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ABSTRACT

A general method is developed to relate the orientational and angular momentum
auto—-correlation functions of a vector embedded in the rotating asymmetric top. It
is shown that a previous attempt along these lines by Nee and 2wanzig contains an
error which is rectified in this paper. The reduction to the free rotor limit is
-discussed carefully, The continuity equation, whose solution is a time-ordered
exponential does not produce an orientaticnal a.c.f. valid at the free rotor limit.
This is because in this limit the kinematic relation between orientation and

angular velocity is no lénger a multiplicative stochastic process.

INTRODUCTION

In any consideration of molecular dynamics in the liquid stéte the relation
between the orientational autoébrrelatiOn function (a.c.f.) and the angular velocity
a.c.f. is one of the most {unhmehtal problems. The orientation is exemplified with
'respect to a dipole émbedded in a polar molecule. A special case is that of the
spherical top with an.embedded axial vector u{t) where the unsoived problems
associated with asymmetric top rotation are side-stepped. McConnell et al.[l—4]
have recently illustrated how even this problem can become tremendously intricate
when considering the direct integration of the general kinematic relation é_= Q_X u,
where u is a unit vector (e.g. along the dipole ﬁoment direction) and W the angular
velocity. The problem has also been approached by Nee and Zwanzig in their paper
con dielectric friction. This is a simpler approach than'that of McConnell et al.,[:21
but unfortunately contains a fundamental error which we seek to correct in this
paper. We discuss the difficulties remaining even after this correction has been

made; difficulties which must be surmounted if progress is to be made analytically

in this field.

THEORY: DIPOLE RELAXATION AS A MULTIPLICATIVE STOCHASTIC PROCESS

Consider the motion of the asymmetric top in which is embedded a unit vector u.
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Denote the resultant angular velocity vector by w. The kinematic relation:

ulE) = w(t) x ult) = Alt)ult) | (L
is of course an example'of a multiplicative stochastic process if. the angular
‘velocity W is $ubject to stochastic (Brownian) motion describable by a statistical
formalism such as the integro-differential

a t
Fe wlt) = ~J Bt - s)w(s) + £(t) (2)

This is Hamilton's equation modified by application of projection operators [61.
Here f(t) is the stochastic projected torque and E(t) the memory matrix.

This is a familiar equation, first derived by Mori.[?] for any physical variable
A(t). When appliéd to rotational motion extra care is needed as it is a linear
equation while the fundamental Euler equation tontains a non-linear term when
written in the frame defined by the principal axes of the body. As a result the
Gaussiaﬁ assumption for the stochastic projected torque £(t) is a rough
appfoximation as‘non—linearitieé are projected into the noise,

~ Egn. (2) together with the expansion of the second fluctuation-dissipation
theorem‘for'the stocﬁastic torque f(t)

<E(t)ET(s)> = B(t ~ s)<w(o)w" (o)> (3)
lead to the following result for the autocorrelation matrix <9jt)9?(o)> which is
defined in terms of its Laplace tranéform

T T -1 1l A :
= < > = ——
) = (<w(®)a’ (0)><ulon’ (> TR (4)
where:I; is the Laplace tragsform operator and B(z) =:Ia(E(t)).
The motion of the dipole is stochastically modulated by the angular velocity

and eq. (1) has the formal solution

sE '

= A - .

u(t) exp (s)ds] u(o) (5)
The time ordered exponentials are defined by their series expansions, in which the

order of intergrands is crucial

—[ t o £ttt
exp| J/ M(s)ds = 1+Z fdtlfdt2fdt3 Xevevenoann
o] n=1
o (o]
th-1
A Iitngjtl)gjtz)ﬁjt3) e Mlt)) (5.1)
[ t w tot1 th-2 tu-1
expl S M(s)@s| = 1+ I Jfat fat_ .....fat_  fdt
— - 1 2 n-1 n
o n=l1 o o o) o)
x MEn)M(t 1) ... MUt )M(E)) _ ' - (5.2)

