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A series of phenomenological macro-micro correlations is developed for single and multi-
particle correlation functions descriptive of molecular rototranslation. The relation between
hydrodynamic and molecular theories of molecular motion may then be investigated in the
Markov limit. It is emphasised that a Mori continued fraction for non-Markov statistics and
molecular motion on the single particle level is inconsistent with the unmodified viscoelastic
approach exemplified by Bixon and Zwanzig. The analytical autocorrelation function must be
related to a multimolecule correlation function via a macro-micro relation before comparison
with the hydrodynamic theories is fruitful.

1. Introduction

Many of the theories developed for molecular motion in condensed phases
are single particle in nature, i.e. they deal with autocorrelation functions
alone'”). However, in attempting to estimate these with spectroscopic data®)
the problem is encountered of relating the autocorrelations and cross-cor-
relations between different molecules. In dielectric relaxation’) the complex
susceptibility is related to the orientational correlation function

Cu(t) =32 4 (0) - (1),

where p; is the dipole vector on molecule i and N the total number of
molecules. At t =0 the above equation may be identified with the g-factor of
Kirkwood, which is important in mesophases®), where long-range order is
éncountered in the fluid state.

The historical method*®) of describing dielectric relaxations in terms of a
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purely rotational, single-particle Langevin equation has disadvantages. For
example:

(1) The high frequency behaviour of the dielectric spectrum is illdefined,
essentially because memory effects and inertial effects are illdefined'®).

(2) In reality the molecular motion is rototranslational'), a purely rotational
description is unsubtle and its use obscures the mutual nuances of translation
and rotation suggested by the computer simulators and the direct results of
incoherent, inelastic neutron scattering'?).

In this paper we aim to develop the simple theory to account for points (1)
and (2) and within the same framework measure the mutual interaction of
single molecule and collective rototranslation. In so doing we can calculate
the extent of static and dynamic pair correlations between angular and linear
momentum vectors fixed on different molecules. The angular momentum
vector J is kinematically related to the dipole vector p so that a strong
Kirkwood correlation of g implies that J is equally affected. A strong mutual
correlation between linear momentum and orbital angular momentum on
single molecule level intuitively leads to vorticity on the macroscopic scale.
The propellor is a rough analogue.

The well-known Mori representation') of the relevant equations of motion
provides a means of linking hydrodynamic variables such as momentum
density with molecular variables such as the momentum itself. The theory of
light-scattering') has been developed by mixing in this context the different
hydrodynamic modes: particle, momentum, energy and spin density, vorticity,
etc. We have recently') used the matrix Mori theory in an entirely similar
fashion to investigate rototranslation of individual molecules, or colloid
particles. In section 2 we develop the Markovian single-particle (Langevin)
theory of rototranslation for use on the macroscopic scale. A multidimen-
siona) approach due to Grigolini and co-workers'®) is utilised in section 3 to
generalise to non-Markovian statistics the results of section 2. Finally, in
section 4 we discuss developments of the theory of sections 2 and 3, keeping
in mind the possibility that the momentum and spin densities may couple to
the energy and particle density, but only the coupling between angular
momentum and linear momentum is relevant for the single particle motion.
We show that, in principle, the dielectric spectrum contains information about
mode-mode coupling in terms of various static and dynamic pair-correlations.

2. Markovian single-particle theory of rototranslation

The column vector 4 of arbitrary dynamical variables (assumed in-

Ademenden oo lich may alen b ther ~nh 1 O Tl - s - I hwy th
dependent and which may also be other column vectors) i1s governed by the
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Aori equation:
;L"'.l('&) = 1!@4 : /‘3(") _f dT(/)A({ - T)/\(T) + (1) (4
0

Here 1534 is a resonance frequency operator, the matrix kernel ¢,(t) is the
effective Liouvillian (projected onto a subspace). Fi(t) is a stochastic variable
with the units of force or torque, and propagated from A(0) via a projection
operator technique. Denote by As(t) a column vector associated with the
space rototranslation of a molecule j and by Au(t) a column vector describing
the cotemporal, many-molecule, collective motion engendered by Ag in the
infinite past. We may define Ag by

p(t) z eik syt
As = o . (2)
Q(t) z elk s (1)

Here r,(t) is the position vector of the nth atom of the jth molecule, p(t) is
the linear momentum of the jth molecule, £2(¢t) its angular momentum about a
centre of mass reference. k is the wave vector associated with the trans-
ference of momentum from the measuring radiation to the system. In dielec-
tric spectroscopy it is usually assumed that k —0 in the final expressions for
autocorrelations of As and Ay. If there is no net mass flow the total linear
momentum is conserved so that Z;p;(t) = 0. Then the velocity autocorrelation
function and the cross-correlation function decay identically, since

N
0(0)+ 3, wi(6) = i)« (3, ()~ (1)
= 1,(0) - v;(¢). 3)

