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Moment analysis of the spectrum of depolarized scattered light
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Abstract—A. useful approximation to the second moment of depolarized light scattering spectra is
developed. The relation of far wing Rayleigh spectroscopy to far i.r. and dielectric spectroscopy is
emphasized, together with the fact that a Lorentzian model for these data cannot be justified on the

grounds of fundamental theory.

INTRODUCTION

The method of moment analysis in dealing with
spectra in the zero-THz region has proven useful
[1-4] for the following reasons.

(1) It is possible to observe in detail the orienta-
tional auto-correlation functions {u(t)-w(0)) and
Ga(t) -a(0)) related respectively to &"(w)/w and its
second moment we"(w) by Fourier transform. Here
1 is a unit vector fixed in the molecule.

(ii) The quantity we"(w) is related to the power
absorption coefficient a{w) by Maxwell’s equation:
a(w) = we"(w)/n(w)c. Both a(w) and £"{w) are ob-
servables, so when used in combination are much
more efficacious in exposing the flaws inherent in
many of the currently popular analytical models of
the liquid state.

Several reviews and articles are now available
describing points (i) and (ii) in relation to dielectric
and far i.r. spectroscopy, but apart from isolated
papers by Lrrovrrz et al. [5] and STeELE and vaN
KonynENBURG [6), very little effort has gone into
extending the fundamental method of moment
analysis to light scattering spectroscopy. It is the
purpose of this note to explain why such an analysis
of the intensity of scattered light can be a useful
and sensitive test of the short time details of
molecular motion which go to make up the higher
frequency part of the spectrum. The moment
analysis is illustrated using the method of molecular
dynamics simulation of 108 triatomic molecules in-
teracting with three centre Lennard-Jones atom—
atom potentials.

THEORY

In this section we develop the ‘far i.r. zoning’ of,
for example Rayleigh wing spectra, by using from
elementary analysis the relation:

= dZ
w?{w)= -—J exp(—iwt)ﬁ

3u(t) -u(0)F -1
(i, g

Here I(w) is the intensity of depolarised scattered
light. For linear molecules u lies along the sym-

metry axis. By the Fourier inversion theorem

a2 3[!](1’)‘“(0)]2—1 - = 5 it o)
_d_tz<__-.__—_—2 >-L=m I(@)e" dw. (2)

Consider in more detail the left hand side of equa-
tion (2). The average can be written, by stationar-
ity, as

{3080+ 5)-u(s)F—1 ) =5(30u(s - 0-usIF - 1).
3
The first derivative of equation (3) w.r.t. t is

3(s) -uls + thuls) -als + )
= —3(s—t)-ul(s)a{s)a(s —t)-uls)). (4)

The second derivative is
= 3(m(s)u(s+ t)a(s) -afs + 1))+ 3qa() -w@P). )

Using equations (5) and (2} we arrive at the ap-
proximate results

RL[ W T(w)e™ dw] = 3qu(r) - u(O)a(n) -u(0),  (6)

(see appendix) which directly supplements the well
known far i.r. theorem

é“ alw)e™ dw]=<a(z)‘c-<o». @

where a(w) is the optical power absorption coeffi-
cient. There has been very little experimental work
involved with comparing directly the results rep-
resented by Equations (6) and (7), i.e. measuring
under the same conditions the Rayleigh wing and
the far i.r. spectrum of a specimen liquid. Equation
(7) is a very powerful means of analysis, especially
when combined with the ‘dielectric relation’

1%[ J : 5'1‘”) e dw]=<u(:)-u(0)>, (8)

(in its very simplest form, neglecting all complica-
tions). Naturally the correct combinatorial use of
Equations (6-8) should prove much more useful
than each relation used in isolation.
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ILLUSTRATIONS

The product of Equations (7) and (8) gives us; as
a first approximation:

é[% £ o3 I{w)e™ dw]

AL o[ o] o

so that the second moment of the Rayleigh wing
contains information on both the far i.r. power
absorption coefficient and the dielectric loss in
combination. Equation (6) is the clearest way of
demonstrating the fact that a Lorentzian for I(w) is
not a valid theoretical result, despite its popular
usage. This is simply because the 1.h.s. integral of
Equation (6) diverges in this case. This is again
exactly a counterpart of the fact that when £"(0)/w
is a Lorentzian (Debye rotational diffusion) the
area beneath a(w) must diverge, producing the
well-documented Debye plateau from the far infra-
red out to infinite frequencies, [Fig. 1).

In contrast, when I{w) is a Gaussian, (Rayleigh
scattering from a gas of non interacting molecules)
all moments (including, of course, w*I(w)) are well
defined because the integral in Equation (6) always
exists. An illustration of I(w) and w?I(w) for the
Gaussian is given in Fig. 1.

Furthermore, Equation (6) has the general impli-
cation that any hydrodynamic or molecular theory
for I{w) which produces, to take an instance, a sum
of terms any one of which is a Lorentzian will cause
the integral to diverge to infinity. This holds for
polarized L~ as well as depolarized (L) inten-
sities. It follows therefore that many of the hyd-
rodynamic mode-mode coupling theories de-
veloped primarily for the low frequency region of
I(w) (including the Rytov dip) will not work at high
frequencies. It is essential in general to work with as
many spectral moments as the accuracy of the data
will allow. The second moment w*I{w) is a means
of ‘enlarging’ the short time details of the molecu-
lar motions responsible for the high frequency

shape of I{w). In exactly the same way o{w) em-
phasizes this aspect when dealing with the dielectric
loss £"{w).

