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Eddington on the Deflection of Light

Eddington on the Deflection of Light

Arthur Stanley Eddington was a good writer as well as a good scientist, and his popular
book, Space, Time and Gravitation (1920) is still worth reading even today. Since he
explains the deflection of starlight (he confirmed this in the1919 British expeditions) so
nicely, I cannot refrain from quoting the relevant part (for the following calculation,
Schwarzschild coordinates are used, and mass m is measured in units of length. See
Schwarzschild Geometry, where M is used instead of m).

The wave-motion in a ray of light can be compared to a succession of long
straight waves rolling onward in the sea. If the motion of the waves is slower at
one end than the other, the whole wave-front must gradually slew round, and
the direction in which it is rolling must change. In the sea this happens when
one end of the wave reaches shallow water before the other, because the speed
in shallow water is slower. It is well known that this causes waves proceeding
diagonally across a bay to slew ound and come in parrallel to the shore; the
advanced end is delayed in the shallow water and waits for the other. In the
same way when the light waves pass near the sun, the end nearest the sun has
the smaller velocity and the wave-front slews round; thus the course of the
waves is bent.

DEFLECTION
EQuaAL VELOCITY UNEQUAL VELOCITY
T
waves waves

Light moves more slowly in a material medium than in vacuum, the velocity
being inversely proportional to the refractive index of the medium. The
phenomenon of refraction is in fact caused by a slewing of the wave-front in
passing into a region of smaller velocity. We can thus imitate the gravitational
effect on light precisely, if we imagine the space round the sun filled with a
refracting medium which gives the appropriate velocity of light. To give the
velocity 1- 2m/r, the refractive index must be 1/(1 - 2m/r), or, very
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approximately, 1 + 2m/r. At the surface of the sun, » = 697,000km., m = 1.47
km., hence the necessary refractive index is 1.00000424. At a height above the
sun equal to the radius it is 1.00000212.

Any problem on the paths of rays near the sun can now be solved by the
methods of geometrical optics applied to the equivalent refracting medium. It is
not difficult to show that the total deflection of a ray of light passing at a
distance r from the center the sun is (in circular measure)

dm/r,

whereas the deflection of the same ray calculated on the Newtonian theory
would be

2mlr.
For a ray grazing the surface of the sun the numerical value of this deflection is
1".75 (Einstein's theory),
0".87 (Newtonian theory).
(Eddington 1920, 108-9.)

Recall that Einstein's theory demands spacetime curvature, which means that both space and
time are warped. Earlier (in 1911; see Genesis of General Relativity (2)), Einstein
considered only the time warps and obtained only a half of the preceding deflection;
beginning 1912, he realized that space is also warped, and he envisaged a non-Euclidean
geometry for treating gravity. On the other hand, the usual Embedding Diagram shows only
the spatial curvature (time is frozen), so that you have to add time warps, in order to obtain
the correct curvature. The following figure is an embedding diagram of an equatorial plane
of the sun (white part is the interior, and the rest is the exterior space, of the sun).

N

Try to learn physics or any other disciplines, whenever a related topic appear in the
course of reading (that's the best way to do philesophy of science)!
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Eddington, A. S. (1920) Space, Time and Gravitation, Cambridge University Press, 1987.
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6.3 Bending Light

At the conclusion of his treatise on Opticks in 1704, the (then) 62 year old Newton
lamented that he could "not now think of taking these things into farther consideration”, and
contented himself with proposing a number of queries "in order to a farther search to be
made by others". The very first of these was

Do not Bodies act upon Light at a distance, and by their action bend its Rays, and is not this action
strongest at the least distance? .

