Numerical test of the Einstein theory of gravitational deflection of light.

by

Myron W. Evans,

H. M. Civil List

(www.aias.us, www.atomicprecision.com, www.upitec.org, www.et3m.net)

To test:

$$\Delta \varphi = 2 \int_0^{\frac{1}{R_0}} \left(\frac{R_0 - r_0}{R_0^3} - u^2 + r_0 u^2 \right)^{-1/2} du - \pi \tag{1}$$

with input parameters R_0 , r_0 . Any r_0 and r_0 can be used. Einstein's claim is:

$$\Delta \varphi = 2 \, \frac{r_0}{R_0} \quad . \tag{2}$$

In UFT 150 it was found that:

$$\Delta \varphi$$
 (numerical) = (8.4934 ± 10^{-6}) microradians (3)

but Eq. (2) gave:

$$\Delta \varphi = 8.4955 \text{ microradians}$$
 (4)

Eq. (4) is well outside the numerical uncertainty:

$$\Delta(\Delta\varphi) = 8.4955 - 8.4934$$

$$= 0.0021$$
(5)

Numerical uncertainty = 0.000001

The Einstein claim is incorrect by three orders of magnitude, i.e. 2,100 times.