The antisymmetric matrix A(t) defined in eqn. (l) may be written explicitly as
t €, W, = -
(t) -ijkmj(t) ) w3(t) wz(t)

m3(t) o *wl(t) (6)

Ak

-wz(t) wl(t) o



131

where €iax is the Ricci tensor. A time ordered exponential exp 1s needed as the
.-_'L:] )
matrix A(t) does not commute with itself if taken at different times.
This is always a major problem when considering the formal solution, egn. (5) as

it will not allow us to write a finite comulant expansion of the average of the

exponential in eqn. (5), even in the case where the process B(t) is assumed to be
Gaussian. This is at the root of the difficulty of constructing <u(t).u{o)>
analytically from <w(t).w(o)> in all but the simplest of cases.

The a.c.f. <Eﬂt)g?(o)> may be obtained from egn. (5) by first multiplying by
E?(oj and then averaging. Two different types of averaging are needed, one on the
stochastic process w(t}, the other on the initial equilibrium distribution for
u(o) .. Following Fox [8], we indicate the first with < =-++> and the other with

the brackets [....] . The result is

— ¢ t T '
< [g_(t)g?(o)] > = <exp {foii(s)ds} >[g(o)2 (o)] (7
The moments of the matrix A(t) are defined in terms of the ones of the angular

velocity as:

<A,
—ik

(t)> = —e-ijk<wj (£)» = o . (8_1)

and <§ik(t)§1n(s)> = <wj(t)mm(§)> (8.2)

Eijk&1mn
assuming that w(t) is a Gaussian process with zero mean. We limit ourselves to
the calculation of the second and fourth cumulants, see appendix, as a complete
calculation, from first principles, has already been given by Ford, lLewis and
McConnell[}], using graphical methods for the simplest cases of Brownian moticn
of .a spherical top and for the case where rotation is constrained to a plane.
Now <A > = < >
as (<A(s))Als,)>) & 3x€3mn mj(sfmn(sz)
(9)
= < > -~ <
mn(sl)mi(sz) w (s

l)mn(52)>sin

then in this approximation egn. (7) becomes

t
<[uwu @] > [a@u’©] ™ =(§§£>{fdslf§%2<zx_(sl)5(s2)>}
(e} o

&~ t s
= exp {fgslfiéz <g(sl)g?(52)>T

- 1Tr [<g}sl)g?(sz)>] } - (10)
.with & as the identity matrix and Tr'[ :l meaning the trace. This approximation
is exact in the following cases. The first is when the autocorrelation function
éﬁﬂ is very short lived i.e. can be expressed by a Dirac Qelta function. This
.ZOrresponds to disregarding memory and inertial effects in the dipole diffusion
process. The other case is that of when the rotational motion of the dipole is
constrained to a plane so that the process bhecomes one dimensional and the gaussian
assumption results in only one cumulant, the second, different from zero. Ford,

Lewls, McConnell and Scaife [1—4] have discussed this prcoblem and have shown the
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difference between the case of planar diffusion and that of-three-dimensignal
diffusion of a spherical top when the relaxation of the angular velocity is
Markhovian, i.e. exponential with decay time 1/B. These differences appear in the
terms of order equal or greater than the fourth (in the adimensional parameter
(1/82) (x1/1) ?

The errors in the paper by Nee and Zwanzig [5] can be explained as follows.

of the time expansion of the orientational autocorrelation functioﬁ.

Starting again from egn. {1} Nee and Zwanzig used a aifferent apprqabh, using the
continuity theorem (conservation of matter), which leads to the diffusion
equation for the .probability density -for the dipole variables only-’
a~-fé\‘l t) = (s)xu 3 f{u,t) (11)
T T

whose formal solution is

flu,0) = Sxp [~ a8 w(e).tax 7] fuo) (12)

Now they assume w(t) to be a Gaussian process with zero mean, and averaging
over it they get

flu,t) = E;p[—fgdslfildsz (u x yu)T<g(sl)gT(52)>

x (ux9 )] £(u,0) (13)

In view of the considerations we have already set out egn. (13) is not correct in
general because higher order cumulants do not vanish (Non commutativity of the
operators w(t). u x Zu at different times).

