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ABSTRACT: 
In the non-traditional areas of physics it has been postulated and perhaps demonstrated 
that a second form of electrical current, called by some a “cold current”, coexists with the 
standard electrical current that is traditionally explained by the Maxwell-Heaviside theory 
of electromagnetism. Further, the ECE equations of electromagnetism have demonstrated 
unusual electrical behaviour that is not explained by the traditional Maxwell-Heaviside 
theory whereby a transient zero value for one of the field potentials generates secondary 
components to the fields associated with the spin connection. 
 
It is postulated that a new form of current exists within the framework of the ECE 
equations of electromagnetism as one of the possible solutions of ECE theory. The 
properties of such a current are briefly speculated upon. 
 
A basis is laid for creating a well-posed problem in the ECE theory of electromagnetism.  
For time dependent problems, nine inter-dependent wave-like equations are proposed.  
The equations whose original formulation was expressed in pairs of Curl and Divergence 
equations were recast into wave equations with a divergent equation representing one 
possible boundary condition.  A similar formulation based on coupled Poisson equations 
is proposed for the static situation.  Limiting equations for magnetic only, quasi-
magnetostatic, and electric only formulations as well as linearized versions of all 
equation sets, are also presented. 
 
 

 



I. INTRODUCTION 
The solutions to the ECE electromagnetic equations, other than for simple analytic and 
numerical models [1],[2],[3] has remained elusive.  This has been in part due to the 
under-posed nature of the equation system.  What this means typically is that there is not 
enough information in the form of independent equations to define the dependent 
variables completely.  This has required that some limiting simplifications be imposed in 
order to get a balanced equation system.  Usually these simplifications amounted to a 
global specification for one of the dependent variables. 
 
Besides being under-posed, the equations tend to be unstable from a solution standpoint, 
and are subject to singularities in the solution.  This paper addresses the issue of the 
under-posed nature of the equations, and proposes a modified set of equations that is 
better suited to numerical solution. 
 
II: THE PROBLEM 
In the non-traditional areas of physics it has been postulated [4], [5], taught [6], [7], and 
perhaps demonstrated [8] that a second form of electrical current, called by some a “cold 
current”, coexists with the standard electrical current that is traditionally explained by the 
Maxwell-Heaviside theory of electromagnetism.  This second form of current seems to 
conduct electrical energy in circuits for example, but does so with a resistive loss that is 
significantly less than the traditional Ohmic loss explained by Maxwell. 
 
Further, the ECE equations of electromagnetism have demonstrated both analytically and 
numerically, unusual electrical behaviour that is not explained by the traditional 
Maxwell-Heaviside theory [1], [2], [3].  This behaviour has been observed 
mathematically in time dependent situations where two or more spatial dimensions are 
involved. 
 
It is postulated that a new form of current exists within the framework of the ECE 
equations of electromagnetism.  Its existence is one of the possible solutions of ECE 
theory resulting from the separation of one of the key equations into two distinct 
equations acting in a coupled fashion.   
 
To demonstrate this, we start with the ECE electromagnetic equations expressed in 
engineering form in terms of potentials and spin connections [9] in a Euclidean vector 
space. 
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where φ  and A are the scalar and vector potentials respectively, oω and are the scalar 
and vector spin connections respectively, and ρ and J are the charge density and 
traditional current density respectively.  

ω

 
According to Appendix I, equations (1) and (2) represent three (not four) independent 
equations in a three-dimensional Euclidean vector space.  In fact, equation (2) can be 
treated as the field equation, and equation (1) as the flux boundary condition [3].  A 
similar situation can be seen for equations (3) and (4), but is more easily seen if (3) and 
(4) are expressed in terms of electric field E and magnetic induction field B [9].   
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By Appendix I, equation (6) has the following equation as one component. 
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This we can recognize with a little algebra, as equation (5) by virtue of the charge 
conservation equation. 
 
Thus equations (1) through (4) represent six equations in unknowns φ , A, oω and  
indicating that the equation system the way it is presented is lacking two equations for 
complete specification.  That is, it is under-posed or under-specified. 