However, if there is a net mass flow the above relation is no longer valid.
Also, the total molecular angular momentum density is conserved (spin plus
orbital), but the spin and orbital densities are not conserved separately. We

now define the spin density (S) and current density (g) Fourier components
by

g(t) = 2 pi(H) 2 exp(ik * ro (1)), 4

S(t) = ; 02;(1) 3, exp(ik - ryi(t)) (5)

and the vector Ay by

- [50]
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Assuming that k is along the z-axis of the lab. frame then only the densities
within the square brackets below take part in mode-mode mixing theory on
the macroscopic level'”')

(g S1; (8 SiIs [S:I [p, g ul. (7

Here p is the particle density and u the energy density. The symmetry
groupings (7) are valid only when there is no long-range ordering in the liquid
and when the molecules have inversion symmetry. In a mesophase of chiral
‘molecules (e.g. cholesteryl oleyl carbonate) a mixing of collective modes
other than those defined in (7) is possible.

Having, for the sake of development, chosen the single particle rototrans-
lation to be represented by Ag and the collective rototranslation by Ay we
now deal with the problem of correlating As and A, within the Mori
framework. In section 4 we shall discuss other structures for Ay, but that will
not affect the general theory set out below. It is convenient to define a vector
orthogonal to As by

Ar = Ay~ (AAT{ASAD 'As, : (8

where the superscript T denotes transpose, and solve, using the vector

A= [is], eq. (1) for some interesting equilibrium time autocorrelation func- ‘
R

tions. It is convenient to make the following definitions:

{

{1) Define P =1~ Q as the projection operator onto the subspace [As, Ag]. |

(2) Define the matrix f as

f=(APATONAPAPTY ©) |

where AYT refers to the vector of particle 2, and AY’ that of particle 1. The

matrix f is that of the static pair correlations of distinct particles.
(3) Define the matrix g as

[ acagore > Avor
g=— (10)
f dt(APO)e " AP0

i.e. that of the dynamical pair correlations.
We have
N Ty 4 1 A A T\-1 4 7
(Apdp) = (Au — (AuAs)Aghs) TAg]

o w AT 7 A A 1 4 qT
< [Au— (AuAs)AsAs) As])
1
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i + (! T . 1 vrisrdasl as
yroduct (AY’An) may be expanded as
S Ty g ) T - YR TIRIR i
(A A = (A AT (N = 1AV AT s

(AuAl) =(A0A) + (M — 1I(aFaL"), ' (13)

where N is the number of molecules in the system. By definition we have

(AnAd) = (APAYN1 + Ny]. (14)
Simiiarly,
(AvAL) = N(AsAs)[1+ Nf],
so that
Ag = Ay — Ag(1 + Nf), (15)
(ArAR) = N(AsAS)(1+ Nf)— (AsA(1 + Nf)(1 + Nf) (16)
= N(AsA)(1+ Nf) _ (17)

because N =107, and because intermolecular forces are short ranged on a
macroscopic scale so that Nf=1. The off-diagonal elements (AzA3) and
(AsAY) of the susceptibility matrix (x) of A are zero, so that

‘= [<ASA§> 0 ]

0 N(AsAD(1+ Nf) (18)

We may now proceed to solve eq. (1) in the simplest Markov approximation
where the effective liouvillian ¢ is a delta function. The vector A is governed
by')

A() =i - A()~T - A(t)+F(1), (19)
where
r=A-x" (20)
Define the matrices Aj; and A;; by g2 = ApAj/, then
_ Ay NA (glz—j)']
A _[ 1 1
NA(ga—f); AuN({A+Ng) /) @b

where we have assumed that g has elements of the order 1/N, so that

(1+ Nf)* is small compared with N(1+ Ng). The resonance term iq2 - A(t) is
defined by :

(AATO)XAMAT0) ' A1)

and since As and Ay are orthogonal, this is null. The dissipation matrix I" and
the column vector A of eq. (19) together yield expressions for correlation
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functions of interest. We have the relation
[(As(t YAS(0)As(0)AT(0)) ! 3(A( 1) AR(O)) AR(0)AR(0))™
(Ar(H))AS(0)XAs(0YAL(0))™! ;(AR(t)Aﬁ(O))(AR(O)AE(O))"]

_ $;1[13+F11 Iy ]

_ I Is+ Iy (22)
Therefore:
(As(DAS0)XAs(0)A(0) ™!
= %3 ((1s + Tp)((1s + T)(ds + ) — Ml ™, 23)
(AR(DAR(0){AR(0)AR(0))™!
=20 (s + Ny J(As + T)(As + ) — Tl ™); Q4 1
(As(DAROXARO)AR(O)™
=L (- Tof(ds + T)(Is + ) — Tl 0™ (25)
(Ar(1)AS(0)XAs(0)A3(0))™
=%~ Tul(1s +Ti)(1s + Tp)— Fpd)™); (26)

which are matrix equations governing the single particle and multiparticle
rototranslational correlation functions, and linking the two levels of motion.
We may now focus our attention on the single-particle level or multiparticle
level separately.

