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A theoretical generalisation of the Fokker/Planck equation for atomic and molecular
diffusion is compared with the results of a molecular dynamics simulation of a triatomic
molecule of C,, symmetry. The molecular dynamics results are non-Markhovian and
non-Gaussian in nature, markedly so in the case of the centre of mass linear velocity V.
This may be ascertained by simulating the long-time limit of the three dimensional
kinetic energy autocorrelation function {V?2(t)V*{0))/{V*(0)V*(0)>, which falls well
below the theoretical Gaussian value of 3/5. By expressing the Mori continuved fraction as
a multidimensional Markhovian chain of differential equations and expressing this in
turn as a non-Gaussian probability-diffusion equation of the Kramers/Moyal type it is
possible to account for the simulation results in a qualitative fashion.

1. Introduction

Non-Markhovian behaviour can be regarded as be-
ing a physical property pertinent to a wide variety of
phenomena. According to general theories of relax-
ation [1] memory effects are exhibited by any relax-
ation process where a clearcut separation between
the microscopic time scale and the macroscopic one
1s not possible. Relevant examples are provided, for
example, by EPR spectroscopy [2], ultrafast vibra-
tional relaxation [3] and molecular motion [4] both
in liquids.

It should be stressed, however, that non-Markho-
vianicity is not to be regarded as a real difficulty in
itself. Indeed, any stochastic process concerning a
variable y can be described by the following tran-
sition probability

Py(y> tl.VO: 0): [(1 - lez(t)) ’II(Z]—%

xexp[—(y—yo B /(1= B2 (1))] 1
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where
B, (0)=<y(0) »(1)>/<y(0) y(O) ®)

and the symbol {...) denotes stochastic averaging
[5] Equation (2) can be obtained without any re-
course to Markbhovian assumptions. Gaussianicity, in
fact, is the only physical property required to obtain
the transition probability of (1),

It is interesting to notice that (1) is the kind of

equation which allowed Adelman [6], Fox [7] and
Davies and Evans [8] to build up their generalised
Fokker-Planck equations.

However, in the recent literature one can find several
stimuli to reject the Gaussian assumption, Fox [5,9]
shows that critical fluctuations are not Gaussian. In
his recent work on this subject he found an equilib-
riumn distribution which is the exponential of a quar-
tic form. It is evident that his result, when related to a
linear Langevin equation, should involve stochastic
forces of non-Gaussian nature.

Though this problem is fairly general in that it in-
volves, for instance, phenomena such as the non-
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Boltzmann [luorescence distribution observed re-
cently by Roodhart and Wepdam [10] in this work
we shall focus our attention on processes described
by the generalised Langevin equation

‘{_’rAm=f9(, A~ | (e, ) Alr)+1(0). (3)
1 0

In Sect. II the results of a computer simulation ex-
periment are described. They clearly show that the
relaxation dynamics of some triatomic liquid mol-
ccules requires the rejection of the Gaussian assump-
tion concerning f(t) of (3). Correlation function such
as (V2"(0) V2(1)>. in lact, are found attaining their
equilibrium well below the Gaussian limit.

The usual treatment of (3) [6-8] has to be modified.
Due to the difficulties of dealing with non-Markho-
vian relaxation processes & new approach is at-
tempted in Section IlJa and & general form for non-
Gaussian, non-Markhovian Fokker-Planck equations
is proposed.

Then, in Sect. lIIb, this equation is specialized to
describe the translational diffusion process of one
component of the velocity of the molecules.

Finally in Section IV the monodimensional diffusion
equation is solved and the results are related to the
three dimensional case by using the fact that the
space Is isotropic and that the three components are
not statistically correlated. Various degrees of non
gaussianicity are inspected and the results show
themselves to be in qualitative agreement with the
former ones obtained with the molecular simulation.

I1. Non-Gaussianicity in Liquids

When the stochastic variable y is the velocity V of a
molecule with mass M, the parameter « appearing
in (1) may be written as

- a=2KT/M,

where K and T denote the Boltzmann constant and
the temperature, respectively. In such a case (1) be-
comes (250) of [4]. Berne and Harp [4] by exploit-
ing this equation, provided the following expressions
in three dimensions:

&26(0)=C(VZ0) V2(@)p/CV4(0)) =2 [1+ P2 (£)], (4)
t40(t)=VH(0) VH(e)p KV (0))

=525 +588 B2 (0 +432 ¥ (0], (5)
The meaning of these formulae is that higher-order
correlation functions can be expressed in terms of the

usual correlation function ¥,(f), provided that the
relaxation phenomenon is assumed to be Gaussian.