ω

 
A well-posed problem has the number of independent equations equal to the number of 
dependent variables.  In addition, it requires that some form of boundary condition 
specification exist somewhere on the boundaries, and that initial conditions be specified 
for each of the dependent variables.  The number of equations can exceed the number of 
dependent variables.  This offers a confirmation to the solution that is found, but care 
must be taken to choose the equations that provide the most information for generating a 
solution. 
 
A word at this point should be said about boundary conditions.  Some numerical 
algorithms for partial differential equation solving require that boundary conditions be 
expressed in terms of boundary condition types known as Dirichlet, Neumann and a 
combination of the two called Robin.  Other algorithms prefer a Dirichlet condition and 
what is called a “natural” boundary condition that represents the flux of a dependent 
variable or dependent variable combination across a boundary.  All dependent variables 
need some form of specification somewhere on the boundaries to the problem, although 
they don’t need to be specified everywhere. Explicit specification is not required for each 
dependent variable, but each variable should be included in an algebraic condition 
representing its boundary value if nothing else. Care must be taken however, because 
sometimes an algorithm assumes certain boundary conditions if they are not otherwise 
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explicitly expressed.  For example, sometimes a zero flux will be assumed at a boundary 
if nothing else is specified. 
 
 
III. A SOLUTION 
Equations (1) through (4) represent two pairs of Curl and Divergence equations, each 
with three independent equations in a three-dimensional vector space.  It would be very 
convenient, to form a better posed problem, if there was another set of Curl and 
Divergence equations to add the remaining equations.  This can be obtained if one 
accepts the following postulate. 
 
Assume that there exists a second form of current density J1   that is different from the 
traditional current density Jo where the traditional current density is governed by 
Maxwell-Heaviside equations  (8) and that the second form of current density is governed 
by equation (9). 
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We note that this is just the separation of equation (4) into two parts, with a new current 
J1, such that 
 
(10)  1o JJJ +=

 
We can perform a similar separation for equation (3) to get 
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(13) 1ρρρ += o  
 
In equation (13), the total charge density ρ is made up of two components, the traditional 
charge density ρo and a new component ρ1, corresponding to the second form of current 
J1.  
 
A. Master Equation Set 
The above nine independent equations are re-written here for easy reference, in pairs of 
Curl, and Divergence equations.  (Appendix II contains proof of equation independence.) 
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The equation set  (14),(16) and (18) consists of nine equations.  These equations can be 
derived from the twelve equations above by using the technique given in Appendix I. The 
dependent variables are φ , A, ωo, and ω, with some of   ρo, Jo, ρ1, and J1, being driving 
terms. 
 
This equation system, as stated above consists of nine independent equations in eight 
unknowns and so is over specified.  It is highly non-linear so could make its use in 
numerical calculations difficult. 
 
 
B: Time-Dependent Equations 
The master equation set is easily shown be wave-like in form, for time dependent 
situations.  In Appendix II it is shown that the master equation set can be expressed as 
nine wave equations with coupling at the boundaries and through specification of initial 
conditions.  The following equations, easily derived from the master equation set in the 
same manner as the homogeneous forms of Appendix II, expressed in non-homogeneous 
form are 
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which together with the divergent equations, often used to specify flux type boundary 
conditions [5], 
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other boundary conditions appropriate to the problem, and initial conditions, completely 
define the problem.  This system is over specified with one more equation than dependent 
variables. 
 
C: Static Equations 
For situations where there is no time dependence, the master set of equations reduce to 
the following 
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Equations (26) and (27) are decoupled from the rest of the equation set.  However, once 
again, these traditional equations of electromagnetism do not act independently from the 
equations that define the spin connection since they are coupled to (28) through (31) and 
cannot be solved independently. 
 
By virtue of equation (30), ( Aω- o )ωφ +  can be written as the gradient of a scalar η, ie. 
 
(32) Aω oωφη +−=∇  
 
Equation (31) then becomes 
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Equation (28) can be put into similar form by taking its Curl and noting equation (29) to 
get 
 
(34)  ( ) 1JAω ×∇=×∇ oμ
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The equation system consisting of equations (26), (27), (33), and (34) consists of eight 
Poisson-like equations in eight unknowns A, φ , ω,  and η so is completely specified.  
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Flux boundary conditions  (29) and (31)  together with Dirichlet and/or other conditions 
on φ  make the problem well-posed. 
 