2.1. Single-particle rototranslation

We denote:

_ [ (x(0)y"(O)
As0AT0 =[50 GinTon) @7

where x and y are defined through the definition of the column vector As(t)
itself. _
Evaluating eq. (23) we have

(x(DxTONx(0)x"(0)) = £ '[(s + TH)E(s)/F(s)), (28)

(x(D)y ONy(O)yT(0) = L' [~ I'SPB(s)/F(s)), (29)

(y()x"(O)Xx(0)x"(0)) = ;' [ =TS D(s)/F(s)], (30)

(Y Oy 0y (0) = £ [(s + TFYA(s)F($)], 3n
where

Fis)= A(s)E(s) — B(s)D{(s). 32

In egs. (28) to (32) we define the matrix elements (') by

e (Y]
Feime __ |40 T [ 224
LT l ey ek L)
L4 g LTI
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. M1 IR ~(12) 72 ~
s) = (s +l<11|i.)(\.+,(ﬁ|jl.}+ (1 ’F%’w”—-'ﬂ'” m) irtill m)

-y, (1) —(]2 ~(12 1)|) 2 22) 2 2 2
'jk.Y):.\'(lljﬁ +I( ))+I“)Y( I(l )1( lr(lh I,) 1(‘1 )lt 2

20
Lj(%) — .S‘(,r(|2l)+ r(ll)) + r(2|)r(ll)+1 g’ul)r(_l, . F(llzl)lﬁ(llll) . 1“-(]222)‘!“(22'1],
(S) — (S 4 I“(2’))(S + rgp)) + F(’I)r(l’) F(’ZZI)I—‘EIIZ)_ F(IlzZ)rrz'lll).

The i elements may now be considered from a physical standpoint, allow-
ing us to decipher the eq. (28) (for the components of the momentum
autocorrelation function), or eq. (31) (for the angular momentum autocor-
relation function) in terms of static and dynamic pair correlations between
distinct molecules and in terms of a rototranslational friction matrix of the
Langevin type. We note the definition

[ I'n FIZ]_ Lt
F_[le I'n ._A X

_ T\ -1 1 (g— )1 +NH™
= AilAsAs) [N(gz,—f); (1+Ng)(l+Nf)"]'

In general, therefore, all the elements I'f" of the dissipation matrix may be
expressed in terms of the two matrices g and f of dynamic and static
correlations, respectively. It follows that the single and multiparticle cor-
relation functions are also so defined. We now go on to consider the
structures of g and f. The latter may be expanded as

_ [<x“’(0)x“>(0)T><x"’(O)x“><0)T>*';<x‘2><0)y‘“(0)T><y‘”(O)y“’(of)“]
I L0y™00x (0 X 0)x 07y y () O Xy 01y () |

where we have used the notation of egs. (28) to (32). The elements fj
measure the pair correlation between the vectors of momentum and angular
momentum on molecules (1) and (2). Similarly g measures the dynamic
correlations between a vector on molecule (2) at t =0 and molecule (1) at ¢ or
vice-versa. [f there is no pair correlation in the system at all, then both f and g
are null. It is possible, therefore, to calculate the hydrodynamic and autocor-
relation functions using only the static and dynamic pair correlations.

(34)

(35)

2.1.1. Comparison with molecular dynamics simulations and spectra

In principle, a mode-mode mixing theory such as the one outlined above
may be rigorously tested with a computerised simulator. The method would
consist of simulating the matrices f and g, various single and multiparticle
correlation functions and using the analytical theory to link the results. Any

remaining discrepancy between the simulated functions and analytical theory
can be attributed to either:
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(a) the need for non-Markovian statistics (section 3);

(b) coupling on the macroscopic level to other modes (see section 4).

To evaluate the theory with dielectric spectroscopy we recommend the
following procedures:

(a) The far infrared portion of the spectrum should be regarded as an
integral part of the loss process, so that the effect of inertia and memory in
the equations of motion can be estimated.

(b) The problem of interacting dipoles (and the internal field adjustments™)
can be minimised while keeping open the question of multiparticle, coopera-
tive dynamics by choosing a mesophase of weakly dipolar molecules and
monitoring the effect of dilution over the complete zero-THz range.

(c) The extent of rotation—translation coupling may be varied by measuring
the spectra of liquid and plastic crystalline samples. In the latter case the
centre of mass diffusion is very slow and there is of course a very high degree
of positional correlation.

(d) The problem of many parameters may be tackled by using different
spectral techniques and the simulator to investigate the same specimen.