In this case, however, &,4(t) should reach 3/5 and
£4(1) go to 2257945,

The results provided by our computer simulation
show that such is not the case.

Evidence for non-Gaussian behaviour in molecular
liquids has previously been presented by Rahman
[11] in his classical simulation of argon and by Berne
and Harp [4] who used a modified Stockmayer po-
tential to simulate carbon monoxide, based on a
Lennard-Jones form for the dispersive and repulsive
form. In this section we report some new molecular
dynumics simulations which strongly suggest that
polyatomic asymmetric tops behave dynamically in a
non-Gaussian manner. The evidence is presented in
two ways. Firstly we simulate the following func-
tions; which vanish in the Gaussian limit:

a,={X*"C, X" —-1; n=1,2,3,4

where {...) means an average at each time step over
the number of molecules used (108). We have:

C,=13.5...(2n+1y3"

Here X is a molecular vector such as the linear centre
of mass velacity (V), angular momentum (L), atomic
coordinates (r) or unit vectors (I, 5 ) along the prin-
cipal inertia axes (I 4, I, I ).

Secondly we simulated the moment auto-correlation
functions  {X*"(r) X2"(0)y/<X2"(0) X2"(0)>  whose
Gaussian limits can be calculated analytically.

The algorithm used is a 3% 3 atom-atom Lennard-
Jones potential and a two-step predictor corrector
method developed by Singer and Renaud [12]. The
equation of motion for 108 triatomics of C,, sym-
metry were solved using periodic boundary con-
ditions and the resulting data stored on 9 track
magnetic tape of the CDC7600 computer of
UM.R.C.C. The data were subsequently analysed in
twenty minute segments of real time. The molecule
used may be described as follows:

(8)
@ ©

with  AB=BC=10"'"m, m,=25x10"2%kgm,
PABC=60° mp=m,=m., with Lennard-Jones pa-
rameters ¢=3.0x%10"*"m, ¢/k=173.5K. One time
step=10"1%5=0.01 ps.

The temperature of the sample was set at 220 K (or
100K), the molar volume being 10-*m?®. The func-
tions ay were calculated over a time span of 3,000
time steps, at each step averages being taken over the
108 molecules. An initial 3,000 time Steps were run
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Fig. 1. Moment autocorrelation functions of velocity from a mole-
cular dynamics simulation (see text), 220 K.
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and the dynamical data at the end of this run used to
restart a further simulation over a further 3,000 step
time-span.

The autocorrelation functions were calculated using a
running time average over a 3,000 time-step span,
and checked using average over a 3,000 time-step
span, and checked using a 1500 time-step span for
consistency and statistical noise level. Some of these
checks are illustrated in Figs. 1 to 5. Simulations
were carried out for the following X:

(i) 1,, a unit vector along the least principal mo-
ment of inertia axis.
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(1) VAOLAO)/KVEO0)VA(0)> 3,000 time steps
v 1,500 time steps
oo LA VEO)Y/LL2O)L20)) 3,000 time steps
(consistency check).

(2] The same f(or the fourth moment functions.
(3) Sixth moment functions.
Ordinate: ‘C{t); Abscissa: time steps
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Table 1. a4, For Various X:

Molecular Dynamics Simulation® at

220K

X a, dy ay

I, —0.25 %0024 —0.55 +0032  —~0.78+0.026
le ~0.225£0.03 ~051540045 -0.74+£0039
r, -0.29 +0.016 —060 +£0022 —-0.81+0017
ry —0.285+0.016 —059 0022 ~081+0018
L 0.26 +0.15 083 £0.72 1.96 4241
v 0.75 +0.27 255 +1.50 6.541+6.57
T 0.56 +0.32 219 +221 6.75+11.70

=

* 4 (standard deviation)

(it) 1z, and lg.

(iii) 1,y and ¥, the atom position vectors.

(iv) L, the resultant molecular angular momentum,
delined with respect to the laboratory frame.

{v) The centre of mass linear velocity, V.

(vi) The resultant molecular torque, T, in the labo-
ratory frame of reference.

In Table I we summarise the mean levels ol a, ie.,
the mean of the «, calculated at each of 3,000 time
steps (30 ps) of the simulation run.