Superficially this may not seem like a very radical suggestion, because on the basis of the
corpuscular theory of light, and Newton's laws of mechanics and gravitation, it's easy to
conjecture that a beam of light might be deflected slightly as it passes near a large massive
body, assuming particles of light respond to gravitational acceleration similarly to particles
of matter. For any conical orbit of a small test particle in a Newtonian gravitational field
around a central mass m, the eccentricity is given by

SEh?

tr1

E=a./1+

where E = v2/2 —m/r is the total energy (kinetic plus potential), h = 1v, is the angular
momentum, v is the total speed, v, is th¢ tangential component of the speed, and r is the

radial distance from the center of the mass. Since a beam of light travels at such a high
speed, it will be in a shallow hyperbolic orbit around an ordinary massive object like the
Sun. Letting r, denote the closest approach (the perihelion) of the beam to the gravitating

body, at which v =v,, we have

t)
2
e - 1+[1@sz _21'013'2 _ [rnvz_l]
m m m

Now we set v =1 (the speed of light in geometric units) at the perihelion, and from the
geometry of the hyperbola we know that the asymptotes make an angle of o with the axis
of symmetry, where cos(at) = —1/.

Sun
Incoming ?
Ray

With a hyperbola as shown in the figure above, this implies that the total angular deflection
of the beam of light is & = 2(a. — n/2), which for small angles o and for m (in geometric
units) much less than r) is given in Newtonian mechanics by
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The best natural opportunity to observe this deflection would be to look at the stars near the
perimeter of the Sun during a solar eclipse. The mass of the Sun in gravitational units is
about m = 1475 meters, and a beam of light just skimming past the Sun would have a

closest distance equal to the Sun's radius, r = (6.95)108 meters. Therefore, the Newtonian
prediction would be 0.000004245 radians, which equals 0.875 seconds of arc. (Thére are
27 radians per 360 degrees, each of degree representing 60 minutes of arc, and each minute
represents 60 seconds of arc.)

However, there is a problematical aspect to this "Newtonian" prediction, because it's based
on the assumption that particles of light can be accelerated and decelerated just like
ordinary matter, and yet if this were the case, it would be difficult to explain why (in non-
relativistic absolute space and time) all the light that we observe is traveling at a single
characteristic speed. Admittedly if we posit that the rest mass of a particle of light is
extremely small, it might be impossible to interact with such a particle without imparting to
it a very high velocity, but this doesn't explain why all light seems to have precisely the
same velocity, as if this particular speed is somehow a characteristic property of light. Asa
result of these concerns, especially as the wave conception of light began to supersede the
corpuscular theory, the idea that gravity might bend light rays was largely discounted in
Newtonian physics. (The same fate befell the idea of black holes, originally proposed by
Mitchell based on the Newtonian escape velocity for light. Laplace also mentioned the idea
in his Celestial Mechanics, but deleted it in the third edition, possibly because of the
conceptual difficulties discussed here.)

The idea of bending light was revived in Einstein's 1911 paper "On the Influence of
Gravitation on the Propagation of Light". Oddly enough, the quantitative prediction given
in this paper for the amount of deflection of light passing near a large mass was identical to
the old Newtonian prediction, 8 = 2m/r,. There were several attempts to measure the

deflection of starlight passing close by the Sun during solar eclipses to test Einstein's
prediction in the years between 1911 and 1915, but all these attempts were thwarted by
cloudy skies, logistical problems, the First World War, etc. Einstein became very
exasperated over the repeated failures of the experimentalists to gather any useful data,
because he was eager to see his prediction corroborated, which he was certain it would be.
Tronically, if any of those early experimental efforts had succeeded in collecting useful data,
they would have proven Einstein wrong! It wasn't until late in 1915, as he completed the
general theory, that Einstein realized his earlier prediction was incorrect, and the angular
deflection should actually be twice the size he predicted in 1911. Had the World War not
intervened, it's likely that Einstein would never have been able to claim the bending of light
(at twice the Newtonian value) as a prediction of general relativity. At best he would have
been forced to explain, after the fact, why the observed deflection was actually consistent
with the completed general theory. (This would have made it somewhat similar the
cosmological expansion, which would have been one of the most magnificent theoretical
predictions in the history of science, but the experimentalist Hubble got there first.)

Luckily for Einstein, he corrected the light-bending prediction before any expeditions
succeeded in making useful observations. In 1919, after the war had ended, scientific
expeditions were sent to Sobral in South America and Principe in West Africa to make
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observations of the solar eclipse. The reported results were angular deflections of 1.98 +
0.16 and 1.61 + 0.40 seconds of arc, respectively, which was taken as clear confirmation of
general relativity's prediction of 1.75 seconds of arc. This success, combined with the
esoteric appeal of bending light, and the romantic adventure of the eclipse expeditions
themselves, contributed enormously to making Einstein a world celebrity.