2.1.2. Relation of angular momentum and orientational autocorrelation func-
tions

In this paper we have adopted the overall strategy of applying Mori theory
to the momentum and angular momentum vectors, since these determine the
molecular motion via equation analogous to those of Langevin for the
Brownian motion. In the light of these arguments we are left with the problem
of relating the single molecule angular momentum autocorrelation function (or
multiparticle correlation function as the case may be) to the function obser-
ved experimentally in dielectric spectroscopy and defined in eq. (1). In the
simplest case of uncoupled, uncorrelated angular motion constrained to a
plane, this problem has been treated in detail by McConnell and co-wor-
kers™). Suffice it to say that for angular motion of the asymmetric top dipole
vector in a plane (rather than in 3-D space) thére exists a relation between the

angular velocity and orientational autocorrelation functions of the following
kind®):

; kT f \ PP
(u(t) - u(®) = exp| —5 | (t — T (t)o(0)dr

| SESS—




{35), for example, «

motion, by the relevant component:

lane introduces a considerable incre in comp
ons such as eqs. (35) and (36). It is obvious in

must use aumerical methods.

2.2. Multiparticle correlation functions
We denote:

L HXOXTO) (X (DY)
(Ar(DARO) = [(Y(z)x“m» <Y(t)YT(0)>]

= (Am(£)AM(0) (37)

to a good approximation. Evaluating eq. (24) gives a set of equations analo-

gous to eqs. (28) to (32) with I';; elements replaced by I',, elements.

We note that in egs. (23) to (26), if the following inequality is true:
,F|1F2|<(ls+Fn)(ls+F22), (38)

then the following generalisation of the macro-micro correlation theorem of
Kivelson et al.”*) follows:

(As())AKOAs(0)AF(0) ™" = L7 (s +T')™'T; (39
(A A0 AMO)AR(0) ' = L (As + T) '] (40)
(As(DARONARO)ARO) ™ = L' [— Ti(Ls + Tu)(s + M) 7'T; (41)
(AOAONASMAL0) ' = L3~ Mou((1s + Ti)(1s + )71 (42)
Formally, the correlation-time matrices of eqgs. (39) and (40) are in the ratio
[1+ Nfl[1+ Ng]™. (43)

2.2.1. The decoupled limit of ‘pure rotation’

In the decoupled limit the vectors Ag and Ay reduce to one component
columns. In the Markov approximation to eq. (1) the correlation matrices g
and f reduce to scalars and the correlation times of Ag and Ay are in the ratio
of eq. (43). However, it is well-known from the results of far infrared
spectroscopy'®) that the Markov approximation is over-simplistic in the case
of uncoupled rotation and that a continued-fraction expansion of eq. (1) is

necessary. We develop the formalism for the vector A = [25] in section 3.
M

This provides a substructure for the general rototranslational theory that
f0110V\./S. For uncoupled rotation, and also in general, A obeys a diffusion
€quation derived by Davies and Evans®) which governs the behaviour of the
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associated probability density function p(A, A(0)| t). It is therefore possible to
write down a great deal of information about the nature of the effect of
distinct static and dynamic pair correlations on the variance of the molecular
angular velocity and spin density. By constraining the motion of the dipole
moment to a plane it is possible to use eq. (36) to link the final expression for
the autocorrelation function of angular velocity, for example, to the zero-THz
power absorption spectrum. In section 2, we develop eq. (1) into a multi-
dimensional chain of Markov equations, the last of which having the structure
of eq. (19). The number of equ tions in this chain is determined by the
approximant taken for the infinite continued fraction representation of eq. (1).

3. Generalisation to non-Markovian statistics

It has been shown elsewhere'* ') that eq. (1) is fully equivalent to the
Markov chain

dgt-V=iw-V—a-V~o-‘V+d>(t). (44)
Here V is a grand column vector of n dynamical variables B which are, in
turn, mth dimensional vectors. So we have the series of linked equations
defined by the structure of the resonance matrix w, the random force vector
®(t), the dissipation matrix o and the ‘virtual variable’ matrix «. If the
resonance matrix is null, then

B, =—a;By—vBi + F(1),
Bz == aZ[Bl — anB;,
B; = — anB:— auB., (45)

Bn+l = ‘j.

By using various n in eqgs. (45) it is possible to build up a non-Markovian set
of macro-micro correlation theorems linking the angular momentum and spin
density correlation functions. We note that the set of equations represented
by (44) is tractable for the space rotation of the asymmetric top whereas eq.
(1) is not. When n =1 egs. (45) must reduce to eq. (19) (with a null resonance
operator). We therefore see that we may use in eq. (45) a form for v, the
dissipation matrix, analogous to that of in eq. (19). It follows that:

P

- T . . n 2y -
Yss o Yse by ) : H{gn—1)

[ 7 =~V wrpia i R RIAY |2
S Yrud IN(@n—7) NO+NgJ

r
o ‘$ :
Lyr

where ¢ ar foare aynamic and static palr correiatnon 1actors 01 tne anguial
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moementum of distinct molecules. L, is a factor analogous to A, of eq. (21). &

relate the correlation times of the nth memory function of the column

or of As and Ay, through an equation such as (43). The matrices wy; are all
diagonal because As and Ag are orthogonal by definition. If we embed a dipole
vector in the asymmetric top and constrain the libration of the dipole to a
plane it is possible to obtain from the system (45) closed solutions for the
autocorrelation function of (scalar) angular velocity and spin dénsity. In the
dielectric limit of k —0, and choosing, for example n =3 (itinerant libration)
we obtain the results

o [{o1(Dw,(0))
f“[wmwm»