D: Linearization of the Time-Dependent Equations 
We note that we have nine non-homogeneous wave equations in eight unknowns, A, φ , 
ω, and ωo.  This system can be forced into a well-posed formulation by transforming the 
non-linear partial differential equations to linear differential equations.  Linearization of 
non-linear partial differential equations is not new [10], [11] and has already been applied 
to the original form of the ECE engineering equations [12]. 
 
If we define new variables 
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then the wave equations (20), (21), and (22) become 
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The boundary conditions are given by 
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(43) 0=•∇ G  
 
Equations (38) through (40) constitute a well-posed problem with nine independent 
equations in nine unknowns, E, F, and G and compatible boundary conditions (41) 
through (43) for flux through the boundaries, should these be appropriate.  Non-linearity 
enters the system through Dirichlet or Neumann type boundary conditions and initial 
conditions through the transformation equations (35) through (37). 
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E: Linearization of the Static Equations 
One can linearize the static equations in a manner analogous to that done for the time 
dependent equations.  Redefining  
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the static equations become rewritten here for easy reference 
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along with boundary flux conditions, 
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and the second scalar potential 
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completely define the static problem. 
 
Equations (45) through (48) are eight equations in eight unknowns A, φ , G,  and η so is 
completely specified.  Flux boundary condition  (49) together with Dirichelt and/or 
Neumann conditions on φ , make the problem linear and well-posed.  Non-linearity enters 
the system through Dirichelt or Neumann type boundary conditions and initial conditions 
through the transformation equations (44) and  (50). 
 
 
F: Constitutive Relations 
To complement a set of field equations one often specifies constitutive relations that form 
functional relationships between various field variables.  For example, relationships 
between the electric displacement field and the electric field give a relative permittivity 
for materials that behave in a linear fashion.  Similarly, relations exist between the 
magnetic inductive and magnetic fields defining a relative permeability for linearly 
behaving materials.  For materials that conduct a current, a linear relationship between 
current density and electric field strength known as Ohm’s Law in traditional 
electromagnetic theory, is often assumed ie. 
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At this point, it is not known if we can assume a similar form for J1 to Ohm’s Law.  We 
will however assume this, ie., 
 
(52) ( AωJ 1 oa )ωφ +−=  for the secondary current, 
 
where a is a material property somewhat akin to conductivity  σ in traditional Maxwell-
Heaviside theory.  We have assumed homogeneity and isotropy in specifying a constant 
value for a and σ.   From a purely speculative standpoint, if J1 dissipates power in a 
manner analogous to Jo then a must be larger than σ for the secondary current to have 
less “Ohmic” loss, as postulated in the literature [4], [8].  
 
 
IV: DISCUSSION 
A summary table of all of the non-linear equations presented in this paper is included in       
Appendix V.  Linearized versions are presented in Appendix VI. 
 
A:  Divergence of J1 
Equations (16) through (19) result in a second charge conservation equation 
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B: Spike-Like Nature Of Dependent Variables 
It has been repeatedly demonstrated [1], [2], and [3], that some of the dependent field 
variables exhibit a spike-like behaviour which occurs whenever one of the potentials 
crosses zero.   
 
As is shown earlier, the master equation set for time dependent problems can be 
expressed as nine independent wave equations.  The interconnectivity of the wave 
equations is not overly apparent until a boundary is reached.  At that time, the infinite 
number of possible solutions is reduced to a single valued function for each variable, 
given a well-posed problem.   
 
If one considers a one dimensional case for example, equation (24) is trivial, and equation 
(25) reduces to 
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This illustrates the origin of “spike like” behaviour of both ω and ωo when either φ  or A 
is zero and also shows where the calculation difficulties associated with singularities 
arise. 
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C: Significance of the  Field Aω×
Consider equation (22).  In [3], it was shown that for a thin flat conductive plate, the 

 field is perpendicular to the surface of the plate.  If one imagines this plate wound 
into a tube, in essence one has a wire radiating the 

Aω×
Aω×  field in a radial fashion, 

perpendicular to the wire.  This perpendicular field has been discussed at length in [4], 
and has ascribed healing properties to it.  It also has been described as being 
“electrostatic” in nature, most likely because it radiates perpendicular to the source.  In 
the near field limit, in the absence of current flow, which one would expect for a radiating 
source, the field is Laplacian and in this particular situation has only one component, 
directed in the direction of propagation. Scalar waves have been described in the 
literature [13] and it may be that this perpendicular component is such a wave. 
 
