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ABSTRACT

A molecular dynamics simulation of 108 C2v triatomics is used to evaluate
a model of the molecular liquid based on the Evans and Calderwood/Cofiey
itinerant oscillator concepts. Several weaknesses of the original models are
investigated using Pn Legendre a.c.f.'s of orientation and the related angular:
momentum a.c.f. The harmonic binding between cage and encaged molecule is

clearly shown to be an oversimplification. Replacement by a cosine potential

gives a better result after a numerical analysis due to Ferrario.

INTRODUCTION

An useful form of the itinerant librator theory of liguid state molecular
dynamics was introduced wvia the Mori continued frdction by Evans {}] in 1976
and in greater physical and mathematical detail by CalderwoodAand Coffey’[2] in
1977. In order to keep the number of phenomenological parameters to a minimum
certain constraints have to be made. A major assumption is that the motion of
the dipcle vector is planar, only © of the Euler angles (®, %, x) is involved.
Another is that the dipolar asymmetric top under consideration is bound hHamoni-
cally to a cage of neighbours which revolves according to Langevin's interpre-
tation of the Brownian motion. Since the appearance of these papers the model
has been tested very thoroughly both experimentally (b)\/ Reid et altB] , using

zero-THz spectroscopy) and by computer simulation [4] An extensive data
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correlation exercise (involving some fifty solute molecules) has just been
completed by Reid and Evans [5] involving liquid, ultra-viscous and glassy-state
specimens.

In fhis letter we use a molecular dynamics simulation of 108 triatomic

molecules of C v symmetry to develop a more realistic version of the original

2
model. There are several weaknesses of the original analysis which need to be

investigated.

(i) The restriction (6, ¢, X) -+ (0) is a source of concern which may be investi-
gated in several ways. One of the most sﬁraightforward is to simulate by
computer the Pn (cos Q(t)) functions. Here Pl = < cos@(t)cosd(0)> is the
autocorrelation function of the dipole vector's orientation (©) with respect to
an arbitrary initial axis. The second Legendre polynomial is denoted P2 and

its relation to Pl is model dependent (see, for example, Berne and Harp 6

An assumption such as (€, ¢, X) > (0) can be tested directly by matching the

model P Pn against the simulated Pl' ey Pn' and then loocking also at

PR
the waylthe model and simulated angular momentum auto-correlation functions
behave. The results of this exercise are'given later in this letter.

(ii) The assumption that the binding (or potential interaction), between the
inner molecule and cage is harmonic is an approximation introduced for the sake
of analytical tractability. More realistically the potential has a cosine
dependence so that the egquations of motion are simultaneous stochastic differen-

tial equations of the form

s 1 i -

Ize(t) + IZwo sin (B(t) - ¢(r)) = I2W(t) (1)
o [ 2 . _ °

I, o(8) + I,B¢(t) - Lwg sin (O(t) - ¢(t)) = IlW(t) (2)

Here W(t) is a Wiener process [2] representing the effect of Brownian noise on
the rotating cage, of moment of inertia Il' 12 is the moment of inertia of the

2
reference molecule, w. a coupling constant between it and its cage of nearest

¢}

neighbours. B 'is the friction coefficient governing the Brownian motion of
the cage. © and ¢ are the angles defined by Calderwood and Coffey. - Egns. (lf

and {(2) are soluble numerically (appendix) by matrix diagonalisation methods.

There is no known analytical solution except in the case

sin (0(t) - ¢(t)) % (8(t) -~ ¢(t)) when the original concept is regained. In

this letter we report that egqns. (1) and (2) lead to a more realistic match

with the molecular dynamics simulation than the original model of 1976 and 1977.




EXPERIMENTAL

The far infra-red broad-band results of Reid, obtained by interferometry,
have been checked in representative cases with an Apollo Instruments tunable far
infra-red laser. This consists of a model 560 CO2 laser, emitting 85 frequencies
of up to 50 watts C/W output on some lines, pumping a resonance cavity filled
with methanol vapour, or in some instances CF2=CH2 vapour, The monochromatid
far infra-red output is mW in power. Far infra-red frequencies were estimated
by Michelson interferometry with a melinex beam divider. Power'absorption
coefficients of the Beer-Lambert law were estimated hy attenuaticon of the
radiation reaching a pyrroelectric detector through a VC-0Ql variable path length
liquid cell. Reid's broad band results were substantiated by spot fregquency
measurements with standard deviations in the range *(2.5 to 10% (and, exceptionally,
bigger) of the original broad band value at that frequency. The mean difference
between spot frequency (laser) and broad-band ("cube" interferometer) is of the

order of T 4%.

Simulation details

An algorithm written originally by Renaud and Singer [7] was modified to
produce the Pn autocorrelation functions for n up to 5, fogether with the angular
momentum autocorrelation function <gjt).g}o)>. A 3 x 3 centre Lennard-Jones
atom-atom potential was used for each of 108 molecules with periodic boundary
conditions. The a.c.f.'s were computed with 2000 time steps, each of 0.0l ‘ps,
using a running time-average. Further details are available in the literature

tﬁ]. (T = 100 X, molar vol. = 10—4m3).

Matching of model and simulation

This was carried out as follows. With the original idea
sin{(@(t) - ¢(t)) % (B(t) - ¢(t)) the simulated P2 function (fig. (1)) was fitted

with a non-linear l.m.s. method iterating on B, wg

These paramters are (in reduced units of kT/I2 or (kT/Iz)5 12.2, 4.8 and 10.2.

2
and (Il/Iz)mO as parameters.