(3 003, 00)]
<§ a)l(O)gI wi(0)>

=1

|- eee, (47)

, = LARD) - AO)ARO) - Ar(O)]

= &(8)/€x(s). (48)
In egs. (47) and (48),
&(8) = (s + AP)(s* + AF)((s + yss)(s + yre) = Yrs¥sr)
+5((s + yss)APPA T + (5 + yre) A P?AP?)
+ 5 (AP + yss) + AP (s + yre)); (49)
£1(8) = s(s*+ AFD[(s + yss)(s + Yrr) ~ YrRsYsr]
+ A5 + yrr) + AN(s + ys)]
+APASAT? + (5 + yrr) AT, (50)
&(s) = s(s> + APH(s + yrr)(S + ss) — YrRsYsr]
+ s7TAT(s + yss) + A5 + yre)]
+ APSAP? + (5 + vs9)APP). (5D

The equilibrium averages A{®, AR, AP and AP are defined as follows:

AP? = (AU0)KAK0)); AL = (ARODKARO):;

s (A¥0) (A40) Rz {A(0)) <AR(0)>
AP =Z50y (aton A = (Z0)  (an0))

In the case where there is no intermolecular correlation in the system we
have A = A7 = ¢ and yrsysr = 0 so that eq. (47) reduces to the well-known
result for single molecule planar libration:

fga[<w1(t)wl(0)>] s 2y YssS + AﬁS)Z

52)

(@1(0)w,(0)) 5+ ysss T+ (AP + AP)s + AP yss
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The result, eq. (52), is helpful in attempting to explain the physical meaning of
the dissipation matrix 7y, because we may identify yss of eq. (52) with the
equivalent term obtainable by direct solution of the itinerant librator equa-
tions of motion. This is the frequenéy at which the inner molecule is bound
harmonically to the outer cage, which as a rigid entity, is undergoing
Brownian motion. By intuitive analogy therefore ygr is a frequency connected
with this kind of motion on the multiparticle scale. This latter is not, however,
a vortex type of motion since the vortex is generated only by a full con-
sideration of translation of the molecular centres of mass. It is rather a
phenomenon of collective spins.

3.1. Comparison of eqs. (47) and (48) with experimental data

The state of the art is at a point where it is becoming more difficult to
compare effectively the formalism and spectra. Equations (47) and (48)
involve seven variables which we can regard as phenomenological. It is
necessary to obtain a broad-range of results to evaluate each individually. The
increasing use of molecular dynamics simulation is easing the difficulty
considerably, however, because it is possible to construct on the computer
any molecular dynamical property whose variance or covariance is known
analytically. If the analytical approximation is written in terms of seven
parameters, then these can be estimated using seven (or many more) different
simulated averages. In addition the theory has to be able to describe in a
consistent manner a variety of spectra, of which the zero-THz power ab-
sorption is one incisive example, and depolarised Rayleigh scattering another.
Also, it is known that some techniques pick up information about single-
particle motion only (e.g. NMR relaxation), which is helpful.

It is clear that the zero-THz spectrum alone can be used to estimate all
seven variables by using a multiparameter, non-linear iteration algorithm; but,
as we shall see in section 4, the power absorption coefficient («(w)) over this
very broad frequency range contains in theory information about mode-mode
coupling (of the hydrodynamic type) as k — 0 is approached. Dividing «(w) by
o’ produces the equivalent of the observable intensity in a depolarised light
scattering experiment, and no doubt it is possible to reproduce in this way the
equivalent of the well-known Rytov splitting'). By an unfortunate historical
accident the Cole-Cole plot 1s often still used in analysing dieleciric data. Mot
only is this the least discriminating method of data evaluation imaginable, but
also the all-important far infra-red contribution is often ignored experiment-
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dimensional (eq. (45)) methods of Grigolini and coworkers''®) are i
cularly useful for this problem because they provide a link with the highly
developed basis set and diagonalisation methods of quantum perturbation

Having dealt with the problem of pair correlation with spin and current
density we consider in section 4 the additional roles of the particle and energy
density when these are coupled in a Mori framework to the single molecule

angular momentum.