One other intriguing aspect of the story, in retrospect, is the fact that there is serious doubt
about whether the measurement techniques used by the 1919 expeditions were robust
enough to have legitimately detected the deflections which were reported. Experimentalists
must always be wary of the "Ouija board" effect, with their hands on the instruments,
knowing what results they want or expect. This makes it especially interesting to speculate
on what values would have been recorded if they had managed to take readings in 1914,
when the expected deflection was still just 0.875 seconds of arc. (It should be mentioned
that many subsequent observations, summarized below, have independently confirmed the
angular deflection predicted by general relativity, i.e., twice the "Newtonian" value.)

To determine the relativistic prediction for the bending of light past the Sun, the
conventional approach is to simply evaluate the solution of the four geodesic equations
presented in Chapter 5.2, but this involves a three-dimensional manifold, with a large
number of Christoffel symbols, etc. It's possible to treat the problem more efficiently by
considering it from a two-dimensional standpoint. Recall the Schwarzschild metric in the
usual polar coordinates

e = (2 s

t r—2m

We'll restrict our attention to a single plane through the center of mass by setting ¢ =0, and
since light travels along null paths, we set dt = 0, which allows us to write the remaining
terms in the form

3

(dt)2=[ f ]E(dr)% (a0 0

r—2m r—2m

This can be regarded as the (positive-definite) line element of a two-dimensional surface (r,
0), with the parameter t serving as the metrical distance. The null paths satisfying the
complete spacetime metric with dt = 0 are stationary if and only if they are stationary with
respect to (1). This implies Fermat’s Principle of “least time”, i.e., light follows paths that
minimize the integrated time of flight, or, more generally, paths for which the elapsed
Schwarzschild coordinate time is stationary, as discussed in Chapter 3.5. (Equivalently, we
have an angular analog of Fermat’s Principle, i.e., light follows paths that make the angular
displacement d© stationary, because the coefficients of (1) are independent of both t and 6.)
Therefore, we need only determine the geodesic paths on this surface. The covariant and
contravariant metric tensors are simply
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and the only non-zero partial derivatives of the components of gy are
Oy _ —Amr agee _ 21_3 r—3m
&  (r—2mY & r—2m Y
so the non-zero Christoffel symbols are
~2m r—3m
Ty = T*og =—{r-3m g =TP =
" rfr—2m) 00 =~ ) © or r{r—2m)

Taking the coordinate time t as the path parameter (since it plays the role of the metrical
distance in this geometry), the two equations for geodesic paths on the (r, 0) surface are

3 | 2 2
dr? r(r—2m] dt 4 dt
d?e

7 " e e)s)

These equations of motion describe the paths of light rays in a spherically symmetrical
gravitational field. The figure below shows the paths of a set of parallel incoming rays.

(2)
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The dotted circles indicate radii of m, 2m, ..., 6m from the mass center. Needless to say, a
typical star's physical radius is much greater than it's gravitational radius m, so we will not
find such severe deflection of light rays, even for rays grazing the surface of the star.
However, for a "black hole" we can theoretically have rays of light passing at values of r on
the same order of magnitude as m, resulting in the paths shown in this figure. Interestingly,
a significant fraction of the oblique incoming rays are "scattered" back out, with a loop at r
= 3m, which is the "light radius". As a consequence, if we shine a broad light on a black
hole, we would expect to see a "halo" of back-scattered light outlining a circle with a radius
of 3m.