Some of the results of the simulation are illustrated in
Figs. 1 to 5. There are significant deviations from
Gaussian statistics for each vector X, As far as the
authors are aware this is the first attempt to compute
a, for vectors other than the centre of mass or atomic
mean square displacement. The g, functions for 1, 1,
r,, Ty and r, are clearly non zero and negative, and
constantly so within the limitations of the statistical
noise. The a, function for I, illustrates what appears
to be a drift as the simulation proceeds. However
we have contented ourselves with a calculation of the
mean level.

The a, functions for velocity (V) and torque (T) (Figs.
3, 4) fluctuate much more about a mean value (see
table) significantly, this time, above the zero level of
Gaussian statistics.

The functions most accessible to a reasonably tract-
able analytical analysis are

V) VE0) /K V2" (0) VA(0)),

the moment autocorrelation functions of the three
dimensional linear velocity (Fig, 1). In three di-
mensions these are interestingly different from the
same type of functions calculated by Berne and Harp
[4] for CO and Evans et al. {13, 14] for N, in that
they reach a steady long-time limit at a value much
lower than that expected from a Gaussian analysis of
the statistics (0.6). This is illustrated in Fig. 1. The
1,500 time-step run for the fourth moment (Fig. 1)
agrees satisfactorily with the 3,000 time step run, so
that it is very unlikely that the deviation from Gaus-
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sianicity is due to statistical noise. Figure 1, however,
shows that the component function (1 ~D} V2 VO
is more closely Gaussian (see below). Turning our
attention to the other moment functions for which
Gaussian limits are available analytically at present,
the angular momentum autocorrelation functions,
our simulations (Fig. 6) show up positive and negative
deviations, unlike the consistently positive ones
discussed for CO by Berne and Harp and for N, by
Evans et al, This work will be reported in more detail
elsewhere. The component autocorrelation function
CLANHL20)/CL2O)L0)) is illustrated in Fig. 6,
the Gaussian limit in 3-D being 0.5 in this case (ap-
pendix).

The torque-moment autocorrelation functions (Fig.4)
reach satisfactorily smooth long-time plateau values
as do (2"()127(0)> /<12 (0)12"(0)> (Fig. 7). The statisti-
cal noise level is illustrated for (L) TH0))/
{TLHO)THO) in Fig.4. Finally, in Fig.5, we illus-
trate the mixed autocorrelation functions
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Fig. 6. Molecular dynamics simulation at 100K of the angular
momentum moment a.c.ls.
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for 1,500 and 3,000 time-step averaging sequences.
The noise increases the higher the moments
used, but for (LA V2O)>/CL2"(0)V2"(0)y the
result is satisfactory. Unfortunately no analytical
Gaussian limits are known for these functions at
present, but we hope to calculate them shortly. This
requires a theory of asymmetric top roto-trans-
lation.

The most interesting implication of the simulation
results is that the stochastic force appearing in any
version of the Langevin equation is also non-Gaus-
sian. This point is dealt with analytically in Sect. 4,
where we have reproduced the major features ol the
simulation results in the case of linear velocity, in 1
—D and 3-D.

Tt will be interesting in future to increase the number
of particles in the simulation to evaluate the elfect on
a, and moment autocorrelation functions, if any, of
periodic boundary conditions.

TII. A Theoretical Approach to the Study of
Relaxation Phenomena Involving Both Non-Gaussian
and Non-Markhovian Behaviour

The Mori approach [15, 16] allows the replacement
of the Liouville equation

4
i pO=Lp(®) (©)

with the generalised Langevin equation given by (3)
where

iQ,=(PiLA,A*)(A,A*)"* (7N
®(t,7)=(PiLexp[(1—P)iL{t—1)]

- (1—-P)iLA,AT)(A, AT)~ 1

= — ({1, f() ") (A, AF)* (8)

and
i(t)=exp [(1-P)iL](1—-P)iLA. )

The previous expressions are based on the projection
operator P defined by

PG=(G,A")(A,AT) A, (10)

A suitable scalar product of the two variables F and
G must be defined. We denote such a scalar product
with the symbols (F, G™).

