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Evaluation of Mori Theory with a Molecular Dynamics Simulation
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A Mori three variable approximation (on the basis of Nee-Zwanzig formalism) is used in
an attempt to describe analytically the results of a molecular dynamics simulation of 108
triatomic molecules of C,, symmetry interacting via a three centre Lennard-Jones atom-
atom potential. The simulation results expose the limitations of the analytical theory in
that the latter is able to describe only the general features of the simulation.

Introduction

One of the most useful ways of fitting spectroscopic
data from static frequencies up to the THz has been
to truncate the Mori continued fraction expansion for
the orientational auto-correlation function [1]
{u(t)-u(o)y, where u=g/|u|l. Here u is the dipole
vector. If this is done at the level of the second
memory function [2], ¢,(t), with:

¢:1(1)=¢,(0) exp(—7Y) (1)

the resulting expression for the complex permittivity
may be used to reproduce the characteristic shift in
peak frequency of the power absorption coefficient,
and thereby interpret this in terms of a mean square
torque. A more stringent test of the effect of the
truncation (Eq. (1)) may be carried out by using the
data from a molecular dynamics simulation [3] of
the various correlation functions, mean square torque
and mean square angular momentum involved in (1).
The only independent phenomenological parameter
left is then 7. In this communication we use the
simulation of a C,, triatomic (asymmetric top) with
no polar properties to estimate (1) directly through
its ability or otherwise to reproduce the following
simulated autocorrelation functions:

(1) The orientational autocorrelation function
(e (t)-e,(0)> where e, is the unit vector along the
axis of I, the smallest principat moment of inertia.
(2) The rotational velocity autocorrelation function

{&,(1)- €,(0)).

¥

(3) The angular momentum auto-correlation function
J@)-J(O).

{4) The torque a.c.L (T (1) T,(0)).

All vectors are defined in the laboratory frame of
reference,

(5) The simulated mean square torque (T,(0)-T (0}>
and angular momentum {J(0)- J(0)).

The computer liquid is non-polar so that the problem
does not arise of dealing with the dynamic internal
field. However, we remark that (1) forms the basis of
the theory of Lobo et al. [4], who incorporate inertial
and memory effects into the dielectric friction treat-
ment of Nee and Zwanzig [5]. It has also been
used by Kivelson and Madden [6] for macro-micro
correlation.

The paper is developed as follows. In Sect.1 we
review briefly the meaning of (1) and the relations
implied analytically between the various autocor-
relation functions of interest, In Sect. 2 the simulation
is described in detail. Finally we discuss the results
and suggest ways of improving the analytical model-
ling.

Section 1

The meaning of (1) may be clarified as follows, by
considering, (Nee and Zwanzig [5]), spherically iso-
tropic Brownian motion via the diffusion equation for
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the probability density function if:

of ! 5

;—,—t(“;t)=fds$(t—-3)(uxﬂ) f(uss) @)
]

where ¢ is the memory kernel, related to the fre-
quency dependent friction coefficient {(w) by:

kt
£(w)

The operator (uxV,)?
Laplacian, i.e.:

(1 )zf"'@"ao sin 9( f)

in spherical polar coordinates (8, ¢).
Integrating (3) by parts over all orientations gives the
equation of motion for the average dipole moment

(r=|nlu).

_-(‘;dtq’)(t) exp (iwt)= ¢(w). 3

is the angular part of the

1 8*f

*5in?0 e ®

iy ==2{dsbie—5)ms) ®
[

Multiply through by u(0) and average over an iso-
tropic distribution of orientations, then:

a t
77 PO pO0) = —2 g ds ¢(t—5)<u(s)- (0D ©)
d(w)=2Z,(QNQ0) ™M

is the memory function of {u(t)-x(0)) and the Q
symbol denotes an angular velocity component. The
scalar product in (7) means therefore that the angular
momentum is isotropically distributed in the labo-
ratory frame of reference so that we are considering
dynamically the motion of spherical top with embed-
ded dipole. The rigorous treatment of asymmetric
top motion would involve a tensorial form for the
angular momentum function analogous to ¢(w).

The meaning of (1) is now clear if we take a Mori
continued fraction expansion for the memory func-
tion in the Laplace domain:

(D)= O/ +¢, 0/ +..)...) (8

approximated with (1), so that:

()= O +1/(pp+1)+¢,(0)

is the Laplace transform of the angular velocity cor-
relation function {2(£)2(0)). We have:

$o(0) = <Q(0) (0)>

the mean sq'uare angular velocity. - Using (6) the
normalised dipole a.c.f. takes the well-known form:
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L u()- p(0))
={p(0)- p(0)>/(0 + 6o (0)/(p+ ¢, ) +7)))- ©)
The spectra and time-domain functionals of (8) and
{9) are known and documented. It is possible to use
the theorems:
Lo d*
) ) =——
and