To quantitatively assess the angular deflection of a ray of light passing near a large
gravitating body, note that in terms of the variable u = d6/dt the second geodesic equation
(2) has the form (1/u)du = ~[(2/r)(r—3m)/(r—2m)]dr, which can be integrated immediately to
give In(u) = In(r—2m) — 3In(r) + C, so we have

@ _ K(r— 2m]
dt r3

To determine the value of K, we divide the metric equation (1) by (dt)? and evaluate it at
the perihelion r = r,,, where dr/dt = 0. This gives

()
S 1, —2m\dt

Substituting into the previous equation we find K?= r03/(r0 — 2m), so we have
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Now we can substitute this into the metric equation divided by (dt)2 and solve for dr/dt to
give

dé Iy — 2m
dr | (ruj3 r—2m
1_ —_
r/ rp—2m

Integrating this from r = r;, to oo gives the mass-centered angle swept out by a photon as it

1
r

moves from the perihelion out to an infinite distance. If we define p =ry/r the above

equation can be written in the form

de:]l l

1
dp
P-IJ-\,(-I_F’:i 1_2(1—p3]2
l—p2 1,

The magnitude of the second term in the right-hand square root is always less than 1
provided r is greater than 3m (which is the radius of light-like circular orbits, as discussed

further in Section 6.5), so we can expand the square root into a power series in that
quantity. The result is

1 3 3.7 3.7
1 1 1- 3 1-p’m| 5[ 1-
® = | [1+—[2—%5}+—{2——p,—ﬂ} +—[2 b E} +--}dp
0 h__pﬁ 2 1-p°rp| 8] 1-p" 1, 16| 1-p" 14

This can be analytically integrated term by term. The integral of the first term is just /2, as
we would expect, since with a mass of m = 0 the photon would travel in a straight line,
sweeping out a right angle as it moves from the perihelion to infinity. The remaining terms
supply the “excess angle”, which represents the angular deflection of the light ray. If m/r,

is small, only the first-order term is significant. Of course, the path of light is symmetrical
about the perihelion, so the total angular deflection between the asymptotes of the incoming

and outgoing rays is twice the excess of the above integral beyond n/2. Focusing on just the
first order term, the deflection is therefore
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1 3
1-
5 = o2 P

Ty o (1— pz}m

dp

Evaluating the integral

.I-(li_pf;m dp = _\/g‘ [1-p}{1+6)

from p =0 to 1 gives the constant factor 2, so the first-order deflection is 6 = 4m/r,,. This

gives the relativistic value of 1.75 seconds of arc, which is twice the Newtonian value. To
higher orders in m/r, we have

o {D) + () (o)

The difficulty of performing precise measurement of optical starlight deflection during an
eclipse can be gathered from the following list of results:

Optical Deflection of Starlight During Eclipses

Date : Location arc secs

29 May 1919 Sobral 198 £0.16
Principe 1.16 £ 0.40

21 Sep 1922 Australia 1.77 £0.40
142102.16

1.72+0.13

1.82+0.20

D May 1929 Sumatra 224+0.10
19 June 1936 USSR 273+0.31
Japan 1.28t02.13

20 May 1947 Brazil 2.01 £0.27
25 Feh 1952 Sudan 1.70£0.10
30 Jun 1973 Mauritania 166 £0.19

Fortunately, much more accurate measurements can now be made in the radio wavelengths,
especially of quasars, since such measurements can be made from observatories with the
best equipment and careful preparation (rather than hurriedly in a remote location during a
total eclipse). In particular, the use of Very Long Baseline Interferometry (VBLI),
combining signals from widely separate observatories, gives a tremendous improvement in
resolving power. With these techniques it’s now possible to precisely measure the
deflection (due to the Sun’s gravitational field) of electromagnetic waves from stars at great
angular distances from the Sun. By 1991 the observations of radio waves from stars
consistently showed that the ratio of observed deflections to the deflections predicted by
general relativity is 1.0001 £ 0.00001. Thus the dramatic announcement of 1919 has been
retro-actively justified.

The first news of the results of Eddington’s expedition reached Einstein by way of Lorentz,
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who on September 22 sent the telegram quoted at the beginning of this chapter. On the 7th
of October Lorentz followed with a letter, providing details of Eddington’s presentation to
the “British Association at Bournemouth”. Oddly enough, at this meeting Eddington
reported that “one can say with certainty that the effect (at the solar limb) lies between
0.87” and 1.74”, although he qualified this by saying the plates had been measured only
preliminarily, and the final value was still to be determined. In any case, Lorentz’s letter
also included a rough analysis of the amount of deflection that would be expected due to
ordinary refraction in the gas surrounding the Sun. His calculations indicated that a suitably
chosen gas density at the Sun’s surface could indeed produce a deflection on the order of
17, but for any realistic density profile the effect would drop off very rapidly for rays
passing just slightly further from the Sun. Thus the effect of refraction, if there was any,
would be easily distinguishable from the relativistic effect. He concluded