4. Discussion

In this section we aim to use the results of hydrodynamics to simplify and
give physical meaning to equations such as (37). Berne and coworkers'’) have
shown that the angular momentum of an individual molecule couples to the
transverse component of the linear momentum field vector. If a molecule is
set in rotational motion in an otherwise stationary fluid it will slow down by
creating a vortex field (transverse) around itself. This introduces a very long
time tail into the decay of the molecular angular momentum autocorrelation
function®). This is kinematically related to the dipole autocorrelation function
observable in a dielectric experiment. We note that it is possible to derive the
same result in principle by constructing a macro-micro correlation between

the vector: Ay = [g‘] and its single particle equivalent. Here g, and S, are as
¥

defined in section 2. We note that the ¢t *” dependence predicted at long times
in the angular momentum autocorrelation function is arrived at by integrating
out the dependence of (S,(t)S,(0)) on position, i.e. by integrating
(S,(r, 1)S,(0,0)) over the volume of the original fluid element, which is
assumed not to have moved from its original position (r = Q). If there is finite
rotation—translation coupling on the molecular scale this assumption is in a
strict sense invalidated. Anc- her subtle point is that an essential step in the
derivation of the t ™% dependence is the long-time relation

Sy(k, 1) = —%g,(k, N, (53)

where p is the number density and m the mass. If we take the view that a
dielectric experiment is a measurement with k = 0, then the left hand side of
€d. (53) vanishes. We cannot construct an angular momentum autocorrelation
_funcu'on by this means. Rather we must keep k infinitesimal but finite and
Integrate for the final result at the correct stage in the calculation. This is
e(l%livalent to saying that in a dielectric experiment we are observing trans-
lation only indirectly, via the rotatory motions only. There is a k-dependence,
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but there is no observable k-dependence. There is a mutual effect of trans-
lation and rotation, but only the rotation is observable.

Our eq. (39) effectively measures (among other things) the effect of vorti-
city on the zero~THz power absorption coefficient. However, the form of eq.
(39) is complicated and to clarify the underlying physical significance we
proceed as follows. Because the total spin density is invariant under parity
transformation only S, and g, are correlated. Berne et al.'’) have shown that
transverse correlation matrix C'(k, z) is given from eq. (1) by

Clk, 2) = %c‘(k, 0z — iK'k, )], (54)

where

vr o [+ nd2))mp; — 2ikn(2)/Ip
Kitk, 2)= [ 2ikn(z)/mp: 4m:(2)/Tp + k*D, ]

Here iz =s, n is the frequency dependent shear viscosity, m, the frequency
dependent rotational viscosity, I the average moment of inertia of the general
asymmetric top. We have

n(2) = m[ﬁ}% [ at e aienraa - P)Tiz(k»], CsS)
0
Di(z) = 1im[<1kBT)“ f dt e ok, (k)e (] ~ P)au(k»], (56)
k=0 3
n(z) = kig[;ff f dt e #{r3%(k)e (1 — sz(k»], (57)
0

where 7% is the antisymmetric part of the microscopic stress tensor defined by
r4=3(r; — 73). This is a torque density which couples rotational and trans-
lational motion. If 73 =0 the spin density is independently conserved and the
intermolecular forces are purely central. oy is the spin current defined by the
relation

Z8(r, )+ Vigry(r, ) = eper(r, 1), (58)

where e is the Ievi-Civita symbol. Equation (54) refers to the limit of small
k where k' terms are negligible. Taking the limit k—0 is equivalent to
performing the integration

{ _— I < 1 .
i 1...2¢ _ ST e B oo
| drrir) = — ey 2, Hr" = rp XYY

4
4 arp

(59)

where F is the force between molecules « and B. Equation (59) illustrates

£ ikt bt b < b AT
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how a torque may be imparted on a multi or single-molecule level r;y N
slationat force. On a single particie lewvel the integral in eq. (59) is closely
analogous to the rototranslational Langevin friction term, being inter al.(
existent or non-existent as the case may be.

in the absence of pair correlation (f =g =0 in eq. (39)) we may make the
following identities, and also define the single-particle momentum and angular
momentum autocorrelation functions in terms of hydrodynamic quantities:

I =k*n(s)+nds)/mp; (60)
%= —"2iknds)/Ip; (61)
'3 = 2ikm(s)/mp; (62)
3 =4n(s)/Ip + kK*D,. (63)

Noting that when g = =10
(As(HAT(0) = N {Am(1) AR(0)) (64)

then egs. (60) to (63) also define the nature of the single particle rototrans-
lational autocorrelation matrix. In the case where the rotating and translating
body is structureless but endowed with spin, we may write:

LUASDATONASOATOY ™ = [ 726 ol 7 (65)

in the hydrodynamic limit. Here the y’s are hydrodynamic friction coefficients
which may be frequency dependent if the governing statistics are not Marko-
vian. Note that eq. (65) is the solution to the rototranslational single-particle
Langevin equation:

mo = — my,v — yolw + F, (66)
I =— I‘er - YV + T, (67)

if the y’s are frequency independent. Using egs. (60) to (65) we have, in the
hydrodynamic limit;

e
Y(s) = l:ji%[—mllzaT[f dt e {5 (k)e' P (1 — P)rs,(k))
0

+ [ d e agoe P - Pyt ]| (69)
0
'y"(s)=1kigo1[— kii;fl f at e (r¥(k)e " P)y‘(l—P)sz(k»] (69)
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yn(s)zlkig}[kBT j dt e~ (rt(k)e D] — P)Tiz(k»]; (70)
ve(s) = llm[k T fdte“‘(fr £(k)e' P — PYri(k))
b f dt o (e (1 = Pk | 1)