V: CONCLUSIONS 
A basis is laid for creating well-posed problems in the ECE theory of electromagnetism.  
The equations whose original formulation were expressed in pairs of Curl and 
Divergence equations were recast into inter-dependent wave equations with divergent 
equations representing the boundary conditions.  This allowed the separation of the 
equivalent of the Maxwell-Ampere equation in ECE theory into two separate equations, 
the first defining the traditional current density of Maxwell-Heaviside theory, and the 
second introducing a new secondary current that is a result of spin connection and 
heretofore only speculated upon in the non-traditional areas of physics.  One of the 
results of this separation is the introduction of a wave field that could explain the 
phenomenon of “scalar” waves proposed in the literature.   
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APPENDIX I   
 
Theorem: In three spatial dimensions, the equations 
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(2) 0=•∇ G  
 
where F and G are two independent vectors in three dimensions, represents at most three 
independent equations. 
 
Proof: 
Assume that the vectors F and G are expressed on a three basis vector Euclidean 
coordinate system which we will assume to be Cartesian, without loss of generality. 
 
We will express equation (1) in matrix format for convenience, 
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If we replace the top row with the sum of rows 1, 2 and 3, we get 
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We immediately recognize the first equation as equation (2). 
 
Thus we have at most three independent equations in the four equations of equations (1) 
and (2). 
 
This can be immediately reduced to show that in two dimensions we get only two 
independent equations and in one dimension we have one independent equation.  
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APPENDIX II   
 
To illustrate the degree of independence of the equations in the master equation set, we 
consider their homogenous forms for simplicity. 
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(4) ( ) ( ) 0=
∂
×∂

−−×∇
to

AωAω ωφ  

(5) ( ) 01
2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂

∂
+××∇−

ttc
o φω ωA

Aω  

(6) ( ) 0=+−•∇ Aω oωφ  
 
 
The equation set  (1) through (6) offers a convenient linearization [12].  If one defines 
new field variables by 

(7) φ∇−
∂
∂

−=
t
AE  

(8) AωF oωφ +−=  
(9) AG ×−= ω  
 
the equation set can be cast in a simpler format, namely 
 

(10) 01
2

2

2
=

∂

∂
+×∇×∇

tc
EE   (see [3]) 

(11)  0=•∇ E
 
(12) 0=•∇ G  

(13) 0=
∂
∂

+×∇−
t
GF  

(14) 01
2

=
∂
∂

+×∇
tc
FG  

(15) 0=•∇ F  
 
 
Equations (12), (13), (14), (15) can be written in wave-like form by taking the Curl of 
(13) and (14) and eliminating the “cross” terms.  The resulting equations are 
 

 (16)   01
2

2

2
=

∂

∂
+×∇×∇

tc
GG  
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(17) 01
2

2

2
=

∂

∂
+×∇×∇

tc
FF  

 
 
Using the vector identity 
 
(18)  ( ) FFF 2∇−•∇∇=×∇×∇  
 
and noting (12) and (15), these reduce to 
 
 

(19) 01
2

2

2
2 =

∂

∂
−∇

tc
GG  

 

(20) 01
2

2

2
2 =

∂

∂
−∇

tc
FF  

 
and 
 

(21) 01
2

2

2
2 =

∂

∂
−∇

tc
EE  

These represent nine independent wave equations. The taking of time and spatial 
derivatives in their derivation removes some of their generality however, limiting 
solutions to those of an oscillatory nature, and in a visual sense, looses the 
interdependence of the equations.  
 
