref. (13) shows that high-intensity fields are required
in order to explain the slow decay exhibited in the presence of the radiation field.

A macro-micro theorem connecting the decays of the multi-particle and single-
particle correlation functions may now be constructed within the context of the multi-

. . . . A
dimensional Markov representation by choosing vectors of the form [ ™ and

1 ]
proceeding (in the manner described by Kivelson et al.* and by Berne and Pecora)!®
to evaluate the relation theorem for the last variable of the Markov chain. The
applications to Kerr effect and fluorescence transient data of the theory outlined here
will be the subject of further work. We shall not develop the theorem here since
this is secondary to our theme of treating arbitrarily strong driving fields.

We thank the S.R.C. for financial support.

APPENDIX

In this appendix we discuss in greater detail the nature of the hamiltonian H
appearing in eqn (1). The part H, of the hamiltonian involves intermolecular inter-
actions. If we replace the collective variable 4, with the single one A the relaxation
process depends on the interaction among the ith molecule and the other molecules
of the sample. In making the assumption :

(Amy = NCAD

it is implied that any one molecule provides the same average value. We are dis-
regarding the cross-correlation terms of ®{ and assuming that the molecules i and
J(j # i) are not intereacting. The decay of the correlation function in such a case is
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assured by the chaotic distribution of the molecules. That is, when one is performing
the average on all the molecules of the sample then {P, cos 8(0)P, cos 8(¢)) is
exhibiting decay features resulting from the average itself. Even if it is assumed that
the ith molecule is not interacting with the other molecules the autocorrelation function
{P, cos 0,(1)P, cos 6,(0)> may decay only by averaging over effectively infinite number
of other molecules in the system.

However, if any ith molecule of any sample is interacting with the other molecules
the cross-contribution of ®{!’ does not vanish. The autocorrelation function then
decays both due to the average over the sample and due to the interaction with the
other molecules. In the Mori theory the correlation function {4 . A(¢)) is a scalar
product which involves a statistical density matrix (or a distribution function).
Its time evolution depends both on the initial conditions of the statistical density
matrix (and the unperturbed hamiltonian) and the perturbation hamiltonian. As a
consequence, the hamiltonian whose liouvillian appears in eqn (14) is that part of H,
which concerns the ith particle plus

—3o*ES— (ol — D E2(H)P(cos Oy).

Therefore, it is important to note that H in the present paper is that part of the
hamiltonian of eqn (1) which involves the ith particle. We have to omit the contribu-
tion involving only j # i.
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