The irretrievable error comes in the differentation of their equivalent of

eqn. (13). The correct results in general are

g € t &~ r ot

3t &P [fog(s)ds] = M(t) exp [fo ﬂ(s)ds]

a > t - t

ag eXp [fofl_(Sst] = exp[foﬂ(s)ds] M(t) : (14)
and in our particular case

& Flu,t) = ( 7 ) rdsn(e)uF (515w % ) E (a0 s

o fwt) = (u_x 9, s<w(t)w (s)>(u x ¥V u, (15)

o

The incorrect Nee /Zwanzig result is

- t -
3 f{u,t) = (u=x Vu)des<m(t)wT(s)>(u x Vu) £ (u,s) (lS,)
a t_ -— — - o - — - - -

The consequences of this error are discussed below.

Egn. (15) may be reduced to a familiar form defining the time dependent diffusion
tensor D(t).

'E(t) = fz<2(t)(_u.T(s)>ds = j'z<8(t—-s)£T(o)>ds = fz<f(T)fT(°).>dT (1&,)
producing
3

SE flu,t) = ( x gu)T DE) (ux V) 'f'(g,t) | (1s¥ )
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When the angular velocity correlation function is very short lived we have from
(16) that the diffusion tensor is no longer time dependent and that all cumulants
but the second vanish. As a result egn. (15') fortuitously reduces to the Favro
equation [9] for rotational diffusion, Egn. {(15) also, of course reduces to
Favro's equation in this limit. Inertial and membry effects are neglected in
this limit and the diffusion tensor is defined in terms of the inertia I

and friction B as

D = kT /{8I) {17}

»
The dipole autocorrelation matrix can be recovered from eqn. (15 ) by using

< [E(t)ET(o)] > =.ffd5(t)dgog(t)3§ Py () ¥ £t S (18)

- . »
where f£(u,t) is the solution of egn. (15. )} with the initial condition u(t = o)

=u . P (u) is the equilibrium distribution of u .
=0 eg =0

-

&

Inserting (18) in both sides of eqn. (15 )} and integrating by parts we

finally obtain:

%—t— <fuwu ] > = [ET(t) -1 [g(t)]] x <[amu©@]>
= - _If(t) <£E(t)l;1.T(o)] > (19)

whose solution is:
<fuwn’@] > - pa [- fzmsms] [3(0)3T(o)] (20)

Eqn. (20) is exactly equal to eguation (10), since they are both constructed
with the same approximation. Eqn. (15“ ). the basis of eqn. (20), contains
however more information than eqn. {(l0) about the dynamics of the diffusion of
the dipole orientation vectar u(t). This is illustrated for the spherical top
below, where we derive the second rank orientational a:c.f. Y <3‘:3(t)'3(°)] z _ 1>.
Note that egn. (20) cannot be obtained from the erroneous equation (15 ).

In the general case @iffusion in three dimensional space of the spherical or
-symmetric top, or totally anisotropic diffusion) gﬁtl) and g}tz) do not commute
when tl # t2. In the abo&e approximation of disregarding cumulants of order
higher than the two, however, we have the form:

T < ult)u(o) "> = <u(t).ulo)> = T [exe - m(s)ds) <u(o)u’ (0)> |

t =t t
5[exp(fomll<s)ds) +exp (Fim,,(s)ds) + exp(/ i, (s)as) ] (21)

where we have used

<g(0)gT(0)> = é 1
i.e. £(u,t) = const. is the equilibrium solution of egn (15” ). Note that

eqn. (21) is applicable to asymmetric top diffusion and accounts faor memory and
inertial effects in a way dependent on how these are evaluated for M itself via

the angular velocity correlation matrix.
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GENERALISED HUBBARD RELATION

"
For isotropic diffusion, egn. (15 } reduces to

3 _ 2 .
STt = Dit) (wx )7 £(u,t) (22)

After some algebra it can be shown that egn. (22} implies

%E-<Pl(cos e(t)> = —?D(t) <Pl(cos o(t))> (23)
3 <P2(cos 8{t)p = -6D(t) <P2(cos e(t))> : (24)
It : )
in standard notation.
This means
t ~
<u(t).u(o)> = exp [-ZIOD(s)ds] (25)
t
%<3'[Ejt).3jo)] 2—l> = exp [—GIOD(s)ds] (26)

the "Hubbard relations”. It is possible to obtain these from egn. (20) but not
from egn. (10).