The interdependence of the equations occurs in the specification of the initial conditions, 
and at the boundaries.  The boundary conditions require a specification of the field 
variables where these are known, and a specification of gradients or flux for the field 
variables E,F, and G, where known. 
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APPENDIX III   MAGNETIC ONLY EQUATIONS 
For conductive materials it can be assumed that there are no free charges and that the 
scalar potential is zero. Given linear constitutive relations, 
 

(1) 
t∂

∂
−=

AJ 0 σ    and 

 
(2) AJ 1 oaω=  for the secondary current, 
 
the wave-like equation set reduces to 
 

(3) 01
2

2

2
2 =

∂

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−∂
−

∂

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−∂
−⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

−∇
t

t
t

t
ct o

AA
A σμ  

 

(4) ( ) ( ) ( )
01

2

2

2
2 =

∂
∂

−
∂

∂
−∇

t
a

tc
o

o
o

o
AA

A
ω

μ
ω

ω  

 

(5) ( ) ( ) ( ) 01
2

2

2
2 =×∇−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

×∂
−×∇ AAωAω oo a

tc
ωμ  

 
which together with boundary conditions [3] 
 

(6) 0=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

•∇
t
A  

 
(7)  ( ) 0=×•∇ Aω
 
(8) ( ) 0=•∇ Aoω  
 
forms the equation system. 
 
Equation (3) becomes upon integration through time, 
 

(9) 01
2

2

2
2 =

∂
∂

−
∂

∂
−∇

ttc o
AAA σμ  

 
In two dimensions equations  (9), (4), (6) and (8) apply since Aω×  is trivial. 
 
This model supports damped wave propagation of A, ωoA and ωxA all with propagation 
speed c.  Given the spike-like nature expected for ω and ωo, one would expect a spike-
like waveform for ωoA and ωxA. 
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As discussed in [3], for a harmonic field in frequencies in the lower rf range (hundreds of 
kilohertz), the wave-like component in equation (9) is insignificant in comparison to the 
dispersive component. This occurs when 
 

 1
2
pp

c
i

oσμ
β  where β is a typical frequency of oscillation.   

It it unknown whether this applies to the other two wave components, because at this 
time, we have no knowledge of the value of the secondary conductivity a.  
 
However, if we can make a similar assumption for equation (4), a similar ratio of terms is 
 

  1
2
pp

ac
i

oμ
β  

 
The magnitude of a is unknown, but if it is on par, or greater than σ, then the above 
inequality certainly is valid.   
 
We can postulate a similar relationship for the terms in equation (5). 
 
The result is that equations (4), (5) and (9) can be simplified from the hyperbolic wave 
equations to the much more manageable parabolic equations, ie. 
 

(10) 02 =
∂
∂

−∇
to
AA σμ  

(11)  ( ) 02 =
∂

∂
−∇

t
AA o

o
ω

μω ao  

(12)  ( ) ( ) 02 =×∇−×∇ AAω oωμ ao

 
The boundary conditions remain equations (7), and (8) and (6) with the removal of the 
time derivative should a flux type boundary condition be required.  Note that equation 
(12) now supports instant propagation of its dependent variable Aω× , whereas equations 
(10) and (11) offer a diffusive mode of propagation in a coupled manner. 
 
The equation system is over specified but through linearization results in a well-posed 
problem.   
 
Writing 
 
(13) AF oω=       and 
(14)  AG ×−= ω  equations (11) and (12) become 

(15)  02 =
∂
∂

−∇
t
FF aoμ  

(16)  02 =×∇−∇ GG aoμ
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which together with equation (10) and 
 
(17)  0=•∇ A
 
(18) 0=•∇ F  
 
(19) 0=•∇ G  
 
or other appropriate boundary conditions constitutes a well posed problem.  Non-
linearities enter through equations (13) and (14). 
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APPENDIX IV  ELECTRIC ONLY EQUATIONS 
For situations where there is no vector potential, the time dependent equations reduce to  
 

(1) ( ) ( )
ttc

o ∂
∂

−=
∂

∇∂
−∇∇ oJ

μφφ
2

2

2
2 1  

 

(2) ( ) ( )
t

Jωω 1

∂
∂

−=
∂

∂
−∇ o

tc
μφφ

2

2

2
2 1  

 
which together with  
 

(3) 
o

o

ε
ρ

φ −=∇ 2  

(4) ( )
oε
ρ

φ 1−=•∇ ω-  

and initial conditions, completely define the problem.  Equations (3) is the divergence 
boundary condition on φ∇ . 
 