C o d?
B/ =1

ult)- pO)) )

Q) 2(0) (1

to arrive at the rotational velocity and torque auto-
correlation functions respectively. We have in ad-
dition the following general relations:

¢,(0)= <ii(0) - #(0)>/<u(0) - i (0)>

—<(0) - u(0)>/<u(0) - u(0)> (12)
$o(0)= <) - 1 (0)>/<u(0)- u(0);
=<{Q(0)Q(0)> (13)

By equipartition:
$o(0)= 2kT (14)

where [ is the moment of inertia and k the Boltz-

" mann constant, and by a consideration of equilib-

rium statistical mechanics:

10 12k z
@o-sop=—2 FETY L2

where ('1;2) is the equilibrium mean square torque.
The centripetal acceleration is

10 (ZkT)2
4\ 1

(15)

Therefore, finally:

3kT (T}
0= 43102, (16

It is clear that the continued fraction (Egs. (9) and (8))
must be extended far enough to define ¢,(0) if the
analytical theory is to be useful enough to extract the
mean square torque from spectroscopic data. Since
all further ¢,(0) also involve {T?) (16}, (9) and (8)
constitute a first approximation only to the value
estimated by simulation. The approximation repre-
sented by (1) is not exactly consistent with an expon-
entlally decaying torque autocorrelation function, as
stated in Lobo et al,, since analytically:

@08y =3 [- (1 +§) explx-nt

+(y+x)? (l —5?;) exp-—(y+x)t]
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or:
3

{Q(t) Q(0)) =exp(—17t) [(3—35-%%;) sin xt ~x? cosxt]

according as to whether
x*=(¢,(0)-y*/4)

is respectively greater or less than zero.

The only free variable is the decay frequency y of the
second memory function, all other quantities may be
simulated independently.

Section 2

An algorithm originally due to P. Schofield and de-
veloped by Renaud and Singer [7] was used to
simulate the molecular dynamics of 108 triatomic
molecules interacting with atom-atom potentials of
the Lennard-Jones type, with parameters ¢=3.0
x10~1°m, ¢/k=173.5K. The equations of motion
were integrated with a two-step predictor-corrector
Gear algorithm with periodic boundary conditions
and long-range potential cut-off. Labelling the mo-
lecule by ABC the dimensions follow as AB=BC=1
X107°m, M, =M,=M =25%x10"25kgm, SABC
=60°.

The molecules were initially deployed on a conve-
nient lattice which melted (Fig. 1) over the first 2,000
or 3,000 steps of the simulations. The temperature of
the run was set at 220K and allowed to fluctuate over
the range +25K. Temperatures were scaled as neces-
sary. One time step in the simulation =0.01 ps. The
molar volume of the sample was 1x10~*m3, After
rejecting the first 2,000 time steps over which the
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Fig. 2. Simulated and apalytical autocorrelation functions at 220K.
These are normalised at the origin. (1) Simulated orientational
autocorrelation function e (t)- e(0))>. Herc e, is the unit vector
along the axis of the least principal moment of inertia, (2) Simu-
lated rotational velocity a.c.f. {&(z) - €(0)). ----(6) Least mean squares
best fit of the orientational a.c.f. of Mori three variable theory.
----(5) the angular momentum a.cf. calculated from the best fit (6).
(3) Calculated torque a.c.f. using ¢,(0)/¢,(0) from the best fit (6).
(4) Calculated torque a.cf. using ¢,(0)/$,(0)=1.57, Ordinate C(t);
Abscissa time steps

total energy is not in equilibrium, the next 3,000 were
stored at 0.03 ps intervals on magnetic tape for sta-
tistical analysis. Correlation functions were calculated
(Figs. 2-4) using these data for e, and J, T, and €,=J
xe,. The fluctuations of the squared angular mo-
mentum and squared torque over 3.0 ps are illus-

100 300

Fig. 1. Melting of the initial lattice in a computer simulation of
108L-] triatomics. ®220K, A 100K. Ordinate total energy (in
reduced units), Abscissa time steps 1 time step=10-2ps

Fig. 3. Simulated (1) and analytical ((2), (3)) autocorrelation func-

_tions (2} ¢,(0)/o(0)=1.57, (3) calculated from a Jeast mean

squares best fit. Ordinate: C(1); Abscissa: time steps
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Fig. 4. Simulated autocorrelation functions at 100 K. (1) r,,,, centre of mass; (2) ec; (3) €53 (4) €45 (5) J; (6) €4; (7) V. Here the e vectors are
those along the principal axes of inertia, J is the angular momentum, and V the linear velocity
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Fig. 5, Simulated mean square torque over
3,000 time steps, the horizontal bar denotes the
mean level, Ordinate: Mean square torque in
reduced units. Abscissa: Time steps

Fig. 6. Simulated mean square angular
momentum over 3,000 time steps, as for Fig. 4,
Ordinate: Mean square angular momentum in
reduced units. Abscissa: Time steps
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trated in Figs.5 and 6. We have the mean values (in
reduced units):

CJ(0)-JO) =28 x 10-*2
(T, (0)- T, (0)>=9.1x 103

for the asymmetric top. Taking a “spherical-top
equivalent” moment of inertia, after Lobo et al., then
451 (0)/¢o(0) =1.6.