Adelman [6], Fox [7], Davies and Evans [§] have
derived the Fokker-Planck equation associated with
(3) in the case where the random force f () is assumed
to be Gaussian. The result of the previous section
indicates that such an assumption is not satisfied in
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the context of molecular dynamics. On the other
hand, the Kramers-Moyal expansion [17, 18] affords
some ipformation on the general structure of the
Fokker-Planck equation provided that the stochastic
process be Markhovian. This equation, in principle,
may be valid even in the case of non-Gaussian pro-
cesses. The main idea of this paper is therefore that of
replacing the generalised Langevin equation, (3), with
a multi-dimensional Markhovian chain of equations.
By using the suggestions provided by the Kramers-
Moyal exposition it is then possible to obtain the
cortesponding  Fokker-Planck equation  without
using Gaussian distributions.

I11.a. Replacement of the Mori Equation
with o Markhovian Chuain of Variables

The progression outlined above may be accomplished
by applying the results obtained by Mori in Ref
[19]. Mori showed that it is possible to build up a
chain of variables f;, j=1,...,N, defined by the fol-
lowing equations.

fo=4, (11)
f,=iL{_,, (12)
L=(1-P_)L, ,, (13)
Ly=L, (14)
PG=(G,fi")({,{})" 1, (15)

Then it is possible to write the Laplace transform of
&(t) in the following way.

B(z)= -
1—-iQ, + ! 42
§ tTA10, + 2
+ L 2
z1—iQy+By(z) "Y' (16)
where
iQ,_ =(LE, ) (1), (1n
A = —(LE, L DL (18)

Mori suggests that the chain of variables may be
truncated at the Nth order by assuming that fu(2)
may be replaced by the constant matrix py.

We shall use this result in order to demonstrate that
{3) may be replaced by the following one

%v(t)zAv([)—Fv(‘t)—FF[E) (19)
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where
v, (1)
vit)= Vz'(f)
vlr)
and (20}
(]
0
E(t)= .
Fytt)

are nx N dimensional column vectors. The friction
grand-mairix I' is & n x N dimensional square matrix
endowed with the following form:

00 .. .0
0... ...

r=| . . (21)
D... 0 yy

Equations (4) to (6) describe a nxN dimensional
Markhov process in that the second (luctuation dissi-
pation theorem may be expressed through the usual
form:

CF(1)y=0

SEEED =T <vO)vF(0)> +{v(O0) v (0)> T'*]0 (£ —s)

(22)

Note that the previous equation implies only Mark-
hovianicity in that we have nol made any assump-
tion about higher-order moments. No Gaussian as-
sumption is made.

We can now define the first component of v as being
the component of interest. Each component v; can be
obtained by applying to v the projection operator PM
defined in the following matricial form:

(BX),,=0,8,,1;

km gk~ gm

Jkm=1,2,... N. (23)

The component of interest may be obtained by
applying to v the projection operator PM¥. 1f this is
applied to (19) following ref. (20) we obtain:

(PM=Pf“, PME=0,P¥I =0, Q¥ =1 —PH)
%P‘”v(t)
=PY APMv(6)+ P A exp Q¥(A— )t QM v(0)

+ j P Aexp QM (A —I)(t—s) Q™A ~T)P¥v(s)ds
0

+ [P Aexp QY(A—~ )t —5) QM F(s) ds. (24)
0

We note that (24) is similar to (3) provided that the
stochastic force includes both the second and the
third term on the r.h.s, of (24). Since in {3) @ and f are
related through the second [luctuation-dissipation
theorem (24) may replace (3} provided that the two
respective memory ‘kernels’ are shown to be equal.
There is no contradiction then in assuming that the
stochastic force of (24) is equal to that of (3).

We show now that the ‘memory kernels’ are equal
provided that:

(A)jk:(iLfJ.,f;")(fk,f,j)"
(F)jk:(?f_j’f;)(fk f;j)_l- (25}
The memory kernel of (3), by exploiting the fact that

the set of variables f; is assumed to be complete can
be written as:

Pt s)=((L— AU 6!

~(exp {1 =PYiL—=9)(t —s)](1 = P) £, £5)(f), 1) ~*
(AL—=F) £, A*)A AT (26)
the operator § resums the contribution of the vari-
ables £, [> N. In (26) and in the following summation

on repeated ndices is understood.