If we write, which we can do by virtue of equation (18) in the body of the paper 
 
(5) φη ω−=∇  
 
where η is a second scalar potential, then equations (2) and (4) take a form analogous to 
(1) and (3), namely 

 (6) ( ) ( )
t

J 1

∂
∂

=
∂

∇∂
−∇∇ o

tc
μηη

2

2

2
2 1  

(7) 
oε
ρ

η 12 =∇  

 
For the electric only equations, we are left with solving the equation pair (1), (6) and the 
pair of (3) and (7) as the flux boundary conditions. 
 
This system is greatly over specified and only becomes well posed if there is no current 
present, in which case two wave equations result, ie. 
 

(8) 01
2

2

2
2 =

∂

∂
−∇

tc
ηη  

(9) 01
2

2

2
2 =

∂

∂
−∇

tc
φφ  

 
to form a well-posed system given boundary and initial conditions. 
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APPENDIX V  SUMMARY TABLE OF NON-LINEAR EQUATIONS FOR TWO CURRENT MODEL OF ECE EM EQUATIONS 
 
 
EQUATION SET FLUX 

BOUNDARY 
CONDITIONS 

DIRICHLET OR  
NEUMANN 
BOUNDARY 
CONDITIONS 

INITIAL 
CONDITIONS 
REQUIRED 

DEFINITIONS & 
ASSUMPTIONS 

Master Equation Set 

oJAA ottc
μφ

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∇+
∂

∂
+×∇×∇

2

2

2
1  

( ) 1JωA
Aω o

o

ttc
μφω

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂

∂
+××∇−

2
1  

( ) ( ) 0=
∂
×∂

++×∇
to

AωAω- ωφ  

 

 
 

o

o

t ε
ρ

φ −=⎟
⎠
⎞

⎜
⎝
⎛ ∇+
∂
∂

•∇
A  

( ) 0=×•∇ Aω  

( )
o

o ε
ρωφ 1−=+−•∇ Aω

 
 
A,φ  

 
A,φ  
ω , oω  

 
1o JJJ +=  
1ρρρ += o  

 

Time Dependent Equations 

tt
t

ct o ∂
∂

=
∂

⎟
⎠
⎞

⎜
⎝
⎛ ∇−

∂
∂

−∂
−⎟

⎠
⎞

⎜
⎝
⎛ ∇−

∂
∂

−∇ oJ
A

A μ
φ

φ
2

2

2
2 1  

( ) ( )
t

JAω
Aω 1

∂
∂

=
∂

+−∂
−+−∇ o

o
o

tc
μ

ωφ
ωφ

2

2

2
2 1  

( ) ( )
1JAωAω ×∇=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

×∂
−×∇ o

tc
μ

2

2

2
2 1  

 

 

o

o

t ε
ρ

φ −=⎟
⎠
⎞

⎜
⎝
⎛ ∇+
∂
∂

•∇
A  

 
( ) 0=×•∇ Aω  

 

( )
o

o ε
ρωφ 1−=+−•∇ Aω

 
A,φ  

 
A,φ  
ω , oω  

 
1o JJJ +=  
1ρρρ += o  



 
EQUATION SET FLUX 

BOUNDARY 
CONDITIONS 

DIRICHLET OR  
NEUMANN 
BOUNDARY 
CONDITIONS 

INITIAL 
CONDITIONS 
REQUIRED 

DEFINITIONS & 
ASSUMPTIONS 

Static Equations 
oJA oμ=×∇×∇  

( ) 0=+×∇ Aω- oωφ  
( ) 1JAω oμ=××−∇  

 
( ) 0=×•∇ Aω  

( )
o

o

ε
ρ

φ −=∇•∇  

( )
o

o ε
ρ

ωφ 1−=+−•∇ Aω

 
A,φ  

 
A,φ  
ω , oω  

 
Aω oωφη +−=∇  

Magnetic Only Equations 

01
2

2

2
2 =

∂
∂

−
∂

∂
−∇

ttc
o

AAA σμ  

( ) ( ) ( )
01

2

2

2
2 =

∂
∂

−
∂

∂
−∇

t
a

tc
o

o
o

o
AA

A
ω

μ
ω

ω  

( ) ( ) ( ) 01
2

2

2
2 =×∇−

∂

×∂
−×∇ AAωAω oo a

tc
ωμ  

 