Using these it is possible analytically to calculate P2 to PS' using the theorem
of Calderwood and Coffey[é]. Also tractable with the same set of parameters is
<J(t).J(0)>. A self-consistent comparison (fig. (1)) %s therefore possible.

The outcome may be interpreted as follows.
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Fig. 1b.
As for figure l{a): (L) P3; (2) PS; (3) rotational velocity.

Ordinate £(t); Abscissa time/ps.




(i) By fitting P2, Pl is reproduced fairly accurately, especially at long times,
where the decay of both Pl and P2 with time is roughly exponential. P3 and P5
are followed less closely. These are always markedly non-exponential in nature.
The fact that (0, ¢, ¥x) > (0) is therefore not as restrictive as the harmonic
assumption sin (8(t) - (L)) % (©(t) - ¢(t)) in the original model. This is
shown clearly by comparing the simulated and analytical angular momentum a.c.f.'s
using the set of parameters derived from P2. The model <J(t).J(0)> is faxr too
oscillatory. This is a clear cut indication that egns. (1) and (2) should be

used as a starting point for the analytical analysis.
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Fig. 2.
(a) Itinerant librator model, angular momentum autocorrelation function.

Model parameters as in figure 1.

e COSine potential

Barmonic potential

Abscissa: time/ps.
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{b) Real { ) and imaginary (eees) parts of the Fourier transform of the

harmonic potential angular momentum a.c.f.

(c) As for (b), Cosine Potential. Abscissa: frequency/THz.

Using a Hermite polynomial basis set and Ferrario's method (appendix) it is
- just possible on the UMRCC CDC 7600 to solve egns. (1) and (2) numerically.

For the same parameters §, mg and (12/Il)m2 and for twe other sets the results

O
are shown in figs. (2) - (3). It can be seen that <J(t).J(0}>, i.e.
122<O(t).9(0)> is damped out, but not enough. Further refinements of the

modelling technique are therefore needed, as is always the case of course, but
these should be made without the use of more phenomenological variables. The
fact that (Iz/Il) is greater than one from the P, fitting is echoed and well-
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Fig. 3.

As for figure 2, w, = 1.66, (IZ/IL)%NO = 3.27; B% = 2.82 {in reduced units,

see text).

known from the zero-THz work of Evans et al. Reid [9] has offered an explana-

tion to the effect that the cage is intuitively tenuous in nature and not a rigid
;
entity. - This should be inforporated into the mathematical details of the f

modelling. Copies of Ferraric's Fortran algorithm are available on request.

This solves eqns. (1) and (2) for the following autocorrelation functions.

(1) <@(t)s8(0)>/<6{0)06(0)>; (angular velocity).

d d . .
< —_— > -
(2) S oS O(t) qp oS O¥t) (rotational velocity)
t =0
(3) - <cos O(t) cos 0(0Q)> (orientation).

(4) <cos 20(t) cos 20(0)> (planar P2).
(5) <cos 30(t) cos 30(0)> (planar P3).
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APPENDIX

The Fokker-Planck equation describing the process is

3B () ¥, 6, ¢, t/0) =L R
T _

where the F.-P. operator L is

19 GM) +12 (0-9) <1 3 V' (¥
2N 2 2y, 21, 30
2 2
+1 3 V' (b)) + 3,0+ kT3 +§'¢+k_TL2
21, 3 1, 302 2 L 3
Here q;l = (0+$)/2; \{12 = (0-¢)/2; V(wz) = - Izmé cos (2\92).

The equilibrium solution of egn. (Al) is given by

o _ 22 °2 2
geq (zpl, wz, e, ¢ =1 exp[ ¢} I2 - ¢ Il + IZmO cos (21p2)]
N' 2kT 2kT kT

(al)

(a2)



We solve egn. (Al) with a method which is generally applicable and is described
basically by Risken and Volmer [lo]. It allows us to compute any correlation

function of interest by the integral
<al(0)a2(t.)> = Sy (R, o)d:l(Q, t)an (A3)

where

(o] = (v, Vo e, ¢]

are physical observable of the system and can be expressed in terms of [Q(t)].
¢2(Q, t) is the solution of the equation

3¢ =ILp¢ (a4)

with the diffusion operator

-1 4
LF =y (Q)LFw(Q) (A5)
and

22 =2 2
P(Q) = lexpl- 1 (129 + Il¢ ) + I2mo cos (2w2) (A6)
Int axT 2T '

subjected to the initial condition

¢2(O, Q) = az(Q)UJ(Q) : (A7)

The solution of egn. (B4) is achieved by using the following expansion on the

set of Hermite polynomials and on the plane waves of the function ¢

[+ 9] =] nlnz . .
() = L Z[A (t) He (0} He (d)
n=0"1""2 -l *2 i1 o)
X exp [ikxpl + iqip2] 1})(9)] (AB)
which transforms egn. (A4) into a linear differential matrix equation:
A(t) = C A(t) (R9)
where
o0
[ Aoo(tﬂ
10
Aoo(t)
Aty = Alo(t)

10 ' (al0)
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and g_is the matrix expansion of the operator LF on the basis set given by (a8).
Ean. (A9) is solved by diagonalising the matrix C. The solution is:

a(t) = exp[ctaco = IE, exp[git][g_i, a(0)] (a11)

where Ei and Ei are the right and left eigenvectors and Ei the eigenvalues of
the matrix C, and the brackets[ ' ]mean the scalar product. In evaluating
the integrals (A3) we have used the fact that

2
g =/fcos g exp[ IZNO cos 2x]dx
E KT

2 . R
= Iq/2 (Izwo/kT) if n is even or zero,

Here In(z) is the modified Bessel function of integer order, n =0, 1, 2 ....

= 0 if n is odd;
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