By expanding the exponential between the square
brackets and applying (25) we obtain:

(eXP[(l—P)(iL—? He—=s))(1— Py, £) (£, 17)"
“Z
(f, £

my> nn)

(1 Py 1)

(ZL ’y)fm,:f )(flpfl‘r)
: ((1~P) fluf::z (fuz’ mz
(L =N, 4L 6

(=P, ) (L. = i ([_.S)P

r=o 1!
=P (A=),
(A=TD),,, (1P,
=exp {(1-P¥)(A—T)(t—s)} (1 -P™) (27)

The matrix I” has to be inserted in order to take into
account the suggestion by Mori of replacing B,(z)
with a constant matrix y,. The memory kernel of (26)
can then be written in the same way as the ‘memory
kernel® of (24),

Alter showing that we can focus our attention on the
Markhovian Langevin equation (19) we can easily
find the associated equation using the van Kampen
lemma [21)):

6P 0

—0:1[,_’—'67‘_(/11‘]~[;j) v;P+IL,P=I,P (28)
where I, is the Markhovian-diffusion operator con-
cerning the last variable of the Markhovian chain, V-
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Fox and Uhlenbeck [22] provided the method of
constructing the Fokker-Planck equation even for a
multidimensional variable such as v,. However they
exploited the Gaussian properties of the stochastic
force. In the next section we shall try to build up the
operator I, in the non-Gaussian case.

1I1.b. The Markhovian Fokker-Planck Equation
in the Non-Gaussian Case

We would like to recall that (28) has been obtained
without any Gaussian assumption, However, (28) can
be applied only when a suitable analytical expression
for the diffusion operator I, is available.

In this section we shall give some useful suggestions
about a practicable approach to build up the explicit
expression for I,

For the sake of simplicity we shall assume that the last
variable of the chain is 2 monodimensional variable
w, which satisfies the Markhovian Langevin equation

d
0 w=—fBw4f(t). (29)

It is well known [17, 18] that the Markhovian Fokkey-
Planck equation is endowed with the general form

0 o1 o\
=Pl 0)= 3 = (= 3-) LML P(w 1o, 0]

antl o (30)
which is fully equivalent to the master equation
—;—t (W, 1wy, 0)={dw' P(w,t{w,,0)
SWwlwh) = P(w,t|wy,0) W(wh|w) (31)
provided that
Wo=[dwh(w —w)" Wiw|w?). (32)

Note that {(30) when limited to the first two terms is
the usual Fokker-Planck equation. By using a
mathematical model for the transition operator Wit is
possible to evaluate any moment p!. Unfortunately,
the model used in [23] for example 1s of a Gaussian
kind.

As a consequence we suggest a correction to the
usual Fokker-Planck equation

E—P—FP—{ O il LZ(W)] Plw, £|wg0)
ot —igd = —a;#ww Zawztlw 3 Q

: 33)
whose general form is
np=5 L (2 0 P, twe,0)] (34)
Yo ey T e

17t

by truncating the summation of (34) and giving *{w)
simple analytical expressions.

An alternative approach to build up I, is the one of
exploiting the moments of the stochastic force f(t),
since the g (w) can be evaluated through the stochastic
average ¢...) as follows.

i {wy=<{dw">/41. (35)

[l we assume that the moments ol the stochastic force
are products of functions and the {irst moments ol the
stochastic force vanish, any moment ;! (w) except the
first one, which is

phw)=—Bw, (36)

depends on the stochastic force through the general
formula
t+ At [ aald

ww)y=Tlim | dt; [ dt,...
dt—~0 ¢ t
t+dit
A e f) At (37)

It is easy then to show that in the Gaussian case
wWiwy=0 n>3. {38)

In order to avoid using a Gaussian distribution, we
can reasonably assume that:

(r=w?) S fle) - fe)
=nle, A"B(t, —t,)0(t,—t3) ... 0@, _, —1,)
+(Gaussian contribution).

As a consequence we have (6, =1)

sl zﬁ)
lo=F (aw“’“ o)’ &)

3 63 4 64
['i:ﬂ{gaA E\-V_3+E4A 6w4+... . (40)

The parameters &5, ¢, have to be taken as being small
perturbation parameters in such a way as to slightly
modify the result provided by I;. However, it is:
evident that Gaussianicity is destroyed by the pre-
sence of I7.

A point which is not yet well nnderstood is - the
possibility of obtaining non-vanishing higher order
moments u»(w) through the Gaussian model of [23].