In the specific case of classical rotational diffusion in the isotropic limit

we have:

<w (t].w(o}> = <w(o).w(0)> exp( - Bt)

D(s) éfie'_ﬂt(:w2 (o) >at (27

so that

< u(t).u(o)>

Ul

exp [ —z%g-(t v e BE i)] (28)
B B

where we have used <w2(o)> = 3kT/I. Note that we obtain the same result from

eqn. (21). This is identical with the result quoted by Wyllie [10] for Brownian
motion on a spherical surface. This result cannot be obtained from eqn. (15').
Furthermore Eq. (28) coincides with the result given by Ford et;iL[3] in
considering the motion of the disk, apart from the factor twe which is due to

our use of three dimension space, and it is correct for the spherical top only for

L

a second-order truncated expansion in (kT/I) " 1/

DISCUSSION °

As a consequencé of the incorrect structure of the egn. labelled by us eqgn. (151)
the derivation based on egn. (49) of Nee and Zwanzig is also incorrect. 1In
particular their egn. (53) should be discarded as well as their egn. (57). 1In
addition the derivation based on their eqn. (63) for two-dimensional rotational
diffusion is also incorrect, i.e. their eqns (63) to (71) should be discarded.
PROBLEMS REMAINING

We note that any attempt to describe the orientational autocorrelation
function in terms of a single time ordered exponential dces not result (using

stochastic considerations) in correct free rotor behaviour (appendix (A) and
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cannof reproduce any negative region in the orientétional autocorreiétion function.
This is a fundamental problem because the free rotor orientational a.c.f. for
linear molecular symmetry, for example, is the hypergeometrichummer integral,

with a large negative lobe at intermediate times.

The only way of dealing with this problem is to use a multiparticle Fokker-.
Planck equation as per G. T. Evans [ll] , for example, or alternatively to
develop the so called extended diffusion models following Gordon [12],Mcclungl:13] ’
Cukier [14], and others. It is well known that the original m and J diffusion
modeis do not define properly the mean square torque, and consequently do not work
at all in the far infra-red region, where the characteristic shift in the peak
absorption frequency is not matched. Cukier; however, has discussed some
improvements, and related the éxtended diffusion formalism to thé Mori continued
fraction.

Another alternative is to apply the projection operator method direct to the
orientational a.c.f., following Quentrec and Bezot [15] and Evans et al [16] .
This does not easily allow us to relate the orientational and angular velocity
a.c.f.'s.

It is clear that egn. (11) is not valid in the region where the molecular
dynamics reduce to a series of binary collisions rather than continuous potential
perturbation, as is the case in the dense liquid state.
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APPENDIX A
THE FREE ROTOR LIMIT

In the case where the friction vaq;shes, w(t) is no longer a stochastic
process. Egn.(l) can now be exactly solved for each particle. It becones:

it ey = g(i)xg(i) w,(1=1, ...., N)z= é(i)u(i) (t) (al)

where N is the total number of molecules in the liquid. The solution for each

particle i is:

u ey = exp[a™e] 0w (o) | (a2)

The correlation function of interest is

N . . N . : .
< (cos o(t)> = .1, @@ o = L. w0 (exP[_A_(l)t] a1 on)
where cos (8) (t) = u(t).u(o) ' ’ : {A3)

To caluclate explicitly the matrix exponential we look for its eigenvalues, i.e.

we transform it to a coordinate set where the matrix A(l) is diagonal.