We may surely believe (in view of the magnitude of the detected deflection) that, in reality,
refraction is not involved at all, and your effect alone has been observed. This is certainly one of the
finest results that science has ever accomplished, and we may be very pleased about it. '

Return to Table of Contents
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“®schwarzschild Black Hole™

Astrophysics » Black Holes ~

Modern Physics » Relativity Theory » General Relativity » Field Equations Solutions

A black hole with zero charge Q = 0 and no angular momentum J = 0. The exteri
solution for such a black hole is known as the Schwarzschild solution (or
Schwarzschild metric), and is an exact unique solution to the Einstein field equati
of general relativity for the general static isotropic metric (i.e., the most general
metric tensor that can represent a static isotropic gravitational field),

dr® = B(r) di? — A(r) dr? — 2 df® - r?sin® 6dg’.

In 1915, when Einstein & first proposed them, the Einstein field equations appea:
so complicated that he did not believe that a solution would ever be found. He we
therefore quite surprised when, only a year later, Karl Schwarzschild & (1916)
discovered one by making the assumption of spherical symmetry.

In empty space, the Einstein field equations become

Rﬂ,y = 0.

where Rm, is the Ricci curvature tensor. ® Reading off Rrr, Rgs, Rpp, and .

from the static isotropic metric (1) gives

.2
R = sin® 8 Ry,

so Rug =10 if Rgs = 0. Also

; ! A B’
Rrr_i_R_“____._._}_( ,~ .@._):0:

A B rA L4 B
S0
A B
4 B
dd ___ﬁ
4 B

InA = - InB + In [const]

In{ 4B} = lnjconst]
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A{r}B(r) = [const]

But as ¥ —+ X2, the metric tenor approaches the Minkowski metric, so

A A(r) = lim B(r) =1

1
1;1(?'} —_ EW

Plugging this into Hys and H,, gives
Rag = 1+ B'r + B =1
BN Bi’ R!
R e e e ﬂ
=3B rB” uB

So we only have to make Hgy = (), then B, =0 and by (4), Ry; = (.

d

. [rB{r}] = rB'(r}) + B(r) = 1,

SO

rB{r} = r + [const].

Now, at great distance,

G — S - I I ?..tf).

where the gravitational potential is

MG
b=~

Ar

Here, M is the mass of the black hole, G is the gravitationa! constant, and c is the
speed of light. Note that it is very common to omit all factors of ¢ (or equivalently
set ¢ = 1) in the equations of general relativity. Although slightly confusing, the c
convention allows equations to be written more concisely, and no information is
actually lost since the missing factors of ¢ can always be unambiguously inserted
dimensional analysis. Combining (16) and (17) gives the constant in (15) as

—2MG/¢?, so

By = 1-2MC

=T

MG\ !
Al e 1 — .
A(r) ( (:*:') ’
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and the metric in standard form is therefore

. 2MGY . MG L, e
dr? = (1 - Tﬁ) dt* - (1 - ¢ ) dr? — 2 e~ P sin® 6de”.

oy iy
This is the Schwarzschild solution in standard form.

The radius at which the metric becomes singular is

2MG
TS =3

known as the Schwarzschild radius.

The Killing vector @ fields for the Schwarzschild solution are {/t,

xd [y — ydfox, yO/0z — 28/0y, and 28/0r — :1’:3_/83.

An exact solution turns out to also be possible for a spherical body with constant
density; see Schwarzschild black hole--constant density,

EE3 Birkhoff's Theorem, Black Hole, Eddington-Robertson Metric, Einstein Fie
Equations, General Relativity, Schwarzschild Black Hole--Constant Density,
Schwarzschild Black Hole--Eddington-Finkelstein Coordinates, Schwarzschild Blac
Hole-~Isotropic Form, Schwarzschild Black Hole--Kruskal Coordinates, Schwarzsct
Biack Hole--Radial Infall, Schwarzschild Radius, Static Isotropic Metric
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