~This issue will be clarified in future work. We limit

ourselves here to recall that a Gaussian distribution
is no longer a solution of the Folker-Planck equa-
tion when a [ew terms of (34) are taken into account.
The ‘non-Markhovian® non-Gaussian Fokker-Planck
equation reads (when the Mori truncation is perform-
ed at second-order)
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G
— P(r,w,t| vy, W, 0)
it Q 0

¢ ) o2
= w(-w———v +f —w-’r-A"
v oW (J\\’ CIW

o] '\4 .

+83‘A3~:—384ﬂ4 5t ]} Plo,w,t|vg, w,, 0)=T,P.
e

(41)

(,/)’

Formally, when the Wigner-Moyal diffusion operator
is replaced in (28) we obtain a non-Gaussian, non-
Markhovian extension of the Fokker-Planck equa-
tion.

1V. Solution

To solve the generalised Fokker-Planck equation we
expand the diffusion operator I, of (41) over a con-
venient basis set provided by the direct products of
Hermite polynomials [24].

24wt
F, n(o,w)= C(n,m) He,(v) He, (w)exp [-—

i)

where C(n,m) is the opportune normalizing [actor
defined by the following scalar product.

1 2 2
—Z__I nm U \'V) n NI (U’ ‘V) exp [T_Z\ZL‘] dvd‘vv 5"” 571”71“
i
(43)
So we have:
Cln,m)=(n!ml)*? (44)

Using recursion formulae for the Hermite poly-
nomials [4] we reduce the problem to that of solving
a matrix equation:

X=AX

by diagonalising A. This is a matrix expression for
the diffusion operator I, on the basis set (42) with the
scalar product (43).

We limit ourselves to treating one component, v, of
the centre of mass linear velocity vector V for storage
reasons during computation, In the case of liquid
phase (isotropic) diffusion the results for the three-
dimensional (3—D) case may be easily found as there
is no correlation between two different vector com-
ponents and all the spatial directions are equivalent.
From now on we denote by v, any one component
of the total vector. Clearly, in (4) and {5) we refer to
the latter.

The Gaussian limits of the moment autocorrelation
functions in one dimension (e.g, those for v,) are
different [rom those in 3—D. Some analytical results

for one dimensional diffusion are:

(o (D) 00 = x(1), (45)
OO =51 +25(1), (46)
30 vOD =750 1)+ 627 (1)), (47)
A o) = 1530+ 7227 (1) + 24 (1)), (48)
(8 (e) v8(0)) = g5 (1S + 36072 (1) + 900 % (1) + 78 x° (1))
while for the a, coeflicients: )
a, =D CP) =1 (50)
where

CM=13...2n—-1)=2n-1H (51)

For Gaussian statistics all a,=0.
The evaluation of the moment autocorrelation func-
tion is made following Kubo’s method [25] of solv-
ing the stochastic Liouville equation. With non-Gaus-
sian statistics the diffusion process has a unique
equilibrium state R, defined by:

I:IPO(UX’ W".)=0.
The Gaussian equilibrium state B¢ is well known:

2 2

R®ccexp {-—”%”—}ocz% (00 ) (52
but when the Gaussian assumption is relaxed the
equilibrium state £, becomes a linear super position
of the function F,,(v.,w,). Once P, is known the
calculation of the correlation of any function
f{v,w,,t) may be made through the following for-
mal expression, where in analogy to Dirac’s notation
we define the normalised zero bra (0| and ket |0>
vectors which satisfy the equation I;|0)=0={(0|I,
and (0|0>=1. This means:

<f(vx,wx,t)f(vxa )
=<0/ (e, w,, 0) " f (v, W, 0)] O) (53)

where we have used the fact that the temporal evolu-

tion is totally described by the time-translation oper-
ator:

U@)=e'™

Another advantage of this kind of approach is that
we can evaluate three-fime and higher order cor-
relation [unctions. The diffusion process when han-
dled this way is in fact Markhovian in nature [24]
described by the exponential operator U(t) in accord

with Doob’s theorem. We have calculated explicitly
the three-time correlation function:

) vi()v, (26> = (Ol v e v e n, |0}
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2(])0

L |

Fig. 8. Simulated three-time autocorrelation [unction of velocity at
100K:

VOV, (VY (26)5/KV20)),

This normalisation is prossible because the denominator is slightly
different from zero in the simulation.
Ordinate: C(t); Abscissa: time steps

which is identically zero for all t>0 in a Ganssian
process. We have also simulated this function and the
results are shown in Fig. 8 The stability of such
simulations is open to question. A test of such is
llustrated in Figs. 9 and 10 for the angular momen-
tum (L,) three-time function and the torque (L)
equivalent.