Equations (69) to (71) demonstrate that:

(a) when the forces between molecules are purely central there is no |}
rotation translation coupling because the antisymmetric part of the micro- i

scopic stress tensor vanishes;
(b) when there is a finite rotation translation coupling the friction

coefficients y(s) and v.(s) contain information on the antisymmetric part of 1

the microscopic stress tensor,

When the frequency dependence of the v’s in eqs. (68) to (71) vanishes,
Berne et al. have shown that their structure is unchanged at long times. When
there is long-range order in the system g and f remain finite, and the parity
rules leading to transverse coupling only also break down. There is therefore
in liquid crystals the possibility of longitudinal as well as transverse coupling
between spin and current density. This is already accounted for in the
formalism of section 2 but through the intermediacy of many parameters rr.
Obviously the many- partlcle mode-mode interactions are reflected, through g
and f, in the single particle autocorrelation functions and therefore in the
zero-THz spectra. However, it is possible to conclude from eqs. (68) to (71)
that the highly anisotropic potential in liquid crystalline molecules will favour
a strong rotation—translation interaction via a pronouncedly asymmetric stress
tensor.

4.1. Finite pair correlation
In this case the matrices g and § are finite and we have
(Am(s)AMO){As(s)ASON

=N+ Np[Ls + (1 + Ng)1+ Nf)~'1’ (72)

i e P 7ok Trovee=1 . ¢4« v =1 ey
(Am(s)AMONA(IA0) " =115+ y) (73)

RPN

—
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{ .}EI\/ i+ 1“[3{){ i i (:.]“‘:’.)‘ = 5'}:", { «/f'

where the elements of @ are defined by egs. (60) to (63).

4.7. Longitudinal coupling-Angular momentum and spin density

In section 3 we have treated this problem in general terms, but when the
spin density component is taken parallel to k (along the laboratory z-axis). In
this case the so-called longitudinal spin density is decoupled from all other
modes, Its first memory function is:

K.k, )= ﬁ:ﬁ f dt e *(SHk)e =P (1 — P)S,(k)) (75)
J .
with
S.(k) = ikow (k) + 2078, (k). (76)

We define, following Berne et al., 7§ = A7} for the antisymmetric part of the
microscopic stress tensor where A is the strength of the interparticle torque. It
is useful to construct a macro-micro correlation theorem between S, (k, t) and
the molecular angular momentum autocorrelation function. This serves to
illuminate the fact that the microscopic rotational friction coefficient of
dielectric and light scattering theory contains implicitly information on the
linear velocity (or momentum) correlation time through the intermediacy of
the spin diffusion coefficient D, defined by

D = (IkgT)' lim lim f dt e (o ¥, (k)e' P (1 — P)o(k)). a7
0N
Consider now the two component vector defined by: Ay =S, and the second

element of eq. (2). Performing the calculation of section 2 leads to the

following relation when the factors g and f vanish (in the absence of pair
correlation):

ki3[<IkBT)" f df e~ (S H(k)e! "1~ P)s'zuc»] = (5. (78)
) .

Comparing egs. (78) and (71), through the intermediacy of eq. (76) we obtain a
result similar to that of Lobo et al.”’) who have proposed the existence of
lqngitudinal and transverse plasmons which ought to be observable in a
dipolar liquid by dielectric spectroscopy. This is because the rotational
c‘oeﬂ‘icient Y:(s) (the single particle angular momentum autocorrelation func-
thn).contains information about both the transverse and longitudinal spin
densities (eqs. (71) and (78)). In the case where (s) is frequency in-
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dependent, eq. (77) reduces to
D= lim%f dt e"v(t) - v(Dh-o, (19)
)
[}

i.e. the self-diffusion coefficient of centres of mass. In this case v, contains
information on linear motion even when the formal coupling of rotation and
translation is not considered.

5. The micro-macro correlation theorem

In this section we aim to show that without a micro-macro correlation
theorem the interpretation of single molecule (autocorrelation function)
theories in terms of hydrodynamic concepts runs into difficulties. For instance
a Mori three variable theory applied to the molecular centre of mass linear
velocity may be interpreted mechanically by the motion of a harmonically
encaged particle, known as the itinerant oscillator (from the fact that the cage
is itself assumed to be a diffusing entity). According to this model it is
possible to express the velocity autocorrelation function C(t) in the following
exact form (that of eq. (52) effectively):

o

_{o®)-v() _ 2 1
Cit)y= 00 v ) = ! do| — - coswt, (80)

—iow + &y(w)

where v(t) is the velocity and &(w) is defined by the following mechanical
analogy:

13=x=—7Kn—(x~y), (81)

W=y =]—‘I§—(x —y)—J'gm(t —w(r)dr. (82
0

with
Al=Kim, AS=K/M:
£ty =9, (Ew)).