The secular equation related to the matrix A is
A3+ Al + ws + w3) =0 (a4)
whose roots are

Afi)(o) = 0; Aéi) = iy (mfi)z + wéi)z + m§i’2) = iw(i)
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i i i - (L . (1) .
x§” = - i/(m1(1>2 + wé Y2 4 mé Y2y = L g (AS)
wheretthl = w(l).w(l)
Let 5}1) be the diagonal matrix whose non-zero elements are the eigen-values

. i
Ay, Ao, A3 It is related to the matrix é} )

(1) ()T _ 3(L) :

by

C(i)A (a6)

where C(l) is the orthogonal matrix which defines the transformaticn.
The transformed vectorqz(l)(t) is given by

~(i) (1)
u

(t) =cu'’ (1) (a7)

We can use egns. (A6) and (A3) to obtain
N

PR

]

<Pj{cos 6(t))> exp(é}i)t)g}i)Tg}i)g}l)(

(i)(o))T(g}i)Tg}i) o))

i

N . . .
1 igl(g(l) (0) )T(exp[g(”t]“g'(” (0)) : (a8)
5 i
The advantage of egn. (A8) is that now we know the elements of the matrix defined

by the exponentials, in fact
(i}

( exp (A} ' t) o o
~ (0 (1)
’xp [ B k] 3 o exp (X277 t) C()i)
o ° exp (A3 " t) (A9)

We will now replace the sum by the integral over the probability density. The
averaging is carried out first over the initial conditicons of the dipole orientation
B‘i)(o) and then over the angular velocity distribution function, P{E), which |
we assume to be a Boltzmann type.

In the most general case

P(w) = 2 exp [— ;TI‘. (T1of + I,wd + Igm%)] (A10)

where Z is the normalisation constant given by
L o ¥ pw) —-—LL—}“I“% -
o WS ) /2

Egqn. (A8) may be written as:
<Py (cos ©(£))> = [d3uP () [@(o))T(exp{z £ § )TN ] (A12)

the brackets E........] meaning the average on the initial equilibrium

(All)

condition. For an isotropic fluid we can assume without lack of generality that
at equilibrium the orientations of the single molecule are isotropically
distributed, so for any orientation of the laboratory fixed frame we have for each
¢cartesian component k

v, (%G, @] =1/3 _ ) - (313)

asﬁz(i)(o):g(l)(o) = 1, i.e. the length of the dipole is fixed. Using these

considerations eqn. (Al2) reduces to

<Py (cos 8(t))> = = fa% P Tr (exp (Bt)]

- %- rdade P(_(_L)F) [1 + exp{iwt) + exp(-—imt)] (A14)
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The integral in egn. (Al4) is very easy to compute in the case where the spherical

top is considered. We have:
<pj (cos 6(L))> = %’fu dw t4nw Z exp(sz [ 1 + exp(inwt) + exp(—imt)]
12 kTt? - kxTt? A15)
—§+§(1_1 )exp(2I ) {
We have used the fact that: _
o w2 - g J_—l -Iw?
47 i’mdm [mzz exp{ 2k’1‘) exp (% imt)]= a2 (2 - [4112 exp (2)('1‘ )] (A16)

. . -1 .
and that the inverse Fourier transform, 1nd1cated:(a , of the gaussian in

(al6) is:

2 .
2n1 [(2nkT) 12 expt 2kT)] = exp( th ) . (A17)

If we try to use eqn. (2) directly in the limit of no friction, B8 = o,

we obtain:

th

<P; {cos e(t))> = exp| ) {A18)

which is not correct because w(t) is no longer a stochastic process and our
considerations are no longer to the point.
Note that for this reason the free rotor limit considered as such by McConnell et al,

eqn. (Al8), is not meaningful in the case of three dimensional rotational diffusion.

The correct result for the spherical top is egn. (Al5).

The same calculation may be repeated for the symmetric top with

Il = 12 # I3. The integral becomes

2 s 2
I
_fff SER 22 kT; 12 exp[— 2_(;5‘— (I1 + (I3 - Iy) -zé-)]

X (l + 2 cos (tm))

i

<u(t) .1_1_(0)>

L, 4Ar I3 1 @ | -3 -
= 3+t 3 .(Il) f_ld cos © fpdw (2gkT/I;) (A19)
x  w? exp (—_- w? (1 - a 005209 coswt
21<T/Il
where a= (I} - I3)/1).