We perform our calculation by limiting ourselves to
the first non-zero term in the expansion of I;. We
assume that this is the one related to the fourth
derivative, i.e., we take ¢,+0 and &,, £, =0, J>3. The
parameters @ and y are derived by fitting the simu-
lated velocity autocorrelation function. The best fit is
the one with y=925x10'%2s"! and w=6.25

x 10125~ The numerical solution of the relevant

matrix equation was performed on the University of
Pisa IBM 360/370 and UMRCC CDC 7600 com-
puters, using perturbation methodology.

- Results for the coefficients a, are summarized in table
II for several values of the parameter e,. Note that in
three dimensions:

{(3d) __3 (1d
afP =249,

In Fig. 11 we illustrate the behaviour of the nor-
malised autocorrelation functions {v2"(¢)v2"(0)>/
(2" (0)v2"(0)> as calculated from the generalised
Fokker-Planck equation as functions of €,. The results
are in qualitative agreement with the machine
simulations of Sect. (II). The a, functions have the
same sign and the limit as t— o of the kinetic
energy a.cf. (1—D) is always below the Gaussian
one. Due to the assumptions we made in Sect. III
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b

Kig. 9.

(L0 L (YL (200)/CLE(0))

(3,000 time steps (=2¢)

. 1,200 time steps

-—=-~ <L(t)- L(0)/<L(0)- L{0}> for comparison,
Ordinate: C(r); Abscissa: time sleps

Fig 10. As for Fig. (9), T, component of the torque vector T,

the equilibrium average (»2) is unchanged by the
non-Gaussian perturbation so we find that in three
dimensions:

i SV V)

ST

which implies that for positive a, the limit of the
kinetic energy autocorrelation function is below the
Gaussian one.

The analytical three-time autocorrelation function is
shown in Fig. 12. It is interesting that this function is
oscillatory, and can exceed the normalised valne of
unity at t=0. Its absolute magnitude is small com-
pared with the two-time correlation function.



—— U 1), (0 /A0
CuHDEH0)Y /e (0))
R CHUTR (DY ICROY
CABTAOMENIN

Fig.11. Two time correlation functions, normalized at t=0. The
different values of the non-Gaussian patameter &, are: L. g, =0.0.
the Gaussian case; 2. &,=04625; 3. ¢,=0625; 4. £,=0925;
5.g,=1.55. The velocity autocorrelation function does not depend on
the actual value & The time units are picoseconds. In the figure the
dilferences with the Gaussian case of lim (v2(£)v2(0)>/<¥3(0))

-~

are explicitly shown by arrows: the dashed arrows, instead, show
the Jim (ui()v(0y>. It is evident that the oo-levels are always

§

below the Gaussian one, Abscissa: time/ps; Ordinate: C(t)

Finally we wish to note a relevant feature of our non-
Gaussian calculation. The velocity correlation func-
tion does not depend on the non-Gaussianicity of the
system. This is true also of the absolute value of the
average kinetic energy im{v2) eq. which is related
to the formet through the second fluctuation-dissi-
pation theorem (8). This is independent of any Gaus-
sian assumption (Mori [19] and Zwanzig [26]).
Non-Gaussianicity affects only the higher n-order
correlations and averages.

Table 2. Non-Gaussian Parameters
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Fig. 12. Three-time correlation function {u (0)v (v, (2¢)). Time
units are picoseconds, while the intensities are in units of 4°. The
values of g, are the same as for Fig. 11. The Gaussian case is not
plolted as it results in a correlation function which is zero,
+~10~3% for any time ¢ Abscissa: time/ps, Ordinate:

(o Qv (6) v (20D

1V. Concluding Remarks

Both experiments and computer simulations [4, 11]
and the results exposed in the present paper, show
that the gaussian assumption is not always applic-
able. The need, therefore, arises to develop a general-
ized diffusion equation to describe non gaussian
features without disregarding the non Markhovian
ones too. The proposed equation (41) leads to results
which are in qualitative agreement with the computer
simulation described in Sect. 2.

Equations (28) and (41) allow us also to exploit the
well known Stochastic Liouville Equation (S.L.E.)
theory [25, 27, 28] in such a way as to include
processes which are both non gauvssian and non Mark-
hovian at the same time.