 
0=•∇ A  

( ) 0=×•∇ Aω  
( ) 0=•∇ Aoω  

 

 
A 

 
A, ,ω oω  

 

t∂
∂

−=
AJ 0 σ    

AJ 1 oaω=   

0
0

0

1

0

=
=

=

ρ
ρ
φ

 

Quasi-Magnetostatic Equations 

02 =
∂
∂

−∇
to
AA σμ  

( ) 02 =
∂

∂
−∇

t
AA o

o
ω

μω ao  

( ) ( ) 02 =×∇−×∇ AAω oωμ ao  
 
 
 

 

0=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

•∇
t
A  

( ) 0=×•∇ Aω  
 

( ) 0=•∇ Aoω  

 
A 

 
A, ,ω oω  

 

t∂
∂

−=
AJ 0 σ    

AJ 1 oaω=   

0
0

0

1

0

=
=

=

ρ
ρ
φ
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EQUATION SET FLUX 

BOUNDARY 
CONDITIONS 

DIRICHLET OR  
NEUMANN 
BOUNDARY 
CONDITIONS 

INITIAL 
CONDITIONS 
REQUIRED 

DEFINITIONS & 
ASSUMPTIONS 

Electric Only Equations 

( ) ( )
ttc

o ∂
∂

−=
∂

∇∂
−∇∇ oJ

μφφ
2

2

2
2 1  

( ) ( )
t

Jωω 1

∂
∂

−=
∂

∂
−∇ o

tc
μφφ

2

2

2
2 1  

 

( )
o

o

ε
ρ

φ −=∇•∇  

( )
oε
ρ

φ 1−=•∇ ω  

 
φ  

 
φ ,  ω

 
0=A  

Electric Only Zero Current Equations 

01
2

2

2
2 =

∂

∂
−∇

tc
ηη  

01
2

2

2
2 =

∂

∂
−∇

tc
φφ  

 

( )
o

o

ε
ρ

φ −=∇•∇  

( )
oε
ρ

η 1−=∇•∇  

 
φ  

 
φ ,  ω

 
0=A  

φη ω−=∇  
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APPENDIX VI    SUMMARY TABLE OF LINEAR EQUATIONS FOR TWO CURRENT MODEL OF ECE EM EQUATIONS 
 
 
EQUATION SET FLUX 

BOUNDARY 
CONDITIONS 

DIRICHLET OR  
NEUMANN 
BOUNDARY 
CONDITIONS 

INITIAL 
CONDITIONS 
REQUIRED 

DEFINITIONS & 
ASSUMPTIONS 

Master Equation Set 

oJEA otc
μ=

∂
∂

−×∇×∇
2

1  

1JFG otc
μ=

∂
∂

+×∇
2

1  

0=
∂
∂

−×∇
t
GF  

 

 

o

o

ε
ρ

=•∇ E  

oε
ρ1−=•∇ F  

0=•∇ G  
 

 
A,φ  

 
A,φ  
ω , oω  

 
1o JJJ +=  
1ρρρ += o  

φ∇−
∂
∂

−=
t
AE  

φω ωAF −= o  
AωG ×−=  

0
0

0

1

0

=
=

=

ρ
ρ
φ

 

 
Time Dependent Equations 

ttc
o ∂
∂

=
∂

∂
−∇ oJEE μ

2

2

2
2 1  

t
JFF 1

∂
∂

=
∂

∂
−∇ o

tc
μ

2

2

2
2 1  

1JGG ×∇−=
∂

∂
−∇ o

tc
μ

2

2

2
2 1  

 

