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By using the “reduced” model theory it is possible to introduce a hydrodynamical approach within the context of the
Mori theory. In the new theory, autocorrelation functions exhibit a correct behaviour at both short and long times.

Hydrodynamics has been successfully applied by

" Zwanzig and Bixcon [1] to evaluate the velocity corre-

lation function ir liquids. A minor error in their calcu-
lation has been corrected by Metiu et al. [2].

According to / Ider and Wainwright [3], the hydro-
dynamic approac’: provides the correct t=3/2 time be-
haviour at long ti es, whereas the velocity correlation
function exhibits = linear decay at short times, rather
than the correct ; irabolic one [1,2].

Metiu et al. [2 emphasized that the breakdown of
the hydrodynani - theory at large frequencies could
affect the ability <f the theory to describe vibrational
spectra. The prot 2m of obtaining correct time be-
haviour at both s' ort and long times must then be re-
garded as an impc rtant question which is still to be
clarified.

The main aim of this letter is to show that the “re-
duced” model theory (RMT) [4—6] can afford a sim-
ple solution to th's difficult problem. The RMT pro-
vides indeed a rigorous justification [6] for mechani-
cal models such zs the “itinerant oscillator” [7,8].
These mechanical models result, in turn, in correla-
tion functions exhibiting correct behaviour at short
times [7,8]. Furthermore, by virtue of such a me-

*
Also at: Department of Physics, Purdue University, West
Lafayette, Indiana 47907, USA.

1

chanical analogy, hydrodynamics can be included
straightforwardly in the Mori theory. The procedure
is outlined below.

According to Mori theory [9], it is possible to ex-
press the velocity autocorrelation function, C{(¢), in
the following exact form (in this paper we denote by
v the translational velocity)

C() =®0) v () =%0fm dw cos wt

00 g g
{[—1w+——iw+A%/[—iw+£M(w)]] ] M

In eq. (1), and in the following similar ones, we mean
to take the real part of the term in curly brackets (fre-
quency spectrum). The RMT [5] shows that a me-
chanical model, resulting in the same “memory kemel”
as the one providing the relaxation of C(¢), is expressed
by the following system of integro-differential equa-
tions. For each component of v

v=¥=—(kim)x—y), )]

t
W= = kIMx—y) - [ byt —Dw@dr, @)
0

where
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kim = Af R 3)
kM= A2 G
£y (1) =£-1 {éM(w)} . %)

We denote by a the radius of the “real” particle of
mass m, whereas the “virtual’ particle of mass M can
be regarded as a sphere of radius R. In the spirit of
refs. [1,2], we assume that this sphere is suffering a
dissipation process described by the memory kernel

£yr (@)= (4nRI3M)f(R, 00, 13, 74, Tg, Py, B, @), (6)

obtained by using the hydrodynamic properties of the
real fluid. In eq. (6), fis a function of R, ng and 728,
the shear and longitudinal viscosities, respectively; 7
and 7y, the shear and longitudinal relaxation times,
respectively; p, the particle density, a parameter g,
and w. The explicit form of f can be determined by
comparing eq. (6) with eq. (2.13) of ref. [2].

Notice that the use of eq. (6) results in correct be-
haviour of C(¢) at long times. Since &, (w) ~a w!/2 +b
for w0, from eq. (1) we obtain

C(t—>°°)~%—f dw{A%/A%éM(w)} cos wt
0

%f w{A%/A% {b +aw1/2}} cos wt
0

~ A3 OF

In the context of the hydrodynamic approach {1 2],
C(¢) is written as

a) =%f dw {[—iw + £y (w)] 1} cos wr 8)
U
where

£ () = @ma/3m)f@,n0, 10, 75, 79, g, B, @) . (9)

Since the generalized hydrodynamic approach, given
by eq. (1), and the standard one [1,2], given in eq. (8),
both result in correct behaviour at small frequencies,
then by using egs. (3) and (4) we obtain

Rf(R) n(s)in(Q)a Ts) TQa po, ﬁ) w = 0)

\=af(a7ng’n8)TsrTQ»pO:va“)O)' (10)

" Eq. (10) is satisfied for
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which fixes unequivocally the radius of the *‘virtual”
particle.

As far as the mass M of the virtual particle is con-
cerned, it can be evaluated, in principle, by means of
eqs. (3) and (4), as

M=mA}AL. (12) .

The calculation of Af and A% can be performed by
using the following relations [10]

A% = (w?) , (13) ,‘

= ((wty —

In ref. [10] it is shown that the moments (w?)and
(w™*) can be related to the dynamic structure factor,
S(g, w), which in part determines the coherent scat-

tering cross section in thermal neutron scattering ex-

periments in liquids. For the sake of simplicity, how- ]
ever, we assume for AZ values close to the ¢ experlmen
tal” one, A =0.50 X 1026 s=2 [11], and we intro-
duce

p=m/M (15)

as a fitting parameter.

From fig. [ it appears that the elastic nature of the
mechanical model allows a correct description of the
frequency spectrum without any need for regarding =
the fluid as being viscoelastic. This also providesa
bound to the p values. For p > 2, the results improve.
significantly compared to the experimental situation,
and become almost independent of p. We have deter-
mined that for p <2 the frequency spectrum form is -
largely incorrect. ;

Fig. 2 shows that the behaviour of the velocity cor-
relation function is significantly improved at short
times with respect to the standard hydrodynamical =
theory [1,2], whereas at intermediate times our re-
sults are comparable to those of ref. [2].

Fig. 3 shows that the experimental second minimumi

which occurs below the f-axis is a feature that can ap-
pear in the context of the present theory, provided =
that the liquid viscoelasticity is taken into account.
Such a second minimum, of course, has to be related *
to the second structural feature of the frequency spec;
trum (fig. 4). The existence of this structure has been
clearly emphasized by Rahman [12]. The present

()W . (14)
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0.25 - Fig. 3. Velocity autocorrelation functions for the viscoelastic
case. Solid line: R= 1.6 A, A2 =0.45 x 10713572, p = 1.4;
dashed line: R = 1.8 A, A2 = 0.55 x 10713572, p = 1.6; dotted
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Frequency (10" Hz)

Fig. 1. Frequency spectra of eq. (1) normalized to unity at zero

frequency. The curves peaking at lower frequency do not in-

clude viscoelasticity (4= 7o = 0), whereas those peaked at

higher frequencies do (rg=2.5 x 107135, 7= 2 x 10713 5

[2]).R = 1.4 A and A% = 0.45 x 10'3 572, The parameter p

[eq. (15)] is 100 for the solid lines, 10 for the dotted lines,

5 for the dashed lines, and 2 for the crossed lines.

Velocity Correlation Functions

Time (10™s)

Fig. 2. Solid line: velocity autocorrelation function as given
H'l €q. (1), corresponding to the solid line of fig. 1 without
Viscoelasticity. Dotted line: same function as calculated in
Ief. [2] by means of eq. (8). Dash—dotted line: “experimen-
tal” function as given by Rahman [13].

line: ref. [2]; dash—dotted line: ref. [13].

Frequency Spectra

041

0.2+

0O 02 04 06 08 1O 12 14
Frequency (10" Hz)

Fig. 4. Frequency spectra corresponding to the velocity auto-
correlation functions of fig. 3.
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theory accounts for such a structure, even though in
too exaggerated a manner for the range of parameters
used here.

In conclusion, even though a quantitative reproduc-
tion of the “experimental” results deserves further
studies, it seems that the RMT can afford a full expla-
nation of the most relevant feature exhibited by
Rahman’s results [13].
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