Let

u(t)=Fu(r), A1), 1) (54)

€y €39 a,(ld) a,(3d) limit® W a4 (1d) ¥y a,(ld) Limit®

V) VE0) ’ - (o2 (0)
MO

(Ld) (3d)

0.0 3 0 0 0.333 0.6 15 0 105 0 0.0

0.4625 3.788 0.25 0.16 0.264 0.517 26.80 0.787 2764 1.58 0.053

0.625 4,064 0.355 0.21 0.246 0.496 3096 1.06 3285 2.13 0.053

0.925 4,575 0.525 0.31 0.219 0.458 38.63 1.58 435.8 315 0.048

1.55 5.639 0879 0.53 0.177 0,392 54,59 2.64 659.2 5.28 0.048

* Normalised at t=0
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where A(z) is a stochastic processes described by the
generalized Langevin Equation (3). The theory devel-
oped in the present paper allows us to build up an
elarged set of stochastic variables [v;, i=0,..., N],
including A(f)=v,(t) In such a way that the con-
tracted dynamics ounly tnvolving A(t) is the same as
the one of (3). FHowever the probability density
P([v,(t)],t) describing the enlarged set of variables
obeys the Markhov master equation (28). By follow-
ing the basic idea of SL.E. theory [25, 27, 28] we
notice that the multidimensional variable [ufr), v,(¢), i
=1,...,N] is again a Markhov process which obeys
the master Equation

=P, 0L ) =5 FaO.MOLPHLP (55)
where I} retains both the non gaussian and the non
markhovian feature of the process A(t). Equation (55)
can be regarded as a generalized S.L.E. avoiding the
approximation of Markhovian-Gaussian relaxation
for the stochastic variable A(t).
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Appendix

In this appendix we evaluate the moment function {J
=angular momentum) (J*(£)J*(0)>/¢(J*(0)I*(0)> for
the rotation in space (3—Dj of the asymmetric top. If
we assume that the statistical distribution of angular
momenta is Gaussian we may write:

JWy=0: I G =x@~s)

so that the conditional probability function is:
PZ(‘Izot’Js’ S)OCCXP[—%(JI'—X([—S)JS)T

(IO IT0)) — (e —3) (TOIT(O) (¢ —)

(T =yt =5)Jy).

If we assume that both x(t) and (J(0)JT(Q)) are

diagonal in the same representation (ie. that the
principal moment of inertia dynamic is known) then:

kTIL, 0 0
JOJT0)y=| 0 kTI, 0
0 0 kTl

where [, I, and I are the principal moments of
inertia, and:

r(t=s) 0 0
wt=s)=| 0 p,(t-s5) O
0 0 y,(t—s)
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We have the simple formula:

'P:’.(Jht|"]sys)
(1 __. — (1y2
mxp{_ﬂl [(J, “fz s)dM)?
kT L L(1=2(—s)
TP~ —5)I%) (J$3’—x3(t~s)J§3’]
L1-x3(t=s) I, (1= x3(t~s)

+

Using this expression we may calculate the moment
autocorrelation functions by integration over the
probability density function, so that:

GTOIEOy =(1 +223 () (kT1,)?
O PO =3(kT1,)

RO TZ0) =(1+ 250Nk TL)
» 3(kTL)?

t—0

J0)-J(0) J(0)-J(0))
=3(kTI)*+3(kTL)*+3(kTI,)*
+2k T (I L+ L, 1y + 1, 1),
(IO)-I(5)IO)-TOP =1 +2x3 () I3
203 I3+ (1+2x050) 13
+20L L+ LI+ 1 ) (kT)?

=kT)* [+ L+ L) +217 12 (2)
+212 330+ 213 13 (0.

Finally:

<J()-I() J0)-J(O)>

)- B
<J(0) . J(O)J(O) JOD = [([1-(- L+ 13)2

3

23 PO, + L+ LY + 203+ 13+ 13)]
1

2, 72, 72
i B
fmeo (I +1, + 1)

=0.5 for I; =1,; I;=0, the result of Berne and Harp.

The moment of inertia characteristic of the molecule
used in the simulation is such that the limit of 1/2
should be replaced by 1/2.125, a correction insuf-
ficient to explain the markedly non-Gaussian charac-
teristics of the simulated moment autocorrelation
functions.
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