By making a three-variable fit on the molecular
dynamics data with y, ¢,(0) and ¢,(0) as parameters
we obtain the result; ¢,(0)/d,(0)=67.75/3.2 and the
curves of Figs.2 and 3.

Discussion

The three-variable interaction fit of Figs.2 and 3 is
such that the orientational a.c.f. is followed well, at
least up to the midrange of its decay sequence but
only the general features are reproduced for the re-
lated a.cf’s (rotational velocity, angular velocity and
torque). In particular the characteristic negative tail
of the rotational velocity a.c.f. is greatly exaggerated.
The initial decay of the angular velocity a.cf. is too
sharp analytically. The torque a.cf. is not, surpris-
ingly, badly reproduced from the orientational a.c.f,
the negative lobe being absent in the simulation. As a
crude approximation the analysis is fairly useful. As a
quantitative measure of its efficiency we can compare
the ratio ¢,(0)/¢,(0) from the three variable fit and
from the simulation. These are 21,5 and 1.6 respec-
tively. It would clearly be advantageous to have
available the rigorous formalism (a generalisation of
that of Favro) for the asymmetric top so that the
uncertainties caused by linearising the Euler equa-
tions (substituting spherical top geometry) can be
eliminated. For the present we may conclude that the
molecular dynamics method is easily capable of ex-
posing the shortcomings of the three variable Mori
model. 4

In order to improve the analytical treatment it would
be advantageous to take into account the asymmetric
top nature of the CH,Cl, molecule and to generalise
the Favro equation for the probability density func-
tion P:

%p(sz, )=—-M-D-MP(2,1) (17)

for rotational dilfusion to include inertial and me-
mory effects. Here D is the diffusion tensor and M is
identical with the quantum mechanical angular mo-
mentum operator. In the case of the symmetric top
the eigenstates of the diffusion operator I'=sM-D-M
arc provided by the Wigner rotation matrices
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DL (Q2) where Q2=(x, §,y), the set of Euler angles.
The results for the asymmetric top may be ob-
tained by a perturbation of those of the symmetric
top. If we denote by [2) the eigenstates of the dif-
fusion operator in the case of the symmetric top, the
general solution of (17) is:

PR, 0> =3 Cplod Saxlm) (Rla> ™5™

where ln) and E, are eigenstates and eigenvalues of I
respecnvely The vector C=(C,, C,, ...) denotes the
initial condition of the physical system. The operator
is endowed with an eigenvector whose eigenvalue
vanishes, the other eigenvalues being represented by
positive real numbers. If we look at the state {4)

=(la, >, |, ...) Eq. (17) may be written in the matrix
form:
A=r. A+f (18)

where the rapidly fluctuating force f can be replaced
by its time average, which is vanishing. Inertial and
memory effects may now be included by considering
(18) as a Markov limit of:

A=f &(t, ) Aty dt+1(t) (19)
0

the structure of the “memory kernel” @ being defined
by the continued fraction expansion of its Laplace
transform as demonstrated by Mori. By using the
continued fraction (19) in turn may be replaced by
the multi-Markovian form:

% V) +A - V)+S-Y(@)=F() (20)

as demonstrated by Grigolini and co-workers. In (20)
A, S and F are, in general, supermatrices (whose
clements arc themselves matrices), and are defined
fully elsewhere. The fluctuation-dissipation theorem
corresponding to (20) is defined by:

(FOF()T>=275(t—s)

It is possible to use (20) to take care of inertial and
memory effects by truncating at various levels the
supermatrices. The rotational Mori theory will then
be parameterised with three decay constants y of the
second memory tensor, together with the equilibrium
average ¢,(0) and ¢,(0). -

The main points of this paper may be summarised as
follows.
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(1) The simulation of rotational autocorrelation
functions by molecular dynamics is a powerful meth-
od of exposing the shortcomings of early Mori approx-
imants of the Liouville equation of motion. It may
be possible to reproduce fairly accurately one of a set
of autocorrelation functions but the others, as in
Fig. 2, are not satisfactorily described. Also the com-
puted and Lms. fitted ratios ¢,(0)/¢,(0) are not in
agreement.

(2) In this respect the molecular dynamics simulation
is more incisive than any spectroscopic technique
used in isolation, and possibly more so than several
in combination. However, the spectra have the ad-
vantage of dealing with the real world without first
having to model the intermolecular potential.
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