 

o

o

ε
ρ

=•∇ E  

oε
ρ1−=•∇ F  

0=•∇ G  
 

 
A,φ  

 
A,φ  
ω , oω  

 
1o JJJ +=  
1ρρρ += o  

φ∇−
∂
∂

−=
t
AE  

φω ωAF −= o  
AωG ×−=  

0
0

0

1

0

=
=

=

ρ
ρ
φ
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EQUATION SET FLUX 

BOUNDARY 
CONDITIONS 

DIRICHLET OR  
NEUMANN 
BOUNDARY 
CONDITIONS 

INITIAL 
CONDITIONS 
REQUIRED 

DEFINITIONS & 
ASSUMPTIONS 

Static Equations 
oJA oμ=×∇×∇   
1JG ×∇−=∇ oμ

2  
 

 
0=•∇ G  

( )
o

o

ε
ρ

φ −=∇•∇  

( )
oε
ρ

η 1−=∇•∇  

 
A,φ  

 
A,φ  
ω , oω  

 
Aω oωφη +−=∇  

AωG ×−=  

Magnetic Only Equations 

01
2

2

2
2 =

∂
∂

−
∂

∂
−∇

ttc
o

AAA σμ  

01
2

2

2
2 =

∂
∂

−
∂

∂
−∇

t
a

tc
o

FFF μ  

01
2

2

2
2 =×∇−

∂

∂
−∇ Ga

tc
oμ

GG  

 

 
0=•∇ A  
0=•∇ F  
0=•∇ G  

 

 
A 

 
A, ,ω oω  

 

t∂
∂

−=
AJ 0 σ    

AJ 1 oaω=  
AF oω=  

AG ×−= ω   

Quasi-Magnetostatic Equations 
02 =

∂
∂

−∇
to
AA σμ  

02 =
∂
∂

−∇
t

ao
FF μ  

02 =×∇−∇ GG aoμ  
 

 
 

0=•∇ A  
0=•∇ F  
0=•∇ G  

 
 
A 

 
 
A, ,ω oω  

 

t∂
∂

−=
AJ 0 σ    

AJ 1 oaω=  
AF oω=  

AG ×−= ω   
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EQUATION SET FLUX 

BOUNDARY 
CONDITIONS 

DIRICHLET OR  
NEUMANN 
BOUNDARY 
CONDITIONS 

INITIAL 
CONDITIONS 
REQUIRED 

DEFINITIONS & 
ASSUMPTIONS 

Electric Only Equations 

( ) ( )
ttc

o ∂
∂

−=
∂

∇∂
−∇∇ oJ

μφφ
2

2

2
2 1  

( ) ( )
1Jo

tc
μηη =

∂

∇∂
−∇∇

2

2

2
2 1  

 

( )
o

o

ε
ρ

φ −=∇•∇  

( )
oε
ρ

φ 1−=•∇ ω  

 
φ  

 
φ ,  ω

 
0=A  

φη ω−=∇  

Electric Only Zero Current Equations 

01
2

2

2
2 =

∂

∂
−∇

tc
ηη  

01
2

2

2
2 =

∂

∂
−∇

tc
φφ  

 

( )
o

o

ε
ρ

φ −=∇•∇  

( )
oε
ρ

η 1−=∇•∇  

 
φ  

 
φ ,  ω

 
0=A  

φη ω−=∇  

 
 
 
 


	(4) 
	Thus equations (1) through (4) represent six equations in unknowns , A,and  indicating that the equation system the way it is presented is lacking two equations for complete specification.  That is, it is under-posed or under-specified.
	We note that this is just the separation of equation (4) into two parts, with a new current J1, such that
	(13) 
	In equation (13), the total charge density ρ is made up of two components, the traditional charge density ρo and a new component ρ1, corresponding to the second form of current J1. 
	The above nine independent equations are re-written here for easy reference, in pairs of Curl, and Divergence equations.  (Appendix II contains proof of equation independence.)
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	B: Time-Dependent Equations
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	A basis is laid for creating well-posed problems in the ECE theory of electromagnetism.  The equations whose original formulation were expressed in pairs of Curl and Divergence equations were recast into inter-dependent wave equations with divergent equations representing the boundary conditions.  This allowed the separation of the equivalent of the Maxwell-Ampere equation in ECE theory into two separate equations, the first defining the traditional current density of Maxwell-Heaviside theory, and the second introducing a new secondary current that is a result of spin connection and heretofore only speculated upon in the non-traditional areas of physics.  One of the results of this separation is the introduction of a wave field that could explain the phenomenon of “scalar” waves proposed in the literature.
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