First we integrate over d cos@
2

1 4m I3,k 2 - W
<E(t)'2(o)> = = + 3—-(3%) So dw w* (21kT/Iy) exp T%T/11

3 .

(A20)

: 1
Iw 2)
x cos {tw) fd}l( exp —‘l’—ZkT ax

By observing that the integrand in is an even function of x we reduce the interval

of integration to the positive regions ogxgl.
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<u{t).u(o)> = %- + éﬂ-,(zjﬂg (ZﬂkT/Il)‘l
- - 3 Iy
2
o i t Iya. %
xSpdw cos (tw) exp (— 5§¥7§:—) (-a) ¢ erflw(- E%EJ ) (A21)
whexe we put _ _ Iha 4
I,a 2 -X ’
= ( - =% Y- (A22
erf(y = ( ~ 3549 ) 5= é e ax )

It is to be noted that a could be both greater and less than zero. In the former
case the argument of the erf function is complex and a complex factor appears also
in the integral (A21) from the term (-a)%, but the whole expression remains a real
function. )

The integral in egn. (A21) is not easy to evaluate but as'Morita [17] noticed its
form is useful in the case when a Fourier transform is needéd. In fact as erf(y)

is an odd function of y the whole integrand is even in w and the properties
fgx fmdv g(x) cos xt cosvt dxdt = 1 g{(v) ) : (223)
0 0 .

can be easily used to get the spectrum.

In the case of the asymmetric top the integral is far more complicated

<u(t).ufo)> = %-+ %Jff 3w Plw)y (2 cosut )
1 2% %
=1 @2 (I1I,13)
=3 + 2fgm w {i cosb Jd¢ (E#E%?%
‘2
w (Ip = I1) . 24 .. (I3 = I7) 2]
X exp (-_—ZkT/Il [ 1+ 3 sin‘g sin48 + 1 cos<9 ) (A24)
x cos (tw)
APPENDIX B

THE CONTRIBUTION OF TEE FOURTH CUMULANT

In the cumulant expansion of the averaged exponential in eqn. (7) the cumulants
of order higher than the second do not vanish, even when‘g(t) is Gaussian, because
of time ordering. In this appendix we confine curselves to the development of the
fourth cumulant for the generql angular velocity a.c.f., assuming only that w(t)
is gaussian. This generalises the work of McConnell et al. B

The fourth time-ordered cumulant may be expressed in terms of the moments of the

process A(t) as
t 5] 1] t3
fgtl J'Cgtz fgtg fgt:,+ <A(t])Alt) A{E)A(LY) >
- - - o]

t tl t2 t3
= fgtl fgtz f‘gt3f%tu<é(t1)E_(tz)ﬁ(ta)gtu,)>
— <A(ty)A(Lp)> <Alt3)A{ry)> - <§(t1)é(t3)><ﬁ(tz)ﬁ(tu)>

- CAltp)alty)><A(tp)A(t3)> (B1)
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This simplifies if we assume a gaussilan process with zero mean, :giving

t t3 £
faty o arPi1 Ve P (8B (B8 (e D

>

t t] to t3
= A ty) >
ﬁdtl fdty £ des S dt“[:‘Ail(tl’Amn(t3>><Alm(t2) ng (EW)

- <Ail(t1)Alm(t3)><Amn(t2)Anj(t4)>
+ <Ail(t1)Anj(t“)><Alm(t2)Amn(t3)>

< tr)a | (ty)> B2
<A (E1)B (k) ><A (£2) nj( b)>1 . (B2)
Using egn {B2) we can express this result in terms of the moments of the stochastic
process w(t). We show'explicitly how this may be done for the first term on the

right hand side of egn. (B2). We have

<Ail(tl)Amn(tg))<Alm(tz)Anj(tq))