The mass of the encaged particle is m; x and y are coordinates of the system,
Fad 2 2 + - 2 2 cof e u
fully defined elsewhere®). Since the mass m is not associated with any direct

dissipation precess it may be regarded as a particle inside a cage which may

I anracantad By the mnee MM af o “vistiial® Fva 1 wor € dba viadoae D
e represented by the mass M (of a ‘virtual’ body). However, if the radius R
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of the "virtual” body is equal or smaller than that of the real particle m, this
mechanical picture cannot be accepted. The problem of finding év(w) analy-
tically, is very complicated but may pe tackled, let us suppose, hydm—
dynamically. This is valid at long times where the simulations of Alder et al.™

may be repreduced as long tail in the autocorrelation function. decaying as
=32
t .

The low frequency limiting behaviour in this case may be represented by:

2
Clt=o) = fde AT (@) (83)

L2
fd“’A (b+aw y (84)

so that mathematically C(t)-t 2. Physically, in our present context the

external cage (or ‘virtual’ mass ) should behave in this manner according to
hydrodynamics. At very long times the inner particle will move with the same
velocity as the external cage, because of thermodynamic equilibrium. At
intermediate times a complicated grey region must be investigated where
hydrodynamic and molecular theories interrelate (section 4). The movement
of the rigid body of mass m sets up vortices. The interaction of vortex and
centre of mass velocity results in the t~? law.

Bixon and Zwanzig®) and Freed, Oxtoby et al.’) used for their hydro-
dynamic approach the relation

=2
C(t)= - f [ Ep— §Bz(w)]cosm, (8%5)
0
where
bz = —‘f( N4 MY, Tss Tty Po, ©)

Here n? is the zero-frequency shear viscosity, n? the zero-frequency lon-
gitudinal viscosity, 7, the longitudinal relaxation time and r, the shear relax-
ation time. The parameters R and M are the only ones specific to the rigid
body, whereas the remaining ones have to be related to the nature of the
S‘urrounding fluid. In the generalised hydrodynamics used by these authors the
liquid is viscoelastic so that ns and m become frequency dependent.

MNs = 7)2(1 — arrs)_l,
=0l - wn)", (86)

These modifications are required to reproduce the essential features of
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Rahman’s computer simulation®) of the velocity a.c.f’ of liquid argon,
However, in this simple model the oscillation frequency wy, associated with |
the power spectrum of (v(t)- v(0)), is more intense in the simulation than |
predicted by the model.

To improve the agreement we might attempt to extend the continued
fraction in eq. (85) by taking the ‘virtual’ particle as a sphere of mass M and
radius R. The hydrodynamic approach then implies taking in eq. (80):

. 47R {
§M(‘U) = %f(R9 ng, n?’ Tss Tty POy (1)). (87)
It is then evident that, especially at very low frequencies, the following

equality must be satisfied:

~ 2 .
Enzlw) = —— AAg' : (88)

—iw + &y (w)

At zero-frequency, eq. (88) implies that

. Al . M
&pz(0) = K%'SM (0) =—&u(0) (39
2 m
and
47Taf(a9 T’?’ T’?9 Tsy Tty PO, O) = 477Rf(ay n?y T’?9 Tsy Tty PO, 0) _ (90)

This means that the radius of the body endowed with mass M must be the
same as the radius of the body m. Accordingly the concept of itinerant
oscillation cannot easily be exploited in order to introduce hydrodynamics in
the context of the Mori theory. It is evident that for translational relaxation
evaluated using a hydrodynamic formalism the ‘cage’ must be replaced by a
‘virtual” mass M. Alternatively, using thermodynamics and statistical ideas the
external cage could be regarded as a thermal bath or ‘virtual’ or ‘effective’
bath of the particle m.
From a quantitative viewpoint if one uses to assess the function

1
—iw + AT
e )
—iw + 45
- i(l) + gm(w),
the Rahman value for A% of 50 x 10** s7%, and for A} a value related to A? via a

Ne po, B 2 3 )
Debye distribution (p(w) = 3w*/wp, then the

§0(w) =

oD

frequency wy is overweighted in

It 1s evident that the Mori




L AR

= E () i (97)
SR oW ). \7L)

is allows us to replace the contribution A3/(—iw + éy(w)) with the damping
{(w) independent of the frequency except via &y(w). Equation (88) is
v satisfied for any value of the frequency when:

roughl
Ay <€ AifEu(w) (¥3)

and the Rahman correlation function and spectrum are reproduced well.
However this means that

A (MIm)éy (w) (94)
and
A< gy (w). (95)

In order that both egs. (94) and (95) are satisfied then M <m and A%< A3.
This is inconsistent, however, with the Debye distribution, which implies

However, in general

At=(o?),

A3 = [(0*) —(?)1/w?),
and if (w*)> (w?? the Rahman results are satisfied. This means that the mean
square rate of change of force in the single particle theory is much greater
than the mean square force itself. This is consistent with the results obtained

by using three variable Mori theory for the description of rotational motions
and far infra-red spectra,.
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