MOLECULAR DYNAMICS SIMULATION

These points may be emphasized by simulating
the autocorrelation functions of interest using a
convenient molecular dynamics algorithm. This is
due to Renaup and Singer [7] (TRI 2) and uses
Lagrange multipliers to solve Newton’s equations
for 108 triatomic molecules with atom-atom
Lennard-Jones interactions. Some runs were made
using running-time averages over 200 time-steps to
evaluate the autocorrelation functions. The resulis
are illustrated in Fig. 2 up to 7.3 ps (1 time-step =
0.01 ps). The molecule is C,, in symmetry with
bond lengths of 107 m, an included angle of 60°
and masses of 2.5X10"% kg for each atom. A
temperature of 100 K was used, restarting in the
liquid after 3000 time-steps had been rejected.
Lennard-Jones parameters were o =3%107'"m,
e/k = 173.5 K. In Fig. 2 we show 3(3[u(t) -u(0)F—1)
(curve 1) its second derivative (normalized at t=0
to unity) and the angular momentum autocorrela-
tion function (J(t)-J¥(0)) (curve 3). Note that curves
(2) and (4) are undefined for rotational diffusion
and for any theory for which w’I{w) approaches a
constant value (i.e. does not decay to zero) as
w —> o,

In one of the very few experimental studies
avajlable on w?I{(w) of depolarized Rayleigh scat-
tering [5] the data were used to construct {¥(t) - ¥(0))
by assuming (in effect) curves (2) and (3) to be
identical. The simulation shows that this is a fair
enough approximation. What the authors term
‘angular velocity correlation function’ in Fig. 6
of their paper is the multiparticle equivalent
of 3(m(s)-w(0)u(t)-u(0)) (i.e. the a.cf. + cross-
correlations).

Finally we remark that it should be possible from
Equation (9) to construct the whole of the Rayleigh
wing from zero-THz (dielectric/f.i.r.) data without

Fig. 1. Gaussian; (2) Lorentzian on the same scale; (3) second spectral moment of the Gaussian; (4)
second moment, Lorentzian. Ordinate (&), normalized units. Abscissa @, normalized units.
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Fig. 2. Molecular dynamics simulation of a C,, triatomic central forces only. (1) $(3[e, (0)-e, (N> -
{=f(t)). (2) Angular momentum autocorrelation function. (3) {e,(0) e, (E){e,(0)-é,(t)). (4)
~ (d*/dt)(f(£)). Ordinate: normalized autocorrelation function. Abscissa: time/ps.

recourse to any theoretical assumption (such as
(BERNE and Harpe [8]) maximization of entropy).
This would be a sensitive check on interexperimen-
tal consistency.
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APPENDIX

We require the second derivative of
3(3[u(t)-u(0)F — 1). This can be written more gen-
erally as 2:(3[u(t+ +)-u(r)P — 1). The first derivative
is

3| ate+ ) -ue) Jote+ ) ute) ).

The second derivative is

3([;‘—; (u(t+‘r)'u(T))]u(t+T)'U(T)>

+ 3([;; ((t+7) -u(T)]L% (a(t+7) ‘U(T))]). (A1)

* The first term of this may be rewritten as

= 3¢u(t) - u(0)u(t) - u(0))

and the second as
3¢Ca(e) -u(0)%.

Note that when u(f) and u(0) have different time
reversal symmetry their correlation function should
vanish for all ¢, but not necessarily its mean square.
The relative importance of the terms in equation
(A1) may be evaluated by computer simulation.
The results are shown in Fig. 2. The second term of
Equation (A1) is small compared with the first and
the approximation:

& 060 a0 - 1]

£ = 3@ -a(0)Xu() -u(0)), (A2)

is adequate, at least for the triatomic simulated. Of
course

(a(e) -a(0)u(1) -u(0)) # (u(t) -u(®)Xa(1) -0(0)),
in general. The moment analysis is therefore useful

as a means of estimating directly Equation (A2)
from Rayleigh far-wing, far i.r. and dielectric data.
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As a further test of equations such as (Al) and
(A2) it is possible to take simple model correlation
functions such as those from rotational diffusion
and more complicated ones from the itinerant oscil-
lator model developed for zero-THz spectroscopy.

In the case of rotational diffusion

(u(t)-u(0)) = exp (—t/7) = (1) -2 (0})/@a(0) - (0}),
so that
Cu(z) - u(0))u(?) - u(0) _
(u(0) + u(0)X@(0) -0(0))
53 - w(0)P - 1)=exp (— 3t/7).
At the short times ¢ of interest in second moment

analysis, the rotational diffusion approximation is
compared with the computer simulation in Fig. 2.

exp (—2t/7),

Itinerant oscillator approximation
In this case

(u(t) -u(0)) =exp (~ y(1)),

3(3{u(t) -u(®)F - 1)=exp (- 2y(1),
where y(t) is a complicated function of t.

(u{t) -u(O)Xa(0) -u(0)) _ [3{(t)*—§(1)]
{ix(0)- 5 (0)) [3(0)* - 5(0))

exp (—2y(1),

2

¢, 2 1L 3a0)-uOF -
o 1B w(O) - 1)/ 2 K3(u(0)-u(OF ~ 1)

_ Ryey-jwi

Note that long times (i.e. for planar rotational
diffusion) the approximation is exact, i.e.

2 2
S 430w ~ 1 S K3u0) w0 - 1)

_ Sa(®) - n(O)Xin(1) - u(0))
(u(0) -u(0)Xa(0) - a(0))’