= tl)E w 3(t3)>

e, Jw_ {
is)l s, ms3n’ s

(ty) € w_ (ty}>

x <g w .
lsom™so nsy) sy

€.
isil Em53n slszm Enqu <wsl(t1)w53(t3)>

<w thlw ty)>
X U, (E0g (B4

= (9, 8 - &8, 6 ~
( is,; "msy im slsz) (6m5q6j53 6mj 653sz

x <w51 (tl)ws3 (t3)><m82 (tz)wsl+ (tq)>
= (<o (ep w; (£3)><u; () e (ty) >

- <wj (tl)wk(t3)><wi(t22)wk (ty)>

+ <wk (tl)mn(t3)><wk(t2)wn (t4)>.61j

- <, (t))w

. (t3)><uy (t2)u, (ty,)> 1 (B3)

3

The total expression is.recovered in the same manner and is

<Ail(tl)Alm(tz)Amn(tg)Anj(tg)>c

= <“m(t1)wj(t3)><wi(t2)wm(t“)>-<wj(tl)wk(t3)><wi(t2)wk(t“)>

+ <wk(t1)mn(t3)><mk(t2)wn(tq)>ﬁij ~ <wk(t1)wj(t3)><wk(t2)wi(tg)>
+ <mj(tl)wi(t3)><wk(t2)wk(t“)> - <mm(t1)mi(t3)><mjgtz)wm(t5)>
+ <wk(t1)wk(t3)><wj(t2)wi(tq)> - <wk(t1)wk(t3)><wn(t2)wn(tq)> Gij

* <wm(t1)wm(tu)><wi(tz)mj(t3)> - <wj(tl)wk(tg)><wi(t2)mk(t3)>
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rewy (E1) 0 (8) ><w ()0 (£3)> %15 <w'(t;>w'..<tq)><w'(té)u&:(ta)‘?j'
+ <w (tl)w (tu)><w (t2)wp (t3)> - < (t1)w (tu)><w (tz)w {t3)>
+ <wk(t1)w (tu)><w.(t2)w.(t3)> - <w '(tl)w (ty)><w] (Ep)u -(t3)>6. o © (B4)

Eqn. (B4) is to be 1ntegrated on the four- ordered times tl, tz, t3, ty.
We note that there are two dlfferent klnds of terms Wthh can be represented

by the two general forms

t t) tp t3 - : ' L ) _
Jaty fdto fdt3fdtg§mn1(t1)w (t3)><m (t)w (tq)> S : (B5)

o o o, O

t -t to 'C3 ' :
f(ci)tljitz Igt3 j'gtq <w _(tl)wnh(tu)><wn2(t2)wn3(t3)> (B6)

At this point we take advantage of the continued fraction of Mori E?] to write

<mnl(t1)wn2(t21> = ¢n1n2(t1 -t ti1vts . (B7)

as a sum of complex eponentials, in the manner of Quentrec and Bezot ElS] i.e.

_ {n1ny) B (ninz) . .
) () = L Bp exp[ O.p t] (B8)

ninjp D
where both B (nyn2) and ap(nlnz) are' complex numbers. In general p - ®
The fact that the matrix ;zS(t) has real coefficients implies that these coefficients
cccur together in the sum w:.th their complex conjugates.
Egqn. (B5) may be written as
t Ct t2 ty

Jdty fdt, fdtzfdty ¢n1n3(t1 - t3)¢n2nu(t2 - ty)
o o o o :
t ts3 N
= fdry .... far, Z T B (n1n3) B (nany)
o o BdP q
{niny) {nony)
- £ty - t - -
X exp [ ap {(ty 3) aq (to tq)]
t t2 . '
= /dt] ..... | LI B (ming) g ngny) o [ -« (n1n3)(t1 - ty)
o opq P q P
- (a (mn3) | (nzm,)) (ty - t3) - aq(nznu)(t3 _ tq)]
- (ninj) {nyny) _. (nin3)
Ef; 8, By 1+ expl @ t ] |
N (nins) (npny) - (n,n, t}] *1 (B9)
*exp [ (clp + aq )t] * exp L aq ]

where the * means the convolution integral.
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The expression (B9) has the advantage of being easily Laplace transformed into
(nn)p (nn)
1 2B, 2

\P _
(s) q

Iz
P 4a Bp
X [sz(s + ap(élng)) (s + ap(n1n3) + aq(nznh)) (s + aq(nznu))] (B1O)

In the same way we can get the Laplace transform of eqn. (B6) as
(n n) (n n)

?l(s) =Ll Sp 1k Bg 2 %) [ﬁzfs +_ap(n1ng))2
P g _ | |
: (niny) (non3) g -1 .
x (s + a + oy )] (B11)

Expressions like egn (B10O) and egn (Bll) can be easily back-transformed.

In both cases the elemental terms may assume the three different aspects

sz(s + a){s + b) (s + ¢} = As + B + C + D
oy s + a s +b (B12.1)

+ B/ {5 + ¢}

or [sz(é + a)2(S + b)1 1. As +B + Cs + D + E (B12.2)
52 (s + a)2 6 + b) )

SZ(S + a)3] -1 = As + B. + C82 + Ds + E . " ' (B12.3)
: 5< (s + a)3 ’ )

Qhere the coefficients A,B,C,D,E, satisfy respectively the follewing equalities

(As + B (s + a)(s + b){s + ¢c) + Cs2(s + b)(s + c) + Dsz(s + a) (s + c¢) ;

Es?(s + a)(s + b) =1 (B13.1)

(As + B} (s + a)z(s + b) + (Cs + D){(s + b)s2 + 52(3 + a)ZE =1 (B13.2)
and
(s + b) (s + a)3 + _(Cs2 + Ds + E)52 = 1

The elementary inverse Laplace transforms are-

:1 "1 (as +B)/s® = A + Bt
1 -1 _ ., .% -1 Cs + D~ _ . -at | -at

¢/ (s + a) = Cexp|( at),:i T2 ° Ce +°{D - aC)te ;
:1 -1 2

Cs + Ds + E

TTGT a3 Cexp(-at) f (D - 2aC) texp(-at)

2..,2 :
+ (E - aD - a"C)t”  exp(-at) {B1l4)
5 .

and the problem is to solve these simulkaneously.
The general expression (B4) is complicated and bulky but can be simplified a
great deal by assuming ¢n n {t) to be a diagonal matrix and even morxe so in the case

1
of the spherical top where_é(t)_is expressible as @(t) 1.
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Ve are able to write in these cases :
<A(t4)A(t2)A(t3)A(t4)>C =gty - e (- giey - £y + LB, £, )]) ‘

+BlE, £ (Bl - ty) + }‘Tr[g(tl - t3] )

2 Blemt) (L Tr[é(tl -] - Bl - gy

+ 8t -t (L ae, - t35} - Bty - t5))

+2 -1l e -] 8 (t, - t,)]

* T [g(tl -ty g(tz -] L

(B15)
for the non—spheiical case, and for the spherxical top
<A(tl)A(t2)A(t3)A(t4)>C
= 4 B(t; - ) Blt, - £, + 68(t; - £)B(t, ~ )
-6 8t - t) BlE, - t) - 6B(E, - t)B(t, - t]) (B16}
In the simple case considered by McConnell and coworkers we have
gl - ) = exp(-B{t, - t2))£ {(B17) -
which when put in (Bl6) and integrated
t t3 .
-2 fat, ... LS Tt o= Ble) -ty e, - 2]
o o
= -2 [1 » o 7BE & 2Bt BE L 1]
=__2_[}_Bt—§_+Bte_3t+e_6t+_l_e-28t] ,
B4 - 2 4 _ 4 (B18)

-If we use this result to compute the 1/84 term in the expansion of the autocorrelation'

function we have

120 o1 0% -2 et - § 4+ e BT 4 e 7BE 4 1 o726

4 ' ' 4 : 4

=1 (2822 + 9 - 58t - 6e P 4 372PY | 2peeBY
- Ry . . 7 : : (B19)
4 2 .

B , _

which is exactly the result of McConnell and co-workers. We have used the fact that-
2 4 : '

Qaxs + bx™  _ 1+ ax2 + (a2 + b)x4 + 0(x6)
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